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Employing a field dependent three-momentum cutoff regularization technique, we study the phase
structure and mesonic masses using the 2-flavor Nambu–Jona Lasinio model at finite temperature and
density in the presence of an arbitrary external magnetic field. This approach is then applied to incorporate
the effects of the anomalous magnetic moment (AMM) of quarks on constituent quark mass and
thermodynamic observables as a function of temperature/baryonic density. The critical temperature for
transition from chiral symmetry broken to the restored phase is observed to decrease with the external
magnetic field, which can be classified as inverse magnetic catalysis, while an opposite behavior is realized
in the case of a vanishing magnetic moment, implying magnetic catalysis. These essential features are also
reflected in the phase diagram. Furthermore, the properties of the low lying scalar and neutral pseudoscalar
mesons are also studied in presence of a hot and dense magnetized medium including AMM of the quarks
using random phase approximation. For nonzero values of magnetic field, we notice a sudden jump in the
mass of the Goldstone mode at and above the Mott transition temperature which is found to decrease
substantially with the increase in magnetic field when the AMM of the quarks are taken into consideration.
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I. INTRODUCTION

The study of strongly interacting matter under the
influence of high temperature and finite baryonic density
in a magnetized medium is a subject of great interest [1].
Specifically, the presence of a background magnetic field
results in a large number of interesting physical effects in
quark matter and understanding them brings us closer to
our main objective of understanding quantum chromody-
namics (QCD). Some of the most important ones among
these phenomena are chiral magnetic effects (CME) [2–5];
magnetic catalysis (MC) [6–9] of dynamical chiral sym-
metry breaking as well as inverse magnetic catalysis (IMC)
[10,11] which may lead to significant modification of the
nature of electroweak [12–15], chiral, and superconducting
phase transitions [16–19], electromagnetically induced
superconductivity and superfluidity [20,21] and many
more. Now, it is remarkable that strong magnetic fields
of the order of ≈1018 G [3,22] or larger can be generated in
noncentral heavy-ion collisions, at RHIC and LHC, two
of the most important laboratories for the study of strongly
interacting matter. Since this is comparable to the QCD

scale, i.e., eB ≈m2
π (note that in natural units, 1018 G≈

m2
π ≈ 0.02 GeV2), the magnetic field in these laboratories

is sufficient to make noticeable influence in the properties
of QCD matter. The charge separation in heavy ion
collisions may be a consequence of such magnetic field
which has been attributed to the so-called CME mentioned
earlier. It is worth mentioning that, though the fields created
during heavy ion collision is short lived [3], the presence of
finite electrical conductivity of the hot and dense medium
may lead to substantial delay in the decay of these time-
dependent magnetic fields [23]. This justifies the use of a
uniform background field in most of the calculations in the
literature. Besides heavy ion collisions, strong magnetic
field can be realized in several physical systems, such as:
(i) in the early universe during electroweak transition where
the magnetic field, as high as ≈1023 G [24,25] might have
been produced, (ii) at the surface of certain compact stars
called magnetars, magnetic field is of the order of ≈1015 G
[26,27], while in the interior it might reach ≈1018 G [28],
(iii) in quasirelativistic condensed matter systems like
graphene [29,30] etc. Thus, apart from its theoretical
intricacies, the possibility of an experimental verification
has attracted a large number of researchers in this domain
of physics in recent years.
However, the detailed analysis of the above mentioned

properties involves a great deal of complexities while
evaluating quantities of interest from first principles since
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the large coupling strength of QCD in low energy regime
restricts the use of perturbative approach. Lattice QCD
simulations provide one of the best procedures to tackle the
problem at intermediate temperatures (comparable to the
QCD scale) and low baryonic density which is relevant for
highly relativistic heavy ion collisions [31–37]. However,
for compact stars one has to deal with the low temperatures
and high values of baryonic chemical potential. CBM
experiment at FAIR is also expected to explore high
baryonic density matter. These areas of the phase diagram
are not accessible via the lattice simulation due to the so-
called sign problem in Monte Carlo sampling [10]. An
available alternative is to work with effective models which
possess some of the essential features of QCD and
mathematically tractable so that the basic mechanisms
remain illustrative. The Nambu Jona-Lasinio (NJL) model
[38,39] is one such model, which presents a useful scheme
to examine the vacuum structure of QCD at arbitrary
temperatures and baryonic density. This model has been
extensively used to study some of the nonperturbative
properties of the QCD vacuum as it was constructed
respecting the global symmetries of QCD, most impor-
tantly the chiral symmetry (see [40–43] for reviews). As
mentioned in [40] the pointlike interaction between quarks
makes the NJL model nonrenormalizable. Thus a proper
regularization scheme has to be chosen to deal with the
divergent integrals and the parameters associated with the
model are fixed to reproduce some well-known phenom-
enological quantities, for example pion-decay constant fπ ,
condensate etc. [44].
The problem of chiral phase transition using the NJL

model in the presence of a uniform background magnetic
field is an extensively studied topic in the literature
[7–9,45–48]. In most of the cases it was found that the
magnetic field is likely to strengthen the chirally broken
phase leading to the MC. But in a few lattice data [34,49–
51], a contradictory behavior of the transition temperature
was observed which supports IMC. A significant amount
of effort has been made to explain this discrepancy
by adopting appropriate modifications of effective models,
primarily considering a field dependent coupling constant
[52–54]. In [46] it was shown that eB-dependence
of transition temperature can vary depending upon the
regularization scheme. In a recent study [55], it has been
indicated that finite value of anomalous magnetic moment
(AMM) of nucleons increases the level of pressure anisot-
ropies for a system of proton and neutrons. Further-
more, in [56] it was demonstrated that, as a manifestation
of inclusion of AMM of protons and neutrons, critical
temperature for vacuum to nuclear medium decreases
with increasing magnetic field which can be identified as
IMC. Since the chiral symmetry breaking leads to the
generation of an AMM for the quarks [57,58], it is justified
to include their contributions during evaluation of dynam-
ics of chiral symmetry breaking and restoration at high

temperatures and chemical potentials. A rigorous study of
the effect of AMM in phase diagram in a magnetized
medium can be found in [59], where they have used the
zeta function regularization technique to regularize the eB
dependent thermodynamic potential for nonzero values of
AMM of quarks and used a field dependent smoothing
function.
In absence of magnetic field NJL model has also been

used extensively to describe the physical properties of light
scalar and pseudoscalar mesons [40,60–64], which have a
direct relevance with the dynamics of chiral phase tran-
sition. Progress has also been made in studying these
lightest hadrons in a hot and dense magnetized medium
[47,65–67]. It was found that the minimum temperature for
which the overlap interval starts in the crossover region
increases with increasing magnetic field. As it was already
pointed out in the previous paragraph that inclusion of
AMM in different cases leads to an opposite behavior in
transition temperature so it will be interesting to evaluate
mesonic masses considering the AMM of quarks. It is
worth mentioning that there are also other methods avail-
able to study mesonic properties, such as, lattice simula-
tions [31–33,68,69], dimensional reduction [70,71], hard
thermal loop approximation [72–74] etc. As mentioned in
Ref. [64], the latter approaches rely on a separation of
momentum scales which, strictly speaking, holds only in
the weak coupling regime g ≪ 1 and hence may not be
justified near the vicinity of phase transition.
In this work, we aim to study the effect of AMM of the

quarks on both the phase structure as well as mesonic
properties (namely of scalar meson σ and pseudoscalar
neutral meson π0) in the 2-flavor NJL model. We have used
a magnetic field dependent three-momentum cutoff as our
regularization scheme [75] which has been shown to be a
generalization of the usual zero field three-momentum
cutoff regularization. We have also shown that, in the limit
B → 0, the analytic expression reduces to the correspond-
ing one in the absence of an external magnetic field. An
extensive study of the phase structure of quark matter at
finite density under arbitrary external magnetic field has
been made by evaluating the chiral susceptibility in the
neighborhood of transition temperature or chemical poten-
tial of quarks. MC is observed when AMM of the quarks is
switched off while an opposite behavior (IMC) is obtained
considering the AMM of the quarks. Moreover, it is seen
that, the nature of the (pseudochiral) phase transition
largely depends on the external magnetic field as well as
on the consideration of the AMM of the quarks. We then
calculated the masses of σ and π0 at finite temperature,
density, and arbitrary external magnetic field including
AMM of the quarks, of which we have not come across any
prior investigations in the literature. The π0 mass has been
seen to suffer a sudden jump at and above Mott transition
(TMott) temperature. Finally, the variation of TMott with
external magnetic field is studied and significant decrease
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of TMott is observed with the increase in B when the AMM
of the quarks are taken into account. It is worth mentioning
that all the calculations presented in the work have been
performed by considering all the Landau levels of the
quarks and thus the results are valid for arbitrary magnetic
field.
The paper is organized as follows. In Sec. II, the gap

equation is derived for the calculation of the constituent
quark mass. Next in Sec. III, various thermodynamic
quantities are obtained. Section IV is devoted for the
calculation of mesonic properties. We then present numeri-
cal results in Sec. V followed by a summary and conclusion
of our work in Sec. VI.

