
 

Neutrino spin oscillations in external fields in curved spacetime
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We study spin oscillations of massive Dirac neutrinos in background matter, electromagnetic, and
gravitational fields. First, using the Dirac equation for a neutrino interacting with the external fields in
curved spacetime, we rederive the quasiclassical equation for the neutrino spin evolution, which was
proposed previously basing on principles of the general covariance. Then, we apply this result for the
description of neutrino spin oscillations in nonmoving and unpolarized matter under the influence of a
constant transverse magnetic field and a gravitational wave. We derive the effective Schrödinger equation
for neutrino oscillations in these external fields and solve it numerically. Choosing realistic parameters of
external fields, we show that the parametric resonance can take place in spin oscillations of low energy
neutrinos. Some astrophysical applications are briefly discussed.
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I. INTRODUCTION

Astrophysical neutrinos play an important role for the
evolution of stars, supernovae, and the early Universe [1].
Neutrinos have a remarkable property of transitions from
one type to another, called neutrino oscillations [2]. Some
external backgrounds can affect neutrino oscillations. For
example, if the density of background matter changes
adiabatically along the neutrino trajectory, the probability
of flavor oscillations νe → νμ of neutrinos, interacting with
this matter, can be amplified. This phenomenon is known as
the Mikheyev-Smirnov-Wolfenstein (MSW) effect. It is
believed to be the most plausible solution to the solar
neutrino problem [3].
There are various types of neutrino oscillations (see, e.g.,

Ref. [4] for a review). Among them, we can discuss the
possibility of transitions between left and right polarized
neutrinos of one type, ν− → νþ, neglecting the neutrino
mixing. This process, named neutrino spin oscillations,
results in the effective reduction of an initial flux of left
polarized particles since the standard model interactions of
right polarized neutrinos with other particles are strongly
suppressed. One can describe neutrino spin oscillations as
the precession of the neutrino spin in an external field.
Besides the MSW effect, mentioned above, other exter-

nal fields can influence neutrino oscillations. For example,

the gravitational interaction, in spite of its weakness, was
found in Ref. [5] to contribute to oscillations of neutrinos.
In the present work, we are interested in the influence of
gravitational fields on neutrino spin oscillations.
The problem of the evolution of a spinning particle in

general relativity was tackled for the first time in Ref. [6].
The resulting evolution equations turn out to be nonlinear,
i.e., the particle trajectory is affected by the spin evolution
and vice versa. Fortunately, in the case of a pointlike
elementary particle, such as a neutrino, the particle motion
is not influenced by the particle spin. It means that, with a
high level of accuracy, neutrinos follow geodesic lines in an
external gravitational field.
The equation for the quasiclassical description of the

particle spin evolution in a gravitational field was proposed
in Ref. [7]. Then, in Ref. [8], this approach was adapted for
the studies of neutrino oscillations in a gravitational field.
Neutrino oscillations in matter under the influence of an
electromagnetic field in curved spacetime were studied in
Ref. [9] by proposing the generalization of the quasiclass-
ical covariant equation for the neutrino spin evolution in
these external fields. The formalism, developed in
Refs. [8,9], was applied in Refs. [10,11] to study neutrino
spin oscillations in various gravitational backgrounds. The
method for the description of the particle spin evolution
in a gravitational field, based on the analysis of the Dirac
equation in curved spacetime, was recently developed in
Ref. [12].
In the present work, we continue the study of neutrino

spin oscillations in external fields in curved spacetime.
The quasiclassical equation, accounting for the contribution
of external fields to the neutrino spin evolution, was derived
in Ref. [9] based on principles of the general covariance.
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However this approach has to be substantiated by a more
rigorous derivation. It deals mainly with the contribution of
background matter to the neutrino spin evolution in curved
spacetime. It is the main motivation of the present work.
Then, in Refs. [8,9], we considered neutrino spin

oscillations in static gravitational backgrounds, like
Schwarzschild and Kerr metrics. It is interesting to
analyze the dynamics of neutrino oscillations in a time
dependent metric induced, e.g., by a gravitational wave
(GW). Typically astrophysical neutrinos interact with
background matter and an external magnetic field besides
a gravitational field. The contributions to neutrino spin
oscillations of all these external fields—namely, a back-
ground matter, a magnetic field, and a gravitational
field (GW)—are accounted for in our study. Note that
the evolution of a fermion spin in GW was recently
studied in Refs. [13,14]. The interest in the studies of
neutrino oscillations in periodically varying external
fields is inspired, e.g., by the suggestion in Ref. [15] to
explore the neutrino evolution in intense laser pulses.
The recent observation of GW by the LIGO and Virgo

