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We show that equations of Newtonian hydrodynamics and gravity describing one-dimensional steady
gas flow possess nonlinear periodic solutions. In the case of a zero-pressure gas, the solution exhibits
hydrodynamic similarity and is universal: it is a lattice of integrable density singularities coinciding with
maxima of the gravitational potential. With finite-pressure effects included, there exists critical matter
density that separates two regimes of behavior. If the average density is below the critical, the solution is a
density wave which is in phase with the wave of the gravitational potential. If the average density is above
the critical, the waves of the density and potential are out of phase. Traveling plane gravitostatic waves are
also predicted and their properties elucidated. Specifically, a subsonic wave is made of two out-of-phase
oscillations of matter density and gravitational potential. If the wave is supersonic, the density-potential

oscillations are in phase.
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I. INTRODUCTION

It is well known that the attractive long-range nature of
gravity is incompatible with a static uniform distribution of
matter: the ensuing gravitational instability is the key to
understanding the large-scale structure of the Universe [1].
While the linear stage of the instability is well under-
stood, what happens beyond it continues to be a subject of
inquiry. In a pioneering study [2], Zeldovich put forward an
approximate solution to the nonlinear problem, according
to which the initial anisotropic density fluctuation of zero-
pressure matter first condenses into a wall-like object,
an integrable density singularity, dubbed the ‘“Zeldovich
pancake.” Further studies [3] confirmed this idea, also
pointing to the existence of other collapsed objects such as
filaments and compact clumps of matter, eventually leading
to our current understanding of the cosmic web as a
hierarchy of condensed structures [4].

While anisotropic interim structures further fragment
and collapse under their own gravity, a question arises
whether noncondensing counterparts of these objects can
exist. Below, we carry out the classification of one-dimen-
sional steady flows and a related problem of traveling
waves in a Newtonian gravitating gas, and in the zero-
pressure case indeed discover a universal structure that may
be viewed as a lattice of Zeldovich pancakes—static in the
case of the steady flow or traveling as a wave. Additionally,
accounting for the effects of pressure, we find situations
with a nearly uniform distribution of matter which, gravity
notwithstanding, is unexpected. While a strictly one-
dimensional setup is idealized, usefulness of the analysis
stems from two observations:
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(i) Nonlinear effects are treated exactly, which is a
benefit of one-dimensionality.

(i) Traveling wave solutions, that we predict are coun-
terparts of plane waves of electromagnetism and
elasticity theory, are of general importance even
though they are also one-dimensional.

Our study is modeled after an investigation of nonlinear
plasma waves in an electron gas [5,6]. Indeed, the two
settings are similar, as both the Coulomb and gravitational
interactions fall as an inverse separation between the
particles. The important difference is that gravitational
interaction is attractive, while the Coulomb interaction
can be either repulsive or attractive depending on whether
interacting particles carry like or unlike charges.

Our starting point is standard [1], the system of equations
of Newtonian hydrodynamics and gravity for an ideal fluid
described by the local position- and time-dependent mass
density p(r, #) and velocity v(r, ) fields, which are related
by the continuity equation

%+v-(pv):o. (1)

The equation of motion of the fluid is given by the Euler
equation of hydrodynamics

g + (v-V)v==Vw(p) + ¢, (2)

where w(p) is the heat function per unit mass of fluid and ¢

is the gravitational potential determined by the density p via
the Poisson equation
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V3¢ = 4nGp, (3)

where G is the universal gravitational constant. The heat
function w(p) is related to the pressure p as Vw = Vp/p.
According to the Euler equation (2), the fluid is accelerated
both by the gradient of the heat function (pressure) and the
gravitational field —V¢: the latter promotes the collapse,
while the former opposes it. Hereafter, we assume that there
exists a fixed average matter density p, and this will be
confirmed by an explicit calculation.

II. ONE-DIMENSIONAL STEADY FLOW OF
NEWTONIAN GRAVITATING GAS

We begin with the case of a one-dimensional motion
along the x axis, v = (v,0,0), and seek solutions for the
density p, velocity », and gravitational potential ¢ that
depend only on x. Then Egs. (1)—(3) transform into

(pv) =0, @)
v’ =—(w+ @), (5)
¢" = 4aGp, (6)

where the prime is a shorthand for the derivative with
respect to x. Integrating Eq. (4), we find

Jj=pv, (7)

where j is a constant mass flux; hereafter, we assume that
j =0, i.e., the matter flows along the positive x direction.
Integrating Eq. (5), we arrive at the Bernoulli equation

02

> +w + ¢ = const., (8)
the law of conservation of energy for a particle of unit mass
and internal energy w in the potential energy landscape
¢(x). Equations (7) and (8) can be combined into an
expression

