
 

Commutative or noncommutative spacetime?
Two length scales of noncommutativity
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IPFN, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

(Received 9 January 2019; published 10 June 2019)

The noncommutativity of the spacetime coordinates has been explored in several contexts, mostly
associated with phenomena at the Planck length scale. However, approaching this question through
deformation theory and the principle of stability of physical theories, one concludes that the scales of the
noncommutativity of the coordinates and the noncommutativity of the generators of translations are
independent. This suggests that the scale of the spacetime coordinates’ noncommutativity could be larger
than the Planck length. This paper attempts to explore the experimental perspectives to settle this question,
either in the lab or by measurements of phenomena of cosmological origin.
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I. INTRODUCTION

In this paper, I will address the following questions:
(1) Is spacetime a commutative or a noncommutative

manifold?
(2) Can this question be decided in our time? That is, are

there already sufficient experimental results and/or
experimental instruments to decide?

To sharpen these questions, I will borrow from past results
and from a few new ideas. The emphasis will be on the
experimental perspectives.
To my knowledge, the first motivation to explore alter-

natives to the continuous commutative spacetime manifold
was to cure the divergences arising in the perturbative
treatment of quantum fields. In this context, several discrete
time and/or discrete space models were proposed. However,
these proposals violated Lorentz invariance, and it was
Snyder [1] who made the first Lorentz-invariant proposal,

½xμ; xν� ¼
ia2

ℏ
Mμν; ð1Þ

with Mμν being the Lorentz group generators. However, the
full Snyder algebra lacked translation invariance, and it was
Yang [2] who pointed out that translation invariance would
be recovered by interpreting the coordinate operators as

generators of linear transformations in five-dimensional de
Sitter space.
In recent years, the noncommutativity of the spacetime

coordinates, in the sense

½xμ; xν� ¼ iθμν; ð2Þ
where θμν is either a c-number or an operator, has been
explored in many contexts (see, for example, Refs. [3–6] and
references therein). Noncommutative spacetime manifolds
and noncommutative geometry techniques appear naturally
in the context of string and M-theory, but so far, they lack a
solid experimental or compelling physical motivation. An
exception might be the work in Refs. [7,8]. There, it is
argued that attempts to localize events with extreme pre-
cision cause gravitational collapse, so that spacetime below
the Planck scale has no operational meaning, leading to
spacetime uncertainty relations. However, this compelling
reasoning would imply that the noncommutativity and the
associated fundamental length would be of the order of
Planck’s length λP ¼ ðGℏc3 Þ ≃ 1.6 × 10−33 cm, far removed
from current experimental reach. However, nothing forbids
that the noncommutativity of spacetime might occur at a
bigger scale. Nevertheless, most recent discussions of the
noncommutativity of spacetime take place in the framework
of quantum gravity, and therefore at the Planck length scale
(see, for example, the review in Ref. [9] and references
therein).
An alternative approach to the question of the non-

commutativity of spacetime is based on deformation theory
and the stability of physical theories.

A. Noncommutative spacetime by deformation theory

In the construction of models for the natural world, only
those model properties that are robust have a chance to be

*rvilela.mendes@gmail.com; http://label2.ist.utl.pt/vilela/.
Also at CMAFCIO, University of Lisboa, C6 - Faculdade de
Ciências 1749-016 Lisboa, Portugal.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 123006 (2019)

2470-0010=2019=99(12)=123006(16) 123006-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.123006&domain=pdf&date_stamp=2019-06-10
https://doi.org/10.1103/PhysRevD.99.123006
https://doi.org/10.1103/PhysRevD.99.123006
https://doi.org/10.1103/PhysRevD.99.123006
https://doi.org/10.1103/PhysRevD.99.123006
http://label2.ist.utl.pt/vilela/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


observed. It is unlikely that properties that are too sensitive to
small changes of the parameters will be well described in the
model. If a fine-tuning of the parameters is needed to
reproduce some natural phenomenon, then the model is
basically unsound, and its other predictions are expected to
be unreliable. For this reason a good methodological point of
view consists in focusing on the robust properties of the
models or, equivalently, to consider only models which are
stable, in the sense that they do not change, in a qualitative
manner,when some parameter changes. This iswhat has been
called the stability of physical theories principle (SPTP) [10].
The stable-model point of view led in the field of

nonlinear dynamics to the rigorous notion of structural
stability [11,12]. As pointed out by Flato [13] and Faddeev
[14], the same pattern seems to occur in the fundamental
theories of nature. In particular, the passages from non-
relativistic to relativistic and from classical to quantum
mechanics may be interpreted as transitions from two
unstable theories to two stable ones. The stabilization of
nonrelativistic mechanics corresponds to the deformation
of the unstable Galileo algebra to the stable Lorentz
algebra, and quantum mechanics arises as the stabilization
of the Poisson algebra to the stable Moyal algebra [15].
However, when the generators of the Lorentz and the
quantum mechanics Heisenberg algebra fMμν; xμ; pμg are
joined together, one finds out that the resulting Poincaré-
Heisenberg algebra is not stable either.
The Poincaré-Heisenberg algebra is deformed [16,17] to

the stable algebra ℜl;ϕ ¼ fMμν; pμ; xμ;ℑg defined by the
commutators

½Mμν;Mρσ� ¼ iðMμσηνρ þMνρημσ −Mνσημρ −MμρηνσÞ;
½Mμν; pλ� ¼ iðpμηνλ − pνημλÞ;
½Mμν; xλ� ¼ iðxμηνλ − xνημλÞ;
½pμ; xν� ¼ iημνℑ;

½xμ; xν� ¼ −iϵl2Mμν;

½pμ; pν� ¼ −iϵ0ϕ2Mμν;

½xμ;ℑ� ¼ iϵl2pμ;

½pμ;ℑ� ¼ −iϵ0ϕ2xμ;

½Mμν;ℑ� ¼ 0; ð3Þ

which, according to the SPTP paradigm, one would expect
to be a more accurate model. The stabilizing deformation
introduces two new parameters l2, ϕ2 and two signs ϵ; ϵ0.
The signs have physical relevance. For example, in the
l2 ≠ 0 case, if ϵ ¼ þ1, time is discretely quantized, and if
ϵ ¼ −1, it will be a space coordinate that has a discrete
spectrum.
An important point that this deformation [16] of the

Poincaré-Heisenberg algebra puts in evidence is the inde-
pendence of the deformation parameters l (associated with

the noncommutativity of the spacetime coordinates) and ϕ
(associated with the noncommutativity of momenta).
The stable algebra ℜl;ϕ ¼ fxμ;Mμν; pμ;ℑg, to which

the Poincaré-Heisenberg algebra has been deformed, is
isomorphic to the algebra of the six-dimensional pseudo-
orthogonal group with metric

ηaa ¼ ð1;−1;−1;−1; ϵ; ϵ0Þ; ϵ; ϵ0 ¼ �1: ð4Þ

Both l and ϕ−1 have dimensions of length. However, they
might have different physical statuses and interpretations.
Whereas l might be considered as a fundamental length
and a new constant of nature, ϕ−1, being associated with
the noncommutativity of the generators of translation of the
Poincaré group, is associated with the local curvature of the
spacetime manifold,1 and therefore is a dynamical quantity
related to the local intensity of the gravitational field.
The two deformations—the one on the right-hand side of

½pμ; pν� and the one on the right-hand side of ½xμ; xν�—are
independent from each other. Being associated with the
local gravitational field, it is natural that the scale of the
deformation on the right-hand side of the ½pμ; pν� commu-
tator be the Planck length scale (10−33 cm). However, there
is no reason for the other one to have the same length scale.
A basic conjecture that will be explored in this paper is that
l is much larger than ϕ−1. In particular, a deformed tangent
space would correspond to take the limit ϕ−1 → ∞,
obtaining

½pμ; pν�jϕ−1→∞ → 0 and ½xμ;ℑ�jϕ−1→∞ → 0; ð5Þ

with all the other commutators being the same as in
Eq. (3), leading to the tangent space algebra2 ℜl;∞ ¼
fxμ;Mμν; p̄μ; ℑ̄g.
The stable Poincaré-Heisenberg algebra in Eq. (3),

obtained in Ref. [16], corresponds to a minimal deforma-
tion of the classical Poincaré-Heisenberg algebra. In
Ref. [16], it is also pointed out that this deformation, while
not being unique, is the one that seems to be the most
reasonable from a physical point of view. Chryssomalakos
and Okon’s [18] (see also Refs. [19,20]) later careful
analysis has then found the structure of the most general
deformations of the Heisenberg-Poincaré algebra. This is
summarized in the Appendix with a critical analysis of the
physical reasoning behind the choice of the deformation
in Eq. (3).