detectors [16] is the strong evidence of the validity of
the general relativity. The most powerful sources of GW
are systems of binary black holes (BHs) [17] and neutron
stars (NSs) [18] during their coalescence. The merging of
two compact objects can be a source of both GWand other
elementary particles including neutrinos. Moreover, dense
background matter and strong magnetic fields are ejected
in outer space in the coalescence of BHs or NSs. These
factors can affect the propagation and oscillations of
emitted neutrinos. There are numerous attempts to carry
out multimessenger observations of both GW and astro-
physical neutrinos by the modern neutrino telescopes and
cosmic ray experiments [19]. Recently the discovery of
GWs was followed by the observation of the event horizon
silhouette of the supermassive BH, reported in Ref. [20],
which is another direct confirmation of the validity of the
general relativity.
This paper is organized as follows. We start in Sec. II

with the derivation of the quasiclassical equation for the
neutrino spin evolution in external fields in curved
spacetime based on the Dirac equation for a massive
neutrino accounting for these external fields. Then, in
Sec. III, we apply our results for the description of the
neutrino spin evolution in background matter, a transverse
magnetic field, and GW. We demonstrate that a parametric
resonance can happen in oscillations of low energy
neutrinos in realistic astrophysical backgrounds. Finally,
in Sec. IV, we discuss our results.

II. FORMALISM FOR THE DESCRIPTION OF
THE NEUTRINO SPIN EVOLUTION

In this section, we derive the covariant quasiclassical
equation for the neutrino spin evolution in external fields
in curved spacetime. For this purpose we analyze the

corresponding Dirac equation. Our result is compared
with previous findings.
We consider one neutrino eigenstate, which is supposed

to be a Dirac particle, and neglect the mixing between
different neutrino types. The wave equation for a massive
Dirac neutrino with the anomalous magnetic moment,
interacting with background matter and the electromagnetic
field Fμν in curved spacetime, reads

�
iγμ∇μ −

μ

2
Fμνσ

μν −
Vμ

2
γμð1 − γ5Þ −m

�
ψ ¼ 0; ð2:1Þ

where γμ¼γμðxÞ, σμν¼ i
2
½γμ;γν�−, and γ5¼− i

4!
Eμναβγμγν

γαγβ are the coordinate dependent Dirac matrices, Eμναβ ¼
εμναβ=

ffiffiffiffiffiffi−gp
is the covariant antisymmetric tensor in curved

spacetime, g ¼ detðgμνÞ, gμν is the metric tensor, ∇μ ¼
∂μ þ Γμ is the covariant derivative, Γμ is the spin con-
nection, μ is the magnetic moment of a neutrino, and m is
the neutrino mass.
The effective potential Vμ ¼ ðV0;VÞ of the neutrino

interaction with arbitrarily polarized and moving matter has
the form

Vμ ¼
ffiffiffi
2

p
GF

X
f

ðqð1Þf jμf þ qð2Þf λμfÞ; ð2:2Þ

where jμf and λμf are the hydrodynamic currents and the

polarizations of background fermions of the type f, GF ¼
1.17 × 10−5 GeV−2 is the Fermi constant, and qð1;2Þf are the
constants that are given in the explicit form in Ref. [21].
The contribution of the electroweak interaction of a fermion
with background matter to the Dirac equation in curved
spacetime, as in Eq. (2.1), was previously considered in
Refs. [22–24].
To find the spin connection in Eq. (2.1) we choose a

locally Minkowskian frame xμ → x̄a: ηab ¼ eaμebνgμν,
where eaμ ¼ ∂xμ=∂x̄a are the vierbein vectors and ηab ¼
diagðþ1;−1;−1;−1Þ is the metric tensor in Minkowski
space. In such a frame, Γμ is defined as Γμ ¼ − i

4
σabωabμ,

where ωabμ ¼ eaνebν;μ are the components of the connec-
tion one-form, σ̄ab ¼ i

2
½γ̄a; γ̄b�−, γ̄a ¼ eaμγμ are the con-

stant Dirac matrices given in the chosen frame, and the
semicolon stays for a covariant derivative.
The Dirac operator, expressed in the locally

Minkowskian coordinates x̄a, takes the form iγμ∇μ ¼
iγ̄a∂a þ i

4
γ̄aγ̄bγ̄cγcba, where γcba¼ecμ;νebμeaμ¼−γbca are

the Ricci rotation coefficients. Then, using the identity,

γ̄aγ̄bγ̄c ¼ ηabγ̄c þ ηbcγ̄a − ηacγ̄b − iεdabcγ̄dγ̄5; ð2:3Þ

where εabcd is the absolute antisymmetric tensor in
Minkowski space, having ε0123 ¼ þ1, and γ̄5 ¼ iγ̄0γ̄1γ̄2γ̄3,
we rewrite the Dirac Eq. (2.1) in the form
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�
γ̄a
�
i∂a þ

i
2
γabcη

bc

�
þ γ̄aγ̄5

1

4
εabcdγ

cbd −
μ

2
fabσ̄ab

−
va

2
γ̄að1 − γ̄5Þ −m

�
ψ ¼ 0: ð2:4Þ

Here fab ¼ eaμebνFμν and va ¼ eaμVμ are the correspond-
ing objects expressed in the locally Minkowskian frame.
The axial-vector contribution ∼γ̄aγ̄5 of a gravitational

field to Eq. (2.4) was previously obtained in Refs. [25,26].
However, the vector contribution, i

2
γ̄aγabcη

bc, is omitted in
these works. For example, in Ref. [26], the incorrect
analogue of Eq. (2.3), in which only the term
−iεdabcγ̄dγ̄5 was accounted for, is used. The correct form
of the Dirac equation in a locally Minkowskian frame,
coinciding with Eq. (2.4), is derived in Ref. [27].
Thevector contributionof thegravitational interaction acts

as the effective electromagnetic field qeffAa
eff ¼ − i

2
γabcηbc.

