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Particles in a yet unexplored dark sector with sufficiently large mass and small gauge coupling may form
purely gravitational atoms (quantum gravitational bound states) with a rich phenomenology. In particular,
we investigate the possibility of having an observable signal of gravitational waves or ultrahigh-energy

cosmic rays from the decay of gravitational atoms. We show that, if ordinary Einstein gravity holds up to the
Planck scale, then within the Lambda-cold dark matter model (ACDM), the frequency of the gravitational
wave signal produced by the decays is always higher than 10> Hz. An observable signal of gravitational
waves with smaller frequency from such decays, in addition to probing near Planckian dark physics, would
also imply a departure from Einstein gravity near the Planck scale or an early epoch of nonstandard
cosmology. As an example, we consider an early universe cosmology with a matter-dominated phase,
violating our assumption that the Universe is radiation dominated after reheating, which gives a signal in an
interesting frequency range for near-Planckian bound states. We also show how gravitational atoms arise in
the minimal Planckian interacting dark matter scenario and compute their gravitational wave signature.
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I. INTRODUCTION

Our Universe contains organized structures on a vast
range of scales, from small systems like planets and stars, to
galaxies that contains trillions of stars, all the way up to
extremely large structures like superclusters that encom-
pass hundreds of thousands of galaxies. These structures
are large gravitationally bound systems whose behavior can
be described classically. In this work we will entertain the
idea of quantum gravitational bound states (atoms) of
elementary particles and how their existence can be tested
experimentally. A precursor to this idea can be found in the
“gravitational atom” of [1], with a superradiant black hole
nucleus surrounded by an axion cloud.

Our motivation for considering gravitational atoms
comes from the Planckian interacting dark matter
(PIDM) scenario [2—4] (for related subsequent work see
[5]). In the minimal PIDM model, a GUT-scale scalar
particle with only gravitational interactions can be pro-
duced by thermal scattering in the early Universe plasma
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and with the right abundance to make up all of the dark
matter today. As we will see, the same mechanism will also
produce gravitational atoms, which will quickly decay to
gravitational waves (GWs) with a well-defined frequency
and amplitude. These gravitational waves will typically
have a very high frequency compared to what can be
probed with present-day techniques, but an intermediate
matter-dominated period or a nonminimal gravitational
coupling of the PIDM can lower the frequency by up to
10 orders of magnitude. This opens an interesting obser-
vational window to the dark sector close to the Planck scale,
allowing us to learn more about hidden physics, even if
dark matter is super heavy. In the same spirit, it was also
recently proposed that the PIDM could be looked for with
direct detection experiments by measuring the gravitational
effect of its large mass as it passes by the detector [6].

The Bohr radius of a two-particle bound state held
together by a central inverse square law potential,
V(r) =a/r, is

rg = (ua)™", (1)

where y = mym,/(m; + m,) is the reduced mass of the
system and « is the coupling constant of interaction
between the two particles. For the ordinary hydrogen atom,
w is just the mass of the electron and ay = ¢*/4n is the fine
structure constant, giving rz ~0.53 A =53 x 107" m.
The electrostatic and gravitational potentials in the
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nonrelativistic limit have exactly the same form: they are
both central inverse square law potentials, with the crucial
difference that for gravity the coupling constant is not an
independent parameter. The gravitational coupling constant
depends on the mass of the two particles,

myn,

ac = mz ’ (2)
P

where m,, is the Planck mass. The problem in trying to
build a gravitational bound state with particles having
masses close to the electron mass (or any other particle
in the Standard Model) is then evident. Even if these
particles interacted only gravitationally, their Bohr radius
would be extremely large, going from 10° times the radius
of the observable Universe for electrons to a light year for
the Higgs boson. No region in the Universe is empty
enough (or ever was) to allow these kinds of bound states to
live. The reason why gravitational bound states are unim-
portant for visible matter is that, for ordinary particles,
ag X ag, i.e., their mass-to-charge ratio is much less than
one (in Planck units): m/g < m,,. In other words, gravity is
the weakest force for ordinary particles, thus microscopic
bound states of these particles will always involve gauge
interactions.

However, there could be heavy particles in a yet unex-
plored dark sector for which gravity is the strongest force,
my/qx > m,, where gy is the charge of the U(1) subgroup
of a generic non-Abelian gauge theory in the dark sector.
An example of this with gy = 0 and my ~ 10°m p is the
minimal PIDM model. In this case, the Bohr radius could
be as small as the hydrogen atomic radius or even smaller.
For the minimal PIDM scenario, for example,
rg =2m3/my ~10°1, ~107® m, a truly microscopic
size. Note that the existence of such a strongly gravitating
particle does not constitute a violation of the weak gravity
conjecture, as the conjecture only requires one particle in
the spectrum satisfying m/q < m,,: any of the particles in
the visible sector will do.

Quantum gravitational bound states of these particles
could, in principle, be created in the early Universe through
a variety of mechanisms. For most of this work, we will not
focus on the precise creation mechanism, but we will just
assume an initial number density of bound states np; and
explore its consequences. We will study the minimal
scenario of gravitational bound states of two scalar particles
that interact only gravitationally, both with themselves
(¢x = 0) and with visible matter, and are created shortly
after inflation in a radiation-dominated universe that under-
goes usual cosmological evolution. This minimal scenario
is particularly elegant as it only has two free parameters,
my and np;, which allows us to put strong constraints and
make model-independent predictions. The gravitational
atoms we consider in the minimal scenario are not
protected by any global symmetry, therefore they are

unstable and will decay to radiation after a finite lifetime.
Since the mass controls both the charge and the inertia of
the atoms, the lifetime depends very strongly on my and is
of order m}’/m}}.

Bound states with my < 10™°m p live much longer than
the age of the Universe and are thus stable on cosmic
timescales. They can give rise to showers of ultrahigh-
energy (UHE) cosmic rays (and gravitons) when they decay
inside the Galaxy. For larger values of the mass, gravita-
tional atoms decay early in the history of the universe and
produce a gravitational wave signal that could be tested by
futuristic GW detectors. We also find a universal lower
bound on the mass of gravitational atoms, my 2 10‘8m,,.
Lighter gravitational atoms cannot exist today as they
would be disrupted by tidal forces in galaxies. For the
minimal model, which considers atoms created in the very
early Universe, a different bound exists that comes
from disruption by Hubble expansion: my > (Hm?3)'/3.
Depending on the energy scale of inflation, this bound can
become stronger (and for the highest possible scales, much
stronger) than the one from tidal forces in galaxies.

We find that the gravitational wave signal is hard to
detect in the minimal scenario, as it peaks at very high
frequencies, above 10'* Hz. Near-Planckian atoms
(my ~ m,) decay immediately after being produced, close
to reheating, and are redshifted to the present time follow-
ing the standard cosmological evolution. Since the maxi-
mum reheating temperature at which they can be created is
T~ 10‘3m,, (the highest temperature still compatible
with the nonobservation of tensor modes), the frequency
observed today for these atoms is ~10'3 Hz, which follows
straightforwardly from the frequency at production red-
shifted from reheating to the present time, m,T/T . As
the atoms decay immediately, the resulting signal is also
strongly monochromatic.

On the other hand, atoms with my ~107-10"%m,
decay today and they release their large rest energy in
the form of nonredshifted gravitational waves and ultra-
high-energy cosmic rays. Note that, since the atoms decay
today, the gravitons are not redshifted, and the frequency of
the signal can be, in principle, as high as 10°® Hz, the
frequency corresponding to 10~°m,,. The decay rate in this
case is comparable to the Hubble rate, therefore the signal is
more smeared out and loses its monochromaticity. In both
cases, the signal is located at frequencies that are far beyond
what current and planned experiments are able to detect.
Indeed, the GW signal produced by decaying gravitational
atoms can go well beyond the frequency cutoff that is
usually considered for gravitational waves. Conventional
wisdom assumes a lower bound on the frequency given by
10718 Hz, corresponding to wavelengths as large as the
present Hubble radius of the Universe, while the highest
possible value is 10!! Hz, corresponding to the frequency
of a Planck-energy graviton produced during the Planck era
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and redshifted to the present time using standard cosmo-
logical evolution. The frequency cutoff for astrophysical
processes is of course much lower, of order 10 kHz, so this
huge frequency range is often taken as encompassing all
gravitational waves that can be considered [7,8]. In our
scenario, gravitational atoms as heavy as 10~°m p» can decay
today and produce UHE gravitons, so the bound is clearly
violated. Unstable massive particles can, in principle, also
produce gravitons beyond the 10'! Hz cutoff, but, contrary
to gravitational atoms, they predominantly decay to visible
radiation since graviton production is Planck suppressed.
Gravitational atoms interact only through gravity, at least in
the minimal scenario, therefore graviton production is as
likely as production of any other scalar particle (decay to
fermions and vectors is suppressed, as we will see). In
particular, if there are no fundamental light scalars in the
complete UV theory, gravitational atoms’ primary decay
channel is to gravitons. We also do not know of any other
source of isotropic gravitational waves with a peak in the
spectrum at such high frequencies.