1In a de Sitter context, ϕ would be the inverse of the (local)
curvature radius.

2p̄μ; ℑ̄ denotes the tangent space (ϕ−1 → ∞) limits of the
operators, not to be confused with the physical pμ, ℑ operators.
According to the deformation-stability principle, they are stable
physical operators only when ϕ−1 is finite—that is, when gravity
is turned on.
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A first question of interest on the deformed algebras is
the form of the dispersion relations. For the deformed
tangent space algebra ℜl;∞ ¼ fxμ;Mμν; p̄μ; ℑ̄; g, it is

ðp̄0Þ2 − ðp̄1Þ2 − ðp̄2Þ2 − ðp̄3Þ2 ¼ Q̄2;

the same as in the Poincaré algebra, because this algebra is
unchanged in ℜl;∞, Q̄2 ¼ m2 being the quadratic Casimir
operator.
For ℜl;ϕ ¼ fxμ;Mμν; pμ;ℑg, it is

P2 þ ϵ0ϕ2ðJ2 − K2Þ ¼ Q2;

with P2 ¼ pμpμ, Ji ¼ 1
2
εijkMjk, Ki ¼ Mi0, and Q2 being

the quadratic Casimir operator for SOð3; 2Þ (ϵ0 ¼ þ1) or
SOð4; 1Þ (ϵ0 ¼ −1).
The fact that the right-hand side of the commutator

½xμ; xν� is a tensor operator rather than a c-number implies
that most spacetime global symmetries are preserved (see,
for example, Ref. [21]).
The deformed algebra [Eq. (3)] and its tangent space

limit [Eq. (5)] have far-reaching consequences for the
geometry of spacetime [22,23], the dimension of the
associated differentiable algebra, the interactions of con-
nection-related quantum fields [24], and the Dirac equation
[25]. Here, however, I will concentrate mostly on possible
experimental tests and estimates of the value of the
deformation parameters.
In the past, noncommutativity of the spacetime coor-

dinates has been mostly associated with quantum gravity
effects and the Planck length scale. Although, as pointed
out in Ref. [9], some particular physical situations might
greatly amplify the effects, the emphasis on the Planck-
length-scale nature of the noncommutativity has precluded
the search for laboratory-scale effects. The point of view
proposed in this paper is that the formal independence of
the deformation parameters l and ϕ−1 suggests that these
two length scales are naturally independent, and therefore it
makes sense to look in the lab for the possibility of
noncommutative effects at a scale larger than the Planck
length.

II. NONCOMMUTATIVE SPACETIME:
EXPERIMENTAL PERSPECTIVES

From the commutator ½xμ; xν� ¼ −iϵl2Mμν or from a
more general one, ½xμ; xν� ¼ iθμν, one concludes that in the
noncommutative case, the spacetime coordinates cannot be
treated in isolation, and that at least an extra operator is
involved in all calculations in the spacetime manifold. In
the ϵ ¼ þ1 case, the spacetime manifold is locally iso-
morphic to SOð3; 2Þ, and in the ϵ ¼ −1 case, to SOð4; 1Þ.
Convenient tools for calculation are the representations of
these algebras as operators on the corresponding cones (see
Ref. [22] and the Appendixes in Refs. [23,26]), irreducible

representations of these algebras playing the role of
“points” in their noncommutative geometry.
Here, one analyzes a few situations where the noncom-

mutativity of spacetime might be tested and measured, as
well as some of the instances where such tests seem at
present to be unfeasible. When the nature of the noncom-
mutativity is left essentially unspecified, as in ½xμ; xν� ¼
iθμν, it is difficult to obtain clearly testable predictions.
Therefore, here, as a working principle, use will always be
made of the commutation relations in Eq. (3)—in particu-
lar, in the tangent space limit [Eq. (5)].

A. Measuring speed

In the noncommutative context, space and time being
noncommutative coordinates, they cannot be simultane-
ously diagonalized, and speed can only be defined in terms
of expectation values—that is,

viψ ¼ 1

hψ t;ψ ti
d
dt

hψ t; xiψ ti; ð6Þ

where ψ is a state with a small dispersion of momentum
around a central value p. At time zero,

ψ0 ¼
Z

jk0k⃗αifpðkÞd3k; ð7Þ

where k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗j2 þm2

q
, α stands for the quantum numbers

associated with the little group of k, and fpðkÞ is a
normalized function peaked at k ¼ p.
In Ref. [27] a first-order (in l2) derivation of the speed

corrections was obtained. Here, a more complete treatment
will be done. To obtain ψ t, one applies to ψ0 the time-shift
operator, which is not e−iap

0

, because

e−iap
0

teiap
0 ¼ tþ aℑ ð8Þ

follows from

½p0; t� ¼ iℑ; ð9Þ

whereas a time-shift generator ϒ should satisfy

½ϒ; t� ¼ i1: ð10Þ

Here, the calculations are carried out in the ℜl;∞ algebra.
To implement the commutation relations of the deformed
tangent space algebra ℜl;∞ ¼ fxμ;Mμν; p̄μ; ℑ̄g, we use a
basis where the five-variable set ðp̄μ; ℑ̄Þ is diagonalized.3
In this basis, the commutation relations are realized by

3Notice that it is only in the tangent space algebraℜl;∞ that the
operators ðp̄μ; ℑ̄Þ may be simultaneously diagonalized, not in the
full algebra ℜl;ϕ.
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xμ ¼ i

�
ϵl2p̄μ ∂

∂ℑ̄ − ℑ̄
∂

∂p̄μ

�
;

Mμν ¼ i

�
p̄μ

∂
∂p̄ν − p̄ν

∂
∂p̄μ

�
: ð11Þ

Then, one obtains the following time-shift operator ϒ in
Eq. (10), to all l2 orders:

ϒ ¼ p̄0

ℑ̄

X
k¼0

ð−ϵÞk l2k

2kþ 1

�
p̄0

ℑ̄

�
2k

: ð12Þ

To obtain this result, use may be made of ½t; ℑ̄−1� ¼
−iϵl2p̄0ℑ̄−2, which follows from ½t; ℑ̄ℑ̄−1� ¼ 0 and
½t; ℑ̄� ¼ iϵl2p̄0. Alternatively, one may check that
Eq. (12) satisfies Eq. (10) using the representation (11)
to obtain

½ϒ; x0� ¼ i
X
k¼0

�
ð−ϵÞkl2k

�
p̄0

ℑ̄

�
2k

− ð−ϵÞkþ1l2kþ2

�
p̄0

ℑ̄

�
2kþ2

�
:

