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Neutrinos play a critical role of transporting energy and changing the lepton density within corecollapse
supernovae and neutron star mergers. The quantum kinetic equations (QKEs) combine the effects of
neutrino-matter interactions treated in classical Boltzmann transport with the neutrino flavor-changing
effects treated in neutrino oscillation calculations. We present a method for extending existing neutrino
interaction rates to full QKE source terms for use in numerical calculations. We demonstrate the effects of
absorption and emission by nucleons and nuclei, electron scattering, electron-positron pair annihilation,
nucleon-nucleon bremsstrahlung, neutrino-neutrino scattering. For the first time, we include all these
collision terms self-consistently in a simulation of the full isotropic QKEs in conditions relevant to core-
collapse supernovae and neutron star mergers. For our choice of parameters, the long-term evolution of the
neutrino distribution function proceeds similarly with and without the oscillation term, though with
measurable differences. We demonstrate that electron scattering, nucleon-nucleon bremsstrahlung
processes, and four-neutrino processes dominate flavor decoherence in the protoneutron star (PNS),
absorption dominates near the shock, and all of the considered processes except elastic nucleon scattering
and neutrino-neutrino processes are relevant in the decoupling region. Finally, we propose an effective
decoherence opacity that at most energies predicts decoherence rates to within a factor of 10 in our model
PNS and within 20% outside of the PNS.
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I. INTRODUCTION

Neutrinos interacting with matter are central to the
mechanism by which massive (≳10 M⊙) stars explode
as core-collapse supernovae (CCSNe; see, e.g., [1–3]).
When the iron core of such a star exceeds its effective
Chadrasekhar mass, it becomes unstable to collapse and the
center reaches nuclear densities within a couple hundred
milliseconds. At this point, nuclear forces cause the
equation of state to quickly stiffen, halting collapse and
launching a shock wave into the still supersonically
infalling iron core. This initial shock is not strong enough
to lead to an explosion. Neutrinos emitted as matter
accretes onto the protoneutron star (PNS) have the potential
to transport enough energy to the fluid under the shock
front to lead to an explosion. However, a detailed account-
ing of precisely how this happens remains elusive.
Numerical simulations have become the primary tool for

studying the nonlinear and multiphysics dynamics in
CCSNe. Current state of the art simulations account for
neutrino transport by treating neutrinos as classical radi-
ation and employing a variety of implementations of the
relativistic Boltzmann equation or approximations thereof
(e.g., [4–10]). Over the years since the first numerical
model of a neutrino-driven supernova by Colgate and

White [1], many different neutrino-matter interaction proc-
esses have been found to be important, including absorp-
tion and emission by nucleons and nuclei, scattering by
nucleons and electrons, pair production and annihilation,
nucleon-nucleon bremsstrahlung radiation, and neutrino-
neutrino pair annihilation and scattering (see [11,12] for
overviews).
However, it has long been known that neutrinos are able

to change flavor in-flight [13–16], though many of the
relevant parameters are not yet well constrained [17].
Understanding how the neutrino flavor evolves from the
neutrino’s emission in the CCSN to its detection on earth is
necessary in order to use neutrino signals to gain valuable
insight into the depths of the CCSN explosion mechanism
(e.g., [18]). Historically, calculations of flavor conversion
of CCSN neutrinos have been performed by evolving
neutrinos moving outward from the neutrinosphere (see
[19,20] for recent reviews). In contrast to neutrino transport
calculations, simulations of neutrino flavor conversion
neglect collisions but include some aspects of neutrino-
matter interactions in the form of a potential through which
neutrinos propagate. Neutrino-neutrino interactions also
contribute to this potential, making the evolution equations
very nonlinear and difficult to simulate over timescales
relevant to the CCSN.
If neutrinos are experiencing flavor oscillations and

collisions in widely separated regions of the supernovae,*sricher@ncsu.edu
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then the no-oscillation approximation in neutrino transport
calculations and the no-collision approximation in neutrino
flavor conversion calculations at first glance appear very
reasonable. Neutrinos are emitted in flavor states inside of
the supernova shock wave, and the large matter-induced
contribution to the neutrino potential suppresses flavor
oscillations in regions where collisions are important [21].
However, including the contribution of neutrinos them-
selves to this potential (namely, the “self-interaction” part
of the potential) makes the problem much richer. The first
calculations including the full potential but only one
neutrino energy and propagation direction suggested that
flavor oscillations could occur within the shock [22].
Subsequent calculations that include multiple energies
and/or propagation directions indicate that, though still
occurring inside the shock, oscillations begin at too large of
a radius to significantly affect the CCSN explosion mecha-
nism [23–25]. Once the neutrinos are beyond the strong
matter potential, the matter density is so low that scattering
events are exceedingly rare, making collision terms unim-
portant where flavor oscillations take place.
One could take this as evidence that a full quantum

kinetic treatment including both collisions and oscillations
is not needed, but recent developments have suggested that
there may be scenarios where neutrino oscillations and
scattering may not be so separable. So-called fast flavor
conversions may occur deep within the supernova shock
wave if the electron neutrino and electron antineutrino
angular distributions differ enough that they intersect in
momentum space. In this way, in some directions the
contribution to the potential from antineutrinos overwhelms
that from neutrinos, allowing neutrino flavor states to mix
[26–32]. Though the lepton-emission self-sustained asym-
metry [5,33] may be conducive to fast flavor conversions
[28,34], searches for conditions conducive to fast flavor
conversions in simulations of CCSNe have had mixed
results [33,35,36].
The neutrino halo effect is another such scenario where

collision and oscillation physics are simultaneously rel-
evant. Even though neutrinos are decoupled outside of
the shock, the small changes to the neutrino distribution
from rare scattering events can enhance the neutrino self-
interaction potential and significantly change the location
and strength of the flavor conversions [37–41]. Though the
halo effect is not expected to have an impact on the CCSN
explosion mechanism, it could significantly change the
neutrino signal we might expect to see from the next
nearby CCSN.
Neutron star mergers also create an environment with

complex neutrino radiation fields, and the details of this
radiation field have profound effects on the amount of mass
ejected from the merger, the eventual composition of this
ejecta, the fate of the central remnant, and the potential
launching of a relativistic jet (e.g., [42–50]). It has been
shown that the neutrinos are also likely subject to a number

of interesting flavor transformation effects that are expected
to occur near the decoupling region (e.g., [51–60]).
However, the effects of quantum kinetics in these systems
are yet to be investigated in detail.
To account for both neutrino flavor conversions and

collisions consistently, one must evolve the neutrino
quantum kinetic equations (QKEs) [61–65]. Though the
collision physics for neutrinos in flavor eigenstates has
been extensively explored (see, e.g., [11,12] for overviews),
how neutrinos in general flavor states interact with matter
was only recently fleshed out by the authors of [65].
However, these detailed interaction physics have yet to be
explored thoroughly in numerical simulations.
In this paper, we begin in Sec. II with a brief introduction

of the QKEs and the concept of distribution flavor vectors
that are critical in visualizing the results. We discuss our
numerical method for solving the QKEs and our choice of
initial conditions in Sec. III. Then in Sec. IV we describe a
method by which the existing wealth of understanding the
interaction rates for neutrinos in flavor eigenstates can be
extended in a straightforward way to the full collision
kernel for the QKEs. We also show results from non-
oscillating calculations in this section to build intuition
about the impact of each process on the flavor dynamics.
We present our main results in Sec. V. Section VA shows
the evolution of flavor decoherence resulting from a
combination of all of the interactions discussed in this
paper without the oscillation term. In Sec. V B we describe
the same with the oscillation term turned on and compare it
to the nonoscillating calculation. Finally, we perform
nonoscillating calculations using input parameters from
many points along a 1D core-collapse supernova simulation
snapshot and suggest an approximate decoherence length
scale formula in Sec. V C. To facilitate future simulations of
the QKEs in core-collapse supernovae and neutron star
mergers, we write the general relativistic moment form of
the QKEs and the corresponding oscillation and collision
source terms in Appendix A.

II. QUANTUM KINETIC EQUATIONS

In this section, we present the QKEs in general relativ-
istic form to allow future implementations in codes that
account for spacetime curvature and velocity dependence.
The QKEs describe the evolution of the (dimensionless)
Wigner transform of the neutrino two-point correlation
function [62]

FABabðν;Ω; xμÞ ≔
�
fLLab fLRab
f�LRab fRRab

�
; ð1Þ

where fLL and fRR are Nf × Nf matrices representing left-
and right-handed neutrinos, respectively, and Nf is the
number of neutrino flavors. Throughout this paper, upper-
case latin indices represent handedness indices, lowercase
latin indices are flavor indices, greek indices are spacetime
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indices, and we use the ð−;þ;þ;þÞ sign convention for
the metric. The flavor-diagonal (a ¼ b) components of fLL
and fRR are the occupation probabilities at particular
spacetime coordinates xμ of neutrinos with frequency ν
and direction 3-vector Ω in a comoving orthonormal tetrad.
That is, fAAaa are the ordinary neutrino distribution
functions, and the number density nAa of neutrino flavor
a and handedness A in such a frame is

nAaðxμÞ ¼
Z

d3ν
c3

fAAaa; ð2Þ

where d3ν ¼ ν2dνdΩ. The off-diagonal elements of fLL
and fRR describe quantum flavor coherence. fLR is also
a Nf × Nf matrix that represents quantum coherence
between left- and right-handed neutrinos. In the ultra-
relativistic limit, the QKEs can be written to order ϵ2,
where ϵ ≪ 1 is the ratio of the neutrino mass, mass
splitting, forward-scattering potentials, or gradients to
the neutrino frequency, as

dF
dλ

þ forceþ drift ¼ −pμuμ

�
C −

i
ℏc

½H;F �
�
; ð3Þ

where uα is the dimensionless fluid four-velocity. λ is an
affine parameter such that the neutrino four-momentum is
pμ ¼ dxμ=dλ. In the comoving orthonormal tetrad, the
momentum is also pμ ¼ ð1;ΩÞhν=c, where the first com-
ponent is the time component. The derivative expands
in a general curved spacetime to d=dλ ¼ pμ∂=∂xμ −
Γμ
αβp

αpβ∂=∂pμ, where Γμ
αβðxμÞ are connection coefficients

(units of cm−1). The 2Nf × 2Nf collision integral
CABabðν;Ω; xμÞ (units of cm−1) can be decomposed as [62]

C ¼ Cþ − C− ¼ f1 − F ; Π̃þg − fF ; Π̃−g; ð4Þ

where the calculation and use of the self-energies
Π̃�

ABabðν;Ω; xμÞ will be described in more detail in
Sec. IV. The oscillation potential HABabðν;Ω; xμÞ (units
of ergs) is described below. If neutrinos are Majorana
particles, only F needs to be evolved; but if neutrinos are
Dirac particles, an additional antineutrino field F̄ must be
evolved with an analogous equation. Throughout the rest of
this paper, we will refer to the Nf × Nf matrices fab and
f̄ab as simply the neutrino and antineutrino distribution
functions, respectively.
The terms labeled “force” and “drift” in Eq. (3) areOðϵ2Þ

corrections to the d=dλ term that account for refractive
effects due to the finite masses of neutrinos (see, e.g.,
[62,64]). We neglect them in this work for simplicity, and
more work needs to be done to assess the importance of
these terms in the context of core-collapse supernovae.
We will also assume for simplicity that there is no spin
coherence (fLR ¼ f̄LR ¼ 0) and, in the case of Dirac

neutrinos, there are no right-handed neutrinos and no
left-handed antineutrinos (fRR ¼ f̄LL ¼ 0). Spin coherence
effects are not expected to be important in CCSNe, since
the neutrino-antineutrino-mixing contributions to the
potential are suppressed by an additional factor of ϵ and
neutrinos in typical CCSN profiles likely pass through
the associated resonance too rapidly [64,66,67]. However,
spin coherence effects may not be negligible in other
environments such as neutron star mergers [54]. Under
the assumption of no spin coherence, we can separate left-
handed neutrinos from right-handed (anti)neutrinos, and
Dirac and Majorana neutrinos evolve identically. The
QKEs for f ¼ fLL and f̄ ¼ fRR (Majorana) or f̄ ¼ f̄RR
(Dirac) then become

pμ ∂f
∂xμ − Γμ

αβp
αpβ ∂f

∂pμ ¼ −pμuμ

�
C −

i
ℏc

½H; f�
�
;

pμ ∂f̄
∂xμ − Γμ

αβp
αpβ ∂f̄

∂pμ ¼ −pμuμ

�
C̄ −

i
ℏc

½H̄; f̄�
�
; ð5Þ

where Cab and Hab are the Nf × Nf collision integral and
Hamiltonian, respectively, from the LL quadrants of C and
H. Similarly, C̄ab and H̄ab come from the RR quadrants of
C and H (Majorana) or C̄ and H̄ (Dirac).
The Hamiltonian operator is often decomposed as

H ¼ Hvacuum þHmatter þHneutrino: ð6Þ

The Hamiltonian for antineutrinos is related to that for
neutrinos by H̄vacuum ¼ H�

vacuum, H̄matter ¼ −H�
matter, and

H̄neutrino ¼ −H�
neutrino. The vacuum Hamiltonian is

Hvacuum ¼ UHðmÞ
vacuumU†; ð7Þ

where HðmÞ
vacuum ¼ diag

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ν2 þm2

l c
4

q �
is the vacuum

Hamiltonian in the neutrino mass basis, ml is the mass
of the neutrino corresponding to lepton flavor l. The unitary
matrix U describes the mixing between the flavor and mass
bases [68,69]. The matter potential in the local comoving
frame is

Hmatter ¼
ffiffiffi
2

p
GFℏ3c3diagðnl − nl̄Þ; ð8Þ

where nl and nl̄ are the number density of charged lepton
and antilepton of flavor l, though in the astrophysical
systems of interest electrons are the only lepton with a
significant abundance. Neutral current interactions with
nucleons also technically contribute to the potential, but
since they affect all flavors equally, the potential offset does
nothing to modify oscillations and can be ignored. Finally,
the neutrino self-interaction potential is
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Hneutrino ¼
ffiffiffi
2

p
GFℏ3

Z
d3ν0ð1 − cos θÞðf0 − f̄0Þ; ð9Þ

where cos θ ¼ Ω ·Ω0. This is analogous to the matter
potential, except that neutrinos are not in general isotropic
and the cos θ term is needed to account for the angular
dependence of the anisotropic neutrino distributions.

A. Distribution flavor vector

It is useful to visualize a neutrino quantum state as a
vector in flavor isospin space. We can also visualize the
distribution functions fab and f̄ab with a similar flavor
isospin vector, but unlike that for an individual neutrino
spin 1=2 quantum state, the distribution flavor vector can
represent states with a trace different from unity. When
working in a two-flavor system, the vector components are
written as

fab ¼ fðtÞδab þ fðxÞσ
ðxÞ
ab þ fðyÞσ

ðyÞ
ab þ fðzÞσ

ðzÞ
ab

fðtÞ ¼
1

2
ðfee þ fμμÞ

fðxÞ ¼
1

2
ðfeμ þ fμeÞ

fðyÞ ¼
−i
2
ðfeμ − fμeÞ

fðzÞ ¼
1

2
ðfee − fμμÞ; ð10Þ

where σðαÞ are Pauli matrices. We can define the length of
the spatial part of the distribution flavor vector as

L ≔
ffiffiffiffiffiffiffiffiffi
f⃗ · f⃗

q
; ð11Þ

where in components f⃗ ¼ ðfðxÞ; fðyÞ; fðzÞÞ. We recall that
for two arbitrary matrices A and B, one can derive the
following identities:

−
i
2
½A;B� ¼ ð0; A⃗ × B⃗Þ;

1

2
fA; Bg ¼ AðtÞBðtÞ

�
1þ A⃗ · B⃗

AðtÞBðtÞ
;
A⃗
AðtÞ

þ B⃗
BðtÞ

�
; ð12Þ

where the first term in the parentheses is the “time”
component of the distribution flavor vector. These identities
are useful in gaining intuition for how the oscillation and
collision terms affect the neutrino distribution. Applying
the first identity to Eq. (5), we see that the Hamiltonian term
is incapable of changing the number of neutrinos (the t
component of the anticommutator is zero) and that it is
incapable of changing the length of the flavor vector
(df⃗=dλ is perpendicular to f⃗). The second identity applied
to the same equation together with Eq. (4) shows that the
collision terms can change both.

Finally, given values for fee and fμμ, one can determine
the maximum magnitude of the off-diagonal component of

the distribution function (i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ðxÞ þ f2ðyÞ

q
) by requiring

that no diagonal component of the distribution function
be smaller than 0 (i.e., Lf ≤ fðtÞ) or larger than 1 (i.e.,
Lf ≤ 1 − fðtÞ) in any basis. Since fðzÞ is determined by fee
and fμμ, the off-diagonal components must satisfy

f2ðxÞ þ f2ðyÞ ≤ minðfðtÞ; 1 − fðtÞÞ2 − f2ðzÞ: ð13Þ

This will be useful for setting the initial conditions for our
test calculations.