We discuss a particular realization of the minimal model
using PIDM, mentioned in the beginning. In this scenario,
the dark matter particle resides in a maximally decoupled
sector, has no self-interactions, and its mass is naturally
close to the Planck scale. PIDM particles are created by
freeze-in from the Standard Model (SM) plasma at very
high reheating temperatures and are always outside of
thermal equilibrium. PIDM bound states are subdominantly
created by the same freeze-in process. This purely gravi-
tational production mechanism will always be present, also
in more complicated scenarios, therefore one can take the
number density of gravitational atoms that we compute in
this model as an absolute lower limit on their abundance, if
scalar particles satisfying the strong gravity condition exist
in the early Universe. The minimal PIDM model of
gravitational atoms gives an unobservable signal, but it
is nonetheless instructive as a concrete and almost model-
independent scenario in which gravitational atoms can
arise.

To make the signal observable for upcoming detectors,
we need to modify one of the assumptions that define the
minimal scenario. In the last section, we consider as an
example nonstandard cosmological evolution in the form
of an early matter-dominated stage. This is a fairly generic
prediction of string theory models of the early Universe,
as moduli are inevitably and abundantly produced during
inflation and decay much later, reheating the visible sector
and kick-starting the usual radiation phase. The inter-
mediate matter phase can be quite long, going from
reheating to big bang nucleosynthesis and spanning a
huge range of scales. The Universe expands faster in the
matter-dominated era than it would have in the usual
radiation-dominated phase, thus enhancing the redshift
factor of the signal and giving a smaller frequency.
For near-Planckian atoms, the frequency falls in the range

10’-10'° Hz, which could be detectable by near-future
experiments. We also show that a large nonminimal
coupling of the PIDM to gravity brings the peak frequency
down to more interesting values. In both cases, a modi-
fication of gravity or early Universe cosmology is needed
in order to bring the peak frequency of the signal below
the 10'® Hz threshold.

II. THE MINIMAL MODEL

We postulate the existence of a particle X in the dark
sector that satisfies my /gy > m,,. This particle may form
purely gravitational bound states. The simplest model of
gravitational atoms that can still produce a rich phenom-
enology rests on three fundamental assumptions:

(1) X has only standard gravitational interactions: all
Standard Model and dark charges are equal to zero. In
particular, gy = 0 (no self-interactions) and &y = 0
(minimal coupling). Therefore, the dark sector is
maximally decoupled from the visible sector and
X particles may constitute a fraction, maybe even
substantial, of cold dark matter in the Universe.

(2) X is a scalar particle without internal quantum
numbers. Scalar field masses are unprotected against
large quantum corrections, so in absence of addi-
tional new physics in the dark sector, we expect the
mass my to lie near the quantum gravity scale.

(3) Gravitational atoms are created in the very early
Universe, near the end of inflation or just after, and
they evolve in the usual A cold dark matter (ACDM)
cosmological model. The formation mechanism is
such that only two-particle atoms are efficiently
created, and predominantly in their ground state.

The three assumptions define the simplest scenario in
which gravitational atoms can, in principle, arise. This most
minimal scenario entails a dark sector comprised only of X,
a scalar particle with a mass close to the Planck scale,
quantum gravity effects acting as the only UV cutoff. For
simplicity, we also restrict our attention to creation mech-
anisms that dominantly produce simple atoms, made up of
only two particles. The phenomenology is independent of
the spin if we only consider two-particle bound states,
therefore our assumptions that X is a scalar is not overly
restrictive (multiparticle states are heavily modified if the
constituents are fermions due to Pauli blocking). For
simplicity, we also consider a particle with no internal
degrees of freedom (d.o.f.). Atoms made up of particles
with internal quantum numbers could be stable by charge
conservation, changing the phenomenology. For example, a
complex scalar particle may form stable as well as unstable
(particle and anti-particle) bound states. This will, however,
not affect our main conclusions, but only add an additional
constraint on the initial number density of bound states
from avoiding overclosing the Universe today.

Assumption 3 is highly nontrivial for bosonic particles,
due to Bose-Einstein condensation and the universally
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attractive nature of gravity. Bosons do not experience the
Pauli exclusion principle, which means that such an atom
could always lower its energy by capturing an additional
particle in its ground state. Many-particle bound states
could then easily become more abundant as they are
energetically favorable. In order to avoid this problem,
we can imagine, for example, that the initial number
density of X particles is small enough that the probability
of a collision producing a multiparticle bound state is
negligible. This is what happens in the PIDM model.
The theory of a two-particle gravitational bound state is a
trivial modification of the usual theory of positronium. Our
bound state consists of two identical particles with m; =
m, = my that interact only through gravity. All we have to
do then is replace ay — a; and use the reduced mass
u = my/2. The energy levels of the atom to lowest order in

ag are
_Hag __my (my)* (3)
2n? 4n* \m,) ’

E, =

where n is the principal quantum number.

In distinction to atomic bound states, these gravitational
bound states are not stable by any global symmetry, and the
massive particles will annihilate into radiation. The atom
can either decay to a pair of gravitons or a pair of SM
particles. All decay channels are mediated by gravity.
To obtain the decay rates, we first need to compute the
amplitudes for bound state production from SM particles
and gravitons. In the nonrelativistic limit and in the center-
of-mass frame, we can relate the amplitude for bound state
production M5 to the amplitude for the creation of free X
particles with opposite momenta M5 (k, —k),

k) M3 (k, —k), (4)

BS

where S is the spin of the incoming particles or, equiv-
alently, the spin of the decay product, and (k) is the
momentum-space wave function of the ground state as a
function of the conjugate three-momentum k. The total
cross section for bound state production is

s = g SIMiOs —4m3).(5)

where the delta function enforces the constraint that the
total center-of-mass energy must equal the bound state
mass /s & 2my.

We computed the decay rates for any spin S and found
that only those corresponding to S =0 and S =2 are
nonzero at first order (see the Appendix for details). To
lowest order in «, the decay rates of a gravitational atom
to scalars and gravitons are

10 5
Iy = N, X - (@) _ %

64
Hmy (mx\10  4ladmy
o= I 6
¢ 12872 <m,,> 12872 ©)

where N is the number of fundamental scalar d.o.f. in the
low-energy spectrum,1 the other decay channels (decay to
fermions and vectors) being suppressed by an additional
factor of aZ. Therefore, to lowest order in ag, I'gy =~ s
and I'/Tgy = 41/(27°Ny) ~ 2/N,. Note the very strong
dependence of the decay rates on my as a result of the
“gravitational charge” being proportional to the mass.

It is clear that the mass of a gravitational atom cannot
vary freely, as their size quickly becomes untenably large if
the mass is considerably below the Planck scale. Both the
size of these atoms, as encoded in the Bohr radius of (1),
and the decay rates in (6) depend only on the mass my. It is
then possible to place a lower bound on the mass based on
disruption of bound states due to tidal forces in galaxies.
For my < 107%m,,, the lifetime I'"! is much larger than the
age of the Umverse and gravitational atoms are stable on
cosmic timescales. They will therefore be a component of
cold dark matter and participate in gravitational clustering,
concentrating in the center of galaxies. In the vicinity of a
massive object with mass M, tidal effects will disrupt
bound systems with size rz when the tidal energy exceeds
the binding energy, GMmyrg/r* > myaZ /4. For a solar
mass star, bound systems are disrupted at distances smaller

than
4 My (m,\*
ra= e (B2 9
mX my

Thus, the cross section for a collision able to split an atom
is o~ fcrﬁ. Tidal effects are strong enough to split most
gravitational atoms in galaxies if the interaction rate nyov
is much larger than the Hubble rate today, 77!, namely, if
neovty > 1, where ng ~ 0.1pc™ is the stellar density in
the galactic disk and v ~ 300 km/s the typical velocity of
virialized objects in the Galaxy. This gives a lower bound
on the mass or, equivalently, an upper bound on the size of
gravitational atoms

my 2 1078m,,, rp S 10%1, ~0.1 A. (8)

'Here low energy is defined in terms of the mass of dark sector
particles X, therefore N is the number of scalar particles in the
visible sector with a negligible mass compared to my. Ny = 4 for
the SM, but the number could be much higher if supersymmetry
and/or string theory are involved in its UV completion. At the
other extreme, if the UV theory does not contain fundamental
scalars, No = 0 and gravitational atoms will predominantly decay
to gravitons.
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It is interesting how the largest possible gravitational bound
states are roughly the size of ordinary atoms. For our
derivation to be consistent, we have to make sure that
ry > Ry, the typical radius of a star, for my < 10‘8m,,.
This is true, as ry(my = 107m,) ~ 10*R.