More compact forms of the time-shift operator are

ϒ ¼
(

1
l tan

−1ðl p̄0

ℑ̄
Þ ϵ ¼ þ1

1
l tanh

−1ðl p̄0

ℑ̄
Þ ϵ ¼ −1

: ð13Þ

Now, one computes the time derivative of the expectation
value of xi on the time-shifted state

ψ t ¼
Z

exp ð−itϒÞjk̃0k̃iαifpðk̃Þd3k̃: ð14Þ

From Eqs. (11) and (13), one has

xie−itϒ ¼ e−itϒt
p̄i

p̄0

1 − ϵl2ðp̄0

ℑ̄
Þ2

1þ ϵl2ðp̄0

ℑ̄
Þ2
:

Therefore, the wave-packet velocity is

vψ ¼ p̄
p̄0

1 − ϵl2ðp̄0

ℑ̄
Þ2

1þ ϵl2ðp̄0

ℑ̄
Þ2
; ð15Þ

a result that holds to all l2 orders in ℜl;∞. In leading order,

it is vψ ≃ p̄
p̄0 ð1 − 2ϵl2ðp̄0

ℑ̄
Þ2Þ. Notice that the correction is

negative or positive, depending on the sign of ϵ. For
example, a massless-particle wave packet would be found
to travel slower or faster than c according to whether ϵ ¼
þ1 (quantized time) or ϵ ¼ −1 (quantized space). Also
notice that this deviation from c, for the velocity of the
massless-particle wave packet, implies no violation of

relativity. Both the Lorentz and the Poincaré groups are
still exact symmetries in ℜl;∞, and the velocity corrections
do not arise from modifications of the dispersion relation
for elementary states, which still is

ðp̄0Þ2 ¼ ð ⃗p̄Þ2 þm2; ð16Þ

but from the noncommutativity of time and space.
Now, some of the existing experimental results will be

analyzed to find bounds on the value of l (a fundamental
time or a fundamental length).
In the corrected 2012 OPERA data [28] for 17 GeV

neutrinos, the reported result is

���� v − c
c

���� ¼
�
2.7� 3.1ðstat:Þ þ3.4

−3.3
ðsys:Þ

�
× 10−6: ð17Þ

From ����2ϵl2

�
p̄0

ℑ̄

�
2
���� ≤ 3 × 10−6; ð18Þ

with p̄0 ¼ 17 GeV and the eigenvalue of the operator ℑ̄, on
the right-hand side of the Heisenberg algebra,4 set to ℑ̄ ¼ 1,
it follows5

l ≤ 1.4 × 10−18 cm; ð19Þ

or, equivalently, for the elementary time,

τ ≤ 0.5 × 10−28 sec : ð20Þ

From the MINOS [30] data, with the neutrino spectrum
peaked at p̄0 ¼ 3 GeV,���� v − c

c

���� ¼ ð5.1� 2.9Þ × 10−5; ð21Þ
����2ϵl2

�
p̄0

ℑ̄

�
2
���� ≤ 5 × 10−5; ð22Þ

one obtains

l ≤ 3.3 × 10−17 cm; τ ≤ 10−27 sec : ð23Þ

Assuming a delay of at most a couple of hours between
the neutrino and the visible-light outbursts from the
SN1987A supernova, several authors [31–33] have esti-
mated

4In the frameworkof the representationsof some subalgebras [29]
of Eq. (3), an explicit representation of ℑ̄ as ℑ̄ ¼ ð1þ l2p̄2Þ1=2 is
possible. However, this does not change the Oðl2Þ wave-packet
speed correction.

5Notice that the correction due to a neutrino mass ∼2 eV is
smaller, of order 10−19.
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���� v − c
c

���� < 2 × 10−9; ð24Þ

which with p̄0 ≈ 10 MeV would lead to

l < 6 × 10−17 cm; τ < 2 × 10−27 sec : ð25Þ

One sees that all this data is compatible with a value
l≲ 10−18 cm or τ ≲ 0.3 × 10−28 sec. Using this value, one
also sees that the effect is extremely small for visible light.
For example, with p̄0 ¼ 3 eV and l ¼ 10−18 cm, one
obtains ���� v − c

c

���� < 4.6 × 10−26:

These are results for elementary states. For slow macro-
scopic matter, instead of Eq. (7), the state is

ψ0ðPÞ ¼
Z

jk1; k2;…; kNifPðk1; k2;…; kNÞdk1dk2…dkN:

ð26Þ

Whenever the coupling energy of the elementary constitu-
ents of the macroscopic body is much smaller than their rest
masses, one may factorize the time-shift operator:

e−itϒjk1; k2;…; kNi ¼ je−itϒ1k1; e−itϒ2k2;…; e−itϒNkNi:
ð27Þ

Therefore, for a nonrelativistic body p̄0 ≃mp (the proton
mass mp ¼ 938 MeV) leads, with l ¼ 10−18 cm, to a
speed correction

���� v −
p̄
p̄0

p̄
p̄0

���� ¼ 0.452 × 10−8: ð28Þ

It does not sound like much; however, for a nominal
velocity p̄

p̄0 ¼ 10 km= sec, it would lead after one year to a

deviation of 1.4 km.
All the above bounds are much larger than the Planck

timescale, and improving them seems in reach of present
experimental techniques. In particular, it would be inter-
esting to refine the neutrino wave-packet speed measure-
ments, preferably with a larger baseline.
Presumably, the best way to test the speed corrections

arising from noncommutativity would be to consider
phenomena involving cosmological distances. This is also
the point of view of many authors when looking for light
velocity modifications as a probe of Lorentz-invariance
violation (LIV) (see Refs. [34–36] and references therein).
In particular, special attention has been devoted to gamma-
ray bursts (GRB). Notice, however, that in the present paper

no LIV is implied; it is the noncommutativity that impacts
the group velocity of massless-particle wave packets. In any
case, the LIV estimates of these authors may in some cases
be carried over to the noncommutativity framework, and I
will comment on that later.
As will be seen, the calculation of cosmological distances

(angular diameter and luminosity distance) is affected by the
energy-dependent wave-packet speed corrections.
One uses the Robertson-Walker metric

ðdsÞ2 ¼ ðdtÞ2 − a2ðtÞ
� ðdrÞ2
1−Kr2

þ r2ððdθÞ2 þ sin2θðdϕÞ2Þ
�

ð29Þ

(c ¼ ℏ ¼ 1).
For a massless wave packet with central energy E

moving radially at speed vðEÞ,

vðEðtÞÞ dt
aðtÞ ¼

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p ; ð30Þ

with, in leading l2 order

vðEðtÞÞ ¼ 1 − 2ϵl2E2ðtÞ ¼ 1 − 8π2ϵl2
1

λ2ðtÞ ; ð31Þ

λ being the wavelength. Considering now two crests in the
central frequency of the packet, using Eq. (30),

vðE0Þ
aðt0Þ

λ0 ¼
vðEeÞ
aðteÞ

λe;

which in leading l2 order is

λe
λ0

�
1 − 8π2ϵl2

�
1

λ2e
−

1

λ20

��
¼ aðteÞ

aðt0Þ
; ð32Þ

λe being the emitted wavelength at time te and λ0 the
received one at time t0. Defining 1þ z ¼ λ0

λe
,

aðt0Þ
aðteÞ

¼ 1þ z
Γðλ0; zÞ

; ð33Þ

with

Γðλ0; zÞ ¼ 1 − 8π2ϵ
l2

λ20
zðzþ 2Þ: ð34Þ

Therefore, the relation between the ratio aðt0Þ
aðteÞ and the

redshift z depends on the frequency that is being
observed—that is, when using integration over redshift,
to obtain the propagation time, one should take into account
the wavelength for which the redshift is being measured.
From Eq. (33), one obtains
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dt ¼ 1