However, the vector potential of this electromagnetic field
is imaginary. It makes the Hamiltonian of the Dirac Eq. (2.4)
non-Hermitian. The problem of the non-Hermicity of
Hamiltonians of fermions in curved spacetime was
discussed earlier in Refs. [28,29]. For instance, following
the approach of Ref. [30], a nonunitary transformation of
the wave function, which recovers the Hermicity of the
Hamiltonian, was proposed in Ref. [29].
Thus, to develop the approach for the description of the

neutrino evolution in external fields in curved spacetime
based on Eq. (2.5) one has to choose the vierbein vectors
satisfying the condition γabcη

bc ¼ eaμ;μ ¼ 0. We assume
that this condition is fulfilled. Thus, we conclude that the
neutrino bispinor obeys the following wave equation in
general external fields:�

iγ̄a∂a þ γ̄aγ̄5
1

4
εabcdγ

cbd −
μ

2
fabσ̄ab −

va

2
γ̄a

þ va5
2
γ̄aγ̄

5 −m

�
ψ ¼ 0; ð2:5Þ

where

va5 ¼ va þ 1

2
εabcdγcbd; ð2:6Þ

is the effective axial-vector field.
The covariant equation for the quasiclassical evolution

of the neutrino spin sa in general external fields in
Minkowski space is derived in Ref. [21]. That derivation
of the equation for sa is based on the Heisenberg equation
for the corresponding spin operator accounting for the
external fields, which then is averaged over the neutrino
wave packet. Using Eqs. (2.5) and (2.6), as well as applying
the formalism of Ref. [21], one gets that sa obeys the
equation

dsa

dτ
¼ 2μðfabsb − uafbcubscÞ þ εabcdvbucsd þGabsb;

ð2:7Þ

where

Gab ¼ ðγabc þ γcab þ γbcaÞuc ð2:8Þ
is the antisymmetric tensor, Gab ¼ −Gba, which incorpo-
rates the influence of the gravitational field on the neutrino
spin evolution, ua is the neutrino four velocity, and τ is the
proper time in the locally Minkowskian frame. Using the
properties of eaμ, one can show that dτ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνdxμdxν
p

; i.e.,
it is invariant under general coordinate transformations.
If we contract sa with eaμ, we get that Sμ ¼ saeaμ

transforms as a vector under general coordinate trans-
formations xμ → x0μ [7]. Thus, basing on the spin vector
sa in a locally Minkowskian frame, we can construct the
spin vector Sμ in an arbitrary frame.
In a general situation, the particle four velocity evolves

under the influence of a gravitational field in the locally
Minkowskian frame as [7]

dua

dτ
¼ G̃abub; G̃

ab ¼ γabcuc: ð2:9Þ

One can see that Eqs. (2.7)–(2.9) are inconsistent with the
requirement that saua ¼ 0 in the course of the evolution of
both sa and ua. Thus, we have to choose such a vierbein
frame in which ua ¼ const. In this case, Eqs. (2.7) and (2.8)
correctly describe the neutrino spin evolution. It is such a
frame, which is taken, e.g., in Refs. [8,9], where we studied
the neutrino circular motion around Schwarzschild and
Kerr BHs.
The first two terms in the left-hand side of Eq. (2.7)

reproduce the contributions of the electromagnetic field and
the electroweak interaction with matter to the neutrino spin
evolution, when a particle moves in a curved spacetime, first
derived in Ref. [9] based on principles of the general
covariance. Now we rederive this result starting from the
more fundamental Dirac Eq. (2.1). The third term, Gabsb, is
different from that proposed inRefs. [7–9]: dsa=dτ ¼ G̃absb,
where G̃ab in given in Eq. (2.9). Below, in Secs. III and IV,
we discuss the discrepancy of the description of the neutrino
spin evolution proposed in the present work and that in
Refs. [7–9].
It is convenient to rewrite Eq. (2.7) using the invariant

three vector of the polarization ζ, which fixes the neutrino
spin states in the particle rest frame. It is related to sa by the
following expression [31]:

sa ¼
�
ðζuÞ; ζ þ uðζuÞ

1þ u0

�
; ð2:10Þ

where ua ¼ ðu0;uÞ is the four velocity with respect to the
locally Minkowskian coordinates x̄a. Using the results of
Refs. [7–9] and Eqs. (2.7), (2.8), and (2.10), we get that