II. CONSTITUENT QUARK MASS

The Lagrangian of the two-flavor NJL-model consider-
ing the anomalous magnetic moment of free quarks in the
presence of constant background magnetic field is given by
[38–40,43,60,76]

L ¼ ψðxÞ
�
iD −mþ 1

2
âσμνFμν

�
ψðxÞ

þGfðψðxÞψðxÞÞ2 þ ðψðxÞiγ5τψðxÞÞ2g ð1Þ
where we have dropped the flavor (f ¼ u, d) and color
(c ¼ r, g, b) indices from the Dirac field ðψfcÞ for a
convenient representation. In Eq. (1), m is current quark
mass representing the explicit chiral symmetry breaking
(we will take mu ¼ md ¼ m to ensure isospin symmetry of
the theory at vanishing magnetic field),Dμ ¼ ∂μ þ iQAμ is
covariant derivative which couples quark charge Q̂ ¼
diagð2e=3;−e=3Þ with the external magnetic field repre-
sented by the four potential Aμ, the factor â ¼ Q̂ κ̂, where
κ̂ ¼ diagðκu; κdÞ is a 2 × 2 matrix in the flavor space (see
Ref. [59] for details), Fμν ¼ ∂μAν − ∂νAμ and σμν ¼
i
2
½γμ; γν�. The metric tensor used in this work is mostly

negative, gμν ¼ diagð1;−1;−1;−1Þ. Now expanding ψψ
around the quark-condensate hψψi and dropping the
quadratic term of the fluctuation one can write

ðψψÞ2 ¼ ðψψ − hψψi þ hψψiÞ2 ≈ 2hψψiðψψÞ − hψψi2:
ð2Þ

In this mean field approximation (MFA), the Lagrangian
becomes

L ¼ ψðxÞ
�
iD −M þ 1

2
âσμνFμν

�
ψðxÞ − ðM −mÞ2

4G
ð3Þ

where, M is the constituent quark mass given by

M ¼ m − 2Ghψψi: ð4Þ
Equation (4) is known as the gap equation. Now following
Refs. [47,59], the one-loop effective potential (Ω) for a

two-flavor NJL model considering the AMM of quarks at
finite temperature (T) and chemical potential (μ) in pres-
ence of a uniform background magnetic field (B) fixed
along z-direction is expressed as

Ω ¼ ðM −mÞ2
4G

− Nc

X
f

jefBj
β

X∞
n¼0

X
s∈f�1g

×
Z

∞

−∞

dpz

4π2
fβEnfs − lnð1 − nþÞ − lnð1 − n−Þg ð5Þ

where Nc ¼ 3 is the number of colors, eu ¼ 2e=3;
ed ¼ −e=3, β ¼ 1

T is the inverse temperature, and n� being
the thermal distribution functions of the quarks/antiquarks
given by

n� ¼ 1

exp½βðEnfs ∓ μqÞ� þ 1
ð6Þ

with μq being the chemical potential of the quark. In
Eqs. (5) and (6), Enfs are the energy eigenvalues of the
quarks in the presence of external magnetic field (which is a
consequence of the Landau quantization of the transverse
momenta of the quarks due to the external magnetic field)
and given by

Enfs¼
h
p2
zþ

n� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jefBjð2nþ1−sξfÞþM2

q
−sκfefBÞ

2
oi1

2

ð7Þ

where, n is the Landau level index, s ∈ f�1g is the spin
index, and ξf ¼ signðefÞ.
Following Ref. [59], in this article we will assume

the values of κf appearing in Eq. (7) as constant and
independent of (T, μ, B, M). Now the constituent
quark mass can be obtained self-consistently by minimiz-
ing the thermodynamic potential with respect to M. For
this, we differentiate Ω with respect to M and equate it to
zero to get

∂Ω
∂M ¼ M −m

2G
− Nc

X
f

jefBj
X∞
n¼0

X
fsg

Z
∞

−∞

dpz

4π2
M
Enfs

×

�
1 −

sκfefB

Mnf

�
ð1 − nþ − n−Þ ¼ 0: ð8Þ

The solution of the above equation gives the constituent
quarks mass as

M ¼ mþ 2GNc

X
f

jefBj
X∞
n¼0

X
fsg

Z
∞

−∞

dpz

4π2
M
Enfs

×

�
1 −

sκfefB

Mnf

�
ð1 − nþ − n−Þ ð9Þ
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where Mnf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jefBjð2nþ 1 − sξfÞ þM2

q
. Note that in

Eq. (9), the medium independent integral is ultraviolet
divergent. This feature is due to the fact that quarks are
assumed to interact via pointlike interaction [40]; as a
consequence the theory becomes nonrenormalizable. So it
is necessary to provide an appropriate regularization scheme
tomake a sense of the divergent integrals. There is no unique
way to introduce this regulator [40,43,46,47,67,77,78].
Discussions about the implementation of different regulari-
zation schemes and their outcomes in absence as well as in
presence of backgroundmagnetic field can be found in these
articles. In the case of nonzero background magnetic field,
regularization has been done via extracting the pure vacuum
part using Hurwitz zeta function and applying a three
momentum cutoff on the pure vacuum part [47,67,77]. In
this article, we will demonstrate the application of a field
dependent cutoff [75] on the divergent pz-integral directly
without going into the trouble of extracting the pure vacuum
part which may become cumbersome. To discuss this
procedure we will start from the following integral which
appeared in Eq. (9):

Idiv ¼
Z

∞

−∞

dpz

4π2
M
Enfs

�
1 −

sκfefB

Mnf

�
: ð10Þ

First, we note that the integrands in Eqs. (9) and (10) are both
even functions of pz; introducing the field dependent cutoff
parameter Λz we get,

Ireg ¼ 2

Z
Λz

0

dpz

4π2
M
Enfs

�
1 −

sκfefB

Mnf

�
ð11Þ

where,

Λz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − p⃗2⊥

q
ð12Þ

while Λ being the usual three-momentum cutoff. The
quantity p⃗2⊥ inside the square root can be identified from
Eq. (7) in the following manner:

p⃗2⊥ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jefBjð2nþ 1 − sξfÞ þM2

q
− sκfefB

�
2
−M2

¼ jefBjð2nþ 1 − sξfÞ þ ðκfefBÞ2
− 2sMnfκfefB: ð13Þ

As a cross check, one can see that as κf → 0, we get p⃗2⊥ →
ð2nþ 1 − sξfÞjefBj which is the usual expression of the
Landau quantized transverse momentum expressing the fact
that the lowest Landau level is nondegenerate. Now the
regularization shown in Eq. (11) will be valid iffΛ2−p⃗2⊥≥0

and p⃗2⊥ ≥ 0 as pz, p⃗⊥ are real quantities. Note that the first
conditionwill always be there for any finitevalues of eB [55]
but the second condition is only due to the nonzero values of
AMM of quarks. These conditions will constrain the
contributing n-values in the sum. From now on we will

call these two conditions as “UV-blocking” and “AMM-
blocking,” respectively. A discussion on these issues is
provided in Appendix B. Putting these condition back in
Eq. (9), we get

M ¼ mþ 4GNc

X
f

jefBj
X∞
n¼0

X
fsg

Z
Λz

0

×
dpz

4π2
ΘðΛ2 − p⃗2⊥ÞΘðp⃗2⊥Þ

M
Enfs

�
1 −

sκfefB

Mnf

�

− 4GNc

X
f

jefBj
X∞
n¼0

X
fsg

Z
∞

0

dpz

4π2
M
Enfs

×

�
1 −

sκfefB

Mnf

�
ðnþ þ n−Þ; ð14Þ

where ΘðxÞ represents Heaviside theta function with
ΘðxÞ ¼ 1 for x > 0 and zero otherwise. As a consistency
check, we take the limits κf → 0 and efB → 0 of the above
equation (see Appendix C for details) and get,

M ¼ mþ GMNfNc

π2

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p
−M2sinh−1

�
Λ
M

��
ð15Þ

which is the well known expression of the gap equation in
absence of external magnetic field and agrees with Ref. [40].