HðtÞ
�
d logΓðλ0; zÞ

dz
−

1

1þ z

�
dz; ð35Þ

with HðtÞ being the Hubble parameter,

HðtÞ ¼ a
• ðtÞ
aðtÞ : ð36Þ

The Friedmann equation becomes

HðtÞ
H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

Ωi;0

�
1þ z
Γðλ0; zÞ

�
3

þ Ωrad;0

�
1þ z
Γðλ0; zÞ

�
4

þΩK;0

�
1þ z
Γðλ0; zÞ

�
2

þΩΛ;0

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðλ0; zÞ

p
; ð37Þ

with the Ω constants related, respectively, to matter, radiation, curvature, and vacuum energy. The dependence on λ0 means
that the redshift z is computed from the received light at wavelength λ0.
The dependence on λ0 would also have an impact on estimates of the age of the Universe:

t0 ¼
1

H0

Z
∞

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðλ0; zÞ

p �
1

1þ z
−
d logΓðλ0; zÞ

dz

�
: ð38Þ

For the angular diameter dA and luminosity dL distances, one has

dA ¼ Γðλ0; zÞ
1þ z

FK

 
1

H0

Z
z

0

ð1þ zÞð 1
1þz −

d logΓðλ0;zÞ
dz Þð1 − 8π2ϵ l2ð1þzÞ2

λ2
0

Þ
Γðλ0; zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðλ0; zÞ

p dz

!
; ð39Þ

dL ¼ ð1þ zÞ2
Γ2ðλ0; zÞ

dA; ð40Þ

with FK ¼
n
sin
1

sinh
for K ¼

n
1
0−1
.

With these results, some experimental information might
be obtained from cosmological data. As an example,
consider the spectral lags [37–41] in gamma-ray bursts
(GRB). The spectral lag is defined as the difference in the
time of arrival of high- and low-energy photons. It is
considered positive when the high-energy photons arrive
earlier than the low-energy ones. The spectral lags being
associated with the spectral evolution during the prompt
GBR phase, one expects different source types to have
different intrinsic lags at the source. In addition, due to the
complex nature of the gamma-ray peak structure, the
spectral lags, obtained from delayed correlation measure-
ments, have large error bars. Nevertheless, they allow
access to timescales not achievable in the labs, and it
might be worthwhile to test whether the lags are also
affected by energy-dependent propagation effects. A few
simple hypotheses will be made about the relation between
the lag in the production of gamma rays at the source and
their observation at Earth. Let us consider two gamma
pulses at different energies E1 and E2 ðE2 > E1Þ produced
with an intrinsic lag αðaÞ at the source a.
If Tð1Þ

a and Tð2Þ
a are their propagation times from the

source a to Earth, the spectral lag would be

Δta ¼ Tð1Þ
a − Tð2Þ

a þ αðaÞ: ð41Þ

From Eqs. (35) and (37),

TðiÞðλðiÞ0 ; zÞ ¼ 1

H0

Z
z

0

dz0
1ffiffiffiffiffiffiffiffiffiffiffi
Eðz0Þp

×

�
1

1þ z0
−

d
dz0

logΓðλðiÞ0 ; zÞ
�
; ð42Þ

with λðiÞ0 being the wavelengths as observed at Earth and
EðzÞ defined in Eq. (37). Adopting the nowadays con-
sensus cosmology Ωm;0¼0.3, ΩΛ;0¼0.7, Ωk;0¼Ωrad;0¼0,
K ¼ 0, TðiÞðλ0; zÞ becomes in leading l2

λ2
0

order

TðiÞðλðiÞ0 ; zÞ ≃ I1ðzÞ
H0

þ 4π2ϵl2

H0λ
ðiÞ2
0

I2ðzÞ; ð43Þ

with the integrals I1 and I2 being

I1ðzÞ ¼
Z

z

0

dz0

1þ z0
1

ðΩm;0ð1þ z0Þ3 þ ΩΛ;0Þ12
;

I2ðzÞ ¼
Z

z

0

dz0

×
Ωm;0ð1þ z0Þ2ðz02 þ 2z0 þ 4Þ þ 4ð1þ z0ÞΩΛ;0

ðΩm;0ð1þ z0Þ3 þ ΩΛ;0Þ32
:

ð44Þ
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From Eqs. (41) and (43), one sees that the lags are linear
on I2ðzÞ,

Δta ¼
4π2ϵl2

H0

I2ðzÞ
�

1

λð1Þ20

−
1

λð2Þ20

�
þ αð0Þa ;

for wavelengths at Earth or on I2ðzÞ
ð1þzÞ2 for energies at the

source,

Δta ¼
4π2ϵl2

H0

I2ðzÞ
ð1þ zÞ2

�
1

λð1Þ2e

−
1

λð2Þ2e

�
þ αð0Þa

¼ ϵl2

H0

I2ðzÞ
ð1þ zÞ2 ðE

ð1Þ2
e − Eð2Þ2

e Þ þ αð0Þa : ð45Þ

Thus, for fixed ðEð1Þ2
e − Eð2Þ2

e Þ, one may expect the data to
be fitted by a few parallel lines, each one corresponding to a
particular type of lag mechanism at the source. This
analysis is similar to what has been done by other authors
(see, for example, Refs. [35,42]) in the context of searches
for LIV.
LetH0 ¼ 70 km s−1,Ωm;0 ¼ 0.3,ΩΛ;0 ¼ 0.7, and to test

the hypothesis, use the Swift BAT data in Ref. [40] for
spectral lags of the source-frame bands 100–150 keV and

200–250 kev (Eð1Þ
0 ¼ 125

1þz, Eð2Þ
0 ¼ 225

1þz), selecting the 24
bursts for which the lags were computed with significance
1σ or greater. Table I lists the correspondence of the
numbers in the plot with the burst code.
Comparison of the data with Eq. (45) is performed by

minimizing in β and α⃗ the function

fðβ; α⃗Þ ¼
X
i

min
α⃗

fyi − ðβxi þ α⃗Þg2

for several dimensions of the vector α⃗ (the vector of
intrinsic lags). Here, the variables yi and xi are, respec-

tively, the observed lagsΔta and
I2ðzÞ
ð1þzÞ2. As the dimension of

α⃗ (the number of different lag types at the sources)
increases, the fitting error, defined as

er ¼ fðβ; α⃗ÞP
iy

2
i
;

decreases. The fitting accuracy improves appreciably until
the dimension of α⃗ð0Þ is equal to 3, but not much afterwards.
Figure 1 shows the data points and the fitting lines for

dim α⃗ð0Þ ¼ 3. The error is er ¼ 0.05. The slope β is
≃ − 360, corresponding with ðE2

1 − E2
2Þ ¼ 35000 keV2 to

l ≃ 0.95 × 10−19 cm and ϵ ¼ þ1 (τ ¼ 3 × 10−30 sec).

Notice that I2ðzÞ grows with z, but not I2ðzÞ
ð1þzÞ2. As shown

in Fig. 2, the result is quite similar when one restricts the
data to the GBRs with significance 2σ or greater.

TABLE I. Burst codes for the 24 gamma-ray bursts labeled by
number in the plots of Figs. 1 and 2.