dζ
dt

¼ 2

γ
½ζ ×G�; ð2:11Þ
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where

G ¼ 1

2

�
bg þ

ðeg × uÞ
1þ u0

�
þ 1

2

�
u

�
v0 −

ðvuÞ
1þ u0

�
− v

�

þ μ

�
u0b −

uðubÞ
1þ u0

þ ðe × uÞ
�
: ð2:12Þ

Here we represent Gab ¼ ðeg;bgÞ, va ¼ ðv0; vÞ, fab ¼
ðe;bÞ, γ ¼ U0, and Uμ ¼ ðU0;UÞ is the neutrino four
velocity in the world coordinates.
It should be noted that Eqs. (2.11) and (2.12) are the direct

consequence of Eq. (2.7). Thus Eq. (2.11) describes the
evolution of the invariant spin vector ζ. However, we adapt
the evolutionof ζ for an arbitrary observer having time t in the
original world coordinates. That is why the factor 1=γ ≡
1=U0 stands in the right-hand side of Eq. (2.11) [7].

III. NEUTRINO SPIN OSCILLATIONS IN
A GRAVITATIONAL WAVE

In this section, we apply the results of Sec. II to study
neutrino spin oscillations in matter and a magnetic field
under the influence of a plane GW. Some astrophysical
applications are also briefly considered.
Let us take that a plane GW propagates along the z axis.

Choosing the transverse-traceless gauge, we get that the
metric has the form [32]

ds2 ¼ gμνdxμdxν ¼ dt2 − ð1 − hþ cosϕÞdx2
− ð1þ hþ cosϕÞdy2 þ 2dxdyh× sinϕ − dz2; ð3:1Þ

where hþ and h× are the dimensionless amplitudes of two
independent polarizations of the wave, ϕ ¼ ðωt − kzÞ is the
phase of the wave, ω is frequency of the wave, and k is the
wave vector. In Eq. (3.1), we use Cartesian world coor-
dinates xμ ¼ ðt; x; y; zÞ. In the following, we consider GW
with the circular polarization in which hþ ¼ h× ¼ h.
To discriminate between left and right polarizations of
the wave we introduce the parameter ϵ ¼ �1 in the phase
of the wave ϕ → ϵðωt − kzÞ.
Neutrino spin evolution is governed by Eq. (2.11). To

proceed in the study of neutrino spin oscillations we should
find all the parameters in Eq. (2.12) in the locally
Minkowskian frame. One can check that the following
vierbein vectors,

e0μ ¼ ð1; 0; 0; 0Þ;

e1μ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1þ h

p
�
0;− sin

ϕ

2
; cos

ϕ

2
; 0

�
;

e2μ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1 − h

p
�
0; cos

ϕ

2
; sin

ϕ

2
; 0

�
;

e3μ ¼ ð0; 0; 0; 1Þ; ð3:2Þ

diagonalize the metric in Eq. (3.1). Note that Eq. (3.2)
exactly accounts for the amplitude of the wave.
First, we have to check the Hermicity of the Hamiltonian

of Eq. (2.4). Using Eqs. (3.1) and (3.2), one gets that
eaμ;μ ¼ 0. Thus Eqs. (2.4) and (2.5) coincide.
We consider the situation when neutrinos are emitted by

the same source of GWs. It is a reasonable situation when
we study oscillations of astrophysical neutrinos. In this
case, U ¼ dx=ds ¼ ð0; 0; UzÞ. Using Eq. (2.9), one can
show that the acceleration of such neutrinos in the locally
Minkowskian frame is absent: dua

dτ ¼ G̃abub ≡ 0. It means
that the change of the polarization ðζuÞ is entirely defined
by the neutrino spin evolution in Eq. (2.11). It should be
also noted that uz ¼ Uz ¼ const and u0 ¼ U0 ¼ const.
Moreover, we suppose that, besides GW, a neutrino

interacts with nonmoving and unpolarized matter, i.e.,
V0 ≠ 0 and V ¼ 0 in Eq. (2.2). We also take that a constant
uniform magnetic field transverse to the neutrino motion
is present in the world coordinates xμ. For example, we
suppose that B ¼ ðB; 0; 0Þ. In this situation, v0 ¼ V0,

bx ¼
Bffiffiffiffiffiffiffiffiffiffiffi
1 − h

p sin
ϕ

2
; by ¼ −

Bffiffiffiffiffiffiffiffiffiffiffi
1þ h

p cos
ϕ

2
; ð3:3Þ

and e ¼ 0.
Now we can find the components of the vectorΩ ¼ G=γ,

which defines the neutrino spin evolution, as

Ωx ¼
μBffiffiffiffiffiffiffiffiffiffiffi
1 − h

p sin
ϕ

2
;

Ωy ¼ −
μBffiffiffiffiffiffiffiffiffiffiffi
1þ h

p cos
ϕ

2
;