III. THERMODYNAMIC QUANTITIES

In this section we will calculate some of the thermody-
namic observables which can be evaluated from the
effective potential (Ω). For example, the entropy density
is given

s ¼ −
∂Ω
∂T

¼ −Nc

X
f

jefBj
X∞
n¼0

X
fsg

Z
∞

−∞

dpz

4π2

�
lnð1 − nþÞ

þ lnð1 − n−Þ − Enfs

T
ðnþ þ n−Þ þ μ

T
ðnþ − n−Þ

�
: ð16Þ

To study different mechanism involving the phase
transition from symmetry broken to restored phase, we
will use the chiral susceptibility which is defined as

χmm ¼ ∂2Ω
∂m2

¼ 1

2G

�∂M
∂m − 1

�
: ð17Þ

Evaluation of Eqs. (16) and (17) are straight forward and
can be done by differentiatingM from Eq. (14) with respect
to T and m in the following way:
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∂M
∂T ¼−

GNc

π2DT

X
f

jefBj
X∞
n¼0

X
fsg

Z
∞

0

dpz
β2M
Enfs

�
1−

sκfefB

Mnf

�

× ½nþð1−nþÞðEnfs−μÞþn−ð1−n−ÞðEnfsþμÞ�
ð18Þ

∂M
∂m ¼ 1

Dm
ð19Þ

where DT and Dm appearing in the above equations are
respectively given by:

DT ¼ 1 −
GNc

π2
X
f

jefBj
X∞
n¼0

X
fsg

Z
Λz

0

dpz

�
sκfefBM2

EnfsM3
nf

þ 1

Enfs

�
1 −

sκfefB

Mnf

�
−

M2

E3
nfs

�
1 −

sκfefB

Mnf

�
2
�

−
GNc

π2
X
f

jefBj
X∞
n¼0

X
fsg

M2

ðΛ2 þM2Þ1=2
�
1 −

sκfefB

Mnf

�
sκfefB

ΛzMnf

þGNc

π2
X
f

jefBj
X∞
n¼0

X
fsg

Z
∞

0

dpz

�
sκfefBM2

EnfsM3
nf

þ 1

Enfs

�
1 −

sκfefB

Mnf

�
−

M2

E3
nfs

�
1 −

sκfefB

Mnf

�
2
�
ðnþ þ n−Þ

−
GNc

π2
X
f

jefBj
X∞
n¼0

X
fsg

Z
∞

0

dpzβ

�
M
Enfs

�
2
�
1 −

sκfefB

Mnf

�
2

½nþð1 − nþÞ þ n−ð1þ n−Þ�; ð20Þ

Dm ¼ 1 −
GNc

π2
X
f

jefBj
X∞
n¼0

X
fsg

Z
Λz

0

dpz

�	
1

Enfs
−

M2

E3
nfs

�
1 −

sκfefB

Mnf

�
�
1 −

sκfefB

Mnf

�
þ sκfefBM2

EnfsM3
nf

�

−
GNc

π2
X
f

jefBj
X∞
n¼0

X
fsg

M2

ðΛ2 þM2Þ1=2
�
1 −

sκfefB

Mnf

�
sκfefB

ΛzMnf

þ GNc

π2
X
f

jefBj
X∞
n¼0

X
fsg

Z
∞

0

dpz

�	
1

Enfs
−

M2

E3
nfs

�
1 −

sκfefB

Mnf

�
�
1 −

sκfefB

Mnf

�
þ sκfefBM2

EnfsM3
nf

�
ðnþ þ n−Þ

−
GNc

π2
X
f

jefBj
X∞
n¼0

X
fsg

Z
∞

0

dpzβ

�
M
Enfs

�
2
�
1 −

sκfefB

Mnf

�
2

½nþð1 − nþÞ þ n−ð1þ n−Þ�: ð21Þ

The fact that Λz ¼ ΛzðMÞ is also a function M has been
taken care of while taking the derivatives by means of using
Leibniz rule.

IV. MESON PROPERTIES IN THE NJL-MODEL

Since mesons are the bound states of quark and
antiquark, the meson propagators are expressed as [40]
(in RPA)

DaðqÞ ¼
2G

1 − 2GΠaðqÞ
ð22Þ

where a ∈ fσ; πg denotes the scalar (Γa ¼ 1) and pseudo-
scalar (Γa ¼ iγ5τ) channels respectively. In the above
equation, ΠaðqÞ’s are the “polarization functions” and
given by

ΠaðqÞ ¼ i
Z

d4k
ð2πÞ4 Tr½SðkÞΓaSðp ¼ kþ qÞΓa� ð23Þ

where

SðkÞ ¼ ðkþMÞ
�

−1
k2 −M2 þ iϵ

�
ð24Þ

is the dressed quark propagator at zero temperature con-
taining the vacuum constituent quark mass M. From the
pole of the propagators, the mesonic masses can be
obtained which essentially requires solving the following
set of transcendental equations

1 − 2GΠaðq0 ¼ ma; q⃗ ¼ 0⃗Þ ¼ 0; a ∈ fσ; πg: ð25Þ
To include the effect of finite temperature and density in

the mesonic excitations, we use the real time formalism
(RTF) of thermal field theory (TFT) [79,80] in which all the
two point correlation functions become 2 × 2 matrices in
thermal space. However, these matrices can be put in
diagonal forms in terms of analytic functions (will be
denoted by bars) and thus the knowledge of any one
components (say the 11 component) of these matrices are
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sufficient to know the complete one. The real part of the
analytic thermal polarization function is thus given by [79]

ReΠaðq0; q⃗Þ ¼ Re i
Z

d4k
ð2πÞ4Tr½S

11ðkÞΓaS11ðp¼ kþ qÞΓa�

ð26Þ

where

S11ðkÞ ¼ SðkÞ − ηðk · uÞ½SðkÞ − γ0S†ðkÞγ0� ð27Þ
is the 11 component of the real time dressed quark
propagator containing the temperature and/or density

dependent constituent quark mass M ¼ MðT; μqÞ. In the
above equation,

ηðk · uÞ ¼ Θðk · uÞfþðk · uÞ þ Θð−k · uÞf−ð−k · uÞ ð28Þ

where, uμ is the medium four velocity which becomes
uμLRF ≡ ð1; 0⃗Þ in the local rest frame (LRF) of the medium;
f�ðxÞ ¼ ½eðx∓μqÞ=T þ 1�−1 are the Fermi-Dirac distribution
functions for the quark/antiquark. Performing the dk0 and
the angular integrals in Eq. (26), we get after some
simplifications,

ReΠaðq0 ¼ ma; q⃗ ¼ 0⃗Þ ¼ 1

4π2

Z
Λ

0

k⃗2djk⃗j
�

1

ωkq0

�
P
�
N aðk0 ¼ −q0 þ ωkÞ

q0 − 2ωk
þN aðk0 ¼ ωkÞ

q0 þ 2ωk

�

−
1

4π2

Z
∞

0

k⃗2djk⃗j
�

1

ωkq0

�
P
�
N aðk0 ¼ −ωkÞf−ðωkÞ

q0 − 2ωk
þN aðk0 ¼ ωkÞfþðωkÞ

q0 þ 2ωk

þN aðk0 ¼ −q0 − ωkÞf−ðωkÞ
q0 − 2ωk

þN aðk0 ¼ −q0 þ ωkÞfþðωkÞ
q0 þ 2ωk

�
ð29Þ

where P denotes the Cauchy principal value integral and
N aðk; qÞ contains the factors coming from interaction
vertices as well as the numerator of the fermion propa-
gators. For the scalar and pseudoscalar channels, they are
given by