III. ISOTROPICSQA

We evolve the QKEs assuming isotropy, homogeneity,
and flat spacetime in a stochastic, operator-split manner
with the new, open-source code ISOTROPICSQA.1,2 Under
these assumptions, the neutrino QKEs [Eq. (3)] take the
form of

1

c
∂f
∂t ¼ C −

i
ℏc

½H; f�: ð14Þ

In the absence of collisions, this equation can be rewritten
as

1

c
∂S
∂t ¼ −

i
ℏc

HS; ð15Þ

where the (unitary) evolution operator S determines the
distribution function at a later time as

fðtÞ ¼ Sfð0ÞS†: ð16Þ

The (Hermitian) Hamiltonian operator H was described in
Sec. II. The corresponding equations for antineutrinos are
exactly analogous. We assume a two-flavor system under
the normal hierarchy with a mass splitting of Δm21 ¼
2.43 × 10−3 eV2 and mass eigenstates rotated from flavor
eigenstates by 9°. The assumptions of isotropy and homo-
geneity preclude important spatial transport and multiangle
effects (e.g., [41,56]), but allow us to get a handle on the
effects of the various contributions to the collision term on
the flavor evolution of a neutrino distribution.

A. Maximally mixed initial conditions

To demonstrate the effects of each of the contributions to
the collision term, we will evolve a flavor-mixed isotropic
neutrino distribution function in time without oscillations.
We configure the initial distribution function to be

1https://github.com/srichers/IsotropicSQA
2http://doi.org/10.5281/zenodo.3236833.
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fðνÞ ¼
� FDðT; μνe ; νÞ fðxÞ;maxðνÞ

fðxÞ;maxðνÞ FDðT; 0; νÞ
�
;

f̄ðνÞ ¼
� FDðT;−μνe ; νÞ f̄ðxÞ;maxðνÞ

f̄ðxÞ;maxðνÞ FDðT; 0; νÞ

�
; ð17Þ

where the Fermi-Dirac distribution is given by

FDðT; μ; νÞ ¼ 1

eðhν−μÞ=kBT þ 1
: ð18Þ

The electron neutrino chemical potential is μνe ¼ μeþ
μp − μn, where μn, μp, and μe are the neutron, proton,
and electron chemical potentials determined by an input
equation of state (EOS). We use the HShen equation of
state [70] to determine the chemical potentials used in the
initial conditions and collision reactions because it is
consistent with the Furusawa EOS [71,72] used to produce
the core-collapse supernova simulation snapshots used in
Sec. V. We set the imaginary part of the off-diagonal
components to zero and give the real parts positive values
that maximally mix the distribution function at each energy
according to Eq. (13). Our fiducial fluid parameters for the
test calculations are ρ ¼ 1012 g cm−3, T ¼ 10 MeV, and
Ye ¼ 0.3, which yields μn¼1.39MeV, μp ¼ −8.56 MeV,
μe ¼ 10.1 MeV, and μνe ¼ 0.0977 MeV (including con-
tributions from masses).

B. Stochastic integration

In our implementation of the QKEs depicted in Fig. 1,
we evolve neutrino oscillations without collisions using
Eq. (15) punctuated by interaction steps at random inter-
vals, as described below. We discretize the distribution
functions and evolution matrices into 50 energy bins
centered on integer multiples of 2 MeV, each with a width
of 2 MeV. This choice allows a direct implementation of the
neutrino-neutrino collision terms presented in [65]. We
initialize the evolution matrices S and S̄ at each energy to
the identity and calculate the Hamiltonian based on f and f̄

[Eq. (6), depicted as vertical arrows in Fig. 1]. We then
evolve S and S̄ for a block in time dtblock without collisions
using an adaptive sixth-order Cash-Karp Runge Kutta
integrator (depicted as the bottom horizontal arrows in
Fig. 1). At the end of this block, we map the evolution
matrix back onto the distribution function using Eq. (16)
(depicted as diagonal dashed arrows in Fig. 1). We then
evolve f starting from this updated value for an identical
time dtblock using the same sixth-order integrator (depicted
as the upper line in Fig. 1). Then the process repeats for
subsequent blocks until the end of the simulation.
The oscillation term time step dtoscillate, the collision term

time step dtinteract, and the block time step dtblock are all
independent. dtoscillate and dtinteract are dynamically adjusted
to keep the maximum relative difference between fifth- and
sixth-order solutions for each step within a critical value of
10−12. Such high accuracy is required to maintain an
accurate solution over the large number of time steps in
our simulations. The time step dtoscillate is typically much
shorter than dtblock, but dtinteract is typically very large and is
restricted by dtblock. This separation of oscillation and
collision integration allows us to take much larger time
steps for the collision term than for the oscillation term,
both for computational efficiency and for preventing the
conversion between f and S, which suffers from truncation
errors, from ruining the accuracy of the solution (see
Appendix B).
If dtblock is left constant or is changed deterministically,

there will be artificial correlations between successive
interaction steps. For example, if dtblock is a multiple of
the oscillation timescale, the collision step will always act
on the same point in the oscillation cycle, and this would
not represent the physical solution where collisions affect
the distribution continuously throughout the oscillations.
To prevent such aliasing errors, we randomize dtblock based
on a target time step dtblock;target as

dtblock ¼ minð− logðUÞ; 5Þdtblock;target; ð19Þ

    e e e e

FIG. 1. ISOTROPICSQA method summary. Neutrino oscillations are evolved explicitly via the evolution matrix S (bottom horizontal
lines) separately from collisions (top horizontal lines), and the effects are combined at time intervals of dtblock. This allows us to take
very large time steps for the expensive and slowly acting interactions, and very short steps for the inexpensive and rapidly varying
oscillations.
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whereU is a uniform random number between 0 and 1. The
resulting exponential random time step makes the inter-
action sampling a Poisson process, which causes the times
of the collision events to be uncorrelated and uniformly
sampled in time. The limiter of 5 prevents an excessively
large time step. The first dtblock;target is an input parameter,
and subsequent values of dtblock are determined in order to
keep the impact of the collision term within a block
relatively small. We define the impact over the previous
block as

I ¼ max

				 fðtÞ − fðt − dtblockÞ
LðtÞ

				; ð20Þ

where LðtÞ is the length of the distribution flavor vector
[Eq. (11)] at the same energy and helicity as f, and the
maximum is taken over all matrix components, helicities,
and energies. Comparing to L rather than the trace allows
us to adapt dtblock to quantities relevant to oscillations, since
the oscillation term rotates this distribution flavor vector.
After the first block, subsequent values of dtblock;target are
set to

dtblock;target ← dtblock;target × min

�
1.1;

Itargetdtblock
Idtblock;target

�
ð21Þ

in order to drive the impact of the collisions over dtblock
toward the target impact. The factor of 1.1 prevents dtblock
from growing quickly following a step with serendipitously
low impact. We choose a target impact of Itarget ¼ 10−4.
See Appendix B for convergence tests for the integrator
accuracy, the target impact, and the number of neutrino
energy bins.
We use detailed flavor-incoherent neutrino interaction

rates from the open-source neutrino rate library NuLib
[73]. However, we must generalize these interaction rates to
flavor-coherent neutrinos. This is the subject of Sec. IV.

IV. COLLISION TERMS

Calculating the neutrino self-energies in Eq. (4) requires
evaluating two-point irreducible Feynman diagrams start-
ing at two loops as in [62,65]. As in Sec. II, we neglect spin
coherence and calculate Π�

ab ¼ Π̃�
LLab and Π̄�

ab ¼ Π̃�
RRab

(Majorana) or Π̄�
ab ¼ ˜̄Π�

RRab (Dirac), though without spin
coherence the Dirac and Majorana terms are identical. In
the following sections, we break down the various con-
tributions to the collision term and evaluate their effects
individually. In many cases, these diagrams have already
been evaluated for applications in core-collapse supernovae
assuming neutrinos remain in flavor eigenstates (see, e.g.,
[11,12]). We will demonstrate how to extend them to full
QKE source terms without reevaluating the diagrams.

A. Absorption and emission

Let us first consider charged-current neutrino absorption
by free neutrons (νþ n → e− þ p) and the reverse emis-
sion process (Fig. 2). Typical CCSN temperatures of
around 10 MeVare not high enough to produce significant
amounts of μ or τ leptons. Thus, we are able to ignore all
charged-current interactions involving leptons other than
electrons. This is accounted for by only considering the ee
component of Π�, such that

Πþ ∼ Π− ∼ IðeÞab; ð22Þ

where IðcÞab ¼ δcaδcb. Expanding out Eq. (4), we find that

Cþ ∼

2
64
ð1 − feeÞ −feμ=2 −feτ=2
−fμe=2 0 0

−fτe=2 0 0

3
75;

C− ∼

2
64

fee feμ=2 feτ=2

fμe=2 0 0

fτe=2 0 0

3
75: ð23Þ

Recall that the contributions to the standard collision
integral for the ee component in the absence of phase
coherence are

Cþ
ee ¼ jðνeÞð1 − feeÞ;

C−
ee ¼ κðνeÞfee; ð24Þ

where jðνeÞðν; xμÞ is the electron neutrino emissivity and
κðνeÞðν; xμÞ is the electron neutrino absorption opacity, both
in units of cm−1. After matching terms and applying the
same process to other lepton species, we arrive at

Cab ¼ jðνaÞδab − ðhjiab þ hκiabÞfab; ð25Þ

where hjiab ¼ ðjðνaÞ þ jðνbÞÞ=2, and similarly for hκiab. In
line with the above assertion that there are very few heavy
leptons present in conditions relevant to core-collapse
supernovae and neutron star mergers, it is often assumed
that jðνμÞ ¼ jðντÞ ¼ κðνμÞ ¼ κðντÞ ¼ 0. The collision integral

FIG. 2. Two-point diagram for electron neutrino absorption and
emission processes. The equivalent diagram for electron anti-
neutrinos is the same diagram in reverse. The lack of internal
neutrino lines makes this a particularly straightforward process to
transform into QKE collision terms.
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for antineutrinos is exactly analogous. While for this
process it is particularly straightforward to write down
the collision terms, it serves to illustrate the matching
procedure that we will apply to the more complex processes
in the next sections.
The on-diagonal collision terms are exactly identical to

the standard transport collision terms, while the off-diago-
nal ones contain only the absorption component with
interaction rates averaged between two flavors. Thus,
absorption and emission will always cause flavor coherence
to decay. Figure 3 shows the evolution of the off-diagonal
components of our fiducial maximally mixed Fermi-Dirac
distribution [Eq. (17)] relative to their initial values due
only to absorption onto and emission from free nucleons
and nuclei. All curves demonstrate that the off-diagonal
components decay exponentially with a timescale deter-
mined by the absorption opacities according to Eq. (25). As
one would expect, neutrinos at higher energies (yellow
curves) interact more strongly than those at low energies
(black curves), resulting in more rapid flavor decoherence.
Similarly, neutrinos (solid lines) interact more strongly than
antineutrinos (dashed lines), resulting in more rapid flavor
decoherence. The on-diagonal components (not plotted)
remain constant at their initial Fermi-Dirac values, since the
collision terms for these components do not depend on the
off-diagonal components of f.

B. Electron scattering

Charged-current reactions are once again kinematically
suppressed for heavy-lepton neutrinos, so we only consider
scattering by electrons. The two-point diagrams contribut-
ing to electron processes are shown in Fig. 4. These give
rise to four terms, each with a different flavor structure.
They are [65]

Π− ¼
Z

d3ν0

c4
fA−YLð1 − f0ÞYL þ B−YRð1 − f0ÞYR

þD−½YLð1 − f0ÞYR þ YRð1 − f0ÞYL�g;

Πþ ¼
Z

d3ν0

c4
fAþYLf0YL þ BþYRf0YR

þDþ½YLf0YR þ YRf0YL�g; ð26Þ

where YR ¼ sin2θW and YL ¼ sin2θW − 1=2þ IðeÞ, and we
use sin2θW ≈ 0.22343 [69]. We will now use our matching
procedure to find the values of the constants A�, B�, and
D�, These constants can depend on both the ingoing and
outgoing neutrino momenta. In the absence of flavor
coherence, the collision rates have long been used for
neutrino transport simulations ([74] and corrections by
[11]). They are usually written in the form of

CðνaÞ ¼
Z

d3ν0

c4
½f0ðνaÞR

þ
ðνaÞð1 − fðνaÞÞ

− fðνaÞR
−
ðνaÞð1 − f0ðνaÞÞ�; ð27Þ

where primed quantities refer to the final state of the
neutrino after scattering. R�

ðνaÞðν; ν0; cos θ; xμÞ (units of

cm3 s−1) are the inscattering (þ) and outscattering (−)
kernels for neutrino species a that depend on both the
ingoing and outgoing neutrino frequencies and the cosine
of the angle between the ingoing and outgoing neutrinos in

FIG. 3. Absorption.—Evolution of the flavor–off-diagonal
components of a maximally mixed Fermi-Dirac neutrino distri-
bution [Eq. (17)] due to absorption and emission by nucleons and
nuclei. On-diagonal components are not shown since they simply
remain at their initial values. Interaction rates are based on a
background described by ρ ¼ 1012 g cm−3, T ¼ 10 MeV, and
Ye ¼ 0.3. We will show in Sec. V C that absorption dominates
decoherence of higher-energy neutrinos outside of the PNS.

FIG. 4. Two-point diagrams for neutrino-electron scattering
processes. The charged-current processes lead to flavor
decoherence and all processes allow redistribution in energy.
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a comoving orthonormal tetrad. We indicate dependence on
the background fluid quantities generally with a depend-
ence on the spacetime coordinates xμ. Detailed balance
requires that Rþ

ðνaÞðν;ν0;cosθ;xμÞ¼R−
ðνaÞðν0;ν;cosθ;xμÞ¼

exp½hðν0−νÞ=kT�R−
ðνaÞðν;ν0;cosθ;xμÞ. When arguments

are suppressed, we assume that ν0 is the second argument.
Following [11], we note that the coefficients D� are

smaller than A� and B� by approximately a factor of the
ratio of the electron mass to the electron energy, so we
neglect them here. When f and f̄ are flavor diagonal, the
standard neutrino rates and the QKE collision terms should
be identical, so we can simply match terms to arrive at

R�
ðνeÞ ¼ ðA�YLYL þ B�YRYRÞee;

R�
ðνμÞ ¼ ðA�YLYL þ B�YRYRÞμμ: ð28Þ

Note that the scattering kernels for ντ are the same as for νμ
in the absence of μ and τ leptons. We can solve for A� and
B�. The result is

A� ¼
R�
ðνeÞ − R�

ðνμÞ
2sin2θW

;

B� ¼
ð2sin2θW þ 1Þ2R�

ðνμÞ − ð2sin2θW − 1Þ2R�
ðνeÞ

8sin6θW
: ð29Þ

We can then write the self-energies very compactly as

Πþ
ab ¼

Z
d3ν0

c4
Rþ
abf

0
ab;

Π−
ab ¼

Z
d3ν0

c4
R−
abðδab − f0abÞ; ð30Þ

where

R�
abðν; ν0; cos θÞ ≔ hRi�ab − R̃�

ab;

R̃�
abðν; ν0; cos θÞ ≔ ϵab

R�
ðνaÞ − R�

ðνbÞ
4sin2θW

;

hRi�abðν; ν0; cos θÞ ≔
R�
ðνaÞ þ R�

ðνbÞ
2

; ð31Þ

and ϵab is the rank-two Levi-Civita symbol that makes the
kernel symmetric on the flavor indices.
Plugging this into the collision term [Eq. (4)], we get

Cþ
ab ¼

Z
d3ν0

c4
½Rþ

abf
0
ab − ςþab�;

C−
ab ¼

Z
d3ν0

c4
½hRi−abfab − ς−ab�; ð32Þ

where

ς�abðν; ν0; cos θ; xμÞ ≔
1

2

X
c

ðR�
cbfacf

0
cb þ R�

acf0acfcbÞ

ð33Þ

(units of cm3 s−1). The first term in each line in Eq. (32)
accounts for unblocked in- and outscattering, respec-
tively, and the second term accounts for Pauli blocking.
As with absorption processes, the outscattering rate in
these off-diagonal elements is based on the average of the
outscattering rates of two neutrino flavors. For the flavor-
diagonal elements (a ¼ b), the c ¼ a terms in Eq. (33) sum
to the ordinary flavor-incoherent blocking terms, but we see
that there is an additional blocking or enhancement
[depending on the sign of Reðf0acfcaÞ] coming from flavor
coherence.
For numerical applications, we expand the interaction

kernels in Legendre polynomials as in [11] and consider
only the first two terms. That is,

R�
ab ≈

1

2
Φ�

0abðν; ν0; xμÞ þ
3

2
Φ�

1abðν; ν0; xμÞ cos θ: ð34Þ

Inelastic scattering rates in this form are available for
flavor-incoherent neutrinos as part of the open-source
neutrino rate library NuLib [73]. Figure 5 shows Φ0eμ=
hΦi0eμ over a range of incoming and outgoing neutrino
frequencies at a particular temperature of 2.74 MeV and
electron degeneracy μe ¼ 3.16 MeV chosen to clearly
show the features. A value of 1 (red) means that a scattered
neutrino carries over its quantum state to its new direction
and energy. A value of 0 (white) means the off-diagonal
flavor component is erased and that a neutrino collapses
to a flavor eigenstate when scattering. Negative values
(blue) mean the scattered quantum state receives a phase
inversion.
In the case of neutrinos scattering on electrons, the

scattering kernel for a neutrino of ingoing momentum pν

and outgoing momentum p0
ν involves an integral over the

ingoing electron momentum pe and outgoing electron
momentum p0

e. To interpret Fig. 5, we first note that in
computing RðνÞ, there are three terms in this integral that
come from combinations of the momentum structures
of the different diagrams in Fig. 4. One term is propor-
tional to ðpe · pνÞðp0

e · p0
νÞ, another is proportional to

ðp0
e · pνÞðpe · p0

νÞ, and a third that we neglect (again,
because it is suppressed by a factor of me=Ee) is propor-
tional to pν · p0

