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Dwarf spheroidal galaxies are excellent targets in γ-ray searches for dark matter. We consider dark matter
searches in dwarf spheroidal galaxies (dSphs) with the Cherenkov Telescope Array (CTA). The aim of this
work is to reveal a quantitative and precise dependence of the accessible dark matter annihilation cross
sections on the dark matter density profiles of dSphs and on the distance to them. In most data analyses,
researchers have assumed pointlike signals from dSphs because it is difficult to resolve the expected
emission profiles with current γ-ray observatories. In future however, CTAwill be able to resolve the peak
emission profiles in dSphs. We take several variations of the dark matter density profile of Draco dSph as
examples and analyze the simulated observations of with CTA. We derive the accessible region of the dark
matter annihilation cross-section with each dark matter density profile. The accessible region of the
annihilation cross section can differ by a factor of 10 among plausible profiles. We also examine the
dependence on the distance to the target dSphs by assuming the same profiles of dSphs at different
distances. Closer targets are better due to the higher J-factor, while their spatial extension significantly
degrades our reach to the annihilation cross section compared to the value expected from a simple distance
scaling of the J-factor. Spatial extension of the source affects the probable parameter region in energy-
dependent ways. In some γ-ray energy ranges, this behavior becomes moderately dependent on the
properties of the observation facility.

DOI: 10.1103/PhysRevD.99.123017

I. INTRODUCTION

Dark matter (DM) is a massive and invisible matter
component of the Universe [1–3]. Rotation curves of
galaxies [4–7] and bullet cluster–like encounters [8,9] are
examples that indicate the existence of DM. Standard
cosmology also requires DM, since nonrelativistic matter
components different from baryons are necessary to form
structures of the Universe [10,11]. Cosmological observa-
tions indicate that DM occupies approximately a quarter of
the total energy in the Universe [11–14].
Varieties of candidates for DM are proposed. One pos-

sibility is that DM is a new particle: weakly interacting
massive particles (WIMPs) (see, e.g., Refs. [15,16]), strongly
interacting massive particles (see, e.g., Refs. [17,18]), axions
(see, e.g., Refs. [19–21]), or sterile neutrinos (see, e.g.,
Refs. [22–25]) are examples. Nonparticle solutions like
primordial black holes (see, e.g., Refs. [26–30]) are also

considered. In this paper, we focus on DM categorized as
WIMPs. WIMPs are one of the best-studied candidates
proposed in theories beyond the standard model like super-
symmetric extensions (see, e.g., Refs. [31–35]). For WIMPs
to be DM particles that explain nonrelativistic, electromag-
netically neutral, invisible components in Refs. [11,13], their
mass must be around mDM ∼OðGeVÞ to OðTeVÞ, and they
must have a velocity-averaged freeze-out annihilation cross
section hσvi ∼ 3 × 10−26 cm3=s [36]. This value of the cross
section is referred to as the canonical cross section.
WIMPs as DM can be detectable through their feeble

interaction with standard model particles. Three kinds of
strategies are pursued: productions of DM with colliders
(see, e.g., Refs. [37,38]); measuring the scattering between
DM particles and nuclei (see, e.g., Refs. [39–41]), called
direct detection experiments; and the search for standard
model particles produced after DM self-annihilation in the
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Universe, called indirect detection experiments. There
has been no confirmed detection of particle DM nor DM
yet. For WIMP models of mDM ∼Oð1–10Þ GeV, γ-ray
observations already constrain the DM annihilation cross
section to be smaller than the canonical value [42]. Lighter
DM is constrained from structure formation (see, e.g.,
Refs. [43–46]). WIMPs heavier than mDM ∼Oð10Þ GeV
are less constrained and expected to be discovered or
excluded in ongoing and future experiments.
Indirect detection experiments have advantages in DM

searches at higher energy ranges of mDM ≳Oð1Þ TeV.
Techniques for astrophysical observations to detect
high-energy emissions are already developed [47–51].
A plethora of projects searching DM signals in the
Universe with charged cosmic rays (see, e.g., Refs. [52–
54]), neutrinos (see, e.g., Refs. [55,56]), and γ-rays are
ongoing. In general, astrophysical emissions dominate
over DM signals, and elaborate strategies are required in
the indirect DM search. Spectral and morphological infor-
mation of emissions helps identify the sources. Considering
DM searches in γ-rays with a facility of threshold energy
Eth, the flux from DM annihilations is