Ωz ¼
V0Uz

2U0
þ ϵðkUz − ωU0Þ

4U0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2

p : ð3:4Þ

Using Eqs. (2.11), (2.12), and (3.4), the evolution of the
neutrino polarization can be rewritten using the effective
neutrino wave function νT ¼ ðνþ; ν−Þ, which obeys the
Schrödinger equation [33,34],

i
dν
dt

¼ Heffν; Heff ¼ −ðσ ·ΩÞ; ð3:5Þ

where σ ¼ ðσ1; σ2; σ3Þ are the Pauli matrices. Here � mark
different neutrino helicities, i.e., the projections of the
invariant three vector of the neutrino spin on the neutrino
velocity, ðζuÞ=juj ¼ �1.
We mentioned in Sec. II that the different contribution of

the gravity to the neutrino spin evolution equation was
obtained in Refs. [8,9] using the equivalence principle,
namely, dsa=dτ ¼ G̃absb, where G̃

ab is given in Eq. (2.9).
One may expect that the equation and Eqs. (2.7) and (2.8)
can result in distinct descriptions of neutrino spin oscil-
lations. To study this issue we have used the approach in
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Refs. [8,9] to obtain the analogue of the effective
Hamiltonian in Eq. (3.5) for a neutrino interacting with
matter, the transverse magnetic field, and the plane GW,
with a neutrino propagating along the wave. It turns out to
coincide with that in Eqs. (3.4) and (3.5). It means that the
approach developed here and that in Refs. [7–9] are
equivalent, at least for the particular physics system.
Since these two methods give coinciding results, we omit
detailed calculations based on the dsa=dτ ¼ G̃absb
equation.
It is convenient to modify the effective wave function as

ν ¼ exp ½−iσ3ð _ϕtþ πÞ=4�ν̃, where _ϕ ¼ ϵðω − kUz=U0Þ.
Taking into account that h ≪ 1, we get that

i
dν̃
dt

¼ H̃eff ν̃;

H̃eff ¼
 

−V0=2 μB½1 − he−i _ϕt=2�
μB½1 − hei _ϕt=2� V0=2

!
: ð3:6Þ

In Eq. (3.6), we assume that neutrinos are ultrarelativistic,
i.e., Uz ¼ βU0, where β ≈ 1 is the neutrino velocity.
Now it is interesting to compare neutrino spin

oscillations in a plane electromagnetic wave, studied in
Refs. [34–36], with oscillations in a plane GW with the
circular polarization. Unlike an electromagnetic wave, GW
cannot induce a neutrino spin flip. Indeed, if B ¼ 0, there
are no transitions ν− ↔ νþ. This result coincides with the
finding of Ref. [13].
GW can only influence the resonance condition in

neutrino oscillations. Indeed, choosing _ϕ in Eq. (3.6) in
a certain way, we can reach a significant enhancement of
the probability of neutrino spin oscillations ν− → νþ,
Pν−→νþðtÞ≡ jνþj2 ¼ jν̃þj2, calculated using the solution
of Eq. (3.6). Such an enhancement of the transition prob-
ability is known as the parametric resonance in neutrino
oscillations.
We assume that initially all neutrinos are left polarized,

i.e., νTð0Þ ¼ ð0; 1Þ, as it should be if neutrinos are created
in electroweak processes. Of course, the exact initial
condition should be νTexactð0Þ ¼ ð ffiffiffiffiffiffi

Pþ
p

;
ffiffiffiffiffiffi
P−

p Þ, where
P� ¼ ð1 ∓ βÞ=2. However, using νexactð0Þ practically does
not change the numerical solution of Eq. (3.6) in the case of
relativistic particles.
For the first time, the parametric resonance in neutrino

oscillations in matter with harmonically varying density
was studied in Ref. [37]. One can see in Eq. (3.6) that the
action of GW on neutrino oscillations is the effective
harmonic modulation of the transverse magnetic field. It
is this manifestation of the parametric resonance, which
was discussed in Ref. [38], where neutrino spin and spin-
flavor oscillations in inhomogeneous electromagnetic
fields were studied.

Using the results of Ref. [38], we suppose that

_ϕ ¼ 2Ω; ð3:7Þ

where Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμBÞ2 þ V2

0=4
p

is the frequency of the neu-
trino spin precession at the absence of GW, _ϕ ¼ ωm2=2E2

for relativistic neutrinos, and E is the neutrino energy. Here
we neglect the dispersion of GW and set ω ¼ k. If h ≪ 1,
Eq. (3.6) can be reduced to the Mathieu equation. The
solution of such an equation can be represented in terms of
special functions only. That is why we analyze here only
numerical solutions of Eq. (3.6) to highlight the manifes-
tation of the parametric resonance.
We suppose that a beam of left polarized neutrinos is

produced at the distance z0 ¼ 10−5 au from merging BHs.
Here 1 au ¼ 1.5 × 1013 cm is the astronomical unit. There
is no commonly adopted model for the production of
neutrinos in coalescing BHs or NSs. However, neutrinos
can be produced in dense matter of an accretion disk
surrounding these BHs. If BHs have masses ∼30 M⊙ [16],
their Schwartzchild radii are RS ≈ 107 cm. The inner radius
of such a diskwas found inRef. [39] to be∼10RS ¼ 108 cm,
which is comparable with z0.
The considered BHs are taken to emit GW in the same

direction as the neutrino beam. We assume that, at
z0 ¼ 10−5 au, h ¼ 10−1. If we observed the merging of
these BHs at the distance z ∼ 1 Gpc [17], the amplitude of
the produced GWwould be hobs ¼ 5 × 10−21, which is very
close to values recorded by the modern GW detectors [16].
We assume that the accretion disk, which surrounds

coalescing BHs and where neutrinos are produced, consists
of the electroneutral hydrogen plasma with the electron
number density in the range ne ¼ ð1018–1022Þ cm−3. In
this case, the effective potential of the neutrino interaction
with matter reads V0 ¼ ffiffiffi