ν [see, e.g., the integrand in Eq. (C49)
in [11]]. If the reaction rate is dominated by the first
integral, one can use the coefficients of this term for
electron and muon neutrinos to show that Φ�

0eμ=hΦi�0eμ≈
ð4sin4θW − 1Þ=ð4sin4θWÞ ≈ −0.67. Similarly, if the reac-
tion is dominated by the second term, the appropriate
combination of coefficients yields Φ�

0eμ=hΦi�0eμ ¼ 1. As
can clearly be seen in the top panel of Fig. 5, the first
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integral dominates for large energy transfers, causing the
top left and bottom right parts of the plot to be blue. The
reaction rates for antineutrinos can be determined by
replacing pν ↔ −p0

ν, effectively swapping the coefficients
of the two energy integrals. Thus, the top left and bottom
right parts of the bottom panel are red. When there are equal
contributions from both, Φ0eμ=hΦi0eμ ¼ ð8sin4θW − 1Þ=
ð8sin4θW þ 1Þ ¼ −0.43. This is visible along the diagonal
in both plots.
The phase inversion process is depicted in Fig. 6 using

flavor vectors for an initial single particle flavor state
described by a density matrix ρab (unrelated to the fluid
density ρ). We define vector components of ρ⃗ based on ρab
in the sameway that we define the distribution flavor vector
components in Sec. II A. Focus first on the series of lines in
the top half starting at initial state “Initial 1.” One can
interpret this initial flavor vector as representing a neutrino
at a single frequency that is more likely to be measured as a
neutrino than an antineutrino (ρðzÞ > 0) and has some flavor
coherence (jρðxÞj > 0). The series of red lines depict the

neutrino flavor structure after a series of scattering events
where 0 < Φ�

0eμ=hΦi�0eμ < 1. This could be realized, for
instance, by antineutrinos scattering back and forth
between high and low energies (red regions in the bottom
panel of Fig. 5) without blocking. During each scatter, the
neutrino is not destroyed and the relative probability of
finding the neutrino in an electron or muon flavor remains
unchanged (ρðtÞ and ρðzÞ are constant). However, since the
ratio is positive but not 1, some of the flavor coherence
decays away with each scattering event (ρðxÞ decreases).
Similarly, the series of blue lines depict a scattering event
where −1 < Φ�

0eμ=hΦi�0eμ < 0. Once again, the neutrino
is not destroyed and the relative probability of being

FIG. 6. Diagram demonstrating how the first term in Eq. (32)
(electron scattering collision integral) affects the phase of
2-flavor mixed-state neutrinos after scattering when we follow
the neutrino from its initial to its final energy with each scatter.
We show a maximal-length single particle flavor isospin vector
ρ⃗ for an initial neutrino flavor state described by the density
matrix ρab (unrelated to the fluid density ρ) that is mostly electron
neutrino (Initial 1) and one that is mostly muon neutrino
(Initial 2) for illustration purposes (ρðxÞ ¼

ffiffiffi
7

p
=4, ρðyÞ ¼ 0 and

ρðzÞ ¼ �3=4). We set the oscillation Hamiltonian to zero and only
consider electron scattering. Red regions in Fig. 5 drive the
distribution function closer to the flavor axis with each scatter, as
shown by the series of red arrows. Blue regions in Fig. 5 follow
the same pattern, except that the neutrino phase is negated on
each scatter, as shown by the series of red arrows. In both cases,
the density matrix approaches the flavor states more quickly as
Φ�

0eμ=hΦi�0eμ approaches 0. To see this, compare the Initial 1 case
to the Initial 2 case, where the magnitude of the off-diagonal
component of the scattering kernel is larger for the latter. The
dashed circle represents the sphere along which oscillations can
rotate the vector, described by ρ2ðxÞ þ ρ2ðyÞ þ ρ2ðzÞ ¼ 1.

FIG. 5. Flavor structure of the isotropic part Φ�
0 of electron

scattering collision kernel R� [Eq. (34)] as used in Eq. (32). The
reaction rates are calculated at an electron chemical potential of
μe ¼ 3.16 MeV and a temperature of kT ¼ 2.74 MeV as well as
using θW ¼ 0.2223. The top plot is for neutrinos and the bottom
for antineutrinos. Red regions indicate that scattering events
mostly preserve the sign and magnitude of the scattered neu-
trino’s off-diagonal elements, white regions collapse them to
zero, and blue regions flip their sign.
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measured as each flavor remains unchanged, but the flavor
coherence (ρðxÞ in this diagram) is negated and loses magni-
tude with each scattering event. In both cases, the distri-
bution decays down to a flavor-diagonal state at the same
rate. The series of lines in the bottom half start at a similar
initial condition “Initial 2” that is mostly muon neutrino for
illustration purposes. The evolution of the flavor vectors
proceed very similarly to those in the top half, but decay to
flavor diagonal states more slowly since the magnitude of
Φ�

0eμ=hΦi�0ab is closer to unity. In realistic QKE calcula-
tions, the impact of phase inversions on the distribution
function will depend on the relative directions of the
distribution flavor vectors at the initial and final momenta.
The feature in the bottom left corner of Fig. 5 (below

hν ∼ hν0 ∼ 10 MeV) is due to the degeneracy of electrons.
Along the diagonal (ν ≈ ν0), where scattering events
exchange no energy, electron blocking for inscattering
exactly cancels that for outscattering. However, in scatter-
ing from high energy to low energy (bottom right corner),
electron blocking strongly reduces the reaction rate,
whereas in scattering from low to high energies the terms
that are traditionally associated with blocking effectively
amplify the rate. This is to say that the feature is located
precisely where one expects degeneracy effects to be
important. Increasing the temperature or electron degen-
eracy increases the size of the feature.
The leftmost and rightmost plots in Fig. 7 show the

standard anisotropic component of the scattering kernel for

the ee (left panels) and μμ (right panels) components of the
neutrino (top panels) and antineutrino (bottom panels)
distributions. As we would expect, the large positive values
along the diagonal indicate that for small energy transfer,
electron scattering is largely forward peaked, and the
negative values away from the diagonal mean that scattering
events with large energy transfer are backward peaked.
However, the center plot describing the anisotropy of the
scattering kernel for off-diagonal components is strikingly
different because it contains both angular information similar
to the plots on the left and right and flavor information
similar to Fig. 5. Thus, in the collision term for feμ (top
center panel), large energy transfers both are backward
peaked and induce a phase flip, resulting in a net positive
(red) value. Similarly for antineutrinos (bottom center panel),
the collision term is backward peaked and does not induce a
phase flip, resulting in a net negative (blue) value. For small
energy transfers (along the diagonal), the scattering is
forward peaked and induces a phase flip, resulting in a
net negative value for both neutrinos and antineutrinos. The
anisotropic (Φ1) terms do not enter into the isotropic
evolution equations in this paper, but will be important
for quantum kinetics calculations with spatial transport.
Given this intuition, we can now understand the action of

the inelastic scattering kernel on our fiducial maximally
mixed Fermi-Dirac distribution [Eq. (17)]. The top and
middle panels of Fig. 8 depict evolution of the flavor-
diagonal components for both neutrinos and antineutrinos.

FIG. 7. Flavor structure of the linearly anisotropic part Φ�
1 of electron scattering collision kernel R� as used in Eq. (32). The reaction

rates are calculated at an electron chemical potential of μe ¼ 3.16 MeV and a temperature of kT ¼ 2.74 MeV using θW ¼ 0.2223. The
top plot is for neutrinos and the bottom for antineutrinos. The anisotropic collision term for off-diagonal elements (middle panels) reflect
both the anisotropy of the flavor-diagonal parts (left and right panels) and the flavor structure of Fig. 5.
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The first thing to notice is that even though the flavor-
diagonal components are in Fermi-Dirac distributions, the
flavor coherence temporarily drives them out of equilib-
rium. Inspecting Eq. (32), it becomes apparent that the only
terms that modify the flavor-diagonal components are the
a ¼ b ≠ c part of the blocking terms ς�ab. This can be seen
after noting that the flavor-diagonal components of the
scattering kernel are Raa ¼ hRaai ¼ RðνaÞ and that the first
terms in Eq. (32) combined with the a ¼ b ¼ c part of the
ς�ab terms constitute the standard flavor-diagonal collision
term for incoherent neutrinos. The a ¼ b ¼ c part of ς�ab is
the blocking term for incoherent neutrinos, and ς�ab itself is
just the extension of the blocking term to non-flavor-
diagonal neutrino distributions. Equation (12) shows that
the blocking terms, which are quadratic in f, have an effect
smaller than the standard flavor-incoherent terms when f
and f0 are antialigned and a larger effect when aligned.
Thus, what we see in Fig. 8 is that the Fermi-Dirac
distribution, though an equilibrium for incoherent neutri-
nos, is not an equilibrium in this mixed state. The blocking
terms redistribute neutrinos in energy toward a new mixed
equilibrium that has more low-energy neutrinos and fewer
high-energy neutrinos. However, after a short period of
time the terms linear in f (i.e., the regular scattering terms

without blocking) drive the distribution to be flavor-
diagonal, since Rþ

ab is present in the inscattering terms
but hRi−ab is present in the outscattering terms. This is
demonstrated by the sharp decline of the off-diagonal
components of both neutrino and antineutrino distributions
in the bottom panel of Fig. 8. As the flavor–off-diagonal
components decay, the blocking terms increasingly resem-
ble the classic flavor-incoherent terms and the distribution
settles back down to a flavor-diagonal Fermi-Dirac dis-
tribution. As expected, neutrinos interact more strongly
than antineutrinos and high-energy neutrinos interact more
strongly than low-energy neutrinos, and stronger interac-
tion rates lead to quicker returns to the flavor-diagonal
Fermi-Dirac distribution.
Many modern neutrino transport codes treat electron

scattering as elastic for computational efficiency. If the
collisions are treated as elastic, the scattering kernels
simplify as Rþ

ab ¼ R−
ab. The collision integral greatly

reduces to

Cab ¼
1

4π

Z
dΩ0½ðκ0ab þ κ1ab cos θÞf0ab

− ðhκi0ab þ hκi1ab cos θÞfab�; ð35Þ

FIG. 8. Inelastic electron scattering.—Evolution of maximally
mixed Fermi-Dirac neutrino distribution [Eq. (17)] due to
inelastic electron scattering (νþ e− ↔ νþ e−) interactions.
The top panel contains the flavor-diagonal neutrino distribution
components, the middle panel contains the flavor-diagonal
antineutrino distribution components, and the bottom panel
contains the flavor–off-diagonal neutrino and antineutrino com-
ponents. Interaction rates are based on a background described by
ρ ¼ 1012 g cm−3, T ¼ 10 MeV, and Ye ¼ 0.3. The charged-
current parts of the electron scattering interaction drive the
off-diagonal elements to zero, and the diagonal elements redis-
tribute in energy to non-Fermi-Dirac values as long as the off-
diagonal elements are nonzero.

FIG. 9. Elastic electron scattering.—Evolution of maximally
mixed Fermi-Dirac neutrino distribution [Eq. (17)] due to elastic
electron scattering (νþ e− ↔ νþ e−) interactions. The top panel
contains the flavor–off-diagonal neutrino and antineutrino com-
ponents. The bottom panel shows the difference between the
elastic (f) and inelastic (finelastic from Fig. 8) results. On-diagonal
components are not shown since they simply remain at their
initial values. Interaction rates are based on a background
described by ρ ¼ 1012 g cm−3, T ¼ 10 MeV, and Ye ¼ 0.3.
Though these approximate results are qualitatively similar to
the bottom panel of Fig. 8, there are significant quantitative
differences.
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where the elastic but anisotropic scattering opacity is

dκðνaÞ
dΩ0 ¼ 1

4π
ðκ0ðνaÞ þ κ1ðνaÞ cos θÞ ð36Þ

and the matrix form of the opacities are constructed in the
same way as the scattering kernels in Eq. (31).
The top panel of Fig. 9 shows the evolution of the

flavor–off-diagonal parts of a maximally mixed Fermi-
Dirac distribution under this assumption of elastic electron
scattering. The on-diagonal components faa are not shown,
since the assumption of elastic scattering causes ς�ab
(blocking) terms to cancel and the on-diagonal components
do not change. We see that the elastic treatment produces
results rather consistent with the full inelastic treatment.
The bottom panel shows the difference between the elastic
and inelastic treatments, and in this particular choice of
fluid parameters elastic scattering causes the distribution to
evolve more slowly, leading to differences of at most
∼15%. Of course, greater differences could occur for other
fluid and neutrino distributions.

C. Nucleon scattering

Next, we consider scattering by nucleons and nuclei
(Fig. 10), which at the two-loop level only undergo
scattering reactions with neutrinos through neutral-current
processes. The outscattering and inscattering self-energies
are identical in form to Eq. (30), though we note that due
to the neutral current nature of nucelon scattering that the
flavor structure of the scattering kernels is simpler (R�

ab ¼
hRi�ab and R̃�

ab ¼ 0). Thus, the scattering kernels do not
themselves impart any flavor information on the collision
term and could be represented by a scalar instead of a flavor
matrix (i.e., R�

ab ¼ R�). However, in order to minimize the
number of representations used in this paper we leave in the
flavor indices. Note that weak magnetism corrections cause
the interactions to be weaker for antineutrinos than for
neutrinos [75], but leave the flavor structure unaffected.
The resulting self-energies are then identical in form to

Eq. (30). The contribution to the collision term is then also
given by Eq. (32). Matching the diagonal elements with
fex ¼ f0ex ¼ 0 to the known scattering interaction rates for
incoherent neutrinos, we see that R�

aa are the standard
scattering kernels. Though inelastic nucleon scattering is
not yet implemented in NuLib, we note that in the electron

scattering case the finite value of R̃�
ab is what drives the

distribution to a flavor equilibrium and leads to interesting
structure in Fig. 5 and the center panels of Fig. 7. When
R̃�
ab ¼ 0 as it is for nucleon scattering, the ratio Φ�

ab=hΦi�ab
is everywhere identically 1. Thus, inelastic nucleon scatter-
ing will redistribute neutrinos and flavor coherence in
energy and direction, but will not cause the flavor coher-
ence to decay.
If we consider the collisions to be elastic, which is a

much better approximation for nucleon or nucleus scatter-
ing than electron scattering because the masses are much
larger, then Rþ ¼ R−. Once again, the corresponding
collision term is identical to that for electron scattering
given by Eq. (35), though we note that for neutral-current
scattering κab ¼ hκiab and κ̃ab ¼ 0. For an isotropic radi-
ation field and elastic nucleon scattering, f ¼ f0 and C ¼ 0.
Thus, we do not plot the uninteresting case of evolving an
isotropic mixed distribution function in the presence of
elastic nucleon scattering because all quantities remain
constant.

D. Pair annihilation

Electron-positron pair annihilation (e− þ eþ ↔ νþ ν̄) is
a cross diagram of electron scattering, and the collision
terms have a similar structure. That is [65],

Πþ ¼
Z

d3ν0

c4
fAþYLð1 − f̄0ÞYL þ BþYRð1 − f̄0ÞYR

þ Cþ½YLð1 − f̄0ÞYR þ YRð1 − f̄0ÞYL�g;

Π− ¼
Z

d3ν0

c4
fA−YLf̄0YL þ B−YRf̄0YR

þ C−½YLf̄0YR þ YRf̄0YL�g; ð37Þ

where f̄ is the antineutrino distribution function. Once
again, we neglect the third term in each line. One can go
through the term-matching procedure in Sec. IV B and
show that A� and B� are the same as in the electron
scattering case [Eq. (29)], but with values of R�

ðνaÞ from

annihilation processes. This leads us to

Πþ
ab ¼

Z
d3ν0

c4
Rþ
abðδab − ¯f0abÞ;

Π−
ab ¼

Z
d3ν0

c4
R−
ab

¯f0ab: ð38Þ

Plugging this into the collision term [Eq. (4)], we arrive at

Cþ
ab ¼

Z
d3ν̄0

c4
½Rþ

abδab − hRiþabfab − Rþ
abf̄ab

0 þ ςþab�;

C−
ab ¼

Z
d3ν̄0

c4
ς−ab; ð39Þ

FIG. 10. Two-point diagram for neutrino-nucleon scattering.
This is very similar to Fig. 4, but the lack of charged-current
processes makes the flavor structure less complex.