1 GRB050401 13 GRB080413B
2 GRB050922C 14 GRB080605
3 GRB051111 15 GRB080916A
4 GRB060210 16 GRB081222
5 GRB061007 17 GRB090618
6 GRB061121 18 GRB090715B
7 GRB071010B 19 GRB090926B
8 GRB071020 20 GRB091024
9 GRB080319B 21 GRB091208B
10 GRB080319C 22 GRB100621A
11 GRB080411 23 GRB100814A
12 GRB080413A 24 GRB100906A
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FIG. 1. Lags vs I2ðzÞ
ð1þzÞ2 for 24 GRBs with 1σ significance or

greater (data from Ref. [40]).
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FIG. 2. Lags vs I2ðzÞ
ð1þzÞ2 for 15 GRBs with significance 2σ or

greater (data from Ref. [40]).
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Notice that ϵ ¼ þ1 corresponds to higher-energy pulses
traveling slower than lower-energy ones.
A larger set of GRB data with known redshifts is

studied in Ref. [43]. The main difference from the analysis
in Ref. [40] is the use of an asymmetric Gaussian model for
the cross-correlation function to compute the spectral lags.
Otherwise, the source frame energy bands (100–150 and
200–250 keV) are the same as in Ref. [40]. The same fitting
technique as before was here applied to the 57 GRBs in
Ref. [43] with the result shown in Fig. 3. For three
intersects (dimension of α⃗ð0Þ ¼ 3), the slope that is obtained
is β ≃ −330 (er ¼ 0.18), corresponding to l ≃ 0.9×
10−19 cm, ϵ ¼ þ1, a result consistent with the one obtained
before. Notice, however, that if instead of the dimension of
α⃗ð0Þ ¼ 3, one assumes a dimension of α⃗ð0Þ ¼ 1, one obtains
a worse fit (er ¼ 0.87) and a quite different result—that is,
l ≃ 0, the dash-dotted green line in Fig. 3. This is
essentially what has been done in Ref. [44], with these
authors concluding that there is no evidence for LIV.
However, that hypothesis (dimension of α⃗ð0Þ ¼ 1) assumes
that all the intrinsic lags at the source are the same.

In Eq. (45), the αð0Þa line intersects represent several
classes of intrinsic lags as seen at Earth. It might be better to

use the intrinsic lags αðeÞa at the source—that is, replace αð0Þa

with αð0Þa ¼ αðeÞa ð1þ zÞ. Then, one has

Δta
1þ z

¼ ϵl2

H0

I2ðzÞ
ð1þ zÞ3 ðE

ð1Þ2
e − Eð2Þ2

e Þ þ αðeÞa : ð46Þ

With this equation and the data in Ref. [43], one obtains the
results shown in Fig. 4.
For the dimension of α⃗ðeÞ ¼ 3, the slope is β ¼ −448

(er ¼ 0.2), corresponding with ðEð1Þ2
e − Eð2Þ2

e Þ ¼ 3.5×
104 keV2 to l ≃ 1.06 × 10−19 cm. And, as before, a very

different result is obtained for a dimension of α⃗ðeÞ ¼ 1
(er ¼ 0.9), the dash-dotted line in Fig. 4.
For short GRB pulses, intrinsic lags are in general

considered smaller than those of long GRB pulses.
Looking for eventual Lorentz-invariance violation (LIV),
the authors in Ref. [45] have analyzed 15 short pulses (on
the energy bands 50–100 and 150–200 keV), concluding
that there is no evidence6 for energy dependence of the light
propagation speed. Here, the same analyzing technique as
described above has been applied to the same data with a
different conclusion, as shown in Fig. 5.
The figure shows the fitting of the data assuming either

a dimension of α⃗ðeÞ ¼ 3 (red continuous lines) or a
dimension of α⃗ðeÞ ¼ 1 (dash-dotted green line). The slope

is β ≃ −230, corresponding with ðEð1Þ2
e − Eð2Þ2

e Þ ¼ 2.5 ×
104 keV2 to l ≃ 0.9 × 10−19 cm. Notice that in this case,
the slope obtained with one or three intersects is essentially
the same, suggesting that for this set of pulses, the intrinsic
lags are identical. The differences from the conclusions
of the authors in Ref. [45] are not, of course, due to any
mistake of these authors, but to the fact that they plot the
data with respect to a KðzÞ function, whereas here,
according to the calculations above, the z dependence is
coded by the I2ðzÞ function [Eq. (44)].
Of course, all these results, as well as the searches for

LIV (see, for example, Ref. [36] and references therein),
can only be taken as indicative or as establishing an upper
bound on τ because of the large uncertainties on the
calculation of the spectral lags, on the statistics of the
GRB pulses, and even more, on the intrinsic spectral lags
αa. However, if correct, they have some implications
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FIG. 4. Lags=ð1þ zÞ vs I2ðzÞ
ð1þzÞ3 for the 57 GRBs in Ref. [43] and

fitting lines with three intersects (red) or one intersect (green).
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FIG. 3. Lags vs I2ðzÞ
ð1þzÞ2 for the 57 GRBs in Ref. [43] and fitting

lines with three intersects (red) or one intersect (green).

6Actually, the authors’ conclusion is that the quantum gravity
scale EQG ≳ 1.5 × 1016 GeV, which would correspond to a scale
l≲ 1.3 × 10−30 cm.
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concerning the observation of neutrino emissions from the
GRB sources and also on the SN1987A observations. From
the SN1987A supernova, neutrinos were observed in the
range from 7.5 to 40 Mev [31,32]. Using Eq. (15) to obtain
the propagation-time difference over 168000 light years,
between visible light and neutrino packets of 10 and 40
Mev, with l ¼ 10−19 cm, one obtains 1.1 × 10−3 and
1.8 × 10−2 sec, respectively. Clearly, this does not change
the estimate in Eq. (24). However, for GRBs at cosmo-
logical distances, the situation is different. From Eq. (35),
l ¼ 10−19 cm, and ϵ ¼ þ1, neutrinos of energy 40 Mev
would take 27 hours more than visible light to reach Earth
from a source at z ¼ 2 redshift and 1.7 more hours from a
source at redshift z ¼ 1. For 10 MeV neutrinos, the results
would be 1.7 hours and 1 hour, respectively. For
l ¼ 10−18 cm, these numbers would be multiplied by
100 and also grow quadratically with the energy.
Recently, a very high-energy neutrino was observed

from the direction of active galactic nuclei at cosmological
distance [46,47]. If l is in the range discussed above, the
conclusion is that it could only have originated from a
much earlier event, not a recent flare of gamma activity.
Alternatively, if by some means its origin is proved to be
coincident with recently observed gamma flares, that would
mean that l is much smaller than suggested here (that is,
l ≼ 10−24 cm). Notice, however, that dedicated searches
[48–50] for neutrinos in close coincidence with GRB bursts
found no or scarce evidence for them.
Wei et al. [51,52] analyzed a burst GRB160625B with

unusually high photon statistics and a steep decline from
positive lags to smaller ones with increasing photon energy
in the range 8–20 MeV. They have fitted the spectral lag
data using a power law for the intrinsic lag and a linear or
quadratic term corresponding to the LIV correction. Here,
the same data have been analyzed using also a power law

for the intrinsic lag together with the noncommutativity
correction, namely

lag ¼ αEβ −
ϵl2

H0

I2ð1.41ÞE2: ð47Þ

The least-squares result is shown in Fig. 6. One sees that the
fitting accuracy is rather poor, which is even more apparent
using a linear E2 axis than in the log-log plot used in
Ref. [51]. Actually, the small statistical significance of the
fitting using an equation of the type of Eq. (47) had already
been pointed out in Ref. [53].
In fact, given the probable multiple shock mechanism of

the GRB’s generation, it is not likely for a continuous
power dependence of the intrinsic lag to be a good
hypothesis. It seems better to concentrate on the high-
energy tail of the data and try the equation

lag ¼ αE0.18þβE2 −
ϵl2

H0

I2ð1.41ÞE2: ð48Þ

This is used to fit the data between 5 and 20 GeV, the result
being shown in Fig. 7.
The minimizing parameters are α ¼ 0.29, β ¼