ϕ ¼ 1

4π

hσvi
2m2

DM

Z
mDM

Eth

dE
dNγ

dE
· J; ð1Þ

where

J ¼
Z

dΩ
dJ
dΩ

¼
Z

dΩ
Z

dsρ2DM: ð2Þ

In Eq. (1), all quantities except for J are determined from
particle physics. The part shown as J in Eq. (2) is referred to
as the “(astrophysical) J-factor.” Since the J-factor is defined
as the line-of-sight integral over the squared DM density
ρ2DM, the signal sensibly depends on the density profile, and
precise information about the DM distribution at the source
is necessary to reliably derive the WIMP properties. The
distribution of the DM is determined from stellar kinematics
in optical observations (see, e.g., Ref. [57]).
The Galactic center is considered one of the best targets

to search DM signals in γ-rays (see, e.g., Ref. [58]) because
it is expected to have the highest J-factor among known
targets with J ∼Oð1021–22Þ GeV2 cm−5. Attentive strate-
gies in the separation of DM signals from astrophysical
emissions are required since the Galactic center is very
bright in astrophysical γ-ray emissions [59]. Also, the
determination of the precise shape and a normalization
of the DM density distribution at the very center of the
Milky Way Galaxy are remaining issues [60–63]. Dwarf
spheroidal galaxies (dSphs) are satellites of the Milky Way
Galaxy and also good regions to focus on as first pointed
out by Ref. [64] and later in Ref. [65]. They are spatially
extended objects of Oð1Þ degrees located in high-latitude

regions of the Milky Way galaxy. Several tens of dSphs are
already identified with available stellar kinematics data, and
the number of confirmed dSphs is continuously increasing
[66–75]. Stellar motions in dSphs indicate that they are
dense and DM dominated objects [76–78] with mass-
to-luminosity ratios reaching approximately 103 M⊙=L⊙
[79–83]. No significant γ-ray emissions have been con-
firmed in dSphs, although possibilities that some of them
contain γ-ray sources cannot be excluded [42,84].
Stacking analyses on dSphs by the Fermi collaborations

give the tightest upper limits on DM annihilation cross
sections [42,85–89]. For DM of mDM ≲Oð100Þ GeV, the
upper limits already reach the canonical value [42,85–89].
At higher mass ranges, ground-based Cherenkov telescopes
have advantages over observations with satellite detectors.
Since most of those ground-based γ-ray facilities are
pointing telescopes, upper limits on DM annihilation cross
sections are obtained by observations on a few well-
selected dSphs. Almost the same level of upper limits is
obtained by observations with different facilities [90–103].
In the very near future, the Cherenkov Telescope Array
(CTA) will start its operations and is expected to improve
the sensitivity to probe DM annihilation cross sections by
about 1 order of magnitude [51].
The designed angular resolution of CTA for γ-rays

around 1 TeV is Oð0.05°Þ, which is finer than the typical
spatial extension of dSphs, and hence the consideration of
the DM density profile shape becomes crucial. This has
been pointed out in earlier works (see, e.g., Refs. [77,104]).
In the latest analyses with atmospheric Cherenkov tele-
scopes, spatial extensions of DM for dSphs are taken into
account [93,100] and tend to give upper limits milder than
those assuming point sources. However, DM density
distributions in the dSphs are still under discussion (see
the Appendix of Ref. [77] or Ref. [105] for examples).
Different models for DM distributions lead to the diver-
gence of derived upper limits.
In this paper, we examine accessible parameter regions

of the DM annihilation cross section with CTA, probing
different extended DM density distributions in dSphs. We
sample DM density profiles of the Draco dSph as examples.
Draco is one of the well-known classical dSph galaxies. So
far, several profiles have been provided for it in the
literature [76,98,106–110]. We consider the observation
of dSphs with CTA and analyze simulated data using
CTOOLS [111]. The sensitivity calculations for DM anni-
hilation cross sections are conducted with 16 different
profiles and compared to give a quantitative estimate of
uncertainties in the searches towards dSphs. The depend-
ence on the distances to dSphs is also investigated.
The structure of this paper is as follows. Section II

explains our methods. In Sec. III, we show a comparison of
the sensitivity for annihilation cross sections obtained with
various profiles and distances. Section IV is devoted to
discussions. We summarize in Sec. V.
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II. METHODS