RICHERS, MCLAUGHLIN, KNELLER, and VLASENKO PHYS. REV. D 99, 123014 (2019)

123014-12



where R�
ab and hRi�ab are defined with respect to values of

R�
ðνaÞ from annihilation processes in the same way as in

Eq. (31). The ς�ab is also similar to the electron scattering
case [Eq. (33)], but replacing f0 → f̄0 since we are
integrating over the antineutrino distribution instead of
an outgoing neutrino distribution. The first term on the first
line of Eq. (39) is the emission term in the absence of Fermi
blocking, which creates flavor-diagonal pairs of neutrinos.
Similarly, the second line describes the neutrino pair
annihilation rate, where Fermi blocking of final state
electrons and positrons is already accounted for in the
calculation of R−

ab. We can then understand the final three
terms on the first line as accounting for neutrino Fermi
blocking. The second term in Cþ

ab behaves as outscattering
and will always decrease the magnitude of the flavor–off-
diagonal components. The third term has a flavor structure
like the inscattering term in Eq. (32), but acts with the
opposite sign.
Figure 11 shows the isotropic part [see Eq. (34)] of the

pair production kernel R�
eμ, similar to Fig. 5. This term does

not affect the unblocked pair production or annihilation

rates, but does describe how the presence of neutrinos and
antineutrinos contribute to the blocking term differently
and how they annihilate. When the ratio Φ�

eμ=hΦi�eμ is
negative (blue in the top panel of the figure), the flavor–off-
diagonal component of the blocking term will increase the
neutrino distribution in the direction of the antineutrino
distribution’s off-diagonal component. Similarly, when the
ratio is positive (red in the top panel of the figure), the
neutrino’s off-diagonal components will be increased in
the opposite direction of the antineutrino’s off-diagonal
components. The same argument can be applied to anti-
neutrinos being blocked by neutrinos (bottom panel of the
figure). Notice that the antineutrino collision term is simply
the transpose in ingoing/outgoing energy of the neutrino
collision term. This is due to the fact that the interaction
diagrams are closely related to the interaction diagrams for
antineutrinos, so R�

abðν; ν̄; cos θ; xμÞ ¼ R̄�
abðν̄; ν; cos θ; xμÞ.

Similarly, Fig. 12 shows the linearly anisotropic part of
the electron-positron pair annihilation kernels. The left and
right panels show the classic incoherent kernels for electron
neutrinos (left) and heavy lepton neutrinos (right) and for
antineutrinos (bottom left and right). The predominantly
blue color means that neutrinos annihilate more strongly
when colliding at large angles, except for a small range of
energies near the electron degeneracy energy where
dependence on the collision angle is much weaker. This
feature is only present when the electron degeneracy is
larger than the fluid temperature. The middle plots for
neutrinos (top) and antineutrinos (bottom) show the off-
diagonal part of the kernel, which is a convolution of
angular information in the plots to the left and right and the
flavor information in Fig. 11. In the blue regions, the
blocking term from neutrino-antineutrino pair creation will
increase the neutrino’s off-diagonal components in the
same (flavor) direction as the antineutrino’s if they are
born moving in the same (spatial) direction, and will do the
opposite if born moving in opposite (spatial) directions. In
red regions, the opposite is true.
Note that the features in Figs. 11 and 12 only appear when

the electrons are very degenerate. We chose very degenerate
parameters to show these effects, but when kT ≳ μe there is
almost no dependence of the flavor structure on either
neutrino or antineutrino energy (the plots are a solid color).
There are two relevant energy scales. The first is the inner
edge of the features at around 10 MeV in the figures.
This is related to the temperature, since in the range of
0 < hðνþ ν0Þ≲ 10 MeV a significant fraction of the anni-
hilating electrons will have energies below our example fluid
temperature of 2.74MeV. The second is the outer edge of the
features at around 100 MeV in the figures. This energy scale
is related to the electron degeneracy, since in the range of
10≲ hðνþ ν0Þ≲ 100 MeV a significant fraction of the
reacting electrons will be degenerate.
Figure 13 shows the evolution of our isotropic

maximally mixed Fermi-Dirac distribution of neutrinos

FIG. 11. Flavor structure of the isotropic part Φ�
0 of the pair

annihilation kernel R� as used in Eq. (39). The reaction rates are
calculated at an electron chemical potential of μe ¼ 17.8 MeV
and a temperature of kT ¼ 2.74 MeV using θW ¼ 0.2223. The
top plot is for neutrinos and the bottom for antineutrinos. Red and
dark blue regions show where electron degeneracy has a
significant impact on the flavor structure of the scattering kernel.
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[Eq. (17)] due to electron-positron pair production and
annihilation only. Since the distribution is isotropic, only
the isotropic part of the kernel Φ0 enters into the calcu-
lation. Similar to the electron scattering case, we see that
the pair production kernels modify both the flavor-diagonal
(top two panels of Fig. 13) and the flavor–off-diagonal
(bottom panel of Fig. 13) components of the distribution.
Once again, only the nonlinear ς�ab terms lead to the initial
change in the on-diagonal components, since the other
terms cancel out by construction of the initial Fermi-Dirac
distribution. Unlike electron scattering, electron-positron
pair production and annihilation can change the total
number of neutrinos present, which occurs as all flavor-
diagonal components grow in the first ∼0.1 ms. The ee
component of both the neutrino and antineutrino distribu-
tions (solid lines in the top two panels) grow on a shorter
timescale than the μμ components (dashed lines in the top
two panels), since the collision rates for those components
are larger due to the contribution of charged-current
processes. While this rapid change occurs, the off-diagonal
components (bottom panel) of both neutrino and antineu-
trino distributions decline, and they decline more rapidly
for high-energy anti/neutrinos.
For all components, the antineutrino distribution evolves

more quickly than the neutrino distribution. The initial
neutrino distribution has a higher average energy and a
higher overall number density than the initial antineutrino
distribution due to the large degeneracy of the electrons.

This causes both R�
ab and R̄�

ab to be larger when ν > ν̄ than
when ν < ν̄. If we look at the third term in Eq. (39), since
the average energy of f̄ is lower than that of f and Rþ

ab is
smaller when ν̄ < ν, the contribution of that term to the
integral is relatively small. Similarly, the corresponding
term for antineutrinos is an integral over f, which has a
larger average energy than f̄, and R̄þ, which is larger when
ν0 > ν̄. Thus, it is natural to expect a larger collision term
for antineutrinos than neutrinos and correspondingly more
rapid evolution of the antineutrino distribution.
It is common for neutrino transport codes to treat pair

processes as an effective absorption and emission process
by applying Kirchhoff’s law to the pair emissivity under
the assumption of no Fermi blocking. This allows the
neutrino distributions to reach the correct equilibrium and
is less computationally expensive. To extend this idea to
coherent flavor transport, we take the flavor structure of
the term linear in f,

Cab ¼ jðνaÞδab − ðhjiab þ hκiabÞfab; ð40Þ

where

jðνaÞ ¼
Z

d3ν0Φþ
0ðνaÞ;

κðνaÞ ¼
jðνaÞ

1 − FDðT; μνa ; νÞ
: ð41Þ

FIG. 12. Flavor structure of the linearly anisotropic part Φ�
1 of the pair annihilation kernel R� as used in Eq. (39). The reaction rates

are calculated at an electron chemical potential of μe ¼ 17.8 MeV and a temperature of kT ¼ 2.74 MeV using θW ¼ 0.2223. The top
plot is for neutrinos and the bottom for antineutrinos. The anisotropic annihilation term for off-diagonal elements (middle panels)
reflects both the anisotropy of the flavor-diagonal parts (left and right panels) and the flavor structure of Fig. 11.
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Figure 14 shows the evolution of the same initial
condition under this treatment of pair processes. The on-
diagonal components are in equilibrium and do not change
due to the lack of the nonlinear ς�ab terms in Eq. (40), and so
are not plotted. The top panel shows the evolution of the
off-diagonal components of the neutrino (solid lines) and
antineutrino (dashed lines) distributions relative to their
initial values. We see that they evolve on a timescale that is
significantly longer than that seen in the bottom panel of
Fig. 13. When we subtract the full kernel solution from this
approximated solution (bottom panel of Fig. 14), we see
that the solutions differ by as much as ∼80%. The effective
absorption approach is problematic, but we will see in
future sections that pair annihilation is not a dominant
source of flavor decoherence for these background fluid
parameters.

E. Nucleon-nucleon bremsstrahlung

Comparing nucleon-nucleon bremsstrahlung to electron-
positron pair annihilation is very similar to comparing
nucleon scattering to electron scattering. Nucleon-nucleon
bremsstrahlung is a neutral-current process that requires too
many diagrams to show them all here. The general structure
of the diagrams is depicted in Fig. 15 but without the gauge

bosons connecting the lines in many permutations (see,
e.g., [76,77] and references therein). However, in all
diagrams there is a single unbroken neutrino line, so the
self-energy is linear in f0. The resulting expressions for the
self-energies are identical in form to Eq. (38), except that
the purely neutral-current nature of the interactions leads to
the simplifications R�

ab ¼ hRi�ab and R̃�
ab ¼ 0. The resulting

collision term is then identical to Eq. (39).
However, many codes treat nucleon-nucleon bremsstrah-

lung as an effective absorption and emission process by
setting and by applying Kirchoff’s law to the pair emis-
sivity under the assumption of no Fermi blocking. This

FIG. 13. Pair annihilation.—Evolution of maximally mixed
Fermi-Dirac neutrino distribution [Eq. (17)] due to electron-
positron pair (eþ þ e− ↔ νþ ν̄) interactions. The top panel
contains the flavor-diagonal neutrino distribution components,
the middle panel contains the flavor-diagonal antineutrino dis-
tribution components, and the bottom panel contains the flavor–
off-diagonal neutrino and antineutrino components. Interaction
rates are based on a background described by ρ ¼ 1012 g cm−3,
T ¼ 10 MeV, and Ye ¼ 0.3. The nonlinear terms cause the
flavor-diagonal elements to redistribute away from Fermi-Dirac
values as long as the off-diagonal elements are nonzero. The long
evolution timescale makes this process a subdominant driver of
flavor decoherence.

FIG. 14. Effective absorption pair annihilation.—Evolution of
maximally mixed Fermi-Dirac neutrino distribution [Eq. (17)]
due to electron-positron pair (eþ þ e− ↔ νþ ν̄) interactions
treated as an effective absorption/emission process. The top
panel contains the flavor–off-diagonal neutrino and antineutrino
components. The bottom panel shows the difference between the
elastic (f) and inelastic (finelastic from Fig. 8) results. On-diagonal
components are not shown since they simply remain at their
initial values. Interaction rates are based on a background
described by ρ ¼ 1012 g cm−3, T ¼ 10 MeV, and Ye ¼ 0.3.
There are significant differences between how an effective
absorption treatment leads to flavor decoherence compared to
the full treatment.

FIG. 15. Two-point diagram for nucleon-nucleon bremsstrah-
lung radiation. This diagram represents many diagrams with
various permutations of Z bosons connecting the lines. A single
internal neutrino line makes the structure similar to electron-
positron pair annihilation (Fig. 4).
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leads to reaction rates that are approximately correct, settle
to the correct equilibrium, and are much more computa-
tionally efficient. To extend this idea to coherent flavor
transport, we take the flavor structure of the term linear in
f, which results in a collision term as in Eq. (40). With this
construction, all species have the same emissivity but
different absorption opacities such that the collision term
drives the distribution to Fermi-Dirac values.
Figure 16 shows the evolution of our maximally mixed

Fermi-Dirac distribution [Eq. (17)] using an approximate
absorption-emission treatment, since full kernels are not
readily available. As with any simple absorption process
(e.g., Sec. IVA), the off-diagonal component decays
exponentially. However, we see that high-energy neutrinos
evolve more slowly than low-energy neutrinos, since the
bremsstrahlung emissivity decreases with neutrino energy
(e.g., [12]). The neutrino distribution at a given energy also
evolves more slowly than the antineutrino distribution
because the values of FDðν̄;−μνe ; TÞ that go into
Eq. (41) are smaller than FDðν; μνe ; TÞ at the same neutrino
energy. In any case, the effect of bremsstrahlung collision
processes on neutrino flavor coherence is much weaker
than other processes for this choice of fluid parameters.
However, the effects can be much more conspicuous at the
nuclear densities in a protoneutron star.

F. Four-neutrino processes

Finally, we describe the contribution of four-neutrino
processes to the collision term, the diagrams for which are

shown in Fig. 17. The full integrals [65] are rather
complicated, and we do not reproduce them here. Since
this reaction requires integrating over all of the neutrino
distributions, we do not extend existing reaction rates and
instead directly integrate Eq. (96) in [65].
Figure 18 shows the evolution of our fiducial maximally

mixed Fermi-Dirac distribution [Eq. (17)] due to neutrino-
neutrino scattering and pair processes. It is apparent that the
initial distribution is not an equilibrium distribution, and the

FIG. 16. Effective absorption bremsstrahlung.—Evolution of
the flavor–off-diagonal components of a maximally mixed Fermi-
Dirac neutrino distribution [Eq. (17)] due to nucleon-nucleon
bremsstrahlung (N þ N ↔ N þ N þ νþ ν̄) interactions. On-
diagonal components are not shown since they simply remain
at their initial values. Interaction rates are based on a background
described by ρ ¼ 1012 g cm−3, T ¼ 10 MeV, and Ye ¼ 0.3.
Bremsstrahlung processes decohere low-energy neutrinos more
rapidly than high-energy neutrinos and become a dominant driver
of decoherence at nuclear densities. The significant errors
associated with the effective absorption treatment of pair proc-
esses (Fig. 14) calls for a more realistic treatment of bremsstrah-
lung processes.

FIG. 17. Two-point diagrams for neutrino-neutrino scattering
and pair annihilation. The multiple internal neutrino lines make
this a difficult process to treat in the QKEs. The lack of charged-
current interactions precludes phase decoherence.

FIG. 18. Four-neutrino processes.—Evolution of maximally
mixed Fermi-Dirac neutrino distribution [Eq. (17)] due to
neutrino-neutrino scattering (νþ ν ↔ νþ ν) and pair
(νþ ν̄ ↔ νþ ν̄) interactions. The top panel contains the fla-
vor-diagonal neutrino distribution components, the middle panel
contains the flavor-diagonal antineutrino distribution compo-
nents, and the bottom panel contains the flavor–off-diagonal
neutrino and antineutrino components. Interaction rates are based
on a background described by ρ ¼ 1012 g cm−3, T ¼ 10 MeV,
and Ye ¼ 0.3. The neutrinos never decay to flavor-diagonal
Fermi-Dirac distributions, but instead redistribute such that the
distribution flavor vector at all neutrino energies are aligned, and
the neutrino vectors are antialigned with the antineutrino vectors.
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distribution redistributes itself. Initially, the distribution
flavor vector length is 1.6–2.7 (depending on the neutrino
energy) times the length of the flavor vector of a flavor-
diagonal Fermi-Dirac distribution due to our imposed off-
diagonal components [Eq. (17)]. However, over time the
flavor vector length decays down to a nearly constant factor
of 1.1–1.4 times the Fermi-Dirac values (again, depending
on the neutrino energy). This is done by redistributing
flavor coherence between neutrinos and helicities. Indeed,
the initial flavor phase angle (the angle between the
distribution flavor vector and the positive flavor axis) is
initially energy and helicity dependent, but at the end of the
calculation the distribution flavor vector is constant in
energy at 50.6° and the antineutrino distribution flavor
vector at 230.6°. Intuitively, neutrino-neutrino scattering
will redistribute flavor phase within a helicity to make
the flavor phase angle constant in energy, and neutrino-
neutrino pair processes will redistribute the flavor phase
across helicity to make the neutrino and antineutrino flavor
phase angles antiparallel. The direction of this equilibrium
distribution flavor vector can be in any direction and
depends on the initial conditions.
If we assume that distribution functions 2 and 3 are

flavor-diagonal Fermi-Dirac distributions (similar to what
is done by [78] for standard neutrino transport), the self-
energies reduce to

Πþ
ab ¼

Z
d3ν10

c4
hRiþabf01ab;

Π−
ab ¼

Z
d3ν10

c4
hRi−abðδab − f01abÞ; ð42Þ

where

Rþ
ðνaÞ ¼

X
c

ð1þ δacÞ
Z

d3ν20

c3
d3ν30

c3

× rðp1þp3→pþp2Þð1 − f02ccÞf03cc;

R−
ðνaÞ ¼

X
c

ð1þ δacÞ
Z

d3ν20

c3
d3ν30

c3

× rðpþp2→p1þp3Þf
0
2ccð1 − f03ccÞ ð43Þ

are the ordinary Boltzmann neutrino-neutrino scattering
rates. This would lead to similar evolution timescales, but
assuming that one of the reacting distributions is flavor
diagonal breaks the flavor symmetry that allows the full
scattering and annihilation kernels to relax the distributions
to an arbitrary flavor phase angle. Instead, the neutrino and
antineutrino distributions would always be driven to flavor-
diagonal Fermi-Dirac distributions.