1.538 × 10−10, and

ϵl2

H0

I2ð1.41Þ ¼ 7.794 × 10−8; ð49Þ

with 0.18 in the exponent being the value obtained in the
fitting to Eq. (47). With I2ð1.41Þ ¼ 4.3445, one obtains
from Eq. (49) l¼1.79×10−21 cm or τ¼0.597×10−31 sec.
This is 2 orders of magnitude smaller than obtained before,
but there is the small significance of a result obtained with a
single burst, compounded with the small quantitative
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FIG. 6. Fitting the GRB160625B data to Eq. (47).
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knowledge that still exists about the intrinsic lags at the
source.
Finally, from Eq. (40), one may also estimate the

impact of an energy dependent propagation speed on the
calculation of the Hubble constant from observations at

cosmological distances. Given the luminosity L and the
observed flux Fo from a standard candle, the luminosity
distance dL is

d2L ¼ L
4πFo

: ð50Þ

On the other hand, from Eqs. (39) and (40),

dL ¼ 1þ z
Γðλ0; zÞ

IðzÞ; ð51Þ

with

IðzÞ¼ 1

H0

Z
z

0

ð1þzÞ
�

1
1þz−

d logΓðλ0;zÞ
dz

	�
1−8π2 l

2

λ2
0

ð1þzÞ2
Γ2ðλ0;zÞ

	
Γðλ0;zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðλ0;zÞ

p dz:

ð52Þ

Therefore, given dL from Eq. (50), H0 is obtained from

H0¼
ð1þzÞI0ðzÞ

dL
þπ2ϵl2

λ20
ð1þzÞfI3ðzÞþ8zðzþ2I0ðzÞÞg;

with

I0ðzÞ ¼
Z

z

0

dz0

ðΩm;0ð1þ z0Þ3 þ ΩΛ;0Þ12
;

I3ðzÞ ¼
Z

z

0

�
2z02 þ 8z0 þ 3

ðΩm;0ð1þ z0Þ3 þ ΩΛ;0Þ12
−
12z0ðz0 þ 2ÞΩm;0Þð1þ z0Þ3
ðΩm;0ð1þ z0Þ3 þ ΩΛ;0Þ32

�
dz0:

Then, the correction to the H0 calculation is

H0ðl ≠ 0Þ
H0ðl ¼ 0Þ ¼ 1þ πϵl2

λ20

�
I3ðzÞ
I0ðzÞ

þ 8zðzþ 2Þ
�
:

However, for example, for z ¼ 0.5, this would be 1þ
17.3 πϵl2

λ2
0

, which for visible light (λ0 ¼ 3.9–7 × 10−9 cm)

would be too small to be of any importance. Hence,
this correction should not be relevant to the present H0

tension problem.

B. Corrections to the Kepler problem

By the Kepler problem, one means the motion of a body
under the central 1r potential. In reality, an additional inverse
cubic term should be added to account for the general
relativity corrections. Here, only the modifications to the 1

r
term arising from noncommutativity will be considered (in
first l2 order). First, one considers the corrections to the
classical Hamiltonian

H ¼ p2

2m
þG

r
: ð53Þ

Using the representation (11) and taking expectation values

in a basis eir·
p̄
ℑ̄ (r here is a c-number, not an operator),

X
i

ðeir·p̄ℑ̄; xixieir·p̄ℑ̄Þ ¼
X
i

��
ri þ ϵl2pi r · p̄

ℑ̄2

�
eir·

p̄
ℑ̄;

�
ri þ ϵl2pi r · p̄

ℑ̄2

�
eir·

p̄
ℑ̄

�

¼ jrj2
�
1 − 2ϵl2

ðr̂ · p̄Þ2
ℑ̄2

�
þOðl4Þ;

one sees that the Oðl2Þ corrections to the classical
Hamiltonian (53) amount to the replacement

G
r
→

G
r

�
1þ ϵl2

�
r̂ ·

p̄

ℑ̄

�
2

þOðl4Þ
�
; ð54Þ
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FIG. 7. Fitting the GRB160625B data between 5 and 20 GeV
by Eq. (48).
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where r̂ ¼ r
jrj. One obtains a positive or negative correction

(depending on ϵ) of the coupling constant. For classical
bound quasicircular orbits, ðr̂ · p̄

ℑ̄
Þ is very small; therefore,

any detectable corrections to the classical motion could
only be expected for flyby orbits.
With the estimateZ

collision
ðr̂ · p̄Þ2 ¼

Z
π

0

jp̄j2cos2θdθ ¼ jp̄j2 π
2
;

the approximate correction to the coupling constant
would be

G → G

�
1þ ϵl2jp̄j2 π

2

�
;

which for a macroscopic speed 15 km= sec, the proton
mass and l ¼ 10−19 cm leads to

l2jp̄j2 π
2
¼ 8.88 × 10−20;

much too small to be observable.
Next, one computes the modifications to the quantum

Coulomb spectrum arising from Eq. (54). Because

1

2
ðr̂ · p̄þ p̄ · r̂Þ ¼ pr ¼

1

i
1

r
∂
∂r r;

the radial equation becomes (in leading l2 order)

��
1 −

2ϵl2me2

r
Z

�
d2

dr2
−
LðLþ 1Þ

r2
þ 2me2

r
Z þ 2meE

�
× rψðrÞ ¼ 0:

One now considers the eigenstates of the unperturbed
equation and treats the term Δ ¼ 2ϵl2me2

r Z d2

dr2 r acting on
ψðrÞ as a perturbation. Because of the 1

r factor in Δ, one
expects the largest effects to occur for s states. One obtains
for the first and second s states

hψ1s;Δψ1si ¼ −3ϵl2Z4m3e8;

hψ2s;Δψ2si ¼ −
7

16
ϵl2Z4m3e8;

and denoting by H0 the unperturbed Hamiltonian, with
hψns; H0ψnsi ¼ − Z2me4

2n2 ,

hψ1s;Δψ1si
hψ1s; H0ψ1si

¼ 6ϵl2Z2m2e4;

hψ2s;Δψ2si
hψ2s; H0ψ2si

¼ 7

2
ϵl2Z2m2e4:

Of more significance is perhaps the mixing matrix element,

hψ2s;Δψ1si ¼ −
44

27
ϵl2Z4m3e8:

If m ¼ me, the electron mass, and l ¼ 10−19 cm, then

m2
el2e4 ¼ 0.357 × 10−21:

However, for muon atoms and large Z, this value is
multiplied by a factor ≈ð200 × ZÞ2.
For other noncommutative corrections to the Coulomb

problem, refer to Ref. [26], where, in particular, angular
momentum effects were taken into consideration.

C. Phase-space volume effects

The phase-space contraction for ϵ ¼ þ1 and the phase-
space expansion for ϵ ¼ −1 have already been described in
Refs. [24,26]. Here, I simply rederive this result in the
context of the general representation (11) and update the
experimental perspectives.
Consider a particular space coordinate xi ≗ x, p̄i ≗ p.