The constraint above is universal and constitutes an
absolute lower bound on the mass of a gravitational atom.
Other model-dependent constraints are possible that may
even become stronger in certain parameter ranges. For
example, the tidal forces due to cosmic expansion are
usually far too small to break a gravitational atom apart, but
they can become relevant in the very early Universe.
Indeed, if gravitational atoms are created soon after
inflation, they can be disrupted by rapid Hubble expansion.
Specifically, a very general constraint comes from requiring
that their size does not exceed the Hubble radius, rz <
H' ie.,

my 2 (Hmp)'". ©)

The strongest constraint on the mass comes from consid-
ering gravitational atom creation at reheating, when the
Hubble rate attains its largest value. The current upper
bound on the reheating scale is H,, ~5 x 107%m p» Which
leads to a very strong bound on the mass, my 2 0.01m,,.
The bound is relaxed if one lowers the reheating scale or
considers creation at a lower epoch.

III. PHENOMENOLOGY

We now study the experimental signatures of gravita-
tional atoms. Immediately after reheating, in a minimal
scenario with no additional new physics, their number
density will evolve according to the Boltzmann equation

fip = =3Hnp + (60)smopniy + (00)x_pny

+ (ov) _png — Tsmnpg — Tgnp. (10)

Due to assumption 1, these bound states can only be created
by gravitational scattering of SM sector particles with cross
section (ov)g\ g- dark sector particles X with cross section
(ov)x_p» and gravitons with cross section (ov)_ 5. They
can decay back to SM scalars and gravitons with decay
rates ['qy and I, respectively. Gravitational atoms cannot
decay back to their constituent particles X because of
conservation of energy.

This also means that the creation of a bound state by X
particles has to involve emission of external radiation either
in the incoming or outgoing particles in order to conserve
energy. It is one of our assumptions that X interacts only
gravitationally, so the emitted particle has to be a graviton,
which means that (ov)y_ 5 is naively suppressed compared
to (6v)gm_p and (ov)g_ p by a factor of ag = (my/m,)>.
However, the emission of an external graviton opens up
the phase space of the process X — B, leading to an

enhancement factor that could partially compensate the
suppression by ag, as long as my is not too small.

Here we are not interested in the precise creation
mechanism, so we will limit ourselves to a couple of
considerations. If gravitational atoms are created after or
during reheating, they can be produced in basically two
distinct regimes, depending on whether ngy; or ny domi-
nates the total number density of the Universe. In the
regime ngy > ny, the creation term (ov)gy_ zN3y domi-
nates in the Boltzmann equation. The visible sector is
initially in thermal equilibrium and X particles are created
together with gravitational bound states by freeze-in. This
is the PIDM scenario that we will analyze in the last
section. Conversely, if ny > ngqy, gravitational atoms are
not created by freeze-in, but rather by scattering of free X
particles in the nonequilibrium2 dark plasma through the
term (ov)y_ zn% (and possibly also (6v);_zn%), in anal-
ogy with what happens with ordinary atoms. We can also
have an intermediate regime ngy; & ny where both effects
are important. The latter two cases require additional new
physics in the dark sector.

The different production channels are encoded in the
cross sections of (10). For our purposes, we will posit an
initial number density np ; of gravitational atoms and treat it
as a free parameter, regardless of the precise production
mechanism. If the first three terms in (10) (ignoring the
trivial Hubble friction term) describe bound state forma-
tion, the last two describe the part relevant for observations,
namely, its decay to visible matter and gravitons, which we
now turn to.

A. Gravitational waves (my 2 10~°)

The total decay rate of a gravitational atom is
[ =gy + ;. After a typical lifetime I'"! has passed,
the atoms will start decaying to visible matter and grav-
itons, with an approximate ratio of Ny/2 to 1. We will
consider first decay to gravitons, which produces a highly
energetic gravitational wave signal. We want the signal to
be detectable today, so as a very rough estimate we only
consider lifetimes smaller than the age of the Universe,
! < Hy'. This translates into a bound on the mass:
my 2 107°m,,. Due to the huge power of m}! in the decay
rate, the atoms also decay well inside the radiation-
dominated phase if the mass is not extremely close to
saturating the bound. Taking into account the late matter-
dominated phase complicates the formulas without adding
much to the discussion, therefore in the following we will
consider a pure radiation-dominated universe from reheat-
ing to the present day. The plots, however, include the
factor of ~0.2 which accounts for the late stage of faster
matter-dominated expansion.

*Particles with gravitational-only interactions are never in
thermal equilibrium below the Planck scale.
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Atoms are created close to reheating with an initial
number density np;, as described by (10). Assuming that
the creation mechanism is fast enough, the decay process
can be described separately, as it takes place after creation
is over. Absorbing the expansion of the Universe in the
definition of the comoving number density Yz = nga’® and
neglecting the creation terms, the Boltzmann equation for
decay becomes

Yy T

da aH(a)’

(11)

where in the radiation-dominated phase H(a) = (7%,/
3y*m,)(a,,/a)*, and we consider for simplicity instanta-
neous reheating with maximum efficiency y = 1. T, is the
reheating temperature, k, = (45/(47%g,,))"/* ~ 0.25, and
g, 1s the number of d.o.f. at reheating, which we will
assume to be that of the SM. The solution is

2

ng; k5 I'm
ng(a) = ;3’ exp (—227,2‘"@12 — 1)) (12)
rh

Here we normalize the scale factor at the end of reheating
to 1, a,, =1, so that ng(a,,) = np,;. Note that in the
radiation-dominated phase a « /7, so that one retrieves the
usual exponential decay law in time. Note also that, since
bound states are intrinsically nonrelativistic objects, the
condition my > T, has to be satisfied. Since we imagine
these bound states to be created in the early Universe,
condition (9) is relevant and actually puts a stronger bound
on the mass in the radiation-dominated era,

T2 1/3
my 2 (—”i"”) : (13)
K3

Each bound state emits gravitons with total energy equal
to its mass mp = 2my when it decays. The infinitesimal
energy density emitted by a fraction of decaying atoms is
then dpg = —mBa‘3dYB,3 which is then redshifted to the
present value of dpgo= —mga=>dYg(a/ay)*, where
ay = T,,/Ty is the scale factor now, keeping in mind that
a,, = 1 at the end of reheating. The redshifted frequency of
a graviton emitted at a value of the scale factor a today is
wy = my(a/ay). Taking into account the fact that only a
fraction of energy I';/I" goes into gravitons, the energy
spectrum today is

dpG,OZ_&<£)4deYB da (14)

da)() r ao ?%d—a)o

The minus sign is necessary because while the bound state
number density decreases, the gravitational energy density
increases.

dp
dw
p— Wo
Wo
FIG. 1. Energy spectrum of gravitational waves emitted from

bound state decay in the early Universe as a function of the
observed frequency. The spectrum has the functional form x%e™",
with x = wy/mp and it is peaked at @j.

Expressing everything in terms of @, we get

dpco _ 3F_G”B,iK%FmP o5 . K3Im,, I_T%h i
doy, T T3, T: mjp |2 T? T% mj

(15)

”Z)af(‘)o (wg) has the form shown in Fig. I.