V. RESULTS

Armed with an understanding of the effects of individual
processes, we can make sense of more complete QKE

simulations. We will first outline the major points before
taking a deeper dive into the results. We have published the
most important data from this section on Zenodo,3 and the
rest is available on request.
In Sec. VA we will combine all of the interactions

in Sec. IV while still neglecting oscillations. We demon-
strate for our fiducial fluid parameters of ρ ¼ 1010 g cm−3,
T ¼ 10 MeV, and Ye ¼ 0.3 that neutrino flavor coherence
decays on timescales near a microsecond depending
on energy, as seen in the bottom panel of Fig. 19.
Bremsstrahlung processes drive the decoherence of the
lowest energy neutrinos, absorption and electron scattering
drive decoherence of the highest energies, and inelastic
scattering and pair processes drive changes in the flavor-
diagonal components.
The keystone to our discussion of the QKEs is the

oscillation term, which we discuss in Sec. V B. We show in
Fig. 20 that for our fiducial fluid parameters there is a
nutation due to the total neutrino density (top two panels)
and a precession due to the electron density, both of which
occur on timescales of around a picosecond. Extending this
calculation by several microseconds, we see the combined

FIG. 19. All processes.—Evolution of maximally mixed Fermi-
Dirac neutrino distribution [Eq. (17)] due to absorption/emission,
inelastic electron scattering, electron-positron pair annihilation,
nucleon-nucleon bremsstrahlung, neutrino-neutrino scattering,
and neutrino-antineutrino pair interactions. The top panel con-
tains the flavor-diagonal neutrino distribution components, the
middle panel constrains the flavor-diagonal antineutrino distri-
bution components, and the bottom panel contains the flavor–off-
diagonal neutrino and antineutrino components. Interaction rates
are based on a background described by ρ ¼ 1012 g cm−3,
T ¼ 10 MeV, and Ye ¼ 0.3. This quantitatively provides an
estimate of decoherence timescales on the order of a millisecond
for these parameters depending on energy.

3https://doi.org/10.5281/zenodo.3237245.
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action of oscillations and collisions in Fig. 21. The neutrino
distributions (thick shaded regions covering the oscillation
amplitude) decohere to flavor-diagonal Fermi-Dirac dis-
tributions on timescales similar to but measurably different
from the calculations without oscillations (green curves).
Given this result, we feel justified to do a wider

parameter sweep in Sec. V C using the less-expensive
nonoscillating QKE calculations to understand flavor
decoherence in core-collapse supernovae. We take back-
ground matter parameters from a one-dimensional (1D)
CCSN simulation (Fig. 22) and determine the decoherence
time using an isotropic QKE calculation at each radial point
(Fig. 23). We show the results using different interaction
sets in different panels to demonstrate that in the PNS
decoherence is dominated by electron scattering, nucleon-
nucleon bremsstrahlung, and neutrino-neutrino scattering,
while near the shock decoherence is dominated by absorp-
tion, and in the decoupling region all of these processes
except elastic nucleon scattering and neutrino-neutrino
processes have a significant impact. Finally we are able

to demonstrate that an empirically determined effective
decoherence opacity κeffective [Eq. (45)] is a much better
predictor of flavor decoherence rates than the mean free
path. In Fig. 24, one can see that the decoherence timescale
from κeffective matches the simulated one generally to within
a factor of 10 in the PNS and to within 20% outside of
the PNS.

A. Quantum kinetics without oscillations

First, we will discuss how neutrinos evolve with a full
suite of collision processes but without oscillations to
provide a basis for understanding what happens when
evolving the full QKEs. We begin with the same initial
maximally mixed neutrino distribution [Eq. (17)] and back-
ground matter parameters (ρ ¼ 1012 g cm−3, T ¼ 10 MeV,
Ye ¼ 0.3) used in Sec. IV. The resulting evolution of
the neutrino distributions is shown in Fig. 19, and it is
immediately clear that it behaves unlike that due to any
single collision process.
The initial reactions of the flavor-diagonal elements (top

two panels of Fig. 19) are very reminiscent of the evolution
due to neutrino-neutrino reactions (Fig. 18), though with
different amplitudes and on a shorter timescale. In all but
the lowest energy electron neutrinos (solid lines, top panel
of Fig. 19), the impact of electron scattering (Fig. 8) is
apparent. Similarly, at intermediate energies, the electron
and muon antineutrino curves (center panel of Fig. 19
evolve similar to those caused by pair annihilation in
Fig. 13. The on-diagonal elements are also influenced
by the nonlinear terms in the electron scattering and
electron-positron pair annihilation reactions, but since these
reactions operate over milliseconds rather than microsec-
onds, their contribution is less obvious. The off-diagonal
elements (bottom panel) show that high-energy neutrinos
lose flavor coherence more quickly than low-energy
neutrinos and that neutrinos lose flavor coherence more
quickly than antineutrinos. This reflects the actions of
absorption of neutrinos on nucleons (Fig. 3) and electron
scattering (Fig. 8). Even though neutrino-neutrino inter-
actions themselves support long-lived flavor coherence,
when combined with coherence-destroying reactions they
simply accelerate the demise of coherence. The rapid initial
adjustment from neutrino-neutrino interactions quickly
shuffles neutrinos between energy bins, and energy is also
shuffled between neutrinos and antineutrinos, allowing
flavor-destructive processes to operate more efficiently.

B. Quantum kinetics with oscillations

Now we can finally add the oscillation term back in.
Before discussing the combined effects of oscillations and
collisions, we note that the oscillations occur on an
extremely short timescale of ∼10−16 s. Figure 20 shows
this in detail. The top two panels show the evolution of
the flavor-diagonal components of the neutrino (solid)
and antineutrino (dashed) distributions. When one flavor

FIG. 20. Oscillation terms.—Evolution of all components of a
two-flavor neutrino distribution function due to the action of the
oscillation Hamiltonian in Eq. (3) in a background fluid described
by ρ ¼ 1012 g cm−3, T ¼ 10 MeV, and Ye ¼ 0.3. There is a short
precession timescale associated with the number density of
electrons visible in the flavor–off-diagonal components (bottom
two panels) and a longer nutation timescale associated with the
total neutrino density most obvious in the flavor-diagonal
components (top two panels). Both are much shorter than the
collision timescale.
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becomes more abundant, the other flavor becomes less
abundant, conserving the total number of neutrinos. Lower
energy neutrinos (dark colors) are more degenerate and
have larger occupation probabilities. The lowest-energy
electron neutrinos (black solid curves at the top of the
top panel) actually oscillate into a completely degenerate
state with occupation numbers of 1. This emphasizes the
importance of taking care to choose only physically
motivated initial conditions since a larger amount of initial
flavor mixing in the initial conditions than used here would
allow the oscillation term to push the occupation numbers
in these degenerate states higher than 1. With our choice of
initial conditions, the blocking terms in our calculations
naturally prevent the neutrino distribution from developing
into a state with f > 1 in any basis. For the realization of
the QKEs [64] and our adaption of them, we have not,
however, proven that the collision terms are incapable of
developing such an unphysical distribution under all
circumstances. This is trivially true for absorption and
elastic scattering, for which evolution of the diagonal
components is unchanged by flavor coherence, but the
nonlinear processes are less straightforward.
The bottom two panels of Fig. 20 show the real and

imaginary parts of the distribution, respectively. First, we

notice that the real and imaginary parts are out of phase
with each other, indicating a circular oscillation of the
distribution flavor vector around the flavor axis. Also, the
direction of the antineutrino flavor vector oscillation is
opposite to the neutrino vector, indicated by the opposite
sign of the imaginary components. This is expected based
on the relationship between the neutrino and antineutrino
matter Hamiltonians (Sec. II). Finally, we see that when the
difference between the values of the on-diagonal compo-
nents (the z component of the distribution flavor vector)
grows toward t ¼ 0.3 ps, the magnitude of the off-diagonal
components (x and y components of the distribution flavor
vector) shrink. This is an expression of the fact that the
oscillation term is unable to change the length of the
distribution flavor vector. Effects from interactions are
technically present in these data, but they do not have a
significant impact over such a short time.
The rapid oscillations in the bottom two panels show the

effect of the matter potential. At the relevant density of
1012 g cm−3 and electron fraction of 0.3, the matter poten-
tial [Eq. (6)] is 0.023 eV, a factor of 1.8 × 107 larger than
the vacuum potential for the 1 MeV bin. Because of the
large matter potential, the oscillation axis is nearly aligned
with the flavor axis. One can also see that the period of the

FIG. 21. Top panels: Evolution of the z component of the neutrino distribution flavor vectors relative to the equilibrium vector length
at several neutrino energies. Dark (light) shades show (anti)neutrino values. The equivalent values from the nonoscillating calculations
are plotted in green for neutrinos (solid lines) and antineutrinos (dashed lines). The spread is due to violent oscillations on much shorter
timescales, and one can see collisions decreasing the amplitude of the oscillations (width of the spread) and driving the distributions
toward the flavor axis. Center panels: Component of the distribution flavor vector perpendicular to the z direction [Eq. (44)] relative to
the equilibrium vector length using the same color/line conventions as above. The spread is due to the same oscillations that cause the
spread in the top panels. The results roughly agree with those of the nonoscillating calculations, plotted as solid green for neutrinos and
dashed green for antineutrinos. Bottom panels: Length of the neutrino distribution flavor vector relative to the equilibrium length using
the same color and line conventions as above. There is not spread because the distribution flavor vector length is not directly sensitive to
oscillations.
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oscillations is approximately h=
ffiffiffi
2

p
GFne¼1.8×10−13 s.

Deviations from this are due to the additional contribution
of the neutrino self-interaction potential. For the diagonal
components in the top panel, the period of oscillation, also
due to the neutrino potential, is h=

ffiffiffi
2

p
GFnν¼6.9×10−13 s,

where nν is the total neutrino number density.
Only on timescales much longer than the oscillation time

do collisions have a chance to impact the neutrino dis-
tribution, so we continue the simulation for an additional
100 μs. The top left panel of Fig. 21 makes it clear that the
amplitude of the nutations at neutrino energies of 8 MeVare
damped on a timescale of around a microsecond and that
the distributions are driven to flavor states on a timescale of
several microseconds. In particular, this panel shows the z
component of the neutrino (dark) and antineutrino (light)
distribution flavor vectors relative to their equilibrium
Fermi-Dirac values. In flavor-diagonal equilibrium, the
distribution flavor vector is entirely in the z direction with
a magnitude of Leq. As a reminder, the initial conditions
were constructed as distribution flavor vectors described by
fðzÞð0Þ ¼ Leq and an imposed large x component, resulting
in a value of Lð0Þ > Leq. On the left side of the plot, the
oscillations from the top two panels of Fig. 20 are visible as
a vertical spread in the colored regions. The neutrinos
oscillate from their initial latitude (bottom edge of the dark
region) toward the electron flavor axis (top edge of the dark

FIG. 23. Decoherence times of flavor–off-diagonal components of the neutrino distribution function in conditions relevant to CCSNe.
We perform an isotropic, homogeneous nonoscillating quantum kinetic calculation using fluid values from each radial point in Fig. 22.
Top panels show the decoherence times for neutrinos and bottom panels show those for antineutrinos. Neutrino energies from 1 MeV to
100 MeVare colored according to the color bar on the right, while energies from 101 to 200 MeVare all colored gold. Each panel shows
the results using a different set of interactions as indicated by the text in the panel. The approximate outer edge of the protoneutron star is
depicted with a dashed green line at 10 km. For reference, we also show the location where the radial coordinate is equal to the
decoherence length scale with a dashed blue line. Electron scattering, bremsstrahlung processes, and four-neutrino processes dominate
decoherence in the PNS, while absorption dominates decoherence just under the shock. All processes except neutrino-nucleon elastic
scattering and neutrino-neutrino processes contribute in the decoupling region.

FIG. 22. Background fluid snapshot from a one-dimensional
neutrino radiation hydrodynamics core-collapse supernova sim-
ulation at 100 ms after core bounce [79]. We perform separate
isotropic, homogeneous quantum kinetics calculations without
the oscillation term at each radial point using the matter density ρ,
electron fraction Ye, and temperature T at that radius as input.
The bottom panel also shows for reference the chemical poten-
tials of electrons μe and electron neutrinos μνe as determined by
the HShen equation of state [70]. The location of the shock is at
the right edge of the plot at 168 km, and the approximate location
of the outer edge of the protoneutron star is shown at 10 km with a
vertical dashed green line.
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region), indicated by a z component that grows to values of
fðzÞ=Leq > 1. Antineutrinos start with a negative latitude
(more muon antineutrinos than electron antineutrinos,
bottom edge of the light region) and oscillate across the
equator a bit beyond the opposite latitude (top edge of
the light region). The oscillation term drives the flavor-
diagonal components much farther from their initial values
than the collision terms themselves were able to do in the
absence of oscillations (plotted in solid green for neutrinos
and dashed green for antineutrinos). As time progresses,
two effects are evident. First, the amplitude of the oscil-
lations in the z direction decreases as the shaded areas
compress to lines. Second, the location of the average value
of fðzÞ decays to the equilibrium value. Stated another way,
the distribution flavor vectors nutate within a band between
two latitudes, and with time the width of the band
(amplitude of the nutations) shrinks and the average
latitude approaches the (muon) electron flavor axis for
(anti)neutrinos.
The top left plot only reflects the behavior of the flavor-

diagonal components of the distribution. However, in the
leftmost center plot in Fig. 21 we see that oscillations in the
flavor–off-diagonal components are damped similarly to
the flavor-diagonal components and that they damp on
roughly the timescale predicted by the nonoscillating
calculations. This can be seen as follows. To avoid over-
loading the plot with the precession motion, we only plot
the part of the distribution flavor vector perpendicular to the
flavor axis

fð⊥Þ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ðxÞ þ f2ðyÞ

q
; ð44Þ

still at 8 MeV. Though this quantity also oscillates at the
left-hand side of the plot, the neutrinos (dark) exhibit a

much broader band than antineutrinos (light). This corrob-
orates the interpretation of the top panel, namely that the
neutrino distribution flavor vector is oscillating from its
initial latitude (large fð⊥Þ) to very near the electron flavor
axis (small fð⊥Þ) and back. Antineutrinos, on the other
hand, oscillate from their initial latitudes across the flavor
equator without getting very close to either axis (opposite
sign fðzÞ and small variation in fð⊥Þ). As with the z
component, the collisions simultaneously decrease the
average value of fð⊥Þ and the range of the oscillation.
At t ≈ 0.4 μs, the lower edge of the fð⊥Þ band is able to
reach a value of zero, meaning the neutrino distribution
flavor vector is able to nutate directly in line with the
electron flavor axis. However, the minimum fð⊥Þ increases
once again before slowly decaying back to zero. Compared
to the decay of the corresponding quantities in the absence
of oscillations (plotted in green), the overall evolution
is somewhat more rapid for neutrinos and slower for
antineutrinos.
As time progresses, the collisions work to remove off-

diagonal components of the neutrino distribution, or
equivalently to reduce fð⊥Þ. In the case of antineutrinos,
which oscillate back and forth over the flavor equator, this
rapidly shortens the total length of the distribution flavor
vector. The bottom left panel of Fig. 21 shows the length of
the distribution flavor vector relative to the equilibrium
Fermi-Dirac length at the same neutrino energy of 8 MeV.
The light curves show that the collisions decrease the
antineutrino distribution flavor vector length to less than
the equilibrium value, since the flavor-diagonal parts of the
collision term are unable to replenish the on-diagonal
distribution components as quickly as the off-diagonal parts
of the collision term decrease the off-diagonal distribution
components. Once fð⊥Þ is depleted, the diagonal compo-
nents and hence the vector length slowly decay back to
equilibrium values. Since the oscillations cause the neu-
trino distribution flavor vector to spend more time than the
antineutrino vector spends near the flavor axis, the colli-
sions are less effective at shortening the length of the
distribution flavor vector and so it decreases more slowly
than the case when oscillations are switched off (solid green
lines). In contrast, we see that since oscillations cause the
antineutrino vector to spend more time near the equator, the
vector length decreases more rapidly than when oscillations
are not present (dashed green lines).
This story remains true at higher energies as depicted in

farther right plots in each row, but at higher energies the rate
at which diagonal components of the collision term
equilibrate fðzÞ to Leq become comparable to the rate at
which the off-diagonal components equilibrate fð⊥Þ to zero.
This can be seen in the top panels as the centers of the
bands for both neutrinos and antineutrinos approach
equilibrium more quickly, though the bands in the bottom
panel approach 0 at a similar rate. In the case of low-energy
neutrinos, the distribution flavor vector decays to the flavor

FIG. 24. Ratio of the computed flavor decoherence length scale
to the effective decoherence opacity [Eq. (45)] in the non-
oscillating calculations including absorption, inelastic electron
scattering, electron-positron pair annihilation, and effective-
absorption nucleon-nucleon bremsstrahlung. This effective opac-
ity is a much better predictor of flavor decoherence rates than the
mean free path.
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axis, and when fð⊥Þ is depleted fðzÞ > Leq and the vector
decays down the flavor axis until it reaches fðzÞ ¼ Leq. On
the other hand, at high energies fðzÞ is driven to Leq before
fð⊥Þ reaches 0. As a result, the range of latitudes covered by
the oscillations extends below the starting latitude, and the
off-diagonal components are able to push the vector toward
the flavor axis with both fðzÞ (top panels) and L (bottom
panels) less than Leq. Switching now to the antineutrinos, at
low energies the distribution flavor vector decays to the
flavor axis with fðzÞ and L less than Leq, as we described
earlier. Just as the neutrinos, at higher energies the anti-
neutrinos are driven to fðzÞ ¼ Leq before fð⊥Þ decays to
zero, resulting in values of L that do not dip as far below
Leq as at low energies. For both neutrinos and antineutrinos,
the continued presence of off-diagonal components when
fðzÞ first reaches Leq allows continued evolution of fðzÞ
and L away from Leq until fð⊥Þ decays to 0, and the
interesting fluctuations in the top and bottom panels result.
These behaviors are apparent in the evolution of the
nonoscillating distributions (green curves) as well, but
without oscillations driving the distribution flavor vectors
through a wide range of latitudes, they tend not to be as
pronounced.
Finally, the thickness of the bands in the top and center

plots are much larger at low energies than at high energies.
This is a result of our choice of initial conditions, since the
differences between the distributions for different neutrino
flavors at low energies permit a larger initial fð⊥Þ relative to
fðzÞ [Eq. (17)]. We remind the reader that our initial con-
ditions also place all neutrinos and antineutrinos at the
same phase angle (i.e., fðxÞ > 0 and fðyÞ ¼ 0) and with
Fermi-Dirac values for diagonal components. Under-
standing how the evolution of the neutrino distributions
proceeds under different initial conditions is certainly
worth further study.