2
—¢ + const. = 1_2 +w(p). 9)
2p
which can be inverted to infer the dependence of the density
on the potential p(¢) that appears on the right-hand side of
the Poisson equation (6). Since the heat function w is a
monotonically increasing function of the density p, the
right-hand side of Eq. (9) has a minimum at a critical
density p,. that is a solution to the equation

.3 dW>1/2
j=p = - (10)
<dp P=Pc

There are two branches of the function p(¢), labeled p_ (¢)
and p_(¢) and sketched in Fig. 1, meeting at p = p,., and

flowing zero-pressure matter

p critical density

p_(d)

static finite-pressure matter

¢

FIG. 1. Sketches of solutions p(¢) to Eq. (9). In the generic
case (black), there are two branches, p_ (¢) and p_(¢), separated
by the critical density p. [Eq. (10)], indicated by the straight
dotted red line. For flowing zero-pressure matter, w = 0, the
solution p_(¢) [Eq. (15)] is shown in blue. For static, j =0,
finite-pressure matter, the corresponding solution p, (@) is
sketched in orange.

there are two classes of solutions to Egs. (6) and (9).
Because the right-hand side of Eq. (9) is non-negative, there
is an upper bound to the gravitational potential ¢ hereafter
set at zero, i.e., ¢ <0.

If ¢ is viewed as the position of a fictitious classical
particle of unit mass, x as a time, and 4zGp(¢) as an
exerted force, Eq. (6) parallels Newton’s second law of
motion for the particle. The first integral of Eq. (6) has the
form

¢/2 792
5T U(#) =5

U =416 ["slpyap. (1)
where U(¢) is the “potential energy,” and the integration
constant g% /2 is the “energy.” Solutions of Egs. (6) and (9)
can be classified according to possible motions of a
classical particle in the field of potential energy U(¢)
for different values of the energy ¢?>/2. An example
pertinent to our study is sketched in Fig. 2. Integrating
the first-order differential equation (11), we find

b dg

+ 2
0 g —2U(p)

Since the motion of the particle in the field of potential
energy U(¢) is limited by the condition ¢ <0, the
gravitational potential exhibits slope discontinuity at
¢ = 0. The parameter g in Eq. (11) is then the magnitude
of the gravitational field on both sides of ¢ =0, i.e.,
lim,_,.o¢'(x) =F g¢. Likewise, the density p is a nonana-
lytic function of the gravitational potential at ¢ = 0, where
it is given by the critical density p = p,, in Eq. (10).

If U(¢ < 0) is monotonically decreasing, as sketched in
Fig. 2, the particle motion is finite. The gravitational

X =

(12)
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o, 0

FIG. 2. Sketch of potential well (for fictitious particle of unit
mass and position ¢) formed by the monotonically decreasing
potential energy function U(¢) [Eq. (11)] and the constraint
¢ < 0. For fixed energy ¢>/2, the motion is oscillatory: at the
leftmost turning point ¢ = ¢; the particle temporarily stops and
turns around, while at the rightmost point ¢» = 0 it bounces off the
wall and just reverses its direction of motion. Grayscale regions
are not accessible for motion.

potential ¢ is then a periodic function, ¢(x + 1) = ¢(x),
varying between its minimal value, ¢ = ¢; < 0, the root of
the equation U(¢) = ¢*/2, and its maximal value, ¢ = 0.
The period 4 is given by

dg¢
VI -20(p)

The matter density p(x) is also periodic with the same
period. The density at ¢ = ¢, is p = p; = p(¢;), while at
¢ =0 it is p = p,.. The relationship between p; and p,
depends on the branch of the function p(¢) [Eq. (9)],
singled out by the average density

p=2 [ pwar=2 (14)
p_ﬂ _A/sz x_271'Gﬂ’

where we employ the Poisson equation (6). Equation (14)
relates the average density p, the amplitude of the gravi-
tational field g, and the mass flux j, thus implying that only
two of these three parameters are independent.

We already observed in Fig. 1 that there are two branches
of the function p(¢) given by Eq. (9), p+(¢) (p— < p.),
coalescing at p = p,.. The lower branch, p_(¢) < p., is a
monotonically increasing function of its argument, while
the upper, p,(¢) > p., is monotonically decreasing.
Tuning the average density p [Eq. (14)] relative to the
critical density p,. [Eq. (10)] singles out one of the two
possible classes of solutions to Egs. (6) and (9).
Specifically, if p < p,, the p_(¢) branch is selected. The
density profile p_(x) is then a wave oscillating between
p =p; and p = p. > p;; density maxima p = p,. coincide
with maxima of the gravitational potential ¢p = 0. If, on the

0
A=2 (13)
b

other hand, p > p., the p,(¢) branch is singled out. The
density profile p, (x) is a wave oscillating between p = p,
and p = p. < p;; density minima p = p, now coincide
with maxima of the potential ¢ = 0.