Then,

x ¼ i

�
ϵl2p

∂
∂ℑ̄þ ℑ̄

∂
∂p
�
: ð55Þ

The eigenstates of this operator are

jxi ¼ exp

�
−i

x
l
tanh−1

�
lp

ℑ̄

��
ð56Þ

for ϵ ¼ þ1 and

jxi ¼ exp

�
−i

x
l
tan−1

�
lp

ℑ̄

��
ð57Þ

for ϵ ¼ −1.
To obtain the wave function of a momentum wave

function on the jxi basis ðϵ ¼ þ1Þ, one projects by
integration on the p; ℑ̄ variables:

hxjki ¼
Z

Jðp; ℑ̄Þdpdℑ̄eixl tanh−1ðlpℑ̄ Þδðp − kÞ; ð58Þ

with Jðp; ℑ̄Þ being an integration density. To proceed, it is
convenient to change variables to

x ¼ il
∂
∂μ ;

p ¼ R
l
sinh μ;

ℑ̄ ¼ R cosh μ ð59Þ

and convert Eq. (58) into

COMMUTATIVE OR NONCOMMUTATIVE SPACETIME? TWO … PHYS. REV. D 99, 123006 (2019)

123006-11



hxjki ¼
Z

dRdμei
x
lμδ

�
μ − sinh−1

�
lk
R

��
δðR − 1Þ

¼ ei
x
l sinh

−1 ðlkÞ: ð60Þ

The choice R ¼ 1 corresponds in Eq. (59) to the choice of a
particular representation of the pseudo-Euclidean algebra in
two dimensions. It corresponds to the choice of a density
Jðp; ℑ̄Þ:

Jðp; ℑ̄Þ ¼ δ
�
ℑ̄ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2p2

q 	
:

For ϵ ¼ −1, a similar calculation leads to

hxjki ¼ ei
x
l sin

−1 ðlkÞ: ð61Þ

The density of states is obtained from

xþ L
l

sinh−1ðlknÞ ¼
x
l
sinh−1ðlkÞ þ 2πn;

xþ L
l

sin−1ðlknÞ ¼
x
l
sin−1ðlkÞ þ 2πn;

leading to

dn ¼ L
2π

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2p2

p for ϵ ¼ þ1;

dn ¼ L
2π

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2p2

p for ϵ ¼ −1: ð62Þ

For three dimensions [24],

dn ¼ V
2π2

1

l2

ðsinh−1 ðljpjÞÞ2dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2jpj2

p for ϵ ¼ þ1;

dn ¼ V
2π2

1

l2

ðsin−1 ðljpjÞÞ2dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2jpj2

p for ϵ ¼ −1: ð63Þ

As discussed in Refs. [24,26], the contraction or expan-
sion of the phase space has an impact on the cross sections
of elementary processes. For example, for the cross section
of the reaction

γ þ p → π þ N

of high-energy proton cosmic rays, the contraction of
phase space in the ϵ ¼ þ1 case would allow cosmic-ray
protons of higher energies and from further distances to
reach the Earth. From the calculations performed in
Ref. [26], one knows that the phase-space suppression
factor for the photon pion production is a function of
α ¼ ω02

γ l2, with ω0
γ being the photon energy in the proton

rest frame, the suppression being only appreciable if
α ≽ 1. In this case, ω0

γ ¼ 1.49 × 10−12p0
P,p

0
P being the

proton energy. Therefore, for this reaction the effect would
be very small for l ¼ Oð10−19 cmÞ. In any case, even for
larger values of l, the GZK cutoff would not be much
changed, the main difference being a bigger size for the
GZK sphere, meaning that more cosmic-ray protons from
further distances would be able to reach the Earth.
A better place to look for the effects of this phase-space

suppression might be an increase (ϵ ¼ þ1) or decrease
(ϵ ¼ −1) in particle multiplicity in high-energy reactions
[24]. This effect would be important when lk ∼Oð1Þ, k
being the typical reaction momentum. For l ¼ 10−19 cm,
this would occur for k ≈ 100–200 TeV (in the range of the
future FCC).

D. Diffraction, interference, and
uncertainty relations

Massless or massive wave equations in the noncommu-
tative context are solutions of [22]

½pμ; ½pμ;ψ �� ¼ 0 ð64Þ

or

½pμ; ½pμ;ψ �� −m2ψ ¼ 0; ð65Þ

where ψ may be either a scalar or a tensor element of
the enveloping algebra Uðℜl;∞Þ of the algebra ℜl;∞ ¼
fxμ;Mμν; p̄μ; ℑ̄g. They have a general solution

ψkðxÞ ¼ exp

�
ik ·

1

2
fx; ℑ̄−1gþ

�
; ð66Þ

from which quantum fields may be constructed [22] with
k2 ¼ 0 or m2. Notice that in Eq. (66), the xμ’s are simply
algebra elements, not the coordinates of the wave. Physical
results are obtained from the application of a state to the
algebra.
From the commutator ½p̄μ; xν� ¼ iημνℑ̄, it also follows

that the wave equations also have factorized solutions:

ψkðxÞ ¼
Y3
μ¼0

ψkμðxμÞ; ð67Þ

with

ψkμðxμÞ ¼ ei
1
2
kμfxμ;ℑ̄−1gþ ðfixed μÞ: ð68Þ

The factorized solutions may be used to study the dif-
fraction problem. A geometry is chosen with one or two
long slits along the x2 coordinate and an incident wave
along the third coordinate, k⃗ ¼ ke⃗3. The wave in the slit(s)
will be a superposition of localized states on the first space
coordinate x1, namely (for a single slit) of width 2Δ (in the
p̄1; ℑ̄ representation):
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jχ1iþ ¼
Z

Δ

−Δ
dx1e−i

x1
l tanh−1ðlp1ℑ̄ Þ ð69Þ

for ϵ ¼ þ1 and

jχ1i− ¼
Z

Δ

−Δ
dx1e−i

x1
l tan−1ðlp1ℑ̄ Þ ð70Þ

for ϵ ¼ −1. Therefore, after passing the slit, the wave is

jΨik ¼ ψk0ðx0Þ
Z

dξhψξðx1Þjχiψξðx1Þψ ffiffiffiffiffiffiffiffiffi
k2−ξ2

p ðx3Þ: ð71Þ

The projections hψξðx1Þjχi of the slit state on the wave
equation solution ψξðx1Þ will be computed in order l2. In
addition, because of the factorized nature of the solutions,
one may use for the operators x1, p1, and ℑ̄ a subalgebra
representation instead of the general representation (11),
namely

x1 ¼ x;

p1 ¼ 1

l
sinh

�
l
i
d
dx

�
; ϵ ¼ þ1;

ℑ̄ ¼ cosh

�
l
i
d
dx

�
; ð72Þ

x1 ¼ x;

p1 ¼ 1

l
sin

�
l
i
d
dx

�
; ϵ ¼ −1:

ℑ̄ ¼ cos
�
l
i
d
dx

�
; ð73Þ

Then, in Oðl2Þ,

ℑ̄−1 ¼ 1 − ϵ
1

2

�
l
i

�
2 d2

dx2
þ 5

4

�
l
i

�
4 d4

dx4
− � � � ; ð74Þ

and in the representations (72) and (73), the generalized
localized states are simply jχ1i ¼ δðx1 − ηÞ. The projection
hψξðx1Þjχi becomes

hψξðx1Þjχi ¼
1

2π

Z
Δ

−Δ
ei

1
2
ξfx1;ℑ̄−1gδðx1 − ηÞdη

¼ 1

π
e−ϵ

1
4
ξ2l2 sin ðΔξð1 − ϵ 1

6
ξ2l2ÞÞ

ξ − ϵ 1
6
ξ3l2

þOðl4Þ:

Therefore, the intensity of the diffracted wave at angle
θ ¼ sin−1 ξ

k is proportional to

sin2ðΔξð1 − ϵ 1
6
ξ2l2ÞÞ

ðΔξð1 − ϵ 1
6
ξ2l2ÞÞ2 :

For two slits of width 2Δ at a distance 2Σ, the slit states
would be Z

−ΣþΔ

−Σ−Δ
þ
Z

ΣþΔ

Σ−Δ
dx1jχ1i;

with normalized diffracted intensity

sin2ðΔξð1 − ϵ 1
6
ξ2l2ÞÞsin2ðΣξð1 − ϵ 1

6
ξ2l2ÞÞ

Δ2Σ2ðξð1 − ϵ 1
6
ξ2l2ÞÞ4 :

One sees that the effects of noncommutativity become
important for ξl ∼Oð1Þ. For l ∼ 10−19 cm, this would
be ξ ≿ 100 TeV.
On the other hand, the noncommutativity of the space-

time coordinates implies uncertainty relations on the
simultaneous measurement of two space coordinates, or
of one space and one time coordinate. From

½xμ; xν� ¼ −iϵl2Mμν;

one obtains for Δxμ ¼ ðhψ jðxμÞ2jψi − hψ jxμjψi2Þ12

ΔxμΔxν ≥
1

2
l2hψ jMμνjψi:

In particular, one notices that there is no space-space
uncertainty if jψi is spinless, but time-space uncertainty
leads to observable effects.