A. Dark matter density profiles of the source

A point source is the simplest model for a target dSph
when the angular size of the target is small enough
compared to the angular resolution of observational
facilities. Future ground-based atmospheric Cherenkov
telescopes can resolve typical dSphs, so they are to be
treated as extended sources. Profiles of dSphs are sampled
to investigate how their spatial extension affects the
accessible region of the DM annihilation cross section.
Draco dSph is taken as the example, and we limit our
analyses to spherical profiles for simplicity. Three types of
DM density profiles are considered in this work:
(1) generalized Navarro-Frenk-White (NFW) profile

[112,113],

ρðrÞ ¼ ρs

�
r
rs

�
−γ
�
1þ

�
r
rs

�
α
�

−β−γ
α

; ð3Þ

where ðα; β; γÞ ¼ ð1; 3; 1Þ corresponds to the origi-
nal NFW profile in Ref. [114];

(2) Burkert profile [115]:

ρðrÞ ¼ ρs
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r
rs

�
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�

−1
; ð4Þ

(3) power-law (PL) profile with an exponential
cutoff:

ρðrÞ ¼ ρs

�
r
rs

�
−α

exp

�
−

r
rs

�
: ð5Þ

ρs is the normalization of the DM density, and rs is the scale
radius of the profile measuring the distance r from the center
of the target. More detailed profiles such as nonspherical
cases or profiles with substructures are discussed in
Refs. [78,116–118]. Table I summarizes our reference
profiles with explicit expressions of each profile, profile
type [corresponding to Eqs. (3), (4), and (5)], J-factor
integrated to solid angle of 0.5° (J<0.5°), J-factor integrated
to the 4.0° × 4.0° region (Jtot) which corresponds to the size
of the region of interest (RoI) in our analyses, and distance
from the Earth. We also assign identification numbers in the
first column in Table I for convenience. Note that the
truncation radius for the profiles is not introduced in our
analyses. The truncation radius is usually determined by the
location of the outermost member star or the virial radius of
the DM halo. If we take the former for the truncation radius,
then it corresponds to θ ¼ 1.3° for Draco [108]. On the other
hand, the virial radius is highly model dependent. Actual
radial extension of the dSphs is still under discussion.
We chose our RoI to cover the outermost member star,
avoiding the introduction of an additional model parameter.

TABLE I. DM density profiles for dSphs used in our analysis. We assign numbers in the first column for convenience. We adopt the
center value for the parameters in each case.

No. Reference Expression Type log10J<0.5° log10Jtot
Distance
(kpc)