N σðk; qÞ ¼ NcNfTr½ðkþ qþMÞðkþMÞ�
¼ 4NcNfðM2 þ k2 þ k · qÞ ð30Þ

N πðk; qÞ ¼ −NcNfTr½γ5ðkþ qþMÞγ5ðkþMÞ�
¼ −4NcNfðM2 − k2 − k · qÞ: ð31Þ

It can be noticed that a sharp three-momentum cutoff has
been used to regulate the temperature independent part in
Eq. (29). We have checked that the substitution of the above
equations into Eq. (29) followed by some simplification
agrees with the expressions of the polarization functions as
given in Ref. [40].
The effect of external magnetic field in the polarization

function is included by means of Schwinger proper time
formalism [81]. Thus, under both the external magnetic
field (Bẑ) and finite temperature, the real part of the analytic
thermomagnetic polarization function (denoted by a double
bar) becomes [82,83]

ReΠaðq0; q⃗Þ ¼ Re i
Z

d4k
ð2πÞ4Tr½S

11
B ðkÞΓaS11B ðp¼ kþ qÞΓa�

ð32Þ

where, S11B ðkÞ is the 11-component of the real time
thermomagnetic quark propagator given by,

S11B ðkÞ ¼ SBðkÞ − ηðk · uÞ½SBðkÞ − γ0S†BðkÞγ0� ð33Þ

with SBðkÞ being the momentum space Schwinger proper
time propagator for charged Fermions. It is worth noting
that, the corresponding coordinate space Schwinger propa-
gator contains a gauge dependent phase factor which gets
canceled for the calculation of loop graphs containing
equally charged particles. The expression for SBðkÞ for a
particular quark flavor f including the AMM of quarks is
given by [84]

SBðkÞ ¼
X

s∈f�1g

X∞
n¼0

ð1 − δ0nδ
−1
s ÞDnfsðkÞ

×

�
−1

k2k − ðMn − sκfefBÞ2 þ iϵ

�
ð34Þ

where,
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DnfsðkÞ ¼
ð−1Þne−αk

2Mn
½ðMn þ sMÞðkk − κfefBþ sMnÞf1þ signðefÞiγ1γ2gLnð2αkÞ

− ðMn − sMÞðkk þ κfefB − sMnÞf1 − signðefÞiγ1γ2gLn−1ð2αkÞ
− 4fkk þ signðefÞiγ1γ2sðMn − sκfefBÞgsignðefÞiγ1γ2sp⊥L1

n−1ð2αkÞ� ð35Þ

with αk ¼ −k2⊥=efB, Mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2njefBj

q
and La

nðzÞ being the generalized Laguerre polynomial (with the condition

La
−1ðzÞ ¼ 0). Due to the external magnetic field in the positive z-direction, the decomposition of a four vector is done as

k ¼ ðkk þ k⊥Þ where kμk ¼ gμνk kν and kμ⊥ ¼ gμν⊥ kν with the corresponding metric tensors gμνk ¼ diagð1; 0; 0;−1Þ
and gμν⊥ ¼ diagð0;−1;−1; 0Þ.
We now substitute Eq. (33) into Eq. (32) and perform the dk0d2k⊥ integrals. Some relevant steps for this calculation are

provided in Appendix D and we get from Eq. (D8)

ReΠaðqÞ ¼
X
f

X
sk;sp

X∞
l¼0

Z ffiffiffiffiffiffiffiffiffiffiffi
Λ2−k⃗2⊥l

p

0

dkz
π

Θðk⃗2⊥lÞΘðp⃗2⊥lÞΘðΛ2 − k⃗2⊥lÞΘðΛ2 − p⃗2⊥lÞ

× P
�

Ñ a
llskspðk0 ¼ −q0 þ ω

lsp
k Þ

2ω
lsp
k fðq0 − ω

lsp
k Þ2 − ðωlsk

k Þ2g
þ Ñ a

llskspðk0 ¼ ωlsk
k Þ

2ωlsk
k fðq0 þ ωlsk

k Þ2 − ðωlsp
k Þ2g

�
þ
X
f

X
sk;sp

X∞
l¼0

Z þ∞

−∞

dkz
ð2πÞ

Θðk⃗2⊥lÞΘðp⃗2⊥lÞP
�
−

Ñ a
llskspðk0 ¼ −ωlsk

k Þf−ðωlsk
k Þ

2ωlsk
k fðq0 − ωlsk

k Þ2 − ðωlsp
k Þ2g

−
Ñ a

llskspðk0 ¼ ωlsk
k Þfþðωlsk

k Þ
2ωlsk

k fðq0 þ ωlsk
k Þ2 − ðωlsp

k Þ2g

−
Ñ a

llskspðk0 ¼ −q0 − ω
lsp
k Þf−ðωlsp

k Þ
2ω

lsp
k fðq0 þ ω

lsp
k Þ2 − ðωlsk

k Þ2g
−
Ñ a

llskspðk0 ¼ −q0 þ ω
lsp
k Þfþðωlsp

k Þ
2ω

lsp
k fðq0 − ω

lsp
k Þ2 − ðωlsk

k Þ2g

�
ð36Þ

where

ωlsk
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ ðMl − skκeBÞ2

q
; ð37Þ

k⃗2⊥l ¼ 2leBþ ðκeBÞ2 − 2skMlðκeBÞ; ð38Þ

p⃗2⊥l ¼ 2leBþ ðκeBÞ2 − 2spMlðκeBÞ: ð39Þ

and the expression for Ñ a
llsksp is given in Eq. (D7).

V. NUMERICAL RESULTS

In this section, we present numerical results for con-
stituent quark mass, several thermodynamic quantities
and properties of scalar and neutral pseudoscalar mesons
in a hot and dense medium in presence of uniform magnetic
field. As already discussed in Sec. II, due to the four-
fermion contact interaction among the quarks, NJL model
becomes nonrenormalizable and we have described a
field dependent regularization technique where a three-
momentum cutoff parameter(Λ) was used to get rid of
divergent integrals. Now, following Refs. [40,43,85], we
have chosen Λ ¼ 587.9 MeV, coupling constant G ¼
2.44=Λ2 and bare mass of quarks m ¼ 5.6 MeV. These
parameters have been fixed by fitting the empirical values of

pion mass mπ ¼ 135.0 MeV and pion decay constant fπ ¼
92.4 MeV at zero temperature and baryon density in
absence of background magnetic field. We have considered
constant values of AMM of quarks κu ¼ 0.29 GeV−1 and
κd ¼ 0.36 GeV−1 following Ref. [59].
In Fig. 1(a) we have demonstrated temperature depend-

ence of constituent quark mass at μq ¼ 0 for eB ¼ 0.0, 0.05
and 0.10 GeV2 respectively without considering AMM of
quarks. In all the cases, M almost remains constant up
to T ≈ 100 MeV and the transition from chiral symmetry
broken (withM ≠ 0) to the restored phase (i.e.,M ≈m ≈ 0),
is a smooth crossover. Since we have considered non-
vanishing current quark mass, m ¼ 5.6 MeV, the chiral
symmetry is never restored fully. So, the temperature for
whichM has the highest change can be identified as critical
temperature(Tc). Note that, for stronger values of magnetic
field, M increases as T → 0 and the transitions to the
symmetry restored phase take place at the larger values of
temperature, which is immediately evident from Fig. 1(c)
where we have plotted the variation of −∂M=∂T as a
function T. It can be seen that, as eB increases, the peak
representing Tc, shifts towards the higher values of temper-
ature. This phenomenon is known as magnetic catalysis
(MC) [3,6–9], which explains that the magnetic field has a
strong tendency to enhance (or catalyze) spin-zero fermion-
antifermion ðhψψiÞ condensates. Moreover, height of the
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peaks also increases with increase in eB implying the
fact that M decreases more rapidly around a certain
value of temperature as we keep on increasing the magnetic
field. Now in Fig. 1(b) we have included AMM of quarks
without altering the other external factors, such as, eB and
μq. In this casewe observe an opposite effect. Thevalue ofM
deceases significantly with the increase of eB at low
temperature values and the transitions occur at smaller
values of temperature with increasing eB. Thus, in contrast
to MC, the chirality broken phase becomes unfavorable
with increasing magnetic field. This is known as inverse
magnetic catalysis(IMC) [3,10,34,49–51,86]. The corre-
sponding curve of− ∂M