2
p

GFne. Note that numerical
simulations of accretion disks around merging BHs predict
the maximal plasma densities ∼ð1029–1030Þ cm−3, which is
much higher than the value chosen here. However, since
we assume that the plasma density is constant along the
neutrino trajectory, we may use these moderate values.
We also suppose that a constant magnetic field is present

in the system. The magnetic energy is taken to be μB≈
5.8 × ð10−20 − 10−16Þ eV. If we suppose that μ ¼ 10−14μB
[40], where μB is the Bohr magneton, then the magnetic
field should be in the range ð103–107Þ G. Even if we take
that μ ∼ 10−19μB [42], which is a natural value for a Dirac
neutrino with the mass ∼1 eV [43], the magnetic field
should be as strong as ð108–1012Þ G. Such magnetic fields
are compatible with the results of the numerical simulations
of accretion disks carried out in Ref. [39], whereB ∼ 1012 G
was used.
Neutrinos are taken to have the mass m ∼ 1 eV [43] and

the energy in the range E ¼ ð10 − 103Þ eV. To fulfil the
resonance condition in Eq. (3.7) for the chosen parameters
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of neutrinos and the external fields, we have to set
ω ¼ 5.4 × 102 s−1. If one observed GWs, emitted by the
merging of BHs, from the distance z ∼ 1 Gpc [17], the GW
frequency would be red-shifted to ωobs ¼ ω=ð1þ zÞ ¼
4.5 × 102 s−1, where z ≈ 0.2 [44]. This value of ωobs is
again very close to GW frequencies registered by the
current GW detectors [16].
If one takes the parameters of the external fields and a

neutrino as specified above, the resonance condition in
Eq. (3.7) is fulfiled. Indeed, in the numerical simulations
of Eq. (3.6), we use mainly two sets of parameters:
ne ¼ 1022 cm−3, μB ¼ 5.8 × 10−16 eV, and E ¼ 10 eV;
or ne ¼ 1018 cm−3, μB ¼ 5.8 × 10−20 eV, and E ¼
103 eV. In both cases we take that m ¼ 1 eV and ω ¼
5.4 × 102 s−1. Now, if one computes _ϕ and Ω, one can see
that _ϕ ¼ 2Ω; i.e., Eq. (3.7) is satisfied. It should be noted
that the magnetic field B and the electron density ne
are assumed to be constant along the neutrino trajectory.
This assumption allows one to simplify the analysis of
Eq. (3.6). Moreover, in this situation, we can highlight
the manifestation of the parametric resonance in neutrino
oscillations.
In Fig. 1, we show the transition probabilities Pν−→νþðzÞ

versus the distance traveled by the neutrino beam z ≈ t for
spin oscillations ν− → νþ obtained using the numerical
solution of Eq. (3.6) for different plasma densities, mag-
netic fields and neutrino energies chosen above. The
function Pν−→νþðzÞ is rapidly oscillating. That is why we
represent it only in the insets in Fig. 1 for small z. In the
main Fig. 1, we show only the upper and lower envelope
functions, which are built with the help of the spline
interpolation of the maxima and minima of Pν−→νþðzÞ,
respectively, as well as the averaged transition probabilities
P̄ν−→νþ . To highlight the impact of GW on neutrino spin
oscillations, we show the upper envelope functions of

Pν−→νþðzÞ, as well as P̄ν−→νþ , at h ¼ 0, i.e., for neutrino
spin oscillations only in matter and the transverse mag-
netic field.
One can see in Fig. 1 that, at z ≈ 0.5 au for E ¼ 10 eV

and at z ≈ 500 au for E ¼ 103 eV, the upper envelope
functions reach the unit value and P̄ν−→νþ ∼ 0.75. It is the
manifestation of the parametric resonance, which happens
even for small h ¼ 10−1. The upper envelope functions and
P̄ν−→νþ for h ¼ 0 do not exceed 0.5 and 0.25, respectively.
It means that the transition probability cannot be amplified
to great values without GW.
If the resonance condition in Eq. (3.7) is satisfied, the

amplitude of the solution of the Mathieu equation starts to
grow as ∼ expðϰtÞ [45], where the increment reads ϰ ∼ h _ϕ.
Thus, if a neutrino travels the distance L ¼ ϰ−1 ∼ ðh _ϕÞ−1,
the transition probability reaches great values. Comparing
Figs. 1(a) and 1(b), we can confirm this feature.
If we study spin oscillations of low energy neutrinos with