1 Acciari et al. [98] ð1.7 GeV
cm3 Þð r

0.79 kpcÞ−1ð1þ r
0.79 kpcÞ−2 NFW 18.40 18.45 80

2 Geringer-Sameth et al. [108] ð0.69 GeV
cm3 Þð r

3.7 kpcÞ−0.71ð1þ ð r
3.7 kpcÞ2.01Þ−2.80 Generalized NFW 19.00 19.44 76

3 Lokas [109] ð16.3 GeV
cm3 Þð1þ r

0.67 kpcÞ−3 Generalized NFW 19.08 19.29

4 ð1.23 GeV
cm3 Þð r

1.30 kpcÞ−1ð1þ r
1.30 kpcÞ−2 NFW 18.80 18.91 72

5 ð0.18 GeV
cm3 Þð r

1.99 kpcÞ−1.5ð1þ r
1.99 kpcÞ−1.5 Generalized NFW 18.88 18.90

6 Lokas et al. [110] ð5.9 GeV
cm3 Þð r

0.32 kpcÞ−1 exp ½− r
0.32 kpc� PLþ cutoff 18.53 18.53 80

7 Mashchenko et al. [106] ð4.76 GeV
cm3 Þð1þ r

1.41 kpcÞ−1ð1þ ð r
1.41 kpcÞ2Þ−1 Burkert 19.08 19.56

8 ð13.4 GeV
cm3 Þð1þ r

0.35 kpcÞ−1ð1þ ð r
0.35 kpcÞ2Þ−1 Burkert 18.65 18.70

9 ð37.8 GeV
cm3 Þð1þ r

0.18 kpcÞ−1ð1þ ð r
0.18 kpcÞ2Þ−1 Burkert 18.69 18.70

10 ð0.60 GeV
cm3 Þð r

2.82 kpcÞ−1ð1þ r
2.82 kpcÞ−2 NFW 18.95 19.15 82

11 ð1.70 GeV
cm3 Þð r

1.00 kpcÞ−1ð1þ r
1.00 kpcÞ−2 NFW 18.67 18.73

12 ð4.76 GeV
cm3 Þð r

0.50 kpcÞ−1ð1þ r
0.50 kpcÞ−2 NFW 18.70 18.72

13 ð13.4 GeV
cm3 Þð r

0.25 kpcÞ−1ð1þ r
0.25 kpcÞ−2 NFW 18.70 18.70

14 ð37.8 GeV
cm3 Þð r

0.18 kpcÞ−1ð1þ r
0.18 kpcÞ−2 NFW 19.15 19.15

15 Sanchez-Conde et al. [107] ð0.95 GeV
cm3 Þð r

1.19 kpcÞ−1 exp ½− r
1.19 kpc� PLþ cutoff 18.58 18.69 80

16 ð12.7 GeV
cm3 Þ exp ½− r

0.24 kpc� PLþ cutoff 18.56 18.58
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The J-factor integrated to 1.3° and Jtot defined as J-factors in
our RoI differ by at most 10%. Templates of the J-factor
centered on the target are generated by adopting the median
value of the parameters for each profile provided in the
references. The spatial resolution of our template is 0.01°.
In practice, we produce templates larger than the RoI, then
use parts corresponding to the RoI. J<0.5° values in Table I
are shown just to make a comparison with previous works
easier and are not used in our analyses.

B. Spectrum of the DM annihilation at the source

Three channels are considered as final states, b̄b,
WþW−, and τþτ−. Those are representatives of DM
annihilations into quarks, weak bosons, and leptons. The
maximum mass of the DM particle in our calculation is set
to mDM ¼ 1 PeV, while the minimum is set to mDM ¼
25 GeV for lepton and quark channels and to mDM ¼
160 GeV for the weak boson channel. At lower energies,
contributions from residual cosmic rays are significant. We
set our minimum mass to avoid these contaminations. The
spectra of each annihilation channel are calculated with
PYTHIA8.2 [119–121]. Figure 2 shows examples of spectra
from mDM ¼ 100 GeV to 1 PeV. The spectra shown in
Fig. 2 include final state radiations like bremsstrahlung
of charged leptons, which are electroweak corrections
different from interactions with external fields. We consider

contributions from secondary γ-rays produced during prop-
agations of charged leptons to be negligible [122–126].
The treatment of the secondary γ-rays and the spectra in
our calculation would be consistent with those available in
Ref. [127], which are computed by the old version PYTHIA8.1

and widely used in γ-ray searches of dark matter.
The differences in the gamma-ray spectra between

WþW− (or b̄b) and τþτ− modes come from differences
of the particle multiplicity among those modes. γ-rays are
produced mainly by decaying neutral pions and partly by
other decaying mesons. In theWþW− or b̄bmodes, emitted
quark pairs immediately fragment into a lot of mesons and
baryons, which are dominant modes. The number of the
multiplicity into pions would be approximately 30 for the
center-of-momentum energy being

ffiffiffi
s

p ¼ Oð1Þ TeV. In
this case, the γ-ray spectrum becomes broader with its mean
energy being lower. On the other hand, in the τþτ− mode,
the number of the multiplicity into neutral pions is much
smaller [a few in

ffiffiffi
s

p ¼ Oð1Þ TeV]. In this latter case, the
energy of γ-rays tends to be higher, which gives a steeper
spectrum than that of the WþW− or b̄b emission mode.