∂T vs T shows s broadening of the peak
in Fig. 1(d) which implies that, for finite values of AMM of
quarks, the transition occurs for larger range of temperature
about TC.
In Figs. 2(a) and 2(b), we have shown M as function

of T for two different values of quark chemical potential
(μq ¼ 300 and 330 MeV). It is important to note that in
the first case, for finite and vanishing values of eB as
well as κf, M decreases continuously as a function of T.
But for higher value of μq we obtained several possible
solutions of M from the gap equation for a range of
temperature. These solutions correspond to the absolute
(stable) minima, local minima (metastable), and maxima

(unstable) of the effective potential. Existence of three
different solutions can be understood from considering the
gap equation in the zero field scenario as expressed in
Eq. (C6). Since this is a cubic equation in variable M, in
principle, there will always be three roots for M (three real
or one real and two imaginary roots). For lower values of μq
there exists only one real root and as we increase μq, after a
certain value the imaginary roots become real. This multi-
valuedness of M is a signature of first order transition.
Comparing the solid-red and dashed-blue curves in both the
Figs. 2(a) and 2(b), we notice that, in the absence of the
AMM of quarks the nature of pseudochiral phase transition
changes from crossover to first order with the increase in
quark chemical potential. Similar behavior is also seen
even for nonzero AMM of the quarks (the dash-dot-green
curves) for lower values of eB (∼0.01 GeV2). However, at
higher values of external magnetic field (∼0.10 GeV2), the
transition remains always cross over (the dash-dot-dot-pink
curves) for κ ≠ 0.
Next, in Figs. 3(a) and 3(b),M is plotted as a function of

μq at two different temperature (T ¼ 30 and 120 MeV)
for four different cases as discussed in the previous para-
graph. Here also we get multiple solutions of M but at
lower values of temperature for similar external conditions
as discussed above. This interplay of T and μq on the
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FIG. 1. Variation of constituent quark mass (M) with temperature (T) at zero quark chemical potential ðμqÞ for three different values of
external magnetic field (eB ¼ 0.0, 0.05 and 0.10 GeV2) for (a) κf ¼ 0 and (b) κf ≠ 0. Variation of ∂M∂T with temperature (T) at zero quark
chemical potential ðμqÞ for three different values of external magnetic field (eB ¼ 0.0, 0.05 and 0.10 GeV2) for (c) κf ¼ 0

and (d) κf ≠ 0.

CHAUDHURI, GHOSH, SARKAR, and ROY PHYS. REV. D 99, 116025 (2019)

116025-8



mechanism of phase transition will be revisited while
discussing the phase diagram. It is to be noted that, with
the increase in temperature, μc decreases.
In Figs. 4(a) and 4(b) we have plotted eB-dependence of

M at vanishing quark chemical potential with and without
AMM of quarks for three different values of temperatures.
We have not used any smoothing function as done in
Refs. [47,59,65] during numerical evaluation which leads

to the oscillatory behavior of M. These oscillations are
related to the well-known de Haas-van Alphen (dHvA)
effect [87] in the weak magnetic field regime and had also
been observed in Refs. [16,17,47,59,88–92]. It occurs
whenever the Landau levels cross the quark Fermi surface.
As can be noticed in Fig. 4, the dHvA oscillations get
smeared out with the increase in magnetic field (as LLL
dominates) in agreement with Ref. [59]. As expected from
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AMM of quarks. The inset plot in (b) shows the multivalued nature of M by focusing on the relevant temperature range.
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Figs. 1(a) and 1(b), for a particular temperature there is an
overall increase ofM with eBwhen AMMof quarks are not
taken into consideration. On the other hand, inclusion of
AMM leads to a reduction in M with increasing eB which
indicates the occurrence of IMC during the transition from
broken to symmetry restored phase.
Now we turn our attention to several thermodynamic

observables defined in Sec. III. In Fig. 5, we have plotted
the scaled entropy density (s=T3) as functions of the
temperature for three different conditions. In all cases,

the scaled entropy density increases monotonically with
temperature and eventually saturates at the corresponding
ideal gas limit. Since the transition to the high temperature
phase, as shown in Figs. 1(a) and 1(b), is a rapid crossover
the entropy varies continuously with increasing temper-
ature. Note that, when we include AMM of quarks, the
steep rise in s=T3 starts at lower values of temperature
compare to the case for vanishing AMM of quarks.
In Figs. 6(a) and 6(b) we have shown the variation of chiral

susceptibility(χmm) as a function ofT for eB ¼ 0, 0.10 GeV2

at three different values of μq without including the AMM
of quarks. The behavior is very similar in both cases. At
μq ¼ μCEP, χmm diverges at T ¼ TCEP and we have a second
order phase transition. This is known as the critical end point
(CEP). For μq < μCEP, in the crossover region, χmm remains
continuous for entire range of T and goes through a finite
maximum at temperatures greater than TCEP. On the other
hand, for μq > μCEP we have found a finite discontinuity at
some temperature less than TCEP and the transition is first
order. The only difference in Figs. 6(a) and 6(b) is the fact
that for nonzero background magnetic field TCEP shifts
toward the higher values of temperature. In Figs. 6(c) and
6(d), we have included AMM of the quarks and studied the
variation of χmm for eB ¼ 0.01 and 0.10 GeV2 respectively.
For the smaller value of magnetic field, a similar behavior of
χmm [as Figs. 6(a) and 6(b)] for three different μq around the
CEP is observed; apart from the fact thatTCEP, unlike the case
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FIG. 5. Variation of scaled entropy density as function of
temperature at μq ¼ 0 for zero and nonzero values of eB with
and without including AMM of quarks along with the Stefan-
Boltzmann limit for the ideal gases.
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of vanishing AMM, moves toward lower values of temper-
ature. But, interestingly, χmm in Fig. 6(d) remains continuous
for different values of μ=T ratio and hence phase transition
remains a crossover always which is also expected from
Figs. 2 and 3. For the studied parameter set we have found
that (a) for eB ¼ 0, CEP is located at μCEP¼321MeV;
TCEP¼82MeV, (b) for eB ¼ 0.10 GeV2 CEP is at μCEP ¼
315 MeV; TCEP ¼ 90 MeV and (c) for eB ¼ 0.010 GeV2

CEP is at μCEP ¼ 322 MeV; TCEP ¼ 78 MeV.
In Fig. 7 we have plotted the phase diagram associated

with NJL model in the TC− ðμqÞC plane for different
external conditions. The essential features of the plots
are similar except when we consider AMM of quarks
at high background magnetic field. At higher temperature
and low chemical potential the transition from chiral
symmetry broken to restored phase is a crossover. On
the other hand, at low temperature and high baryonic
density the transition becomes first-order. Although, in
presence of the magnetic field, the transition temperature
for a fixed value of ðμqÞC increases and CEPmoves towards
the higher (lower) values of temperature (chemical poten-
tial of quarks) for vanishing AMM of quarks. The opposite

effect is realized when AMM of quarks are taken into
account. Interestingly, for high values of magnetic field in
the later case, the transition temperature is found to go
down significantly and the transition remains a crossover
for the entire range of TC and ðμqÞC we have considered in
the phase diagram. Note that the red, blue, and green points
in Fig. 7 represent the locations of the CEPs in three
different cases.
In Figs. 8(a) and 8(b) we have plotted the variation of