III. REMARKS AND CONCLUSIONS

(1) Approaching the question of noncommutative
spacetime from the point of view of deformation
theory and the principle of stability of physical
theories, the first important observation is the
independence of the length scales of noncommuta-
tivity of the coordinates (l) and of the momenta
(ϕ−1). The scale of ϕ−1 being associated with the
noncommutativity of translations is naturally asso-
ciated with gravity and the Planck length. However,
the scale of l might be larger, and it makes sense to
launch an experimental effort to find upper bounds
or even the value of this length scale. At the present
time, in addition to a precise analysis of phenomena
of cosmological origin and a refinement of the
neutrino speed measurements, another possibility
lies in phase-space modification effects on high-
energy colliders.

(2) The estimates, performed here based on GRB data,
point to values of l in the range 10−19–10−21 cm [or
τ∈ ð0.3×10−29–0.3×1031 secÞ] favoring the higher
part of this range. However, these estimates can only
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be taken as indicative or as establishing upper
bounds because of the large uncertainties on the
calculation of the spectral lags, on the statistics of the
GRB pulses, and on the nature of the intrinsic
spectral lags.

(3) The deformed ℜl;∞ ¼ fxμ;Mμν; p̄μ; ℑ̄g algebra also
has some consequences concerning the structure of
the fundamental interactions, in particular those that
are associated with connection-valued fields. In
particular, the additional dimension in the differential
algebra may imply the existence of new interactions
and states, as well as a new extended structure for the
Dirac equation. These questions, not dealt with here,
because they have a less direct experimental verifi-
cation, are described elsewhere [22,24].

(4) In the context of deformation theory, the transition
from classical to quantum mechanics appears as the
stabilization of the unstable Poisson algebra to the
stable Moyal algebra. At the level of general non-
linear functions of position and momentum, the
corresponding Hilbert space algebra of operators
is also stable, but the Heisenberg algebra itself,

½p; x� ¼ −i1 ℏ ¼ 1;

is not, because the c-number 1 commutes with both
p and x. Stabilization would then suggest a defor-
mation to

½x; 1� ¼ iϵl2p; ½p; 1� ¼ −iϵ0ϕ2x;

and generalizing to xμ and pμ together with com-
patibility with the Lorentz group would lead
to the tangent space deformed algebra ℜl;∞ ¼
fxμ;Mμν; p̄μ; ℑ̄g. In conclusion, in the framework
of stable theories, this algebra is already implicit in
the transition to quantum mechanics.

(5) All calculations in the previous sections were
carried out for the algebra of the (noncommutative)
tangent space limit ϕ−1 → ∞. When the full de-
formed algebra in Eq. (3) is used, the noncommu-
tativity of momenta in

½pμ; pν� ¼ −iϵ0ϕ2Mμν

corresponds to the noncommutativity of spacetime
translations. A similar noncommutativity is what
occurs in a gravitational field. In this sense, gravi-
tation might also be considered an emergent prop-
erty arising from deformation theory and the
principle of stability of physical theories. Consid-
ering ϕ rather than the metric as defining gravita-
tional field, gravitation would be formulated as

a SOð3; 3Þ gauge theory [23]. An interesting con-
sequence is that the gravitational field might be a
function of the Casimir invariants of SOð3; 3Þ, and
not only of the energy-momentum tensor.

APPENDIX: THE GENERAL DEFORMATIONS
OF THE POINCARÉ-HEISENBERG ALGEBRA

The Poincaré-Heisenberg algebra

½Mμν;Mρσ� ¼ iðMμσηνρ þMνρημσ −Mνσημρ −MμρηνσÞ;
½Mμν; pλ� ¼ iðpμηνλ − pνημλÞ;
½Mμν; xλ� ¼ iðxμηνλ − xνημλÞ;
½pμ; xν� ¼ iημν;

½xμ; xν� ¼ 0;

½pμ; pν� ¼ 0 ðA1Þ

is not stable (rigid). Its 2-cohomology group has three
nontrivial generators, which lead to the following modified
commutators7 [18]:

½pμ; xν� ¼ iημνℑþ iβ3Mμν;

½xμ; xν� ¼ iβ2Mμν;

½pμ; pν� ¼ iβ1Mμν;

½xμ;ℑ� ¼ −iβ2pμ þ iβ3xμ;

½pμ;ℑ� ¼ iβ1xμ − iβ3pμ;

½Mμν;ℑ� ¼ 0:

There is an instability cone at β23 ¼ β1β2, but for generic β1,
β2;β3 all these algebras are rigid and are isomorphic to
either SOð1; 5Þ or SOð2; 4Þ or SOð3; 3Þ (depending on the
signs of β1 and β2). For all these classes, there is a
representative with β3 ¼ 0, which is exactly the deforma-
tion (3) obtained in Ref. [16]. The β3 ¼ 0 situation may
always be obtained by a linear change of coordinates in the
algebra. The converse situation β1 ¼ β2 ¼ 0 and β3 ≠ 0
also mentioned in Ref. [16] leads to ½xμ; xν� ¼ ½pμ; pν� ¼ 0,
which does not seem to be physically relevant, because at
least the second commutator is expected to be different
from zero in the presence of gravity.
Here and elsewhere, I will be interpreting xμ and pν as

the physical coordinates and momenta. In this sense, I do
not agree with the criticism in Ref. [18] about this choice,
because not all observables have to be extensive, only those
that correspond to symmetry transformations, in this case
Mμν and pμ.

7In the notation of Ref. [18], βi ¼ qαi and ℑ ¼ qM.
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[4] L. Alvarez-Gaumé and M. A. Vazquez-Mozo, General
properties of noncommutative field theory, Nucl. Phys.
B668, 293 (2003).

[5] I. Hinchliffe, N. Kersting, and Y. L. Ma, Review of the
phenomenology of noncommutative geometry, Int. J. Mod.
Phys. A 19, 179 (2004).

[6] S. Hossenfelder, Minimal length scale scenarios for quan-
tum gravity, Living Rev. Relativity 16, 2 (2013).

[7] D. V. Ahluwalia, Quantum measurement, gravitation, and
locality, Phys. Lett. B 339, 301 (1994).

[8] S. Doplicher, K. Fredenhagen, and J. E. Roberts, The
quantum structure of spacetime at the Planck scale and
quantum fields, Commun. Math. Phys. 172, 187 (1995).

[9] G. Amelino-Camelia, Quantum-spacetime phenomenology,
Living Rev. Relativity 16, 5 (2013).

[10] R. Vilela Mendes, The stability of physical theories prin-
ciple, in Beyond Peaceful Coexistence: The Emergence of
Space, Time and Quantum, edited by I. Licata (Imperial
College Press, London, 2016), pp. 153–200.

[11] A. Andronov and L. Pontryagin, Systèmes grossiers, Dokl.
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