The physical spectrum is truncated at both low and high
frequencies. The minimum frequency attainable corre-
sponds to that of a graviton emitted at production T,
which has a frequency @, = mpTy/T,; while the
maximum frequency is that of a graviton emitted today,
i.e., womax = mp. The physical spectrum will then have
these two values as a lower and upper limit.
The spectral density is maximized at

The spectrum

L V2 Ty
o) = ———=—
0 Ky ,/Fmp

which corresponds to the frequency at emission redshifted
by a factor of ~T,//I'm,,. In order for w to be above the
minimum frequency @ i, the condition 7',, 2 /I'm, has
to be satisfied. If the condition is violated, the maximum
disappears, and the physical spectrum is just a decaying
exponential peaked at @ ,;,- We can understand the factor
(16) heuristically by assuming that all atoms decay more or
less at the same time f, ~'~!. The overall redshift factor
then is a,/agy, where ag = T,;, /T and, in the limit in which

T, > /T'm,, a;~
redshift factor of a,/ay~Ty/\/I'm,, in accordance
with (16).

mg, (16)

\/T%,/Tm,, giving an approximate
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In the high-mass limit, the local maximum in the
spectrum disappears, and the expected frequency is well
estimated by the average @,

217
Ty (1+351)

@) = (pGo)”" / wydpgo = mp———"—,
mgTo/T o T,, F (xz\/_, /rmp>
2T,

(17)

where

F(x)=1+ e"zz—;erfc(x), (18)

and the lower limit of integration is the frequency of a
graviton emitted at production, as measured today.
Technically, we are only allowed to integrate up to a
maximum frequency of mp, which corresponds to the
frequency of a graviton emitted from an atom decaying
today. However, as long as m 2 10‘6mp, we can assume
that practically all bound states already decayed, and
replacing mp with 4oco in the integral has no effect due
to the huge exponential suppression in (15). We also
checked numerically that integrating to infinity has negli-
gible effect on the final results. In the low-mass limit
T,,> /I'm,, @ agrees with (16) up to a numerical factor
of order 1. In the opposite limit 7',, <« /I'm,,, the average
frequency becomes mgT/T,;, = @omin, as atoms decay
immediately after being produced, so the spectrum is a
decaying exponential peaked at @ ;.

In both regimes, the spectrum is peaked at one frequency
given by (17), but it is not, in general, monochromatic, as
one would expect from decays in flat space. Deviations
from exact monochromaticity of the gravitational signal
arise due to the stochastic nature of the decay, meaning that
different atoms will decay at slightly different times and
therefore be redshifted in slightly different amounts by the
expansion of the Universe. We can quantify the spread of
the spectrum by computing the value o at which the
exponential in (15) comes to dominate,

T2
6~ [ = Lmy. (19)
I'm,

In the low-mass regime, the spectrum is fairly spread out
as 0 ~ @p. In the high-mass regime, on the other hand,
6/ < 1, therefore the signal is strongly monochromatic
and the total energy density provides a good estimate for
the peak intensity of the spectrum. The total energy density
in gravitational waves is just the integrated spectrum over
all frequencies,

Y dpgo o anpiLgmp _ (Koy/T'my,
PGo= dwy=Ty—3 F .
mpTo/T,, day Trh rr, \/ETrh

(20)

It is clear from (17) that the peak frequency today is
largest for the lowest possible value of the mass,
my ~ 10‘6mp. The reason is that very massive bound
states produce highly energetic gravitons, but they also
decay very early in the history of the Universe and are
therefore hugely redshifted. For example, the energy
density of gravitons emitted at reheating will be redshifted
by a factor ag* = (T/T,4)*, while gravitons emitted now
are not redshifted at all. What is redshifted, however, is
the number density of decaying atoms, but only by a factor
ay® = (Ty/T,;)*. The overall enhancement factor for
atoms decaying today compared to atoms decaying at
reheating is thus ag! = T,,/T,, which is exactly what
one can see from the plots. Figure 2 shows the peak
intensity of the signal as the mass of the bound state
increases, for atoms produced at reheating with temperature
T~ 10‘3m17 (saturating the experimental bound on the
nonobservation of tensor modes) and T,;, ~ 10™8m »- Most
of the mass parameter space is excluded by condition (13)
for T,;, ~ 107 m,,.

Even for atoms created at reheating with the highest
possible temperature 7',;, ~ 1073 m p» (so that we maximize
the redshift factor), the signal is extremely energetic, well
beyond the capabilities of standard interferometers like
LIGO and LISA. On the other hand, pilot projects are
carried out with gravitational wave detectors able to
observe high-frequency gravitational waves in a frequency
range up to 0.1 GHz and detectors capable of measuring
gravitational wave frequencies above 10'* Hz are also
being discussed [9]. The lower bound on the peak fre-
quency of our signal for a near-Planckian atom, as shown in
Fig. 2, is around 10'® Hz, close to that frequency range.
The reason is that, as we already discussed, the lowest
frequency that we can get is for near-Planckian atoms,
which decay to gravitons at reheating. This is just
W0 min = mBTO/T,h ~ mp(To/Trh) > To, which is natu-
rally much larger than Ty ~ 10 GHz for all allowed values
of the reheating temperature. 7 is actually an absolute
lower bound for the frequency in the minimal model, as it
corresponds to atoms being created in the Planck era and
immediately decaying to gravitons, which are then red-
shifted until today. Of course, this is already excluded by
the bound on tensor modes, which places the minimum
frequency at least a factor 10° above the cosmic microwave
background temperature today. This explains the factor of
10° in the figure, for T, ~ 107°m,,.

Since we can change the number density of gravitational
atoms at will, the only bound on the intensity comes from
gravitational wave contribution to the effective number of
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FIG. 2. Peak frequency of the monochromatic gravitational
wave signal produced by ground state (red) and 3d excited (blue)
gravitational atoms as a function of the bound state mass with
T,, ~107m, (top) and T,;, ~ 10=m,, (bottom). The frequency
is in hertz and the mass in Planck units. The mass range is limited
by condition (13) coming from disruption of bound states due
to Hubble expansion, my = Tf,/fm;/ 3. Even for my as high as
0.5 m,,, the peak frequency is still at least a factor of 103 larger
than Ty ~ 10 GHz.

neutrino species [7]. The nucleosynthesis bound, valid
independent of the frequency, is Qgw < 5 x 1075, where

@y dpc,o
Pe dw()

Qaw(wo) = (21)
is the gravitational wave energy density per unit logarith-
mic wave frequency in units of the critical density today,
pe = 3m%H}. Figure 3 shows the GW signal strength as a
function of the frequency for various choices of the initial
abundance of atoms np;, reheating temperature 7~
10‘3mp, and atomic mass my ~0.1m,. We chose the
values of T, and my that minimize the peak frequency.
Naively, one could think that a way to generate gravi-
tational waves of smaller frequencies would be to relax our
assumption 3, that most bound states are created in the
ground state. If one assumes that most bound states are
actually created in the first (gravitationally) excited 3d
state, the graviton energy released from the transition back

10-7 Fis
10-17 L
Qgw
10~27 Fis
10-37 s
10-47 ki ;
105
wq (GHz)
FIG. 3. Gravitational wave density parameter per unit loga-

rithmic energy Qgw(wg) as a function of the signal frequency
@y, measured in units of gigahertz, for T,,,~10‘3mp and
my ~0.1m,. We parametrize the initial abundance of atoms as
ng; = aT?,, where a is roughly the abundance of atoms as a
fraction of the thermal plasma number density. From top to
bottom, we have a = 1 (purple), @ = 1070 (blue), a = 1072
(orange), and a = 1073° (magenta). The red line represents the
nucleosynthesis bound on the GW density parameter, Qgw <
5x 1079,

to the ground state is of order mj/m?}, i.e., aZ suppressed
compared to the energy of decay. Unfortunately, this is not
so simple. The transition rate from the 3d state back to the
ground state can be found in [10-12] and it is equal to

al.m
gm0 = —2?38(})(‘

A gravitational atom in the 3d energy level can also decay
directly to radiation with a rate 'y, the relevant amplitude
being the one in (4), with { the momentum-space wave
function of the 3d state. Integrating and retaining only the
lowest order term in o, we find that T'zq ~ @I ~ almy.
The suppression factor of af; is due to the fact that the wave
function of an [ =2 state near the origin goes like 72,
therefore (4) vanishes at first (a(();) and second order (azG).
See the Appendix for details.

Decay of a gravitational atom in a graviton-induced
excited state will then proceed through cascade decay to
the ground state, which will then decay to radiation.
The lifetime of an excited atom is therefore longer by a
factor of ag* compared to the lifetime of the atom in its
ground state. If most atoms are in the 3d state, requiring that
they are unstable on cosmic scales gives the new bound,
my 2 10‘4m,,. In this mass range, we can rederive the
results of this section with the trivial substitution
I' > I'34_1,, noting that now the released energy in
gravitons after the decay of an atom is no longer mp, but

(22)

5

2m
AE:E3d_E15:§m_§' (23)
p
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The issue is that the minimum frequency g min =
AE(Ty/T,,) is again reached for near-Planckian
atoms, my ~m,, which means that @, is roughly
(To/T,)m, > T, ie., of the same order of magnitude
of the minimum frequency for ground state atoms.
Moreover, while 3d excited atoms release less energy
when they decay, they also decay later than ground state
atoms due to the additional a%; suppression in the decay rate
(22) and are therefore redshifted less. The peak intensity of
the signal for 3d bound states can be found, superimposed
to the ground state signal, in Fig. 2.