C. General procedures of our analysis

The procedure for sensitivity calculations is as follows.
The software package CTOOLS [111] is used for the

FIG. 1. Examples of DM density profiles in our analyses. Left: NFW profile of model 5 in Ref. [106]. Center: Burkert profile of model
3 in Ref. [106]. Right: power-law of ðindex 0Þ þ cutoff profile in Ref. [107]. The horizontal axis represents the distance measured from
the center of the dSph. Numbers in the legends correspond to those in Table I.

FIG. 2. γ-ray spectrum for DM of mass mDM ¼ 100 GeV, 1 TeV, 10 TeV, 100 TeV, and 1 PeV annihilating into b̄b (left), WþW−

(center), and τþτ− (right). Spectrum of mDM ¼ 100 GeV annihilating into WþW− is shown for comparison and not used in our
analyses.
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analysis. First, we simulate events assuming a 500 hr
observation. The instrumental response function (IRF)
PROD3B [128], the latest publicly available version of the
CTA IRF package, is used. Assuming the northern CTA site
(La Palma), we select the IRF optimized for the long-time
observation at a zenith angle of 20°. In the event gener-
ations, no γ-ray sources are included. Only residual charged
cosmic rays as background events are simulated. After the
event generation, selections and binnings are performed
in energy and space. We select a 4° × 4° square region

centered on the target. Spatial binning is 0.03°. In energy,
events from 0.03 to 180 TeV are selected and binned with
five bins per decade on a logarithmic scale. We conduct
likelihood analyses with the binned data. Median upper
limits on the γ-ray flux are defined to decrease the
likelihood corresponding to a 95% confidence level.
Throughout the procedure, we calculate with CTOOLS,
following the method in Ref. [111]. The dependence
between the γ-ray flux and annihilation cross section is
given in Eq. (1).

FIG. 3. Upper limits on the DM annihilation cross section assuming a 500 hr observation. In each panel, we show our results with
dash-dotted lines using several dash lengths. For comparison, we put three lines: (a) the CTA sensitivity curve for a 500 hr observation of
the Galactic halo with CTA [51] assuming a Burkert profile (long-dashed line), (b) the same but assuming an Einasto profile (short-
dashed line), and (c) an observational result of the current upper limit by Fermi-LAT using 25 dSphs with kinematically derived J-factors
[88] (solid line). We also show a reference for the cross section hσvi corresponding to the relic abundance in a horizontal band in the
bottom part. Detailed calculations for the relic abundance is given in, e.g., Ref. [36]. Panels in the left column show sensitivities
assuming profiles in Table I. The distance for each profile is also shown in the same table. The severest case of Jtot ¼ 1019.15 (number 14
in Table I, left panel in Fig. 1) is shown with a short dashed-dotted line, and the weakest one of Jtot ¼ 1018.58 (number 16 in Table I, right
panel in Fig. 1) is shown with a long dash-dotted line. Middle dash-dotted lines correspond to the case of the center panel in Fig. 1 of
Jtot ¼ 1018.70 (number 9). We also show the upper limits, assuming a point source of Jtot ¼ 1019.15 with the shortest dash-dotted lines.
The center (right) column shows the achievable sensitivities assuming the same profiles of the 16 sources in Table I at 40 kpc (160 kpc)
from the Earth. In each column, the top, middle, and bottom panels correspond to the upper limits on annihilation cross sections of DM
into b̄b, WþW−, and τþτ−, respectively.
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III. RESULTS

We conduct likelihood analyses on the simulated 500 hr
observation of a dSph with DM density profiles listed in