To expand on this reasoning, we begin with the case of a
zero-pressure matter, w(p) = 0, which may be viewed as
mimicking dark matter. Now the critical density p,
[Eq. (10)] is infinite, and Eq. (9) has a single solution
sketched in blue in Fig. 1 and given by

p-0) == V) =4aGiV=20, (19)
where we also include the corresponding potential energy
function U(¢_) [Eq. (11)]. The function U(¢_) subject to
the constraint ¢p_ <0 is a potential well as sketched in
Fig. 2, and the left turning point of motion of the fictitious
particle is ¢, = —g*/1282*>G?*j>. The function U(¢_)
is homogeneous of the degree 1/2, thus implying that
the particle motion exhibits the property of mechanical
similarity [7]. This translates into hydrodynamic similarity
of the steady flow that is highlighted by adopting the
following units:

A P A
128722G? 2 128722G? 2 7

(16)

where [z] stands for the unit of z. With these choices, the
Poisson equation (6) acquires the form ¢’ = p_/4,
p_ = 1/v/—¢_, there is unit mass flux flowing across
the system, and the problem is parameter free. Then,
performing the integrations in Eqs. (12) and (13), we find

i%x — 2 31— V=) P (1= =) (17)

and 1 = 16/3. The universal function ¢_(x) obtained by
inverting Eq. (17) gives the gravitational potential within its
period [—8/3,8/3], and it has to be periodically continued
beyond this interval. The function ¢_(x) has a maximum at
x=0, ¢_(x - 0) =—|x|, and minima at x = +8/3,
¢_(x >F 8/3) = =1 + (x £ 8/3)%/8. An unbounded rel-
ative of the solution (17) has been mentioned previously [5]
in the context of a zero-pressure electron gas without
compensating positive charge background.

The gravitational potential ¢_(x) and corresponding
density of matter p_ = 1/4/—¢_ are plotted in Fig. 3.
The density is smallest at the minima of the gravitational
potential, p_(x = 48/3) =1, and it is singular at its
maxima, p_(x - 0) =1/ \/m . This fact, however, poses
no conceptual difficulty, as the singularity is integrable.
Indeed, the average density of matter according to Eq. (14)
is p = 3/2. In the original physical units [see Eq. (16)], this
translates into the equalities
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density of matter p_

-1+

gravitational potential ¢_

FIG. 3. One period of spatial variation of the gravitational

potential ¢_ (black) [Eq. (17)] and density p_ = 1/y/—¢p_ (blue)
in reduced units [Eq. (16)] for a zero-pressure matter. Density
singularity at the origin is the Zeldovich pancake.

A 3.

supplying us with dependences of the amplitude of the
gravitational field g and the period of the structure 1 on
parameters of the problem p and j. Curiously, for j fixed,
both g and 1 diverge with decrease of the average density as
p~ /2 and p~3/2, respectively.

The physical reason for the density singularity at the
maxima of the gravitational potential can be understood
with the help of the law of conservation of energy [Eq. (8)],
which in reduced units [Eq. (16)] has the form v + ¢ = 0
(unit of the velocity is g*/87GJ). Indeed, a particle starting
at the minimum of the potential energy landscape ¢ = —1
has unit velocity; it then arrives at the maximum ¢ = 0
with zero velocity. Thus, particle accumulation at the
maxima of ¢ is the reason why the density is singular.
This mechanism essentially describes the onset of wave
breaking [8]. Density singularities localized at the maxima
of the gravitational potential are steady counterparts of the
Zeldovich pancakes. Like original Zeldovich pancakes
[2,3], they are caustics of the density field.

Unlimited accumulation of the particles at the maxima of
the gravitational potential, an artifact of the zero-pressure
case, is halted by finite-pressure effects: the critical density
p. [Eq. (10)] replaces infinite density at the center of the
Zeldovich pancake, as shown in Fig. 3. As the average
density p increases, approaching the critical density p,
[Eq. (10)], the amplitude of the density wave steadily
decreases, vanishing as p — p.—0, and this class of
solutions disappears.