C. Flavor decoherence in core-collapse supernovae

In order to understand flavor decoherence in conditions
throughout a CCSN explosion, we perform a series of
isotropic homogeneous QKE calculations using a range of
input parameters relevant to CCSNe. We see in Fig. 23 that
a detailed accounting of all of the processes described in
Sec. IV (except for elastic nucleon scattering) are required
to describe flavor decoherence everywhere under the shock.
However, before describing the results in detail, we will
outline the details of the calculations.
The range of parameters come from a snapshot of a one-

dimensional neutrino radiation hydrodynamics CCSN sim-
ulation [79] shown in Fig. 22. This snapshot was taken at
100 ms after core bounce, by which time the shock has
stalled at a radius of around 168 km. The spatial grid of the
original simulation has 384 radial points extending out to
5000 km, but we only perform QKE calculations on each of
the 241 radial points inside of the shock. Inside of the PNS

(dashed green line) the temperatures are only ∼8 MeV
(black curve), but electrons and electron neutrinos are
trapped and very degenerate (yellow and red curves). Just
outside of the PNS the temperature reaches a maximum
of 18.5 MeV and then continues to decrease with radius.
The equilibrium electron neutrino degeneracy drops
more quickly with radius than does the temperature,
causing thermal electron neutrinos to become nondegen-
erate at r ≈ 20 km.
We perform an isotropic calculation for the conditions

associated with each location in the CCSN shown in
Fig. 22, i.e., between the center of the PNS and the position
of the shock at 168 km. In these calculations, we use a large
energy grid spanning a domain of 200 MeV with energy
grid spacing of 1 MeV in order to resolve the neutrino
distribution anywhere under the shock. The large degen-
eracies within and near the PNS require an energy domain
extending to 200 MeV to contain the neutrino distributions,
and when the temperature and electron neutrino degeneracy
drop at larger radii we need to adequately resolve the more
compact distribution. We elect to initialize the distribution
function in each calculation with maximally mixed Fermi-
Dirac values [Eq. (17)] based on the background fluid
temperature and chemical potentials for the initial neutrino
distributions, even though outside of the neutrinosphere the
neutrino distribution is more sparse and anisotropic than a
thermal distribution. Without spatial transport, even flavor-
diagonal distributions will evolve toward Fermi-Dirac
distributions if they begin out of equilibrium with the
fluid. It would be difficult to disentangle this known effect
from the new off-diagonal parts of the collision terms if we
did not start with Fermi-Dirac initial conditions on the
diagonals. In addition, we do not see a way to consistently
map anisotropic distributions into isotropic calculations in a
meaningful way, so we construct our initial conditions
using Eq. (17) rather than from output of the CCSN
simulation. Effects due to anisotropy should be addressed
with anisotropic calculations with spatial transport, which
will be the subject of future work.
Using the results of each of these simulations, we can

define a flavor decoherence timescale τdecohere as the
amount of time it takes for the magnitude of the flavor–
off-diagonal component of the neutrino distribution to
decrease to a factor of e−1 of its initial value. We show
τdecohere throughout the CCSN profile in Fig. 23, color
coded by neutrino energy. The left panels show the results
when we only consider absorption onto nucleons and
nuclei à la Sec. IVA. The interpretation of decay time is
especially accurate in this case, since the off-diagonal
components truly decay exponentially according to the
absorption opacities. As expected, we see once again
that neutrinos (top left panel) lose flavor coherence
more quickly than antineutrinos (bottom left panel), and
high-energy neutrinos decohere faster than low-energy
neutrinos. Going inward from the shock (right side of
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the panel) to the protoneutron star, the decoherence
timescales decrease as increasing matter densities and
temperatures increase the interaction rates. Progressing
into the PNS, the temperature decreases as the electron
and neutron degeneracies increase, blocking neutrino and
antineutrino absorption processes, respectively. In the PNS
the electron neutrinos are also very degenerate and final-
state neutrino blocking increases the effective electron
neutrino absorption opacity (corrected for stimulated
absorption), but the electrons more than compensate for
this with an even larger degeneracy that greatly reduces the
opacity.
In the second panels from the left of Fig. 23 we perform

the same calculations, but include inelastic electron scatter-
ing and electron-positron pair annihilation processes.
Outside of the PNS the results are rather similar to those
in the first panel, but electron scattering totally dominates
absorption and lepton pair processes as a driver of flavor
decoherence in the PNS. Just as with the absorption
processes, the high electron degeneracy strongly blocks
electron-positron pair production, and the lack of positrons
due to the same degeneracy makes pair production ineffi-
cient in the PNS. Note that the decoherence times for the
highest energy neutrinos (gold curves) discontinuously
jump within the PNS. This is an artifact of how we measure
decoherence times. At the lower branch, the blocking terms
in the off-diagonal component of the scattering term
redistribute neutrinos in a way that causes the off-diagonal
component jfeμðtÞj to quickly decrease below feμð0Þ=e. On
the upper branch, feμðtÞ decreases past this point, continues
through zero, and becomes large and negative; we must
then wait for jfeμðtÞj to decrease below feμð0Þ=e a second
time. With larger radii and smaller degeneracies, this
overshoot effect becomes less severe. Eventually we reach
a radius where the size of the overshoot is smaller than 1=e
of the initial value and our measured decoherence time
drops to the lower branch.
In the third panels from the left, we once again repeat the

calculations now with the addition of nucleon-nucleon
bremsstrahlung interactions, implemented as effective
absorption and emission of heavy lepton neutrinos. The
bremsstrahlung reaction predominantly decreases the
decoherence timescale of low-energy neutrinos and anti-
neutrinos, leaving the high energies for the most part
unchanged. In the antineutrino case, the effect is strong
enough to make decoherence times increase with energy up
to 24 MeV, above which decoherence times again decrease
with increasing energy. The importance of the bremsstrah-
lung reaction increases with density and is especially
important within the PNS. More work needs to be done
to develop detailed bremsstrahlung kernels to replace the
effective absorption treatment, but once developed for
flavor-diagonal neutrinos, they can be extended and devel-
oped into the QKE collision term in the same way as the
electron-positron pair annihilation kernels.

Finally, in the fourth panels from the left we repeat the
calculations one more time and include the full suite of
reactions described in this paper. Within the PNS, neutrino-
neutrino scattering increases the decoherence times of low-
energy neutrinos (black curves, top right panel), decreases
those of neutrinos above 100 MeV (yellow curves, top right
panel), and decreases those of all antineutrinos (bottom-
right panel). Outside of the PNS, there is some overall
decrease in decoherence times due to neutrino-neutrino
interactions, though primarily at low energies. However, we
must once again consider that an isotropic thermal dis-
tribution is not realistic outside of the decoupling region,
and we have not tested the effects of different initial
conditions. More work is required to understand the
quantum kinetics of non-equilibrium distributions.
The high computational cost of QKE calculations incites

us to attempt to predict the flavor decoherence rates using
only the flavor-diagonal interaction rates, i.e., without
needing to run QKE calculations. Based on our QKE
calculations, we find that the neutrino mean free path is not
an accurate predictor of decoherence rates. However, we
can empirically construct an effective decoherence opacity
to reflect flavor decoherence rates as

κeffective ≔ κabs;eμ þ
1

2
κ̃scat;eμ: ð45Þ

The value of κabs we use here contains bremsstrahlung
radiation and electron-positron pair annihilation as effective
absorption, and κscat is the elastic electron scattering opacity
described in Sec. IV B. In Fig. 24 we compare the
decoherence times from the third panels in Fig. 23 (i.e.,
including absorption, inelastic electron scattering, electron-
positron pair annihilation, and nucleon-nucelon bremsstrah-
lung) to those predicted by κeffective. Within the PNS, the
effective opacity predicts flavor decoherence rates for the
1–100 MeV within a factor of 10, while the results from
higher energies are thrown off by the overshoot discussed in
reference to Fig. 23. Outside of 12 km κeffective predicts
decoherence rates to within 20%, except for the four lowest
antineutrino energies (1–4 MeV) at ∼90 km. One might
expect the charged-current component of the total opacity
(κabs;eμ þ κ̃scat;eμ) to describe flavor decoherence, but this
combination is only accurate towithin a factor of 2 outside of
12 km and is significantly worse than κeffective inside the
PNS. For completeness, we also examined the absorption
opacity by itself and found that it consistently underpredicts
the decoherence rates. Another combination, the total off-
diagonal opacity (κabs;eμ þ κscat;eμ), is also less successful
than κeffective, since it is only good to within a factor of 10
outside of 12 km and much worse inside the PNS.

VI. DISCUSSION AND CONCLUSIONS

Core-collapse supernova simulations have long included
neutrino transport with a detailed set of collision rates, but
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until now the technology to simultaneously and self-
consistently also treat neutrino flavor oscillations did not
exist. In this work, we take the first steps toward developing
the technology to simulate neutrino quantum kinetics in
regions relevant to the CCSN explosion mechanism. In
Sec. IV we demonstrate a means of converting existing
neutrino interaction rates used in CCSN simulations into
full collision terms for the quantum kinetic equations. For
reference, we also describe the moment-integrated form of
these source terms in Appendix A for application to
moment-based QKE calculations. To demonstrate the use
of these collision terms, we developed a novel method and
open-source code IsotropicSQA for explicitly evolving
both oscillations and collisions using stochastic integration
to randomly sample the impact of collisions during the
evolution (Sec. III). In our code and derivations, we include
absorption of neutrinos by nucleons and nuclei, inelastic
scattering by electrons, elastic scattering by nucleons,
kernel-based electron-positron pair annihilation, kernel-
based neutrino-neutrino scattering and annihilation, and
nucleon bremsstrahlung as an effective absorptive process.
In Sec. V, we demonstrated the use of this new method

and source terms to perform the first, albeit isotropic and
homogeneous, direct evolution of the QKEs in conditions
relevant to the CCSN explosion mechanism. In particular,
we chose conditions of ρ ¼ 1012 g cm−3, T ¼ 10 MeV,
and Ye ¼ 0.3, and evolved an initially strongly flavor-
mixed neutrino distribution for 20 μs. This was long
enough to demonstrate that the distribution relaxes to a
flavor-diagonal Fermi-Dirac distribution on timescales
similar to but measurably different from those observed
in calculations where the oscillation term is neglected.
Given this insight, we performed a parameter sweep using

nonoscillating calculations in conditions relevant to CCSNe.
We find that electron scattering, nucleon-nucleon brems-
strahlung, and four-neutrino processes are the dominant
drivers of decoherence within the PNS, while just inside the
shock front absorption is dominant. In the decoupling region,
all of the processes discussed in this paper except for elastic
nucleon scattering and neutrino-neutrino processes had a
significant impact on flavor decoherence times. This dem-
onstrates the need for a more sophisticated estimate of
decoherence rates than the neutrino mean free path. To
address this, we defined an effective decoherence opacity in
Eq. (45) that predicts decoherence rates within ∼20%
outside of 12 km and within a factor of 10 everywhere in
our parameter set. In the future, we will test this estimate for
different stages of a CCSN and under more realistic treat-
ments of neutrino angular distributions.
Numerical neutrino quantum kinetics is a nascent field,

and there is a great deal of work to do. Our calculations are
limited to isotropic and homogeneous neutrino and matter
distributions, but we are hopeful that this work will
encourage development of QKE codes with spatial transport.
This will be required to gain a quantitative understanding of

how flavor coherence is transported throughout a CCSN,
especially in the decoupling region where neutrino densities
and collision rates are high. The importance of nucleon-
nucleon bremsstrahlung in and near the PNS begs for an
improved kernel-based treatment of these reactions rather
than our effective absorption method. Fortunately, the same
framework for generating QKE source terms from existing
electron-positron pair production rates can also do the same
for bremsstrahlung interaction rates. Inelastic nucleon scat-
tering kernels could also be implemented in the framework
of inelastic electron scattering. Finally, our treatment of
neutrino-neutrino scattering and annihilation could become
computationally prohibitive for more large-scale calcula-
tions. Since this term requires integrating over the phase
space of four neutrino distributions, the cost of calculating
this term increases as N4

E, whereNE is the number of energy
bins. In addition, our particular discretization of neutrino
energy (bins having equal widths centered on integer
multiples of the first bin center), though allowing for a
straightforward implementation of the four-neutrino proc-
esses, does not allow a single energy grid to cover neutrino
distributions in the range of temperatures and chemical
potentials seen in CCSNe unless an intractable number of
energy bins are used. Developing a more efficient way to
accurately treat four-neutrino processes will be necessary for
QKE calculations covering thewide range of conditions seen
in a CCSN.
The full QKE calculation presented in Sec. V required

collision term time steps on the order of 2 × 10−11 s and
oscillation time steps on the order of 3 × 10−15 s, and
required about four days on as many cores. The cost of the
calculation is in the large number of time steps needed to
follow the oscillations and the high accuracy required of
each step to prevent numerical artifacts from appearing.
Since these isotropic and homogeneous calculations evolve
a relatively small number of variables, the parallelizability
is limited. However, future calculations including spatial
transport will have many more quantities to evolve, and
thus will be much more suited to taking advantage of larger
computing resources.
While simulating the QKEs in CCSNe presents new

challenges, doing so is essential to understanding the
neutrino signal from and potentially also to the explosion
mechanism of CCSNe. In addition to CCSNe, mergers of
two neutron stars or of a neutron star and a black hole are
astrophysical environment that are a particularly interesting
home to potential quantum kinetic effects, as neutrino
flavor transformations have already been suggested to be
significant very close to the decoupling region [51,52,54].
There is much to be explored on the frontier of numerical
quantum kinetics.
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APPENDIX A: MOMENT FORM

Following [81,82], we can take moments of the QKEs in
order to generate evolution equations for a small number of
angular moments of the distribution function. In order to do
this, we decompose the neutrino four-momentum into

pα ¼ hν
c
ðuα þ lαÞ; ðA1Þ

where lα is a unit normal four-vector (lαlα ¼ 1) orthogonal
to uα (uαlα ¼ 0). We can define the first few comoving-
frame angular moments (units of Hz3) of the neutrino
distribution function as

Jabðν; xμÞ ≔ ν3
Z

dΩfabðν;Ω; xμÞ

Hα
abðν; xμÞ ≔ ν3

Z
dΩfabðν;Ω; xμÞlα

Lαβ
abðν; xμÞ ≔ ν3

Z
dΩfabðν;Ω; xμÞlαlβ

Nαβγ
ab ðν; xμÞ ≔ ν3

Z
dΩfabðν;Ω; xμÞlαlβlγ ðA2Þ

Note that the oscillation Hamiltonian Hab can be distin-
guished from the first moment of the radiation field Hα

ab by
the presence of a spacetime index. The two-moment
evolution equations from [81] Eq. (3.19) are

∇βM
αβ
ab −

∂
∂ν ðνM

αβγ
ab ∇γuβÞ ¼ Sαab; ðA3Þ

where

Mαβ
ab ¼ Jabuαuβ þHα

abu
β þHβ

abu
α þ Lαβab;

Mαβγ
ab ¼ Jabuαuβuγ þHα

abu
βuγHβ

abu
αuγ þHγ

abu
αuβ

þ Lαβ
abu

γ þ Lαγ
abu

β þ Lβγ
abu

α þ Nαβγ
ab : ðA4Þ

In this work, we will focus on the source terms, which
can be expressed in moment form as

Sαabðν; xμÞ ≔ ν3
Z

dΩ
�
Cab −

i
ℏc

½H; f�ab
�
ðuα þ lαÞ

ðA5Þ

(units of Hz3 cm−1). We leave the full implementation of
relativistic QKEs to future work, but note that, when
neglecting the Oðϵ2Þ force and drift term corrections, all
of the flavor coherence effects lie in the source term. These
evolution equations need to be massaged into a numerically
implementable form (e.g., [73,81–85]).
Oscillation term.—Performing the angular integrals on

the contribution to the source term from the vacuum and
matter potentials yields

Sαab ¼ −
i
ℏc

½Hvacuum þHmatter;Ψα�ab: ðA6Þ

Similarly, performing the angular integral on the contribu-
tion from the neutrino self-interaction term, we get