B. Ultrahigh-energy cosmic rays (my < 10~%)

If the mass of the bound states is >10"m »» their lifetime
is smaller than the age of the Universe and they have all
since decayed, producing a gravitational wave signal. On
the other hand, if my < 10~%m Ir but not much smaller, their
lifetime is larger than the age of the Universe, but they are
still massive enough to produce UHE cosmic rays when
they decay inside the Galaxy [13]. The possibility that the
observed flux of UHE cosmic rays is dominantly produced
by the decay of superheavy particles has been excluded
long ago based on the relative fraction of photons vs
charged cosmic rays [14]. Assuming instead that the
observed flux is of astrophysical origin, it is possible to
put stringent upper limits on a potential exotic contribution
due to gravitational atoms decay.

If we define ry = Exty /7y, where £y is the abundance of
bound states as a fraction of the total dark matter density
and 7y = I'"! their lifetime, the flux of UHE cosmic rays
produced by gravitational atoms decay is bounded by
ry <5 x 107! If the mass is very close to 10‘6m1,, then
Ty ~ ty, and the density of X particles has to be rather low,
of the order &y <107'2. If, however, & ~1 so that
gravitational atoms constitute the dominant component
of cold dark matter, then the lifetime has to be 7y =
10'21; ~ 10% yr, which is reached for my ~ 107"m,,, only
one order of magnitude below the critical value. The lowest

|

{ iy = =3Hny + (00) sy xsy — (060) xosmlty — (00)x_pnx

g = =3Hng + (00) sy pngy + (60)x_pnx — Tsng —Tgng,

where free X can be created from SM particles with cross
section (6v)gy_x, they can annihilate to SM particles in
the time-reversed process with cross section (6v)y_sm»
and they can produce gravitational bound states with cross
section (ov)y_, 5. Bound states can be created either from
SM particles or PIDM particles X with cross sections
(6v)gmp and (ov)y_, g, respectively, and they can decay
back to SM scalars or gravitons with decay rates I'g and
g, respectively. We neglected terms proportional to nZ,
as gravitons are not part of the thermal bath and are thus

possible mass for gravitational atoms before they start
getting disrupted in galaxies is ~10‘8mp, therefore the
constraints above only apply to the narrow interval of
masses 107 < my/m,, < 107 and for atoms in the ground
state. The constraints are modified if one considers excited
states, as these have much longer lifetimes, see (22). For
3d excited atoms, 7y ~ f;; is reached for my ~ 10‘4mp
and &y < 10712, while 3d atoms making up all of the
dark matter in the Universe should have a mass of
my < 10‘5mp. This opens the possibility to GUT-scale
gravitational atoms decaying today.

IV. THE PIDM MODEL

Up until now we considered the minimal gravitational
atom scenario, without committing to a particular model
or creation mechanism. We will now study one realization
of the minimal scenario, in which the constituent particles
of the atom are PIDM. These particles, which we label X,
are as decoupled as fundamentally allowed, having
only gravitational interactions and a natural mass close
to the Planck scale. PIDMs also come with a specific
creation mechanism: they are produced by gravitational
scattering in the thermal plasma of the Standard Model
sector at the highest temperatures immediately after
inflation. Gravitational atoms can be created along with
free PIDMs by the same gravitational freeze-in mecha-
nism, but with a suppressed abundance, as we describe
below. The initial number density of atoms ng ;, which we
considered as a free parameter in the previous sections, is
now completely fixed by the freeze-in mechanism and it
only depends on the PIDM mass my and the reheating
temperature 7.

The evolution equation for the gravitational bound
states, given by (10), is supplemented in our model by
the corresponding equation for the evolution of X. The set
of Boltzmann equations that govern free X and bound state
production is

(24)

|
very dilute, ng < ngy. PIDM particles are also very dilute
as they are created far outside of thermal equilibrium,
ny < ngy. Bound state creation will then proceed via
gravity-mediated SM annihilations instead of PIDM or
graviton scattering, so we can neglect the creation term
(ov)x_pn% in both equations. Consequently, the free
PIDM number density is unaffected by bound state
formation, and gravitational atoms are dominantly pro-
duced by thermal scattering of SM particles, just like free
PIDMs.
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Note that our bound state formation mechanism is quite
different from what is usually considered in the literature.
Normally, one assumes that the dominant process for
creating bound states of two particles X interacting through
a long-range potential is X + X — B + y, where y is the
massless mediator. This is a radiative process in which the
excess mass of the two particles is radiated away by a soft
mediator. In our case, the probability that two X particles
will meet to create a bound state is exceedingly small due to
their suppressed number density, therefore the dominant
mechanism becomes SM + SM — B, i.e., creation of the
bound state by gravitational annihilation of two SM
(effectively) massless particles. In this case, no external
radiation is needed to conserve energy (see the Appendix
for more details). Including initial state radiation could
open the phase space of the process, but it requires specific
assumptions about the SM sector at high energies. Since we
are considering the minimal gravitational scenario for
PIDM production, we will not consider this possibility
here and take the number density of bound states that
we compute in our scenario as a lower bound on their
abundance.

Free PIDMs, like PIDM bound states, are created by
gravitational freeze-in, as described in [2,3]. Both of them
are produced nonrelativistically, therefore we can work in
the limit my > T. The cross sections for production of a
scalar PIDM from SM particles are derived from the
amplitudes in (Al) and in the nonrelativistic limit they
are given by

_mm§ {31{% 2 4TK,

(ov) 8 T? mm%
ov)o =<7 |zt = — -
O 8mh [SK; 5 SmyK,

Smi|  8md’
<57)>1/2 = (ov),
AxT?* [2 (m3% (K? K
S (B () 43 e
mp 15 T K2 TK2

47T?
_, 25
- ? ( )

p

where the modified Bessel functions are evaluated at my /T,
with T = T being the temperature of the SM thermal bath,
and the expressions right of the arrow denote the limit for
T < my, relevant for the massive PIDM regime. The total
cross section for scalar PIDM production is

(6v)smox = No(ov)g + Nyj2(ov) o + Ni(ov);, (26)

with Ny, Ny,, and N; the number of scalar, fermion, and
vector d.o.f. at the highest energies scales in our model. For
the SM, Ny =4, N, =45, and N| = 12. Absorbing the
expansion of the Universe in the definition of the comoving
number density Yy = nya®, the final PIDM abundance Yy
can be computed by integrating the Boltzmann equation (24)
in the approximation ny < ngy that we discussed,

) a2 eq
Yy = / das (ool (@)

where we used detailed balance to replace (6v)gy_ x2y BY
(ov)y_sm(n¥!)? and integrating to infinity has no effect due
to the exponential suppression in ny' at low temperatures.
The equilibrium density is

9x my
ny' = oy myTK, (7) : (28)

and H(a) = T%,/(k3y*m,)a~. We normalize the scale
factor at reheating to one, a,, = 1, and we consider for
simplicity instantaneous reheating with maximum efficiency,
y = 1. In the regime my > T, (ov)gy_x ~ Nomrm% /8m’},

n;‘i ~ (mxT/ 271:)3/ 2e=mx/T and the integral evaluates to

2K§Nom;‘(T3h exp 2my (29)
s Trh ‘

This is the initial abundance of PIDM particles after
freeze-in. In the nonrelativistic limit we are considering,
gravitational bound states are also created with the same
mechanism.