transition temperature (Tc) with the critical external mag-
netic field (eBC) at two different values of critical quark
chemical potential (ðμqÞC ¼ 0 and 150 MeV) with and
without including AMM of quarks along with respective
curves in the chiral limit (m ¼ 0). From Fig. 8(a), it is
evident that when the contributions of AMM of quarks are
ignored, there is an overall increase in the transition
temperature with increasing background magnetic field,
again pointing towards the MC effect discussed earlier. On
the contrary, when we include AMM, the transition temper-
ature is reduced as ðeBÞC increases, which leads to the IMC
effect, which is obvious from Fig. 1(d). In a similar manner,
from Fig. 8(b) the MC and IMC for increasing eBC for zero
and nonzero values of AMM can be noticed. The only
difference is the fact that finite values of chemical potential
results in a decrease of the magnitude of transition temper-
ature. The overall behavior of all these curves is the same in
their corresponding chiral limit except the fact that value of
transition temperature decreases further.
We now turn our attention to the mesonic properties in

the NJL model. We will present results for the variation of
masses of scalar meson σ and neutral pseudoscalar meson
π0 with temperature, density and external magnetic field.
Let us first consider the case of zero external magnetic field
for which the masses of σ and π0 are plotted as a function of
temperature in Fig. 9 at three different values of quark
chemical potential (μq ¼ 0, 200 and 300 MeV). In each of
the three curves, one can notice that, the masses of σ and π0

start from their respective vacuum values at lower tem-
peratures. With the increase in temperature, the σ mass
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first decreases toward a minimum and then increases at the
high temperature region. On the contrary, with the increase
in temperature, the π0 mass stays almost constant in the
low temperature region and then starts increasing with
temperature and merges with the mass curve of σ meson
owing to the restoration of chiral symmetry. The effect of
increase in density is to shift the position of the minima of
the σ mass curve towards low temperature as well as to
decrease the transition temperature (Tc) for the chiral
symmetry restoration. Though, it is barely possible to
precisely locate the Tc from these curves, yet qualitatively
the behavior of Tc with the change in density is consistent
with Fig. 7.
Now, we switch on the external magnetic field. In

Fig. 10, the behavior of masses of σ and π0 is shown
as a function of temperature at two different values of
external magnetic field (eB ¼ 0 and 0.10 GeV2, respec-
tively) including and excluding the AMM of the quarks.
Figure 10(a) is obtained using quark chemical potential
μq ¼ 0 whereas Fig. 10(b) corresponds μq ¼ 200 MeV. As
can be noticed from Figs. 10(a) and 10(b), the mass of σ

increases with the increase in magnetic field when the
AMM of quarks are not taken into account and the position
of minima shows no significant shift over the temperature
axis. On the contrary, while considering the AMM of
quarks, the σ mass decreases significantly with the increase
in magnetic field in the low temperature region followed by
a shift of the minima toward low temperature and the
smearing of the same. The mass of π0 is seen to decrease
(increase) with the increase in magnetic field in the low
(high) temperature region when the AMM of the quarks are
turned off. However, turning on the AMM of the quarks, we
find that the π0 mass increases with the increase in
magnetic field in all the temperature range. A sudden jump
(discontinuity) of the π0 mass at a particular temperature is
also noticed for the nonzero external magnetic field values
(in both the cases of κ ¼ 0 and κ ≠ 0).
Next, we look at the pion mass (mπ) in more detail

and compare it with the constituent quark mass (M) in
Fig. 11 where we have plotted mπ,M and 2M as a function
of temperature. In Figs. 11(a) and 11(b), the AMM of
the quarks are switched off (i.e., κ ¼ 0) and the quark
chemical potential μq ¼ 0 and 200 MeV are used; whereas
Figs. 11(c) and (d) correspond to κ ≠ 0 with μq ¼ 0 and
200 MeV. Defining the Mott temperature (TMott) as the
temperature beyond which mπ ≥ 2M i.e.,

mπðTÞ ≥ 2MðTÞ if T ≥ TMott; ð40Þ

one can notice from Fig. 11 that, TMott decreases with the
increase in quark chemical potential. Also, switching on the
AMM of quarks, decreases the value of TMott substantially
with respect to the κ ¼ 0 case.
A few comments on the Mott dissociation in the context

of NJL model are in order here. As discussed in Ref. [93],
the Mott transition in the context of solid state physics [94]
has a close analogy with the confinement-deconfinement
phase transition of QCD (hadrons to plasma of quarks and
gluons). The Mott transition corresponds to the phase
transition from a phase of bound states and constituents
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to a phase of constituents only. Whereas both Mott and
confinement-deconfinement phase transitions involve the
delocalization of the bound states into their constituents,
the Mott transition is applicable for nonconfining systems
as well; for example in the NJL model where there is no
confinement. Here, with the increase in temperature and/or
density, the dynamically generated constituent quark mass
decreases owing to the partial restoration of chiral sym-
metry. One of the immediate impacts on the meson
spectrum is the decrease of the continuum thresholds for
qq scattering. This in turn lowers the binding energy for the
pseudoscalar meson bound states (e.g., pions). The pions
get dissociated while entering the continuum and thus
become resonances having a finite lifetime. This phenome-
non is also termed as the Mott effect or the Mott transition
which occurs when the polarization function of the pion
possesses an imaginary part or in other words the mass pole
become complex. More details on this topic can be found in
Refs. [66,93,95,96].
This sudden jump of the pion mass at/or above the Mott

temperature under external magnetic field is also observed
and well studied in Refs. [67,96]. The main reason being
the dimensional reduction from ð3þ 1ÞD to ð1þ 1ÞD of
the quark degrees of freedom due to which the number of
accessible states for the qq resonant pair reduces. This in
turn fails to guarantee some solution for the resonant π0

state just above the mπ ≳ 2M. However, due to the random

phase approximation (RPA) leading to Eq. (25), the
external momenta in the RPA bubbles are both conserved
and onshell. This makes the pion mass to have a sudden
jump at/or above the Mott temperature to the lowest
possible energy state accessible.
Finally, we present the variation of Mott temperature as a

function of external magnetic field at two different values
of quark chemical potential (μq ¼ 0 and 200 MeV respec-
tively) in Fig. 12. The results including and excluding the
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AMM of quarks are also shown. As can be seen from the
graph that, the Mott temperature decreases substantially
with the increase in μq for both the cases of κ ¼ 0 and
κ ≠ 0. For a particular value of μq, TMott is almost constant
with the variation of the external magnetic field for κ ¼ 0.
However, for κ ≠ 0, TMott decreases with the increase in
external magnetic field owing to the IMC.

VI. SUMMARY AND CONCLUSION

In summary, using a field dependent three-momentum
cutoff, we study the 2-flavor NJL model at finite temper-
ature and baryonic density in presence of arbitrary external
magnetic field. The constituent quark mass (M) is obtained
by solving the gap equation as a function of T, μq and eB
considering the AMM of quarks. We have evaluatedM as a
function of T at vanishing baryonic density for different
magnetic fields and it is found that the transition temper-
ature from symmetry broken to restored phase increases
with external magnetic field showing the enhancement of
the quark antiquark condensate, which can be identified
as magnetic catalysis. On the other hand, the opposite
behavior is observed when AMM of quarks is taken into
consideration, indicating inverse magnetic catalysis. Tem-
perature variation of M is also studied for finite baryonic
density by choosing two different representative values of
μq and it is found out that, even at μq ¼ 300 MeV, M
remains single valued through out the temperature range
indicating a crossover transition but for μq ≃ 330 MeV, it is
observed that for certain range of T, the gap equation
provides multiple solutions for M, which indicates a first
order transition. The same behavior is also obtained while
studying the μq dependence ofM, the only difference is the
fact that, multiple solutions for M are observed for lower
values of temperature. The eB dependence ofM is obtained
at different T with and without considering AMM of
quarks. In the case of vanishing AMM, M becomes highly
oscillatory function of eB but an overall increase inM with
eB can be inferred. But inclusion of AMM results in a
steady decrease in M with eB. Critical behavior of chiral
susceptibility (χmm) has been examined in the vicinity of
the phase transition. Finally the phase diagram of hot and
dense magnetized quark matter, described by NJL model is
obtained and for finite values of eB, the CEP is found to
shift towards higher temperature. On the contrary, when we
include AMM of quarks CEP follows an opposite trend.
Interestingly at high eB for finite values of AMM, the
transition remains crossover for larger range of TC and
ðμqÞC. Thus, it can be inferred that in the presence of an
external magnetic field, the AMM of quarks plays a crucial
role in characterizing the properties of quark matter and its
modification at finite temperature and density.
The masses of the scalar meson σ and the neutral