If p > p,., the upper branch of Eq. (9), p,(¢) > p.,
governs the character of the solutions to the Poisson

equation (6). Here the j = 0 limit plays a role similar to
that of the zero-pressure case for the p < p. domain. Now
the critical density p,. [Eq. (10)] vanishes, and the Bernoulli
equation (8) turns into the equation of hydrostatics,
w(p) + ¢ =0. Its single solution, p,(¢), sketched in
Fig. 1 in orange, a monotonically decreasing function
vanishing at ¢ = 0, leads to the potential energy function
U(¢, <0)in Eq. (11) that is again a potential well for the
fictitious particle. Thus, the gravitational potential ¢, (x) is
a periodic function varying between ¢; < 0 and zero.
Similarly, the density is a periodic function of position.
However, the difference from the p < p.. case is that now
the density is largest at the minima of the gravitational
potential, and smallest at its maxima ¢ = 0 where p, = 0.
Restoring j to a finite value also makes p. [Eq. (10)]
nonzero, thus lifting the density minimum to p, = p,.
As the average density p decreases, approaching the critical
density p,. [Eq. (10)], the amplitude of the density wave
steadily decreases, vanishing as p — p. + 0, and this class
of solutions disappears.

Even though density waves approach the uniform limit
as p — p,. from both directions, a strictly uniform solution
p = p. = p is incompatible with Egs. (6) and (9).

Near the critical density p = p., explicit solutions to
Egs. (6) and (9) can be given without resorting to models
for the heat function w(p). Indeed, expanding the right-
hand side of Eq. (9) to second order in p — p., we find

a 1 (d dw
b=~ (p—p) a——{—<p3—)} > 0.
2 peldp \" dp) ] -,

(19)

Adopting the units [x] = (ap,./87G)'/?, [p] = ap?/2, and
[p] = p. brings the Poisson equation (6) to the form

¢ = 1%/~ (20)

whose solutions are subject to the boundary condition
lim,_, o+ (x) =F g. Since —¢p < 1, we limit ourselves to
the g < 1 domain. Then, solutions for the potential and
density in the form of power series about the origin are
sufficient:

s

1) = = + 5 £ T g 3 L

v
(21)

1
x) =1+ glx| F—|xP?>+---. 22
)= 1% VI gl @)

These formulas hold within one period [—g; g] and have to
be periodically continued beyond it. One can verify that
p—1==+17¢g/30; i.e., the difference between the average
density and the critical density vanishes as g — 0.
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ITII. NONLINEAR GRAVITOSTATIC WAVES

In an inertial reference frame traveling along the x axis,
the steady solutions become traveling plane gravitostatic
waves. This term is introduced in Ref. [9] to draw a contrast
with linear electrostatic (plasma) waves. While linear
gravitostatic waves are impossible, nonlinear ones can
exist. Their properties can be deduced from those of the
steady flows. Indeed, for a one-dimensional motion along
the x axis, v = (v, 0, 0), we seek solutions for the density p,
velocity v, and gravitational potential ¢ that depend only on
& =x—ut, where u is the velocity of the wave. Then
Egs. (1) and (2) transform into

(—up + pv) =0, (23)
—uv' + v’ = —=(w+ ), (24)

where now the prime refers to the derivative with respect to
& = x — ut; the Poisson equation (6) still formally holds.

Integrating Eq. (23), we find —up + pv = const. = —up,
where the integration constant is fixed by the requirement
of the absence of average mass flux in the wave, pv = 0. As
a result, one obtains

p=p (25)
Thus, the particles cannot travel faster than the wave,
v <u, and their velocity changes sign at p = p: the
particles are moving in the positive x direction in the
region where p > p and in the negative one if p < p.

Integrating Eq. (24), we arrive at the counterpart of the
Bernoulli equation (8),

(u—v)*

> +w + ¢ = const. (26)

If Egs. (25) and (26) are combined, we return to Eq. (9)
with j = pu. Hereafter, the results of the analysis of the

steady flows carry over to the case of the gravitostatic
waves via the substitutions j — pu and x — & = x — ut.

We find it useful to restate them in a language better
suited to traveling waves. Indeed, the expression defining
the critical density p,. [Eq. (10)] can be rewritten as

M=——= 27
=l @)

)
[*5}
S

where s(p) = (pdw/dp)'/? is the speed of sound and M is a
Mach number evaluated at average density p. We now
observe that whether the left-hand side of Eq. (27) is below
or above unity is dictated by whether the critical density p,
is below or above the average density p, respectively. Thus,
if the motion is subsonic, M < 1, the wave represents two
coupled out-of-phase anharmonic oscillations of matter
density and gravitational potential; the hydrostatic limit
corresponds to M = 0. On the other hand, if the motion is
supersonic, M > 1, the density-potential oscillations are in
phase; the zero-pressure limit corresponds to M = oo. In
this particular case, according to Eq. (25), the particles
responsible for the density singularity in Fig. 3 travel with
the velocity of the wave v = u, which allows them to “ride”
the top of the potential. Additionally, the amplitude of the
gravitational field and the period of the wave [Eq. (18)] will
be given by

[ 3
= 2u\/37Gp. A= uyl——. 28
g ="2u\/3x "/ 267 (28)

We observe that for u fixed, the gravitational field vanishes,
while the lattice period diverges as p — O.
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