If the mass is not too close to the Planck scale, the
creation and decay processes are decoupled, meaning that
the lifetime of gravitational atoms is much longer than the
time it takes to create them from the SM bath. We can thus
describe the two processes separately, as the atoms are
effectively stable during creation. Taking also into account
the fact that creation by X scattering is completely
negligible, the Boltzmann equation simplifies to

dYy __a
da  H(a)

<O'U>SM—>Bn§M’ (30)

where ngy = NoT3/7%. We compute (6v)gy_p in the
Appendix, Eq. (A15). We can simplify the Boltzmann
equation by using the detailed balance condition in the
visible sector,

<UU>SM—>B”§M = anéq- (31)

It is a nice consistency check to ensure the validity of the
condition above in the nonrelativistic limit my > T, using
the explicit formula (A15). We can easily integrate the
Boltzmann equation (30) in the regime I' < H to find the
initial number density of gravitational atoms,

0 a? 5 ) a? eq
YB = ! ddm<0ﬂ>SM_>anM = l da%FSnB s

(32)

where in the last equality we used the detailed balance
condition. The formula is completely analogous to the
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FIG. 4. Gravitational wave density parameter per unit loga-
rithmic energy Qaw (@) as a function of the signal frequency w,
(in units of gigahertz) in the PIDM scenario with T, ~ 1073m »
and my ~ 0.01m,,. The initial abundance of gravitational atoms is
set by freeze-in, Eq. (33).

corresponding one for the PIDM, (27). In the nonrelativistic
regime, we have that ['s = Nomya?,/64 (the decay rate
stays the same) and njy’ ~ (myT/x)3/>e2"x/T, 5o the final
bound state yield is

NK%NOm;(leXT,h exp <_ 2mx> (33)

B,i —
T

Yp=n
rh

and the ratio between the two is

6 3
Yo _ m—’é ﬂm—;(. (34)
YX mp Trh
Note that the ratio is independent from N,. The suppression
factor of a;, comes from the corresponding suppression in
the cross section for producing bound states as opposed to
free particles. The bound state yield is maximized for the
highest possible reheating temperature, 7', ~ 1073 m,,, and
my = 23T,,/4 ~ 6T,, (as one can easily check by com-
puting the derivative and putting it to zero). The best we can
do therefore is to take my/6~ T, ~1072m,. This is
already contrived, as the nonrelativistic regime is on the
verge of breaking down, but it is illustrative of the best we
can hope for in this model.

Now we can just take (33) and plug it in the general
formula for the spectrum (15). With these numbers, the
signal intensity is plotted in Fig. 4. The intensity at the peak
is in the ballpark of future experiments, but the peak
frequency , is unfortunately many orders of magnitude
above the 10 GHz cutoff. While we are not aware of any
plans to explore this frequency (see, however, [9] for a
discussion of possible experiments going beyond 10'4 Hz),
the model still gives a concrete example of how gravita-
tional atoms could arise in a sensible scenario. Moreover,
freeze-in of gravitational atoms from the SM bath, being a

purely gravitational process, will always be present even in
more complicated scenarios for their production. Therefore,
one can take (33) as a lower bound on their abundance if
heavy scalar fields satisfying the bound my/qy > m,, exist.
In the next section, we will consider slight modifications of
the minimal scenario, which give an observable signal
around the 10 GHz cutoff.

V. MODIFICATIONS OF THE
MINIMAL SCENARIO

In Sec. II we defined the minimal model by listing three
basic assumptions, and we proved that any model that
follows these assumptions will produce a gravitational
wave signal at frequencies beyond the 10'° Hz threshold,
the maximum frequency that will be explored by future
experiments. The PIDM scenario is one instantiation of the
minimal model laid out in Sec. II, where the initial number
density of gravitational atoms is fixed by the PIDM mass
and the reheating temperature and can be computed exactly.
We now consider two extensions of the minimal model that
are able to produce a signal at lower frequencies, closer
to the 10 GHz mark. The first modification is universal
and can be applied to any model, while the second one is
specific to the PIDM scenario.

A. Early matter domination

In this first modification, we relax assumption 3, that
the universe is radiation dominated after reheating. The
redshift factor for the gravitational wave signal today
increases if in its early stages of evolution the Universe
expands faster than in the radiation-dominated phase.
This can be achieved, for example, if the early Universe is
dominated by nonrelativistic matter from the end of
inflation to big bang nucleosynthesis (BBN), at which
point the matter fluid decays to radiation reheating the
universe at a temperature 7Tppy =~ | MeV. While BBN
represents the upper limit of where we can push our
matter-dominated period, the lower limit is just given by
the experimental bound on the Hubble rate at inflation due
to the nonobservation of primordial tensor modes, i.e.,
H;~5x 10‘6mp. A matter-dominated period between
these two scales will give the maximum enhancement
to the redshift factor, if we assume that gravitational atoms
are created immediately after inflation and decay very
shortly after.

An early matter-dominated phase is present, for example,
in most string theory models of the early Universe [15] and
in the curvaton models [16-18]. A generic feature of the
four-dimensional effective theories arising from compacti-
fications of string theory is the presence of moduli, massive
scalar particles with feeble Planck-suppressed interactions.
Owing to their feeble Planck-suppressed interactions,
moduli are long-lived. They become displaced from their
final metastable minimum during inflation and begin to
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oscillate as matter, quickly dominating the energy density.
The Universe then enters a modulus-dominated stage after
inflation, which lasts until the moduli decay into visible
matter, thus inducing reheating. The reheating temperature

after thermalization is T, ~ /m3,/ m,, where mg, is the

moduli mass, and reaches Tggy ~ 1 MeV for mg ~ 10 TeV.

The Hubble rate in the early matter-dominated phase is
H(a) = H;a=3/?, normalizing the scale factor at the end of
inflation to one, a; = 1. The number density of atoms in
this period follows from integrating (11) with the new scale
factor dependence

mla) ="Hexp | -1 -] (39)

From this we can compute the spectrum in a manner that
is completely analogous to what we did previously, with
the difference that now the graviton is emitted during the
early matter-dominated phase. The redshifted frequency
of a graviton as measured today is @, = mg(a/aggn)
(Ty/Tgpn), Where the scale factor at BBN appy, when the
Universe is reheated, is related to the temperature by
appn = (K3H;m,/Thpn)?>. The spectrum is

dpgo _ 31 mpnp; (ﬂ) 32 Tm,  Tgpy
] 2172 2
dw I' mpH; \mp /T(3)TBBN K>Mmp

2r Hx3 3/2
oo (1= (20))) g
,- VToTsen V"8

3/2

and has now the functional form x¥2¢=*"*. The average

frequency is
E_s(35) [ Tppx
@y =mpTo—— ; (37)
E_(3;) \| Hiksm

where E,(x) = [°dte™ /1" is the exponential integral
function. In the high-mass limit I" > H,, the spectrum is
peaked at @y ~ mg(Ty/TppNn)dgsN, Which corresponds to
the minimum frequency in this scenario (most atoms
decay at a ~ 1). This frequency can be much smaller than
(17), due to the faster expansion in the matter phase.
Figure 5 shows the peak frequency for both ground state
and 3d excited gravitational atoms when we allow for an
early matter-dominated phase immediately after inflation.
As one can see, the minimum frequency drops 7 orders
of magnitude, allowing us to reach an interesting fre-
quency range, ~107-10'° Hz. While we are successful
in decreasing the frequency, the price to pay for an
early matter-dominated phase is a comparable drop in
the energy density of the signal. The density parameter

1016
1014
1012
wo
(Hz)
1010

108

106 ; ; ;
0.01 0.05 0.10 0.50 1

m (mp)

FIG. 5. Peak frequency of the monochromatic gravitational
wave signal produced by ground state (red) and 3d excited
(blue) gravitational atoms as a function of the bound state mass
with an extended period of early matter domination and
H;~5x%x10"%m p» saturating the experimental bound on tensor
modes. The frequency is in hertz and the mass in Planck units.
The mass range is limited by condition (13) coming from
disruption of bound states due to Hubble expansion,
my 2 0.01m,. Due to the enhancement of the redshift factor
during matter domination, the signal frequency is pushed down to
an interesting range for extremely massive atoms, my 2 0.1m,,.

Qcw = pgw/p. now picks up a suppression factor of
agpN = (TzBBN/K%Himp)ZB‘

B. Nonminimally coupled PIDM

The minimal PIDM model for the gravitational atom is
extremely constrained, having the PIDM mass my as the
only free parameter. This minimal scenario gives a
gravitational wave signal in the frequency range around
~10'9 GHz, far too energetic to be observed by near-
future detectors. Here we consider a nonminimal modi-
fication of the PIDM scenario, which decouples the
interaction strength from the mass of the constituents,
thereby providing a way to bring the peak frequency
down to more interesting values. In particular, we drop
assumption 1, that the PIDM couples minimally to gravity.

We postulate an additional nonminimal coupling to
gravity of the form

1
Ly = EfoZR’ (38)

where X is the PIDM, and &y is the nonminimal coupling
parameter. In [3] we computed the thermally averaged cross
section in the nonrelativistic limit for the production of the
PIDM with a nonminimal coupling of this sort. The result is

2,2
G myrw

(60) pposxx = (1+4&x)* ~22GPmyés.  (39)

Production is enhanced by powers of the nonminimal
coupling parameter. Therefore, by having a large nonminimal
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coupling to gravity, we can now efficiently create atoms that
also decay faster due to the strong coupling. Moreover,
excited atoms will also be created more abundantly, and if
the nonminimal coupling is large enough, their abundances
will only be mildly suppressed compared to their ground
state relatives. In the following, we will focus our attention
on 3d excited states only.