Sαab ¼ −i
ffiffiffi
2

p
ℏ2GF

ν3c

Z
dν0

ν0
f½ðJ0 − J̄0Þ;Ψα�ab

− ½ðH0β − H̄0βÞ;Ξα
β�abg; ðA7Þ

where we have defined the following Lorentz-invariant
objects (units of Hz3):

Ψα
abðν; xμÞ ≔ Jabnα þHα

ab;

Ξα
βabðν; xμÞ ≔ gβμðHμ

abu
α þ Lμα

abÞ: ðA8Þ

Absorption and emission.—To get the source term for
the two-moment form of the QKEs [Eq. (A3)], we perform
the integral in Eq. (A5) for the contribution to the source
term in Eq. (25) and arrive at

Sαab ¼ 4πν3jðνaÞδabu
α − ðhjiab þ hκiabÞΨα

ab: ðA9Þ

The source term for antineutrinos is exactly analogous.
Scattering.—Angular moments of the inelastic scattering

kernel [Eq. (31)] can be integrated as

ν03ν3
Z

dΩdΩ0fðuαþ lαÞR� ¼ 4πν03

2
Φ�

0 Ψα;

ν03ν3
Z

dΩdΩ0f0ðuαþ lαÞR� ¼ 4πν3

2
ðΦ�

0 J
0uαþΦ�

1 H
0αÞ;

ν03ν3
Z

dΩdΩ0ff0ðuαþ lαÞR� ¼ 1

2
Φ�

0 J
0Ψαþ3

2
Φ�

1 H
0βΞα

β:

ðA10Þ

The resulting source terms from performing the angular
integral in Eq. (A5) on Eq. (32) are

Sαab ¼
Z

dν0

c4ν0



4π

2
½ν3ðΦþ

0abJ
0
abu

α þΦþ
1abH

0α
abÞ

− ν03hΦi−0abΨα
ab� − ζαab

�
; ðA11Þ
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where

ζαab ≔ ν03ν3
Z

dΩdΩ0ðςþab − ς−abÞðuα þ lαÞ

¼ 1

2

X
c

�
1

2
ðΔΦ0cbΨα

acJ0cb þ ΔΦ0acJ0acΨα
cbÞ

þ 3

2
ðΔΦ1cbΞα

βacH
0β
cb þ ΔΦ1acH0β

acΞα
βcbÞ

�
ðA12Þ

(units Hz7 cm3) and ΔΦab ≔ Φþ
ab −Φ−

ab. The contribution
to Sαaa from the terms inside the square brackets in
Eq. (A11) and the c ¼ a terms in ζαaa make the well-
known source term for noncoherent neutrinos as in [81]. If
the scattering process is treated as elastic [Eq. (35)], the
source terms simplify to

Sαab ¼ ½−Hα
abðhκi0ab − κ1ab=3Þ − Jabκ̃0abuα�: ðA13Þ

Pair processes.—The pair process (electron-positron
and nucleon-nucleon bremsstrahlung) source terms can
be integrated from Eq. (39) as

Sαab ¼
Z

dν̄0

ν0



4π

2
½4πν3ν̄03Φþ

0abδab

− ν3ðΦþ
0abJ̄

0
abu

α=cþΦþ
1abH̄

0α
abÞ

− ν̄03hΦiþ0abΨα
ab� þ ζαab

�
: ðA14Þ

ζαab is defined in Eq. (A12), though for Eq. (A14) one
should use values of R�

ab for this process, and primed
quantities should be primed and barred. The source term
from integrating the effective absorption collision term
[Eq. (40)] looks identical to Eq. (A9), but here the
emissivities jðνaÞ and opacities κðνaÞ for heavy lepton
neutrinos are nonzero.

APPENDIX B: CODE TESTS

To ensure that ISOTROPICSQA produces realistic results,
we perform a few basic tests.

1. Equilibrium test

In the limit of no flavor mixing, the interactions should
reduce to the well-known flavor-diagonal interactions,
which drive the neutrino distributions to Fermi-Dirac dis-
tributions described by the fluid temperature and chemical
potentials of μνe ¼ μp þ μe − μn, μν̄e ¼ −μνe , and μνx ¼ 0.
Though we see the collision kernels in the main text driving
the distribution function to this equilibrium, we quantify
how well the collision terms maintain this equilibrium. To
test this, we initialize the diagonal components of the
distribution function to their thermal equilibrium values, set
off-diagonal elements to zero, and evolve including all

interactions in Sec. IVand without oscillations. All tests are
performed under the conditions of ρ ¼ 1012 g cm−3,
T ¼ 10 MeV, Ye ¼ 0.3, and a neutrino energy domain
of 1–101 MeV as in Secs. IV and V. We run three tests:
(a) 50 energy bins and an integration accuracy of 10−12,
(b) 25 energy bins and an integration accuracy of 10−12, and
(c) 50 bins and an integration accuracy of 10−11. In all
cases, within 25 μs the maximum deviation of any com-
ponent of the distribution function settles to within one part
in 2 × 10−15 of its initial value. The 25 bin case briefly has
maximum errors that grow to 5 × 10−12 before settling
down to the previously mentioned error. We also tested
individual processes with similar results. These tests show
that the equilibrium Fermi-Dirac distribution is reproduced
to within numerical error by our collision processes.

2. Vacuum oscillations

To ensure that the oscillations evolve correctly, we first
simulate vacuum oscillations by setting the matter and
interaction potentials to zero. The probability of a neutrino
transitioning from one flavor to another is given by the
well-known formula (e.g., [20])

PTðtÞ ¼ sin2ð2θ12Þsin2
�
c4Δm2

12t
4Eℏ

�
: ðB1Þ

Thus, we expect the distribution function values to follow:

feeðtÞ ¼ ½1 − PTðtÞ�feeð0Þ þ PTðtÞfμμð0Þ;
fμμðtÞ ¼ ½1 − PTðtÞ�fμμð0Þ þ PTðtÞfeeð0Þ: ðB2Þ

The good agreement between the computed (colored lines)
and analytic (dotted lines) results is shown in the top panel
of Fig. 25. The bottom panel shows the maximum relative
error among all energy groups and neutrino species
between the computed and analytic solution as a function
of the time step size. The error actually increases when the
time step decreases. This is due to the hybrid representation
of the distribution function matrices. After every oscillation
step, the unitary evolution operator is applied to the
distribution functions. Though the operator itself is repre-
sented very accurately, some accuracy is lost in applying
the evolution operator to the distribution function. This
emphasizes the importance of applying the operator as
sparsely as possible, and it is the reason we allow the
evolution operator to evolve for many steps between
applications to the distribution function.

3. MSW resonance

Oscillations in a constant matter background are also
straightforward to compute. Equation (B2) still applies, but
the mixing angle and mass squared difference in Eq. (B1)
are replaced by effective values of
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sin2ð2θ̃12Þ ¼
sin2ð2θ12Þ

sin2ð2θ12Þ þ C2
;

Δm̃2
12 ¼ Δm2

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ð2θ12Þ þ C2

q
;

C ¼ cosð2θ12Þ −
2VE

Δm2
12c

4
; ðB3Þ

where V ¼ � ffiffiffi
2

p
GFℏ3c3ne is the matter potential (positive

for neutrinos, negative for antineutrinos). Figure 26 shows
the error associated with evolution in a matter potential that
puts the 20 MeV neutrinos on the Mikheyev–Smirnov–
Wolfenstein (MSW) resonance (C ¼ 0).

4. Bipolar oscillations

Figure 27 shows a calculation of bipolar oscillations and
associated errors. Bipolar oscillations occur for pure
electron anti/neutrinos with the inverted mass hierarchy
and for pure anti/muon neutrinos with the normal mass
hierarchy. In this test, we set up an initial distribution of
pure anti/muon neutrinos with fμμ ¼ f̄μμ ¼ 1 in a single
energy bin at an energy of hν. The background matter
density is set to 0, the angle between the mass and flavor
bases to 0.01, and the self-interaction Hamiltonian to be

Hneutrino ¼
10ðm2

2 −m2
1Þc4

2hν
ðf − f̄Þ: ðB4Þ

We also set the mass difference to m2
2 −m2

1 ¼ ð2hνÞℏ=c4,
such that the approximate frequency for bipolar oscillations

is then κ ≈ 0.995 s−1, corresponding to the μ ¼ 10, ω ¼ 1
case in [86]. The top panel of Fig. 27 shows the evolution of
the neutrinos over a period of 8 s. The oscillations do
indeed occur on approximately this timescale and match
Fig. 1 in [86]. However, the period of the oscillations in
the numerical solution decreases over time due to numeri-
cal errors caused predominantly by the mapping of the
evolution matrix onto the distribution function; applying
the mapping less often causes the period to decrease more
slowly. The third panel shows the relative change in the
length of the distribution flavor vector with time, which
should always be zero in this test without collision terms. It
is once again clear that a longer dtblock prevents accumu-
lation of error, and that the integration accuracy parameter
does not significantly affect the solution on these time-
scales. Similarly, the distribution function should always
be Hermitian. The non-Hermitivity of f is shown in the
bottom panel after each step prior to making f Hermitian
again. Once again, the largest errors occur during the flavor
transitions.

5. Resolution

We demonstrate here that errors associated with our
numerical treatment of the QKEs are within acceptable
bounds. To do this, we rerun the combined oscillation and
collision QKE calculation in Sec. V under varied parameter
choices. The black curves in the top two panels of Fig. 28
show the length of the distribution flavor vectors for
neutrinos and antineutrinos, run with 25 energy bins and
an energy grid spacing of 4 MeV. Each curve represents one
neutrino energy. The distribution flavor vector length is a

FIG. 26. MSW oscillations test.—The top panel shows the
evolution of the νe and νμ distribution functions for the 10 MeV
and 49 MeV energy bins, along with the analytic solution. The
bottom panel shows the maximum error in the solution for
simulations with three different time step sizes. The error
increases with decreasing step size. See text for details.

FIG. 25. Vacuum oscillations test.—The top panel shows the
evolution of the νe and νμ distribution functions for the 10 MeV
and 49 MeV energy bins, along with the analytic solution. The
bottom panel shows the maximum error in the solution for
simulations with three different time step sizes. The error
increases with decreasing step size. See text for details.
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particularly useful quantity to compare to, since it
changes on collision timescales and does not oscillate
violently as individual components of the neutrino distri-
bution do. We aim to ensure that this macroscopic
behavior converges and do not expect the instantaneous
phases of the underlying oscillations to match between
calculations.
Underneath the black curves in Fig. 28 are the corre-

sponding curves from each of the simulations with numeri-
cal tweaks. The relative errors between the fiducial and
tweaked calculations are shown in the same color in the
bottom panel. First we look at the green curves, which
result from decreasing the accuracy of the integrator by a
factor of 10 from the fiducial case. This is clearly not the
dominant source of error. The solid green curve in the
bottom panel shows that the relative error maximized over
all neutrino energies and both helicities is always less than
1.4%. The dashed and dotted lines show the neutrino and
antineutrino errors at 28 MeV, respectively, which is near

the average energy of the distribution. The errors there are
negligibly small.
Next, we increase the target impact by a factor of 10 and

show the results as blue curves. These results sampled values
ofdtblock that are on average also a factor of 10 larger, causing
the collisions to more sparsely sample the rapidly varying
distributions. This also leads to at most a 1.3% error. The
sparse sampling seemsonly tomake the evolutionofL noisier
without significantly changing its long-term evolution.
Of course, we also need to check our energy grid

resolution. The red curves (data from Sec. V) show that
doubling the energy resolution leads to a much more

FIG. 27. Bipolar oscillation test.—First panel: Evolution of a
neutrino distribution function f initially consisting of pure
50 MeVνμ and ν̄μ in equal amounts, ignoring collision terms.
Second panel: Maximum error between the fiducial calculation
(integration accuracy of 10−13 and dtblock ¼ 10−3 s) and that with
lower integration accuracy (red line) and longer dtblock (blue line).
Third panel: Relative change in the length of the distribution
flavor vector, which should be 0 since collision terms are set to
zero. Fourth panel: How non-Hermitian the distribution function
becomes at each step before enforcing Hermitivity.

FIG. 28. Fidelity tests.—Calculations evolving the QKEs
including oscillations and collisions. Top panel: Neutrino dis-
tribution flavor vector length relative to the flavor-diagonal Fermi-
Dirac length. Center panel: Antineutrino distribution flavor
vector length. Bottom panel: Relative error compared to the
fiducial calculation. Black curves show the results of a fiducial
calculation using 25 energy bins and an energy grid spacing of
4 MeV, while red curves show the results from Sec. V with 50
energy bins and an energy spacing of 2 MeV. Green curves result
from worsening the accuracy of the integrator to 10−11. Blue
curves result from increasing the target impact to 10−3. Red curves
result from doubling the neutrino energy resolution with the same
energy domain. Gold curves result from increasing the upper
bound of the neutrino energy domain and the number of energy
bins by 20%, keeping the energy grid spacing constant. In the
bottom panel, solid lines take the maximum over all energies and
helicities, dashed lines show only errors for neutrinos at 28 MeV,
and dotted lines show only errors for antineutrinos at 28 MeV.
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systematic error of at most ∼1.4%, and an even lower error
at 28 MeV. Here, we only calculate and plot the errors at
neutrino energies at bin centers present in both grids (i.e.,
integer multiples of 4 MeV). Interestingly, the results seem
to be much more sensitive to the size of the energy domain.
The gold curves demonstrate the effect of extending the
grid out to 120 MeV with an additional five energy zones in
order to keep the grid spacing constant. This leads to
significant errors of up to 3.7%, again where errors are only
calculated for neutrino energies contained in both domains.
However, we note that the largest errors are at the highest

energies close to the energy boundary. If we instead look at
the errors at 28 MeV (near the average neutrino energy of
31.5 MeV), the error is always under 0.27% for antineu-
trinos and 0.12% for neutrinos. The fiducial grid spans a
domain of 2–102 MeV, corresponding to 99.7% of the
neutrino number and 99.0% of the neutrino energy. The
extended grid spans a domain of 2–122 MeV, correspond-
ing to 99.9% of the neutrino number and 99.8% of the
neutrino energy. Given the small number of neutrinos in
these high-energy bins, it is unclear why the energy domain
size is so important.
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Tomàs, No Collective Neutrino Flavor Conversions during
the Supernova Accretion Phase, Phys. Rev. Lett. 107,
151101 (2011).

[24] H. Duan and A. Friedland, Self-Induced Suppression of
Collective Neutrino Oscillations in a Supernova, Phys. Rev.
Lett. 106, 091101 (2011).

[25] B. Dasgupta, E. P. O’Connor, and C. D. Ott, Role of
collective neutrino flavor oscillations in core-collapse
supernova shock revival, Phys. Rev. D 85, 065008
(2012).

[26] R. F. Sawyer, Speed-up of neutrino transformations in
a supernova environment, Phys. Rev. D 72, 045003 (2005).

[27] R. F. Sawyer, Neutrino Cloud Instabilities Just above the
Neutrino Sphere of a Supernova, Phys. Rev. Lett. 116,
081101 (2016).

[28] S. Chakraborty, R. Hansen, I. Izaguirre, and G. Raffelt,
Collective neutrino flavor conversion: Recent develop-
ments, Nucl. Phys. B908, 366 (2016).

NEUTRINO QUANTUM KINETICS IN COMPACT OBJECTS PHYS. REV. D 99, 123014 (2019)

123014-29

https://doi.org/10.1086/148549
https://doi.org/10.1086/148549
https://doi.org/10.1103/RevModPhys.62.801
https://doi.org/10.1103/RevModPhys.62.801
https://doi.org/10.1146/annurev-nucl-102711-094901
https://doi.org/10.1088/1361-6471/aadeae
https://doi.org/10.3847/1538-4357/aadcf7
https://doi.org/10.3847/1538-4357/aa9ce8
https://doi.org/10.3847/1538-4357/aa9ce8
https://doi.org/10.3847/1538-4357/aa8bb2
https://doi.org/10.1093/mnras/sty2585
https://doi.org/10.1093/mnras/sty2585
https://doi.org/10.3847/1538-4357/aaa716
https://doi.org/10.3847/1538-4357/aaa716
https://doi.org/10.1051/0004-6361/201833705
https://doi.org/10.1086/191056
https://doi.org/10.1016/j.nuclphysa.2004.06.012
https://doi.org/10.1103/PhysRevD.17.2369
https://doi.org/10.1103/PhysRevD.17.2369
https://doi.org/10.1016/0146-6410(89)90008-2
https://doi.org/10.1016/0370-2693(92)91887-F
https://doi.org/10.1016/0370-2693(92)91887-F
https://doi.org/10.1016/j.ppnp.2018.05.005
https://doi.org/10.1016/j.ppnp.2018.05.005
https://doi.org/10.1088/1361-6471/aaa90a
https://doi.org/10.1088/1361-6471/aaa90a
https://doi.org/10.1146/annurev.nucl.012809.104524
https://doi.org/10.1155/2014/191960
https://doi.org/10.1155/2014/191960
https://doi.org/10.1103/PhysRevD.20.2634
https://doi.org/10.1103/PhysRevLett.97.241101
https://doi.org/10.1103/PhysRevLett.107.151101
https://doi.org/10.1103/PhysRevLett.107.151101
https://doi.org/10.1103/PhysRevLett.106.091101
https://doi.org/10.1103/PhysRevLett.106.091101
https://doi.org/10.1103/PhysRevD.85.065008
https://doi.org/10.1103/PhysRevD.85.065008
https://doi.org/10.1103/PhysRevD.72.045003
https://doi.org/10.1103/PhysRevLett.116.081101
https://doi.org/10.1103/PhysRevLett.116.081101
https://doi.org/10.1016/j.nuclphysb.2016.02.012


[29] I. Izaguirre, G. Raffelt, and I. Tamborra, Fast Pairwise
Conversion of Supernova Neutrinos: A Dispersion Relation
Approach, Phys. Rev. Lett. 118, 021101 (2017).