pseudoscalar meson π0 have been calculated at finite
temperature, density and arbitrary external magnetic field

using the RPA in the NJL model. For this, both the AMMof
the quarks as well as infinite number of Landau levels of the
quarks are considered in the calculation so that the results
are valid for arbitrary strength of the external magnetic
field. In this context, the Mott temperature corresponding to
the transition from a bound to a resonant pionic state has
been calculated and its variation with external magnetic
field and quark chemical potential is studied.
We find that, both the masses of σ and π0 reduces to their

respective vacuum masses at T ≃ 0 and B ≃ 0. With the
increase in temperature, mσ decreases while mπ increases
followed by a merging of their masses at high temperature
owing to the partial restoration of the chiral symmetry. The
external magnetic field affects the masses of these mesons
in a nontrivial way; mπ decreases (increases) with the
increase in magnetic field in the low (high) temperature
region when the AMM of the quarks are turned off.
However, turning on the AMM of the quarks, mπ increases
with the increase in magnetic field in the temperature range
considered. The π0 mass suffers a sudden jump (disconti-
nuity) at and above the Mott transition temperature for
nonzero values external magnetic field. Finally, the TMott is
found to decrease significantly with the increases in density
and external magnetic field when the AMM of the quarks
are taken into consideration.

APPENDIX A: DERIVATIVES OF
DISTRIBUTION FUNCTIONS

From Eq. (7) we get

∂Enfs

∂M ¼ M
Enfs

�
1 −

sκfefB

Mnf

�
ðA1Þ

where Mnf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jefBjð2nþ 1 − sξfÞ þM2

q
. Again differ-

entiating Eq. (6) with respect to M and using Eq. (A1) we
can write

∂n�
∂M ¼ −βðn�Þ2 exp½βðEnfs ∓ μÞ� ∂Enfs

∂M
¼ −βn�ð1 − n�Þ M

Enfs

�
1 −

sκfefB

Mnf

�
: ðA2Þ

In a similar manner, the following expressions can be
derived:

∂n�
∂μ ¼ �βn�ð1 − n�Þ

�
1 ∓ M

Ef

�
1 −

sκfefB

Mnf

� ∂M
∂μ

�
ðA3Þ

∂n�
∂T ¼ βn�ð1 − n�Þ

�
Enfs ∓ μ

T
−
M
Ef

�
1 −

sκfefB

Mnf

� ∂M
∂T

�
:

ðA4Þ
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APPENDIX B: UV AND AMM BLOCKING

In Sec. II, we have introduced two blocking factors while
discussing the regularization scheme. To ensure the reality
of UV cutoff Λz, we arrived at UV blocking condition
expressed as

Λ2 − jefBjð2nþ 1 − sξfÞ − ðκfefBÞ2 þ 2sMnfκfefB ≥ 0:

ðB1Þ

Let us first study the case when κf ¼ 0 for which the above
condition becomes

Λ2 − jefBjð2nþ 1 − sξfÞ ≥ 0

⇒ n ≤
Λ2

2jefBj
−
1

2
ð1 − sξfÞ

which will give us a maximum value of the Landau level
index, nmax ¼ ½ Λ2

2jefBj −
1
2
ð1 − sξfÞ� up to which the summa-

tion has to be performed. Here [x] is the floor function
which give greatest integer less than or equal to x. Now for
nonzero values of AMM, the UV blocking condition
becomes nonlinear in n and thus it becomes difficult to
find out the corresponding inequality for n analytically.

So we have implemented the condition given in Eq. (B1) in
our numerical calculations.
Now the AMM blocking condition is appearing to ensure

the positivity of the Landau quantized transverse momen-
tum of the quarks having an AMM. The AMM blocking
condition is

jefBjð2nþ1−sξfÞþðκfefBÞ2−2sMnfκfefB≥0 ðB2Þ

which will restrict the lower values of the Landau level
index n.

APPENDIX C: GAP EQUATION
IN THE LIMIT B → 0

In this Appendix, we will show that, in the limit of
vanishing external magnetic field, the analytic expression
of the gap equation without external magnetic field is
exactly reproduced. We will show the calculation for the
temperature independent part containing the magnetic field
dependent UV regulator for which a straightforward zero
field limit is not obvious.
Let us consider the gap equation at T ¼ 0 and B ≠ 0

from Eq. (14):

M ¼ mþ 4GNc

X
f

jefBj
X∞
n¼0

X
fsg

Z
Λz

0

dpz

4π2
ΘðΛ2 − p⃗2⊥ÞΘðp⃗2⊥Þ

M
Enfs

�
1 −

sκfefB

Mnf

�
: ðC1Þ

To take the limit B → 0 of the above equation, we first put all the terms containing the κfefB equals to zero. Thus the above
equation becomes

M ¼ mþ 4GNc lim
B→0

X
f

jefBj
X∞
n¼0

ð2 − δn0Þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2−2njefBj
p

0

dpz

4π2
ΘðΛ2 − 2njefBjÞ

Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njefBj þM2

q ðC2Þ

where the sum over the spin index s has been carried out. We can now analytically perform the dpz integration and get after
some simplification

M ¼ mþMGNc

π2
lim
B→0

X
f

jefBj
X∞
n¼0

ð2 − δn0ÞΘðΛ2 − 2njefBjÞ tanh−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − 2njefBj
Λ2 þM2

s
: ðC3Þ

Separating out the contribution of the LLL from the above equation, we get after a substitution of τf ¼ 2njefBj

M ¼ mþMGNc

π2
lim
B→0

X
f

jefBj
"
tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2

Λ2 þM2

s
þ 2

X0∞

τf¼2jefBj
ΘðΛ2 − τfÞtanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − τf
Λ2 þM2

s #

where the primed summation
P0

denotes an increment of 2efB of its index rather than 1. Now as efB → 0, we can change
the summation to an integration by doing the following substitution considering the continuum limit

X
τf

0 →
1

2efB

Z
∞

2efB
dτf: ðC4Þ
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This leads to

M ¼ mþMGNc

π2
X
f

Z
∞

0

dτfΘðΛ2 − τfÞ tanh−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − τf
Λ2 þM2

s
: ðC5Þ

Note that, the presence of the step function will restrict the upper limit of the τf integration. Performing the remaining dτf
integral, we are left with

M ¼ mþGMNfNc

π2

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p
−M2sinh−1

�
Λ
M

��
ðC6Þ

which is same as the vacuum term given in Ref. [40].

APPENDIX D: CALCULATION OF THE POLARIZATION FUNCTIONS FOR B ≠ 0

In this Appendix, we will calculate the polarization functions in presence of external magnetic field and finite
temperature. We first substitute Eq. (34) and (33) into Eq. (32) to write,

ReΠaðqÞ ¼ Re
X
f

X
sk∈f�1g

X
sp∈f�1g

X∞
l¼0

X∞
n¼0

i
Z

d4k
ð2πÞ4 N

a
lnsksp

ðk; qÞ

×

�
−1

k2k − ðMl − skκeBÞ2 þ iϵ
− 2πiηðk · uÞδfk2k − ðMl − skκeBÞ2g

�

×

�
−1

p2
k − ðMn − spκeBÞ2 þ iϵ

− 2πiηðp · uÞδfp2
k − ðMn − spκeBÞ2g

�
ðD1Þ

where the flavor indices have been suppressed inside the flavor sum for brevity and N a
lnsksp