In the Jordan frame, and to leading order in the Planck
mass, the nonminimal coupling term gives a new dimen-
sion 5 operator in the action [19],

Xy, (40)
mp

where & is the metric perturbation. At tree level, the
amplitude for X scattering nonminimally via single
graviton exchange in a particular channel scales as
My ~ELE?/m3,. As an example, the total amplitude
squared for the scattering of X in the s channel is

202
Mscharmel _ 4n"G
X - S2

(2m3, + st + 12 = 252 Ex (1 + &)

—2m% (s + 2t + 25¢))2. (41)

At large coupling &y > 1, the amplitude becomes
~16G?7%s%£y, and we can effectively incorporate the non-
minimal coupling in a redefinition of the gravitational
constant G. Since bound state formation can be seen in
quantum field theory language as summing over ladder
diagrams (in t and u channels) [20], heuristically we can
take into account a large nonminimal coupling of the PIDM
in the nonrelativistic limit by the replacement a; — agéx
(or, equivalently, G — G(f%(). We thus redefine the gravi-
tational constant as &g = agEy and use this as the new
effective coupling, keeping in mind that the unitarity bound
now reads ag = agEx < 1. We have to be careful about
blindly renormalizing the gravitational constant in this way
though. If the process we are evaluating involves creation
or decay of the PIDM by or to other minimally coupled
particles, we should remember to multiply the final
amplitude squared by a factor of &2, since these particles
only see the true bare value of the gravitational constant and
they do not contribute to the enhancement.

The abundances of free PIDMs and gravitational atoms
in their ground state are given by equations (29) and (33),
rescaled by a factor of &% and &, respectively. We can
compute the abundance of 3d excited atoms in a similar
way, using equation (32) with a different decay rate I'54 ~
agmy (we compute this exactly in the Appendix). The
result is just the ground state number density rescaled by a
global factor of &%a/(2°3%z), which accounts for the
difference in the decay rates. If the value of &y is
sufficiently large, the effective gravitational coupling can
be very close to 1, and the production of ground state and

1.x10719 F5
Lx10724 pi
1.x10729 |
Ogw

1.x10734 }:

1.x10739

1.x10~44 k:

FIG. 6. Gravitational wave density parameter per unit loga-
rithmic energy Qgw (@) as a function of the signal frequency wy
(in units of hertz) in the nonminimally coupled PIDM scenario
with T, ~ 10‘3mp, myx ~0.01m,, and £x ~ 100. The spectrum
is truncated at 1000 GHz, since this is the lowest possible
frequency attainable in this scenario, corresponding to atoms
decaying immediately after being produced.

first excited state gravitational atoms will be only mildly
suppressed. Moreover, the decay rates will also be
enhanced by the new renormalized gravitational strength,
so the atoms will decay faster.

Figure 6 shows the total intensity of the GW signal for
PIDM atoms (ground state + 3d excited) with mass
my ~0.0lm,, reheating temperature 7T, ~ 10‘3mp, and
nonminimal coupling £y < 100. The effective gravitational
coupling is & < 1. 3d atoms relax to the ground state with
a decay rate Iy, ~ EaLmy [see Eq. (22)], releasing
gravitons with energy ~&Zmy. The minimum frequency is
now of order 10'* Hz, and the signal intensity drops
sharply after that point. We see that a large nonminimal
coupling allows us to bring the peak frequency down 10
orders of magnitude, in a range that will be explored by
planned GW experiments.

VI. CONCLUSIONS

In this work, we have studied the gravitational wave
signature left behind by purely gravitational atoms
decaying in the very early Universe. We focused on the
minimal scenario in which the particles making up the atom
are scalars and are only gravitationally interacting. Near-
Planckian atoms decay to gravitons immediately after being
produced, creating a nearly monochromatic, isotropic, and
highly energetic gravitational wave signal. If Einstein
gravity is valid all the way up to the Planck scale, and
the gravitational waves are redshifted from the earliest
moments after inflation until today using the standard
ACDM scenario, the minimum frequency attainable in
this scenario is 10'® Hz, 3 orders of magnitude above the
expected cutoff from primordial gravitational waves.
This constitutes a unique source of isotropic gravitational
waves with a peak in the spectrum at such high frequencies
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(see [9] for a discussion on how to reach this futuristic
frequency sensitivity). We study in detail the minimal
PIDM scenario for gravitational atom production, which
gives a definite prediction for both the frequency and the
amplitude of the signal. If these gravitational waves are
observed at frequencies below 10'* Hz, it would imply a
nonstandard early cosmological evolution or modified
gravity near the Planck scale, and it would therefore give
us clues about near-Planckian dark physics. As an example,
we consider in the text an early matter-dominated period
and a large nonminimal coupling for the PIDM. Both break
the assumptions of the minimal model and are concrete
examples of nonstandard physics, which lead to lower
frequencies.
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APPENDIX: AMPLITUDES AND DECAY
RATES COMPUTATION

In this Appendix, we compute the decay rates for a
gravitational atom decaying to gravitons and SM particles.
In the minimal scenario, the atom is a bound state of two
scalar particles X with mass my. The amplitudes squared
for production of a scalar X from (exactly massless) scalar,
fermion, and vector SM particles are, respectively [3],

2 A2 —s—1)2
|Mo—>0|2:4G2ﬂ2(mX )(:;X ’ )
(2m3% —s—21)*(m% —

S2

(m%—2m%t+1t(s+1))?

5? '
where s = (py + p2)* = (k) + k)* = Egypand 1 = (p; -
k\)*> = (p, — k,)? are the Mandelstam variables, p,,p, are
the 4-momenta of the incoming SM particles and k,k, are
the 4-momenta of the outgoing X particles. Newton’s
constant in natural units is just G = ml‘,z.

We first compute the cross section for producing an XX
bound state directly from SM particles annihilation. From
that, we will easily obtain the decay rate by going to the
time-reversed process. Since SM particles are basically
massless compared to X, bound state formation can happen
without emission of external radiation. Schematically,
we can write the amplitudes for producing free X particles

2mit+1(s+1))

’

|M1/2_>0|2 = —8G27Z2

|M1_>0|2:8G27T2 (Al)

as M3 = (SM(py, S)SM(p,, S)|X (k)X (k3)), where the
superscript S =0,1/2,1 denotes the spin of the SM
particles. Squaring these amplitudes gives the results in
(A1). The goal now is to write the bound state in terms of
free-particle states, so that the final bound state formation
amplitude will just be a sum over single-particle production
amplitudes.

For a two-body system with equal masses, the center of
mass and relative coordinates are

[

Rzi(rl—f—rz), r—=r;—r;, (A2)
with conjugate momenta
1
K - kl + kz, k = E (kl - kz) (A3)

In the center-of-mass frame, the total momentum K is
zero, so k, = —k; and k; = k. For a nonrelativistic bound
state |k| < m and s = E%,, ~ 4m%. In this regime, we can
write a generic bound state with mass 2my and total
momentum K = 0 as a superposition of free two-particle
states with opposite momenta [21]

&k
31.1/

- / k). (Ad)

where |k, —k) are the free particle states and (k) is the
Fourier transform of the position-space Schrodinger wave
function for the bound state

(k) = /d3xeik'rl//(r). (A5)

The amplitude for the bound state production is Mj, =
(SM(p1, S)SM(p,, S)|B), which, using (A4), is just

1 Bk
~ Vmx ) (@)

Therefore we can just take the free amplitudes in (Al)
and plug them in (A6) with the replacement —k, =
k; = k. In principle, one should integrate the free ampli-
tude over the conjugate momentum, weighted by the bound
state wave function in Fourier space (k). In practice,
the calculation is made much easier by noting that for a
nonrelativistic bound state the energy is dominated by
the mass term, so that My roughly coincides with
the amplitude for producing the X particles at rest,
M5k, —k) =~ M3.(0,0). In other words, M3. is basically
constant over the integration region where (k) is appre-
ciably nonzero and we can take it out of the integral.
Indeed, the typical momentum of a particle in a gravita-
tional bound state is |k|z = agm ~m}/m3, which is

Mis SR Mi(k. k). (A6)
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clearly negligible compared to the mass term. Then, the
integral over k just gives y,(0), the position-space wave
function of the ground state evaluated at the origin, and
(A6) becomes

Mis = M3:(0.0)y0(0). (A7)