E ¼ 10 eV shown in Fig. 1(a), the value of zmax ¼ L ∼
0.5 au is comparable with the size of a planetary system.
It means that spin oscillations induced by GWare important
for such neutrinos. Note that the creation of low energyDirac
neutrinos with E≲ 10 eV in matter with a time dependent
density was studied in Ref. [46].
The outer radius of an accretion disk for BHwith themass

10 M⊙ was found in Ref. [47] to reach 5 × 104RS ¼
5 × 1011 cm, which is only 1 order of magnitude less than
zmax for E ¼ 10 eV. However, if we deal with two merging
BHs withM ¼ 30 M⊙ [16], they can attract some additional
matter from the outer space slightly increasing the size of the
mutual accretion disk.
Note that nowadays there are active searches of simulta-

neous emission of GWs and neutrinos in coalescence of
NSs [19]. If we suppose that the emission of low energy
neutrinos happens owing to the time dependence of the

FIG. 1. The probabilities Pν−→νþðzÞ for transitions ν− → νþ versus the distance z ¼ t, passed by the neutrino beam, built on the basis
of the numerical solution of Eq. (3.6) for different plasma densities, magnetic fields, and neutrino energies. Red and green lines are the
upper and lower envelope functions. Blue lines are the averaged transition probabilities. Solid lines correspond to h ¼ 10−1 and dashed
lines to h ¼ 0. (a) ne ¼ 1022 cm−3, μB ¼ 5.8 × 10−16 eV, and E ¼ 10 eV; (b) ne ¼ 1018 cm−3, μB ¼ 5.8 × 10−20 eV, and
E ¼ 103 eV. The insets represent the transition probabilities, shown by the black lines, for 0 < z < 5 × 10−2 au in panel (a) and
0 < z < 5 × 102 au in panel (b).
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effective number density of NS, as in Ref. [46], the duration
of the neutrino pulse is ∼10−3 s. According to up-to-date
observations [17], a typical time scale of a GWwave packet
is ∼10−1 s. Thus, these neutrinos are very well localized
inside such a wave packet. Thus, in the first approximation,
in our studies of neutrino oscillations driven by GW, we can
neglect the time dependence of the frequency and the
amplitude of GW (the GW chirp), observed by the modern
GW detectors [17].
The condition of the parametric resonance appearance

in Eq. (3.7) is very sensitive to the change of _ϕ or,
equivalently, to different frequencies ω of GW. To illustrate
the dependence of the dynamics of neutrino oscillations
for different _ϕ, in Fig. 2, we show the upper and lower
envelope functions, as well as the averaged transition
probabilities, versus the distance passed by the neutrino
beam for different _ϕ. We compare the case when the
resonance condition in Eq. (3.7) is fulfiled with the small
deviations from this condition, _ϕ� ¼ 2Ω� hΩ=4. One can
see in Fig. 2 that in both cases the upper envelope function
and P̄ν−→νþ for _ϕ ≠ 2Ω have smaller values than these for
_ϕ ¼ 2Ω. Moreover, comparing Figs. 2(a) and 2(b), one gets
that the transition probability behaves differently in
decreasing and increasing of ω.
Now let us qualitatively discuss the dynamics of neutrino

oscillations at larger distances from the point of the BHs
merging. We suppose that, in the vicinity of this point, the
resonance condition in Eq. (3.7) is fulfiled. It means that the
quantities _ϕ, μB, and V0 are of the same order of magnitude
there. If a neutrino propagates further, the magnetic field
decreases as 1=r3, i.e., quite rapidly. The region of the BH
coalescence, where neutrinos are produced, is likely to be
surrounded by dense matter, e.g., an accretion disk.
However, the matter density also should decrease very
rapidly outside an accretion disk at great r. The frequency
of GW, which _ϕ is proportional to, is practically unchanged.

It means that, if Eq. (3.7) is valid at moderate r, at great r, it is
converted to

_ϕ ≫ Ω: ð3:8Þ

We should describe neutrino spin oscillations if the condition
in Eq. (3.8) is fulfiled.
Of course, to study neutrino spin oscillations in this case

we can employ numerical simulations for r0 < z < r,
where r ≫ r0. However, at great r, we have to take into
account the fact that GW become spherical rather than
plane, as we assumed in Eq. (3.1). That is why we
qualitatively describe spin oscillations in this situation.
The analysis of Eq. (3.6) accounting for Eq. (3.8) at

arbitrary h was carried out in Ref. [48]. In this situation,
the effective Hamiltonian has the constant term and the
rapidly oscillating one with the frequency _ϕ. We split the
wave function into slowly and rapidly oscillating parts,
ν̃ ¼ hν̃i þ δν̃. After averaging over 2π= _ϕ, we find that hν̃i
obeys the equation [48]

i
dhν̃i
dt

¼ H̃effhν̃i;

H̃eff ¼
 
−V0=2 − ðμBhÞ2=4 _ϕ μB

μB V0=2þ ðμBhÞ2=4 _ϕ

!
;