Table I. The top, middle, and bottom rows in Fig. 3 show

the cases of DM annihilating into b̄b, WþW−, and τþτ−,

respectively. Panels in the left column show the sensitiv-
ities, assuming the DM density profiles, distances, and
J-factors (Jtot) in Table I. Each line is the 95% level
upper limit corresponding to the profile in Fig. 1. Upper
limits assuming profile number 14 (NFW model 5 in
Ref. [106]) are the strongest, while number 16 (PL of

FIG. 4. The ratio between the upper limits on the annihilation cross section, assuming the same profiles of dSphs at different distances,
considering profile number 14 (left) and number 16 (right). The expected value of ratios hσvidj=hσvidi from the difference of J-factors

are shown as dotted lines. The ratio of ð1=2Þ2 are expected for ðdj; diÞ ¼ ð40 kpc; 80 kpcÞ and (80 kpc, 160 kpc), while ð1=4Þ2 is
expected for ðdj; diÞ ¼ ð40 kpc; 160 kpcÞ. Deviations from the scaling from the J-factor are higher for the case of profile number 16.
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index 0þ cutoff model in Ref. [107]) is the weakest in our
sample. Other profiles give the upper limits in the shaded
regions of the Fig. 3, like middle-dash dotted lines
corresponding to the cases of number 9. Sensitivities with
a point source of log10ðJÞ ¼ 19.15, which is the same as the
J-factor of profile number 14, are also shown in a thin dash-
dotted line. If we assume a point source, the upper limit
always gets stronger. With the angular resolution of CTA,
extended source structures are clearly resolved. Our results
are consistent with the analytical discussion in Ref. [104].
Comparing between annihilation channels, wider regions
of the cross section parameter space can be covered for DM
annihilating into τþτ− than for b̄b orWþW− channels. This
is due to the hard spectral feature which can be seen in the
right panel of the Fig. 2. The tendency is consistent with the
latest results in Ref. [129], which assumes lineþ broad
spectra in specific WIMP models. Features in the sensi-
tivity curves in Fig. 3 atmDM ¼ Oð10Þ–Oð100Þ TeV result
from the properties of the telescope. Center (right) columns
show the sensitivities for sources at smaller (larger) dis-
tances. We adopt the same distance among the profiles here.
Differences between profiles are larger (smaller) for cases
assuming 40 (160) kpc due to the angular extensions. In
each panel, we also show the current limit by Fermi using
25 dSphs [88] with a solid line and the expected sensitiv-
ities of the Galactic halo observations using CTA with
dashed lines [51,61,130–132]. We show two cases, assum-
ing different DM density profiles for the expectations of
Galactic halo. observations because the DM density profile
there is under discussion. The accessible annihilation cross
section is about 2 orders of magnitude smaller for the case
assuming the Einasto profile (short-dashed line) than that
assuming the Burkert profile (long-dashed line) as shown in
these figures.
We can expect better constraints when we adopt profiles

based on the latest and detailed modelings of the dSphs.
For example, we do not include the contribution from
subhalos in dSphs since it is still under discussion
(e.g., Refs. [117,118,133–138]). Subhalos should enhance
the annihilation signal, although little subhalo boost is
expected in dSphs. Still, our results in this work provide
conservative estimates.
In each channel of DM annihilation, the sensitivity

achieves its best at mDM ¼ 630 GeV, 1 TeV, and
250 GeV for b̄b, WþW−, and τþτ−, respectively. These
masses are universal among the profiles. By defining the
rank of the profiles with the best points of the sensitivity in
the DM mass range, we examine the relation between the
annihilation channel final-state spectrum and the profile.
There is no change in ranks of profiles between channels.
Number 14 in Table I is the strongest, Number 16 is the
weakest, and all other profiles lie between them in the
same order.
The dependence on the distance to the source is clarified

in Fig. 4. Assuming the source of profile number 14 and

number 16 at 80, 40, 160 kpc, we calculate the sensitivity
and take the ratio of the upper limits on the annihilation
cross section. A source distance of 80 kpc is chosen to be
consistent with the distance for each model within the 1-σ
error. Corresponding J-factors are shown in Table II, which
shows good agreement with the scaling law of J ∝ d−2 for
point sources [82,139]. The left (right) column corresponds
to the profile number 14 (number 16). Profile number 14
(left) almost follows the ratio expected from the scaling of
J-factors in Table II, while profile number 16 (right) does
not. For profile number 16, upper limits on hσvi get lower
in milder ways than those expected from the scaling of the
J-factor. Also, the DM mass dependence of the ratio differs
between annihilation channels.