1
VX

The final expression in this case is extremely simple:
the amplitude for the creation of a nonrelativistic X bound
state from SM particles of spin S is proportional to the
amplitude for the creation of free X at rest, the constant
of proportionality being v (0)/,/mx. Clearly, the total
amplitude squared, averaged over spin states, is |M3¢|* =
|M5(0,0)|?|ywo(0)[>/my. Plugging this into the expression
for the total cross section, we obtain [21]

3
%is = : / T (27)*W (p) + py — K)|(Migl%.
BS " 8m3 | (27) 4my BS

(A8)

The phase space integral removes only three of the four
delta functions and, upon rewriting the last delta function
using 5(P° — K°) = 2K%5(P? — K?), we are left with

s _ T* s 2 2
Ops —M|MBS| 5(s — 4my)

n
= amd [ ME(0,0)]*|yo(0)PS(s — 4m3,).
X

(A9)
The last delta function enforces the constraint that the
ftotal center-of-mass energy must equal the bound state
mass M = 2my. We can now compute these cross sections
explicitly for every value of S = 0, 1/2, 1. The amplitudes
squared |M3.(0,0)|* are just the ones in (A1) for k =0,
i.e., for s = 4m3} and t = —m%. A quick calculation gives®
IMOP = 4G2mmé, |MY*2 =0, and |[ML|]> = 0. This
tells us that the formation of a nonrelativistic scalar X
bound state by two SM particles is only efficient when the
SM particles are scalars: bound state creation by SM
fermions and vectors is suppressed.

To get an order of magnitude estimate of the suppression,
we imagine (k) to be sharply peaked at kp in (A6),
with |K|z = agmy. Then, after integrating over k, we get
Vmx Mg ~ M3i(kp, —Kp), which we can now expand
around kz = 0. For § =1/2 and § =1 the zeroth-order
term M3(0) vanishes, so we get M3 (kp) ~ (1/2)0;
M35.(0)k%, where Dz M35(0) is the derivative of the
amplitude with respect to k% evaluated at kg = 0. The
amplitudes are dimensionless and only contain the mass my

*From now on, we drop the explicit dependence of the
amplitude on k. It is understood that k = 0.

as a dimensionful parameter, so by dimensional analysis
%) M3.(0) has to be proportional to my?, which means that

the first nonzero term in the expansion for fermion and
vector SM particles is of order ~k3/m% = a%, or a; for the
amplitude squared. Comparing this to the amplitude
squared for scalar SM, |[MY|* = 4G?z>m%, ~ o, the sup-
pression factor is of order ag; ~ my/mj, which is already
107!2 for a GUT-scale X.

We could also try to compute the bound state amplitude
in (A6) without doing any approximation. For that, we need
to evaluate the bound state wave function in Fourier space,
which is easily done by solving the nonrelativistic
Schrodinger equation with a gravitational potential. This
has the exact same form as the electrostatic potential in the
nonrelativistic limit, so that we can simply borrow the result
from the hydrogen atom case, with the trivial replacement
apy = oG = m%/ mf, and bearing in mind that, in our case,
the reduced mass of the system is g = my/2,

i (k 8y/magu*

e ey Y

We also need the free amplitude M3.(k, —K) as a function
of the conjugate momentum k. Let us consider the scalar
case S = 0. In this case, M%(k, —k) = —izG(k* cos(20) —
k* —2m%). The problem is that, by a simple power
counting argument, the integral in (A6) linearly diverges.
We can still evaluate the amplitude in closed form by
placing a hard cutoff A in the integral

0o _ iG\/mX(aGmX)3/2
B3\ 2m (4N + aEm3)

2A
—3(a% = 2)my(4A? + azm?%)tan™! (aGmx>] .

[2%/\(8/\2 +3(a% — 2)m%)

(A11)

It is clear now from the explicit form of the cutoff
amplitude that it diverges as « A. Moreover, it is not
hard to see that the integral starts linearly diverging when
A approaches my. The reason for this is that we are using a
nonrelativistic formula for the bound state amplitude that
is valid only up to energies comparable to the mass of the
bound state. Beyond that, we enter the relativistic regime
and our formula breaks down, giving nonsensical results.
Physically, we expect an exponential suppression in k to
appear in the formula for the relativistic bound state wave
function for momenta greater than my. This quickly kills
the integrand function and gives a final result that is
numerically not too different from the classical one cut off
at A ~ my.

In fact, if we plot (A11) as a function of the cutoff A, we
can clearly see that the amplitude has a plateau for
agmy < A < my/ag: it converges in that region before
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M

mx
Qg My el

FIG. 7. Scalar to scalar bound state amplitude as a function of
the hard cutoff A. The amplitude converges in the nonrelativistic
region agmy < A < my/ag before diverging in the relativistic
region A > my/ag.

diverging for A > my/a; when we enter the hard relativ-
istic regime. Since the amplitude is insensitive to the value
of the cutoff in the region of convergence, we can choose
any value for A between agmy and my/a; and trust the
classical result. The plot is shown in Fig. 7.

If we take the classical amplitude cutoff at A = my and
expand it in powers of ag, we find

MY~ i\/jgaGGm;/zw/—aGmX(l + Z—; 4. ) (A12)

where the first term is just (A7) and the next-to-leading-
order term is suppressed by a factor of ag;/37z. This is
consistent with our previous qualitative discussion in
which we showed that the suppression factor is of order
~k%/(agm%) = ag. For fermion and vector SM particles,
the first term is exactly zero, so the first nonzero term in the
cross section is suppressed by aZ ~ 1072 for a GUT-scale
X. We conclude that production of gravitational bound
states without emission of external radiation is only
efficient when the SM particles are scalars.

Now we can use (A9) to compute the total cross section
for decay to SM particles. The wave function squared at the
origin is
i am

0 2 b
wo(0)? = 2 %

(A13)

so the cross section for § = 0 is

2 72 (my\ 10
0% = §G2m§a3G§(s —4m%) = T <m—> 5(s — 4m%).
P

(A14)

We can then plug this cross section into the Gondolo-
Gelmini formula to obtain the thermally averaged cross

section for production of a scalar X bound state by scalar
SM particles

1 0 NG
<U%S”>SM—>X = WA dsK, <T> ‘7%533/2

_mmy o (2my (my) 10
TR '\T J\m,)

This cross section is exponentially suppressed by the factor
of K| (2my/T) with respect to the cross section for creating
free X.

If the gravitational bound state can be produced from
scalars, it can also decay back to scalars, with a decay rate
g that is simply related to the cross section of (A14) by the
formula

(A15)

o, _ 87 2
ops = —Is6(s —4my), (Al16)
mx
so that the decay rate of a scalar X bound state to N, scalar

species is

10 5
Iy = N, X (mX) =N, 2" (A17)

64 \m, 64
the other decay channels being suppressed by an additional
factor of aZ.

The dark matter bound state cannot be created efficiently
from free gravitons, since they are not in thermal equilib-
rium with the SM plasma, but it can decay to gravitons
with a cross section given by (A8), where |[M3%|? =
[ME2(0.0)*|wo(0)[*/my and

GZ
IMS=22 = 37 [169m% + 2m$ (535 — 58¢)

+ m% (2552 — 425t + 621%)
+2m%(8s3 + 15521 + 235> — 21°)

+4s* + 1053 + 115222 + 258 + 1] (A18)

is the amplitude squared for free X production by massless
spin 2 gravitons. This amplitude does not vanish for k = 0,
meaning that, like scalars and unlike fermions and vectors,
bound state decay to gravitons is not suppressed. In fact
|M372(0,0)|> = 82G?m% [compare this to the scalar case
|IM379(0,0)|> = 4G*2>m% ], and

_, 41 41 (my\ 10

oyt = %sziaéé(s —4m%) = 6 (m—p) 5(s —4m%).
(A19)

Using (A16) we obtain the decay rate to gravitons [,

- 41mX (mx> 10 . 41“5Gmx

=X (ZX) = A20
¢ 12827 \m, (420)

12877

Note that T';/Ts = 41/(222N,) =~ 2/N,.
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Using Eq. (A6), we can also easily compute the decay
rate of the first 3d excited state to scalars and gravitons.
While the free amplitude in the integral is unchanged, the
momentum-space wave function is now

3 2033 ((ZG,M)GkZ
7yg(k) =1 /— Yo (O, ,
W3d( ) 5z (aGﬂ>3/2 (9k2 +0%/12)4 2( k ¢k)

(A21)

where m = -2,—1, 0, 1, 2 is the magnetic quantum
number that specifies degenerate states with the same
angular momentum. Integrating and averaging over m,
we find that, to first order in a, the decay rates are

9

a-m
I =No-Z5r,
3d 02939”
9
¢ _ 41 %"Mx
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