ðk; qÞ for the scalar (σ) and

neutral pseudoscalar (π0) channels are given by

N σ
lnsksp

ðk; qÞ ¼ NcTr½Dnfspðqþ kÞDlfskðkÞ�ð1 − δ0l δ
−1
sk Þð1 − δ0nδ

−1
sp Þ ðD2Þ

N π0
lnsksp

ðk; qÞ ¼ −NcTr½γ5Dnfspðqþ kÞγ5DlfskðkÞ�ð1 − δ0l δ
−1
sk Þð1 − δ0nδ

−1
sp Þ: ðD3Þ

Evaluating the traces over the Dirac matrices, the above equations become,

N a
lnsksp

ðk; qÞ ¼ j2Nce−αk−αp
ð−1Þlþn

MlMn
ð1 − δ0l δ

−1
sk Þð1 − δ0nδ

−1
sp Þ½8L1

l−1ð2αkÞL1
n−1ð2αpÞðk⊥ · p⊥Þfskspðkk · pkÞ

þ jskspðκeBÞ2 þ jMlMn − jκeBðspMl þ skMnÞg
þ Ll−1ð2αkÞLn−1ð2αpÞfjðkk · pkÞðMl − skMÞðMn − spMÞ
þ fskκeBM −MlðM − skMl þ κeBÞgfspκeBM −MnðM − spMn þ κeBÞgg
þ Llð2αkÞLnð2αpÞfjðkk · pkÞðMl þ skMÞðMn þ spMÞ
þ fskκeBM −MlðM þ skMl − κeBÞgfspκeBM −MnðM þ spMn − κeBÞgg� ðD4Þ

where j ¼ 1 for a≡ σ and j ¼ −1 for a≡ π0. Performing the dk0 integral of Eq. (D1), we get
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ReΠaðqÞ ¼
X
f

X
sk;sp

X
l;n

Z
d3k
ð2πÞ3 P

� N a
lnsksp

ðk0 ¼ −q0 þ ω
nsp
p Þ

2ω
nsp
p fðq0 − ω

nsp
p Þ2 − ðωlsk

k Þ2g þ
N a

lnsksp
ðk0 ¼ ωlsk

k Þ
2ωlsk

k fðq0 þ ωlsk
k Þ2 − ðωnsp

p Þ2g

−
N a

lnsksp
ðk0 ¼ −ωlsk

k Þf−ðωlsk
k Þ

2ωlsk
k fðq0 − ωlsk

k Þ2 − ðωnsp
p Þ2g −

N a
lnsksp

ðk0 ¼ ωlsk
k Þfþðωlsk

k Þ
2ωlsk

k fðq0 þ ωlsk
k Þ2 − ðωnsp

p Þ2g

−
N a

lnsksp
ðk0 ¼ −q0 − ω

nsp
p Þf−ðωnsp

p Þ
2ω

nsp
p fðq0 þ ω

nsp
p Þ2 − ðωlsk

k Þ2g −
N a

lnsksp
ðk0 ¼ −q0 þ ω

nsp
p Þfþðωnsp

p Þ
2ω

nsp
p fðq0 − ω

nsp
p Þ2 − ðωlsk

k Þ2g

�
ðD5Þ

where ωlsk
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ ðMl − skκeBÞ2

p
in which the flavor index has been suppressed. Now considering q⃗ ¼ 0⃗, the d2k⊥

integral in the above equation has been performed using the orthogonality of the Laguerre polynomials as

ReΠaðqÞ ¼
X
f

X
sk;sp

X
l;n

Z þ∞

−∞

dkz
ð2πÞP

�
Ñ a

lnskspðk0 ¼ −q0 þ ω
nsp
k Þ

2ω
nsp
k fðq0 − ω

nsp
k Þ2 − ðωlsk

k Þ2g þ
Ñ a

lnskspðk0 ¼ ωlsk
k Þ

2ωlsk
k fðq0 þ ωlsk

k Þ2 − ðωnsp
k Þ2g

−
Ñ a

lnskspðk0 ¼ −ωlsk
k Þf−ðωlsk

k Þ
2ωlsk

k fðq0 − ωlsk
k Þ2 − ðωnsp

k Þ2g −
Ñ a

lnskspðk0 ¼ ωlsk
k Þfþðωlsk

k Þ
2ωlsk

k fðq0 þ ωlsk
k Þ2 − ðωnsp

k Þ2g

−
Ñ a

lnskspðk0 ¼ −q0 − ω
nsp
k Þf−ðωnsp

k Þ
2ω

nsp
k fðq0 þ ω

nsp
k Þ2 − ðωlsk

k Þ2g −
Ñ a

lnskspðk0 ¼ −q0 þ ω
nsp
k Þfþðωnsp

k Þ
2ω

nsp
k fðq0 − ω

nsp
k Þ2 − ðωlsk

k Þ2g

�
ðD6Þ

where,

Ñ a
lnskspðk; qÞ ¼ δnl j2Nc

eB
4πM2

l

ð1 − δ0l δ
−1
sk Þð1 − δ0l δ

−1
sp Þ½−4eBlfskspðk2k þ k0q0Þ þ jskspðκeBÞ2 þ jM2

l − jκeBMlðsp þ skÞg

þ ð1 − δ0l Þfjðk2k þ k0q0ÞðMl − skMÞðMl − spMÞ þ fskκeBM −MlðM − skMl þ κeBÞgfspκeBM
−MlðM − spMl þ κeBÞgg þ jðk2k þ k0q0ÞðMl þ skMÞðMl þ spMÞ
þ fskκeBM −MlðM þ skMl − κeBÞgfspκeBM −MlðM þ spMl − κeBÞg�: ðD7Þ

The presence of the Kronecker delta function in the above equation will eliminate one of the sums in Eq. (D6). It is to be
noted that, the temperature independent part of Eq. (D6) is ultraviolet divergent which has to be properly regularized.
Following the same regularization procedure as used in the gap equation (as discussed in Sec. II) we get,

ReΠaðqÞ ¼
X
f

X
sk;sp

X∞
l¼0

Z ffiffiffiffiffiffiffiffiffiffiffi
Λ2−k⃗2⊥l

p

0

dkz
π

Θðk⃗2⊥lÞΘðp⃗2⊥lÞΘðΛ2 − k⃗2⊥lÞΘðΛ2 − p⃗2⊥lÞ

× P
�

Ñ a
llskspðk0 ¼ −q0 þ ω

lsp
k Þ

2ω
lsp
k fðq0 − ω

lsp
k Þ2 − ðωlsk

k Þ2g
þ Ñ a

llskspðk0 ¼ ωlsk
k Þ

2ωlsk
k fðq0 þ ωlsk

k Þ2 − ðωlsp
k Þ2g

�
þ
X
f

X
sk;sp

X∞
l¼0

Z þ∞

−∞

dkz
ð2πÞ

× Θðk⃗2⊥lÞΘðp⃗2⊥lÞP
�
−

Ñ a
llskspðk0 ¼ −ωlsk

k Þf−ðωlsk
k Þ

2ωlsk
k fðq0 − ωlsk

k Þ2 − ðωlsp
k Þ2g

−
Ñ a

llskspðk0 ¼ ωlsk
k Þfþðωlsk

k Þ
2ωlsk

k fðq0 þ ωlsk
k Þ2 − ðωlsp

k Þ2g

−
Ñ a

llskspðk0 ¼ −q0 − ω
lsp
k Þf−ðωlsp

k Þ
2ω

lsp
k fðq0 þ ω

lsp
k Þ2 − ðωlsk

k Þ2g
−
Ñ a

llskspðk0 ¼ −q0 þ ω
lsp
k Þfþðωlsp

k Þ
2ω

lsp
k fðq0 − ω

lsp
k Þ2 − ðωlsk

k Þ2g

�
ðD8Þ

where

k⃗2⊥l ¼ 2leBþ ðκeBÞ2 − 2skMlðκeBÞ ðD9Þ
p⃗2⊥l ¼ 2leBþ ðκeBÞ2 − 2spMlðκeBÞ: ðD10Þ

In Eq. (D8), the step functions Θðk⃗2⊥lÞ and Θðp⃗2⊥lÞ represents the AMM blocking whereas ΘðΛ2 − k⃗2⊥lÞ and ΘðΛ2 − p⃗2⊥lÞ
represents UV blocking of the loop quarks. These step functions will in turn restrict the minimum and maximum values of
the summation index l in Eq. (D8).
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