[30] F. Capozzi, B. Dasgupta, E. Lisi, A. Marrone, and A.
Mirizzi, Fast flavor conversions of supernova neutrinos:
Classifying instabilities via dispersion relations, Phys.
Rev. D 96, 043016 (2017).

[31] B. Dasgupta, A. Mirizzi, and M. Sen, Simple method of
diagnosing fast flavor conversions of supernova neutrinos,
Phys. Rev. D 98, 103001 (2018).

[32] S. Abbar and H. Duan, Fast neutrino flavor conversion:
Roles of dense matter and spectrum crossing, Phys. Rev. D
98, 043014 (2018).

[33] I. Tamborra, L. Hüdepohl, G. G. Raffelt, and H.-T. Janka,
Flavor-dependent neutrino angular distribution in core-
collapse supernovae, Astrophys. J. 839, 132 (2017).

[34] B. Dasgupta, A. Mirizzi, and M. Sen, Fast neutrino flavor
conversions near the supernova core with realistic flavor-
dependent angular distributions, J. Cosmol. Astropart. Phys.
02 (2017) 019.

[35] S. Abbar, H. Duan, K. Sumiyoshi, T. Takiwaki, and M. C.
Volpe, On the occurrence of fast neutrino flavor conversions
in multidimensional supernova models, arXiv:1812.06883.

[36] M. D. Azari, S. Yamada, T. Morinaga, W. Iwakami, H.
Nagakura, and K. Sumiyoshi, Linear analysis of fast-
pairwise collective neutrino oscillations in core-collapse
supernovae based on the results of Boltzmann simulations,
Phys. Rev. D 99, 103011 (2019).

[37] J. F. Cherry, J. Carlson, A. Friedland, G. M. Fuller, and A.
Vlasenko, Neutrino Scattering and Flavor Transformation in
Supernovae, Phys. Rev. Lett. 108, 261104 (2012).

[38] S. Sarikas, I. Tamborra, G. Raffelt, L. Hüdepohl, and H. T.
Janka, Supernova neutrino halo and the suppression of self-
induced flavor conversion, Phys. Rev. D 85, 113007 (2012).

[39] A. Mirizzi and P. D. Serpico, Flavor stability analysis of
dense supernova neutrinos with flavor-dependent angular
distributions, Phys. Rev. D 86, 085010 (2012).

[40] J. F. Cherry, J. Carlson, A. Friedland, G. M. Fuller, and A.
Vlasenko, Halo modification of a supernova neutronization
neutrino burst, Phys. Rev. D 87, 085037 (2013).

[41] V. Cirigliano, M. Paris, and S. Shalgar, Collective neutrino
oscillations with the halo effect in single-angle approxima-
tion, J. Cosmol. Astropart. Phys. 11 (2018) 019.

[42] S. Rosswog and M. Liebendoerfer, High resolution calcu-
lations of merging neutron stars. 2: Neutrino emission, Mon.
Not. R. Astron. Soc. 342, 673 (2003).

[43] L. Dessart, C. D. Ott, A. Burrows, S. Rosswog, and E.
Livne, Neutrino signatures and the neutrino-driven wind in
binary neutron star mergers, Astrophys. J. 690, 1681 (2009).

[44] B. D. Metzger and R. Fernandez, Red or blue? A potential
kilonova imprint of the delay until black hole formation
following a neutron star merger, Mon. Not. R. Astron. Soc.
441, 3444 (2014).

[45] S. Richers, D. Kasen, E. O’Connor, R. Fernandez, and C. D.
Ott, Monte Carlo neutrino transport through remnant disks
from neutron star mergers, Astrophys. J. 813, 38 (2015).

[46] S. Fujibayashi, Y. Sekiguchi, K. Kiuchi, and M. Shibata,
Properties of neutrino-driven ejecta from the remnant of
binary neutron star merger: Purely radiation hydrodynamics
case, Astrophys. J. 846, 114 (2017).

[47] A. Perego, H. Yasin, and A. Arcones, Neutrino pair anni-
hilation above merger remnants: Implications of a long-
lived massive neutron star, J. Phys. G 44, 084007 (2017).

[48] M. R. Wu, I. Tamborra, O. Just, and H. T. Janka, Imprints of
neutrino-pair flavor conversions on nucleosynthesis in
ejecta from neutron-star merger remnants, Phys. Rev. D
96, 123015 (2017).

[49] D. Radice, A. Perego, S. Bernuzzi, and B. Zhang, Long-
lived remnants from binary neutron star mergers, Mon. Not.
R. Astron. Soc. 481, 3670 (2018).

[50] F. Foucart, M. D. Duez, L. E. Kidder, R. Nguyen, H. P.
Pfeiffer, and M. A. Scheel, Evaluating radiation transport
errors in merger simulations using a Monte Carlo algorithm,
Phys. Rev. D 98, 063007 (2018).

[51] Y. L. Zhu, A. Perego, and G. C. McLaughlin, Matter-
neutrino resonance transitions above a neutron star merger
remnant, Phys. Rev. D 94, 105006 (2016).

[52] A. Malkus, G. C. McLaughlin, and R. Surman, Symmetric
and standard matter neutrino resonances above merging
compact objects, Phys. Rev. D 93, 045021 (2016).

[53] D. Väänänen and G. C. McLaughlin, Uncovering the
matter-neutrino resonance, Phys. Rev. D 93, 105044
(2016).

[54] A. Chatelain and C. Volpe, Helicity coherence in binary
neutron star mergers and nonlinear feedback, Phys. Rev. D
95, 043005 (2017).

[55] A. Chatelain and M. C. Volpe, Neutrino propagation in
binary neutron star mergers in presence of nonstandard
interactions, Phys. Rev. D 97, 023014 (2018).

[56] A. Vlasenko and G. C. McLaughlin, Matter-neutrino reso-
nance in a multiangle neutrino bulb model, Phys. Rev. D 97,
083011 (2018).

[57] M. B. Deaton, E. O’Connor, Y. L. Zhu, A. Bohn, J. Jesse, F.
Foucart, M. D. Duez, and G. C. McLaughlin, Elastic scat-
tering in general relativistic ray tracing for neutrinos, Phys.
Rev. D 98, 103014 (2018).

[58] V. Cirigliano, M.W. Paris, and S. Shalgar, Effect of
collisions on neutrino flavor inhomogeneity in a dense
neutrino gas, Phys. Lett. B 774, 258 (2017).

[59] J. Y. Tian, A. V. Patwardhan, and G. M. Fuller, Neutrino
flavor evolution in neutron star mergers, Phys. Rev. D 96,
043001 (2017).

[60] M. R. Wu and I. Tamborra, Fast neutrino conversions:
Ubiquitous in compact binary merger remnants, Phys.
Rev. D 95, 103007 (2017).

[61] G. Sigl and G. Raffelt, General kinetic description of
relativistic mixed neutrinos, Nucl. Phys. B406, 423 (1993).

[62] A. Vlasenko, G. M. Fuller, and V. Cirigliano, Neutrino
quantum kinetics, Phys. Rev. D 89, 105004 (2014).

[63] C. Volpe, Neutrino Quantum Kinetic Equations, Int. J. Mod.
Phys. E 24, 1541009 (2015).

[64] V. Cirigliano, G. M. Fuller, and A. Vlasenko, A new spin
on neutrino quantum kinetics, Phys. Lett. B 747, 27
(2015).

[65] D. N. Blaschke and V. Cirigliano, Neutrino quantum kinetic
equations: The collision term, Phys. Rev. D 94, 033009
(2016).

[66] J. Serreau and C. Volpe, Neutrino-antineutrino correlations
in dense anisotropic media, Phys. Rev. D 90, 125040
(2014).

RICHERS, MCLAUGHLIN, KNELLER, and VLASENKO PHYS. REV. D 99, 123014 (2019)

123014-30

https://doi.org/10.1103/PhysRevLett.118.021101
https://doi.org/10.1103/PhysRevD.96.043016
https://doi.org/10.1103/PhysRevD.96.043016
https://doi.org/10.1103/PhysRevD.98.103001
https://doi.org/10.1103/PhysRevD.98.043014
https://doi.org/10.1103/PhysRevD.98.043014
https://doi.org/10.3847/1538-4357/aa6a18
https://doi.org/10.1088/1475-7516/2017/02/019
https://doi.org/10.1088/1475-7516/2017/02/019
http://arXiv.org/abs/1812.06883
https://doi.org/10.1103/PhysRevD.99.103011
https://doi.org/10.1103/PhysRevLett.108.261104
https://doi.org/10.1103/PhysRevD.85.113007
https://doi.org/10.1103/PhysRevD.86.085010
https://doi.org/10.1103/PhysRevD.87.085037
https://doi.org/10.1088/1475-7516/2018/11/019
https://doi.org/10.1046/j.1365-8711.2003.06579.x
https://doi.org/10.1046/j.1365-8711.2003.06579.x
https://doi.org/10.1088/0004-637X/690/2/1681
https://doi.org/10.1093/mnras/stu802
https://doi.org/10.1093/mnras/stu802
https://doi.org/10.1088/0004-637X/813/1/38
https://doi.org/10.3847/1538-4357/aa8039
https://doi.org/10.1088/1361-6471/aa7bdc
https://doi.org/10.1103/PhysRevD.96.123015
https://doi.org/10.1103/PhysRevD.96.123015
https://doi.org/10.1093/mnras/sty2531
https://doi.org/10.1093/mnras/sty2531
https://doi.org/10.1103/PhysRevD.98.063007
https://doi.org/10.1103/PhysRevD.94.105006
https://doi.org/10.1103/PhysRevD.93.045021
https://doi.org/10.1103/PhysRevD.93.105044
https://doi.org/10.1103/PhysRevD.93.105044
https://doi.org/10.1103/PhysRevD.95.043005
https://doi.org/10.1103/PhysRevD.95.043005
https://doi.org/10.1103/PhysRevD.97.023014
https://doi.org/10.1103/PhysRevD.97.083011
https://doi.org/10.1103/PhysRevD.97.083011
https://doi.org/10.1103/PhysRevD.98.103014
https://doi.org/10.1103/PhysRevD.98.103014
https://doi.org/10.1016/j.physletb.2017.09.039
https://doi.org/10.1103/PhysRevD.96.043001
https://doi.org/10.1103/PhysRevD.96.043001
https://doi.org/10.1103/PhysRevD.95.103007
https://doi.org/10.1103/PhysRevD.95.103007
https://doi.org/10.1016/0550-3213(93)90175-O
https://doi.org/10.1103/PhysRevD.89.105004
https://doi.org/10.1142/S0218301315410098
https://doi.org/10.1142/S0218301315410098
https://doi.org/10.1016/j.physletb.2015.04.066
https://doi.org/10.1016/j.physletb.2015.04.066
https://doi.org/10.1103/PhysRevD.94.033009
https://doi.org/10.1103/PhysRevD.94.033009
https://doi.org/10.1103/PhysRevD.90.125040
https://doi.org/10.1103/PhysRevD.90.125040


[67] J. Y. Tian, A. V. Patwardhan, and G. M. Fuller, Prospects for
neutrino spin coherence in supernovae, Phys. Rev. D 95,
063004 (2017).

[68] Z. Maki, M. Nakagawa, and S. Sakata, Remarks on the
unified model of elementary particles, Prog. Theor. Phys.
28, 870 (1962).

[69] Particle Data Group, Review of particle physics, Phys. Rev.
D 98, 030001 (2018).

[70] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi,
Relativistic equation of state for core-collapse supernova
simulations, Astrophys. J. Suppl. Ser. 197, 20 (2011).

[71] S. Furusawa, S. Yamada, K. Sumiyoshi, and H. Suzuki,
A new baryonic equation of state at sub-nuclear densities
for core-collapse simulations, Astrophys. J. 738, 178
(2011).

[72] S. Furusawa, K. Sumiyoshi, S. Yamada, and H. Suzuki,
New equations of state based on the liquid drop model
of heavy nuclei and quantum approach to light nuclei for
core-collapse supernova simulations, Astrophys. J. 772, 95
(2013).

[73] E. O’Connor, An open-source neutrino radiation hydro-
dynamics code for core-collapse supernovae, Astrophys. J.
219, 24 (2015).

[74] W. Yueh and J. Buchler, Neutrino transport in supernova
models-SN method, Astrophys. J. 217, 565 (1977).

[75] C. J. Horowitz, Weak magnetism for antineutrinos in super-
novae, Phys. Rev. D 65, 043001 (2002).

[76] S. Hannestad and G. Raffelt, Supernova neutrino opacity
from nucleon-nucleon bremsstrahlung and related proc-
esses, Astrophys. J. 507, 339 (1998).

[77] Y. Li, M. K. Liou, W.M. Schreiber, and B. F. Gibson,
Neutrino-pair bremsstrahlung from nucleon-nucleon scat-
tering, Phys. Rev. C 92, 015504 (2015).

[78] R. Buras, H.-T. Janka, M. T. Keil, G. G. Raffelt, and M.
Rampp, Electron neutrino pair annihilation: A new source
for muon and tau neutrinos in supernovae, Astrophys. J.
587, 320 (2003).

[79] H. Nagakura, W. Iwakami, S. Furusawa, K. Sumiyoshi, S.
Yamada, H. Matsufuru, and A. Imakura, Three-dimensional
Boltzmann-Hydro code for core-collapse in massive stars.
II. The implementation of moving-mesh for neutron star
kicks, Astrophys. J. Suppl. Ser. 229, 42 (2017).

[80] J. P. Ellis, TikZ-Feynman: Feynman diagrams with TikZ,
Comput. Phys. Commun. 210, 103 (2017).

[81] M. Shibata, K. Kiuchi, Y. I. Sekiguchi, and Y. Suwa,
Truncated moment formalism for radiation hydrodynamics,
Prog. Theor. Phys. 125, 1255 (2011).

[82] C. Y. Cardall, E. Endeve, and A. Mezzacappa, Conservative
3þ 1 general relativistic variable Eddington tensor radiation
transport equations, Phys. Rev. D 87, 103004 (2013).

[83] L. F. Roberts, C. D. Ott, R. Haas, E. O’Connor, P. Diener,
and E. Schnetter, General-relativistic three-dimensional
multi-group neutrino radiation-hydrodynamics simulations
of core-collapse supernovae, Astrophys. J. 831, 98 (2016).

[84] E. O’Connor and S. Couch, Two dimensional core-collapse
supernova explosions aided by general relativity with
multidimensional neutrino transport, Astrophys. J. 854,
63 (2018).

[85] F. Foucart, E. O’Connor, L. Roberts, M. D. Duez, R. Haas,
L. E. Kidder, C. D. Ott, H. P. Pfeiffer, M. A. Scheel, and B.
Szilagyi, Post-merger evolution of a neutron star-black hole
binary with neutrino transport, Phys. Rev. D 91, 124021
(2015).

[86] S. Hannestad, G. G. Raffelt, G. Sigl, and Y. Y. Wong, Self-
induced conversion in dense neutrino gases: Pendulum in
flavor space, Phys. Rev. D 74, 105010 (2006).

NEUTRINO QUANTUM KINETICS IN COMPACT OBJECTS PHYS. REV. D 99, 123014 (2019)

123014-31

https://doi.org/10.1103/PhysRevD.95.063004
https://doi.org/10.1103/PhysRevD.95.063004
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1088/0067-0049/197/2/20
https://doi.org/10.1088/0004-637X/738/2/178
https://doi.org/10.1088/0004-637X/738/2/178
https://doi.org/10.1088/0004-637X/772/2/95
https://doi.org/10.1088/0004-637X/772/2/95
https://doi.org/10.1088/0067-0049/219/2/24
https://doi.org/10.1088/0067-0049/219/2/24
https://doi.org/10.1086/155605
https://doi.org/10.1103/PhysRevD.65.043001
https://doi.org/10.1086/306303
https://doi.org/10.1103/PhysRevC.92.015504
https://doi.org/10.1086/368015
https://doi.org/10.1086/368015
https://doi.org/10.3847/1538-4365/aa69ea
https://doi.org/10.1016/j.cpc.2016.08.019
https://doi.org/10.1143/PTP.125.1255
https://doi.org/10.1103/PhysRevD.87.103004
https://doi.org/10.3847/0004-637X/831/1/98
https://doi.org/10.3847/1538-4357/aaa893
https://doi.org/10.3847/1538-4357/aaa893
https://doi.org/10.1103/PhysRevD.91.124021
https://doi.org/10.1103/PhysRevD.91.124021
https://doi.org/10.1103/PhysRevD.74.105010