IV. DISCUSSION

A. Dependences on profiles

The difference of hσviUL between profiles (short-dashed
and long-dashed lines in Fig. 3, for example) is caused by
two effects. Subscript “UL” denotes the upper limit here.
The values of Jtot affect the sensitivity to the annihilation
cross section hσviUL in a direct way like cases analyzing
point sources with different J-factors. For analyses of
extended sources, upper limits on the γ-ray flux ϕUL are
also affected by the details of DM density profiles; hence,
hσviUL is determined by combinations of these effects.
The width of the shaded regions in Fig. 3 corresponds to
this fact. When sources are at large distances (e.g., d ¼
160 kpc compared to d ¼ 80 kpc), their density profile
cannot be resolved. Then, the behavior of the sensitivity
curve becomes like that of a point source.
To clarify this point, we show the relation between

hσviUL and Jtot in Fig. 5. hσviUL is evaluated with hσvib̄b at
mDM ¼ 630 GeV. Each marker corresponds to a profile in
Table I. The relation derived for cases ofWþW− or τþτ− is
similar. The obtained hσviUL does not follow the inverse of
Jtot, which is different from the case of ϕUL independent of
the DM distribution in dSphs like analyses of point sources.
Therefore, a better understanding of the DM density profile
is required in determining the goodness of the targets. We
also investigate the dependence of the resultant limits on
the DM density profile parameters. We search the relation
between the upper limits of the annihilation cross section
hσvi and the DM density at a certain radius (0.1°, 0.3°, 0.5°,
and 1.0°), the scale radius rs, or the index γ defined as

TABLE II. J-factors (Jtot) of profiles number 14 and number 16
in Table I, assuming the distance from the Earth to be 40, 80, and
160 kpc.

Profile
No.

log10Jtot
(40 kpc)

log10Jtot
(80 kpc)

log10Jtot
(160 kpc)

14 19.79 19.17 18.53
16 19.18 18.58 17.98
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ρðrÞ ∝ r−γ at the inner part (r < rs). We find no correla-
tions between either of the parameters and the achievable
upper limits. Hence, none of the single profile parameters
can be used to select the target dSphs, and we should select
the targets based on the whole properties of their profiles.
The dependence on the DM density profile also appears

in the shape of the sensitivity curve. Figure 6 shows the
ratio of the obtained upper limits assuming profile number
16 and number 14 in Table I, hσviNo:16=hσviNo:14. For each
annihilation channel, the ratio is about 10 and depends on
the DM mass. A broad bump of the ratio at mDM ∼ 10 to
∼500 TeV is seen in the case of b̄b, while a dip at mDM ∼
20 TeV appears in the ratio for τþτ−. For WþW−, a broad
bump ranges from Oð1Þ TeV to a few hundreds of tera-
electron-volts, and it peaks at mDM ≲Oð100Þ TeV. The
DM masses at around the bumps correspond to the γ-ray
emission peaks of Eγ ∼ 1–10 TeV (see Fig. 2). The
presence of the bumps can be interpreted as follows.
The angular resolution of the CTA facility gets better as
the energy increases. For example, it corresponds to about
0.1° at Eγ ∼ 200 GeV and improves to about 0.04 at Eγ >
1TeV [140]. Therefore, the changes of ϕUL are more
significant at higher energies. On the other hand, in the
very-high-energy regime at Eγ > 10 TeV, almost no
residual background events are expected. In such a case,
the sensitivity is more determined by the detected number
of signal events rather than the signal-to-noise ratio. It
is a so-called signal-dominant case. In such cases, the
angular resolution contributes less to the ϕUL, and ϕUL is
less affected by the spatial extension of the source. Then,
hσviNo:16 can get close to the expected values for those of
point sources. The behavior of the ratio hσviNo:16=hσviNo:14
is a manifestation of these effects since profile number 14
almost corresponds to a point source. Combining those
two effects, the ratio between the profiles has the bump
structures seen in Fig. 6.