ð3:9Þ

where we take that ϵ ¼ −1 in _ϕ.
Using Eq. (3.9) and supposing that external fields, V0, B,

and h, change adiabatically, we get that the resonance
condition reads

V0 ¼ ðμBhÞ2
2ωð1 − βÞ : ð3:10Þ

FIG. 2. The behavior of neutrino spin oscillations for different _ϕ. The upper (red lines) and lower (green lines) envelope functions for
Pν−→νþðzÞ, as well as the averaged transition probabilities (blue lines), versus the distance traveled by the neutrino beam built on the
basis of the numerical solution of Eq. (3.6). Solid lines imply the resonance condition in Eq. (3.7) and correspond to the same parameters
as in Fig. 1(a). Dashed lines correspond to small deviations _ϕ� from Eq. (3.7). (a) _ϕþ ¼ 2Ωþ hΩ=4. (b) _ϕ− ¼ 2Ω − hΩ=4.
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There is a very poor knowledge on the matter density
distribution, which V0 is proportional to, in an accretion
disk. This quantity is rather model dependent. However,
let us we assume that, in the vicinity of the point of
BH merging, the matter term V0 dominates over other
contributions in H̃eff in Eq. (3.6). An analogous assumption
was made to build Fig. 1. Then we take that an accretion
disk has a sharp edge at rout. Thus, the condition in
Eq. (3.10) can be fulfiled near rout since both B and h
are nonzero even outside the accretion disk.

IV. DISCUSSION

In the present work, we have studied the neutrino spin
evolution in background matter and an external electro-
magnetic field in curved spacetime. This study was
motivated by the necessity for the substantiation of the
quasiclassical equation for the neutrino spin evolution,
which was proposed in Ref. [9]. In Sec. II, we have
rederived this covariant equation starting from the Dirac
equation for a massive neutrino interacting with external
fields in curved spacetime.
The form of the tensor Gab in Eq. (2.8), which incorpo-

rates the contribution of the gravitational interaction to the
neutrino spin evolution, is different from that found in
Refs. [7–9]. We have compared the phenomenological
consequences, namely, the description of neutrino spin
oscillations in particular background fields in curved space-
time, of the approach in Refs. [7–9] and that developed here.
They turn out to coincide. It is likely to be a general result.
Indeed, as shown in Ref. [26], these approaches predict the
same frequency of the neutrino spin precession when a
particle circularly orbits a Schwarzschild BH. However, the
problem of the most precise description of the particle spin
evolution in background fields and an arbitrary gravitational
field is still under discussion (see, e.g., the series of works
[12,14]). Nevertheless, we should mention that the contri-
butions of background matter and an electromagnetic field to
the neutrino spin evolution Eq. (2.7) coincide with those
proposed in Ref. [9].
Then, in Sec. III,we have applied the developed formalism

for the description of neutrino spin oscillations in matter
and the constant transverse magnetic field under the influ-
ence of a plane GW. We have derived the effective
Schrödinger equation and demonstrated that GW can induce
the parametric resonance in neutrino spin oscillations.
It should be noted that the contribution to the neutrino

spin evolution from the proper gravitational field of a
compact rotating object depends on the distance between a

neutrino and this object as 1=r3 [8]. The amplitude of GW
falls with the distance as 1=r. Hence, despite the fact that
the impact of the proper gravitational interaction on the spin
precession is stronger than that of GW at short distances,
neutrino spin oscillations can be more significantly affected
by GW at larger distances where the direct gravitational
interaction decays more rapidly.
Considering GW emitted by coalescing BHs, in Sec. III,

we have demonstrated that the transition probability of
neutrino spin oscillations can potentially reach great values.
In our simulations we have chosen the parameters of
external fields, such as the matter density and the strength
of the magnetic field, not exceeding the predictions of the
model of accretion disks around BHs [39]. The range of
neutrino magnetic moments, required for the enhancement
of the transition probability, is also compatible with the
values expected for Dirac neutrinos [41,42].
Unfortunately, in Fig. 1(a), we predict the oscillations

length L comparable with the outer radius of an accretion
disk [47] only for very low energy neutrinos with
E ¼ 10 eV. Nevertheless the creation of such neutrinos
is anticipated in matter with time dependent density [46].
In Sec. III, we have also studied the dynamics of neutrino

spin oscillations for different frequencies of GW; cf., Fig. 2.
We have demonstrated that small deviations from the
resonance condition in Eq. (3.7) result in the decreasing
of the transition probability.
We have qualitatively studied neutrino spin oscillations at

large distances from coalescing BHs at the end of Sec. III.
For this purpose we have assumed that both the magnetic
and gravitational fields, as well as the matter density, are
rapidly decreasing at large distances. Thus _ϕ becomes the
greatest parameter in the effective Hamiltonian. In this
situation, using the results of Ref. [48], it was possible to
exclude the time dependence from the effective Hamiltonian
and analyze whether a resonance could appear in neutrino
oscillations. One could expect the resonant enhancement of
spin oscillations if an accretion disk has a sharp outer edge.
However, the actual situation is unclear because of the lack
of understanding of accretion disks dynamics around BHs.
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