B. Dependences on distances

If the same profiles of dSphs are located at different
distancesdj anddið>djÞ, the J-factor increases by a factor of
ðdi=djÞ2 for closer ones. Then, hσviUL should be simply
improved by ðdi=djÞ2 when the target objects are point
sources. However, improvements of hσviUL are less than
those expected from the scaling of J-factors as shown in
Fig. 4, due to the changes in ϕUL. Deviations from the
scaling of J-factors are higher in the analyses assuming cored
targets. Bumps are clearly seen in the right panels of Fig. 4.
They peak at mDM ≲Oð100Þ TeV for b̄b or WþW− and at
Oð10Þ TeV for τþτ−. The features correspond to a peak at
Eγ ≲ 10 TeV in the annihilation spectrum, and a similar
explanation of Sec. IVA holds. The sources at closer
distances become more spatially extended such that ϕUL
gets worse at higher energies. As a result, the ratios
hσvidj=hσvidi for heavier WIMPs are more deviated from
the expectations for point sources. Contributions from the
noise get lower at the very-high-energy regime, and con-
sequently at Eγ > 10 TeV, ϕUL are less affected by the
spatial sizes of the source. Combining those two effects, the
ratios between the upper limits on the annihilation cross
section assuming the same profiles of dSphs at different
distances have the bump structures as shown in Fig. 4.
Possibilities of the uncertainties in dSphanalyses due to the

modelings of isotropic background events are discussed in
Ref. [141]. In our analyses, the normalization of the back-
ground is fitted simultaneously with the dark matter signals;
hence, the additional uncertainties due to themodelings of the
backgroundwill not appear. However, the background events
become Poisson-like at Eγ greater than or approximately
equal to a few tera-electron-volts where we expect signals

FIG. 5. Upper limits on the cross section for annihilation into
b̄b pairs shown as a function of Jtot. hσvib̄b is evaluated at
mDM ¼ 630 GeV. The dotted line corresponds to the relation
hσviUL ∝ J−1, which is expected for point sources.

FIG. 6. Ratios of upper limits on the annihilation cross section
obtained with profile number 16 and number 14 in Table I. The
horizontal axis is the WIMP mass mDM, and the vertical axis is
the ratio r ¼ hσviNo.16=hσviNo.14. Solid, dot-dashed, and dashed
lines correspond to the case considering the DM annihilating into
b̄b, WþW−, and τþτ−, respectively.
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fromDMofmDM ≳Oð1Þ TeV.Thismight induce additional
uncertainties of which contributions are small compared to
those inDM spatial distributions in target dSphs.We quantify
this point in future works.

V. CONCLUSION

Dependences of the accessible regions of the DM
annihilation cross section hσvi on the density profile of
dSphs have been examined and quantified. Since the DM
density profile of each dSph is still actively debated, we
have taken those of Draco dSph in the literature as
examples. Based on the likelihood analyses on simulated
500 hr observations with CTA assuming the 16 profiles, we
have shown that the achievable upper limits on DM
annihilation cross sections are highly dependent on the
details of the spatial extensions of target dSphs. We have
revealed that the probable region of the annihilation cross
section can differ by a factor of approximately 10 if we
change the profile models. The dependence is different
from the case of a point source of which the merit is fully
described with a single J-factor value. To extract informa-
tion about the nature of DM from γ-ray observations with
CTA, we therefore conclude that it is crucial to better
constrain the density profiles of the targets.
The dependence of upper limits on the distance to the

target dSphs have been also considered. J-factors get higher

for closer targets if profiles are the same. However,
achievable upper limits are always worse than those
expected from the scaling of J-factors due to the larger
spatial extensions of sources. This effect is significant at
around γ-ray energies around 10 TeV. At around the same
energy, the effect of the spatial extension of targets is also
apparent in the comparison between the annihilation
channels. Improved angular resolution and the signal-
dominant situation in the higher γ-ray energy regions
determine the behavior of the sensitivity curve in
combination.
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