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We consider two semi-infinite magnetoelectric media separated by a planar interface whose electro-
magnetic response is described by axion electrodynamics. The time-dependent Green’s function character-
izing this geometry is obtained by a method that can be directly generalized to cylindrical and spherical
configurations of two magnetoelectrics separated by an interface. We establish the far-field approximation
of Green’s function and apply these results to the case of a charged particle moving from one medium to the
other at a high constant velocity perpendicular to the interface. From the resulting angular distribution of
the radiated energy per unit frequency, we provide theoretical evidence for the emergence of reversed
Vavilov-Čerenkov radiation in naturally existing magnetoelectric media. In the case where one of the
magnetoelectrics is a 3D topological insulator, TlBiSe2, for example, located in front of a regular insulator,
we estimate that an average forward Vavilov-Čerenkov radiation with frequency ∼2.5 eV (∼500 nm) will
produce a highly suppressed reversed Vavilov-Čerenkov radiation, which can be characterized by an
effective frequency in the range of ∼ð4 × 10−3 − 0.5Þ meV. However, this value compares favorably with
recent measurements in left-handed metamaterials yielding reversed Vavilov-Čerenkov radiation with
frequencies of the order of ð1.2–3.9Þ × 10−2 meV.

DOI: 10.1103/PhysRevD.99.116020

I. INTRODUCTION

Since its experimental discovery in 1934 [1,2], Vavilov-
Čerenkov (VC) radiation has played a special role in the
study of high-energy particle physics, high-power micro-
wave sources, and nuclear and cosmic-ray physics [3,4],
both theoretically and phenomenologically. VC radiation
occurs when charged particles travel across a dielectric
medium and propagate through the material with velocity v
higher than c=

ffiffiffiffiffi
ϵμ

p
. Here c is the speed of light in vacuum,

ϵ is the permittivity of the medium, μ is its permeability,
which we take equal to one, and n ¼ ffiffiffi

ϵ
p

is the refraction
index of the material. Throughout this paper, we use
Gaussian units. The first theoretical description of such
radiation in the framework of Maxwell’s theory, developed
by Frank and Tamm in Ref. [5], revealed its unique
polarization and directional properties. In particular, VC
radiation is produced in a forward cone defined by the
angle θC ¼ cos−1½c=vn� < π=2with respect to the direction
of the incident charge. Since the emergence of accelerators
in nuclear and high-energy physics, VC radiation has been
widely used to design an impressive variety of detectors,
such as, e.g., the ring imaging Čerenkov detectors [6],

which can identify charged particles by providing a
straightforward effective tool to test its physical properties
like velocity, energy, direction of motion, and charge [7].
As remarkable cases, the antiproton [8] and the J particle
[9] were discovered using Čerenkov detectors.
In recent years, the study of the reversed VC radiation, an

exotic electromagnetic phenomenon, has long been of
considerable interest [10–18]. The reversed VC radiation
occurs when the photons are emitted in the backward
direction with respect to the velocity of the propagating
charged particle. This remarkable analytic prediction was
introduced by Veselago in Ref. [19], invoking materials
having simultaneously a negative permittivity and per-
meability, dubbed as left-handed media (LHM), as opposed
to normal dielectrics called right-handed media (RHM).
This distinction is better characterized in terms of an
electromagnetic wave with electric field Ē, magnetic field
B̄, and wave vector k propagating in a linear medium
where the conditions k · Ē ¼ 0 and k · B̄ ¼ 0 hold. A
medium is said to be left-handed (right-handed) according
to k being antiparallel (parallel) to Ē × B̄, i.e., when the
group velocity and the phase velocity of the wave are
antiparallel (parallel). The realization of a negative refrac-
tion index by creating an interface between a LHM and an
ordinary media was also considered in Ref. [19] and
experimentally proven later in Ref. [20]. Since LHM are
not readily available in nature, they have been artificially
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constructed in the laboratory as metamaterials, e.g., by
combining metallic thin wires [10] with split-ring resona-
tors [11] in a periodic cell structure. Also plasmonic thin
films [12] and photonic crystals [13] constitute an
alternative.
In this paper, we show that reversed VC radiation occurs

in magnetoelectric media [21], which are naturally existing
RHM like antiferromagnets [22], topological insulators
(TIs) [23–25], and Weyl semimetals [26], for example.
It is interesting to observe that reversed Čerenkov sound
in topological insulators has been already discussed in
Ref. [27]. Linear magnetoelectric media are characterized
by the magnetoelectric polarizability tensor αij, which is
defined as the response of the magnetization under a
change of an electric field or, equivalently, as the response
of the polarization under a change of a magnetic field, i.e.,

αij ¼
�∂Mj

∂Ei

�
B¼0

¼
�∂Pi

∂Bj

�
E¼0

≡ α̃ij þ
e2

ℏc
ϑ

4π2
δij; ð1Þ

where ϑ is a dimensionless parameter. The equality follows
becauseMj ¼ ∂E=∂Bj and Pi ¼ ∂E=∂Ei, with E being the
electromagnetic enthalpy density [28]. Here α̃ij denotes
the traceless part of αij. Leaving aside the remarkable
microscopic properties of magnetoelectric media, we will
consider only the effective-medium theory describing
their electromagnetic response arising from the term
proportional to δij in Eq. (1), i.e., assuming an isotropic
material. Such effective description is provided by the
standard Maxwell Lagrangian LED plus the additional term
Lϑ ¼ − e2

ℏc
ϑ
4π2

E · B. Here E and B are the electromagnetic
fields, α is the fine-structure constant, and ϑ is a field
known as the (scalar) magnetoelectric polarizability (MEP)
in condensed matter physics or the axion field in particle
physics [29]. In this way, the addition of Lϑ to the Maxwell
Lagrangian is usually referred to as the Lagrangian density
for axion electrodynamics. However, we consider ϑ as an
additional parameter characterizing the material, in the
same footing as its permittivity ϵ and permeability μ, which
lead us to restrict the designation of axion electrodynamics
to ϑ electrodynamics (ϑ-ED) emphasizing that ϑ is not a
dynamical field. The nature of the MEP depends on the
type of magnetoelectric material under consideration and it
is deeply related to the magnetic symmetries of the sub-
stance [30,31] and/or to the properties of its band structure
[24]. It can be calculated from a Kubo-type response
formula, once a microscopic model Hamiltonian for the
material is adopted. The permittivity ϵ is usually designed
by the Drude-Lorentz type of single resonance oscillator
model [32]. As as first step in dealing with radiation, we
consider ϑ and ϵ frequency independent.
The main feature characterizing magnetoelectric materi-

als, which is responsible for most of their unusual effects, is
the magnetoelectric (ME) effect arising from the additional
contribution Lϑ [33]. This coupling produces effective

field-dependent charges and current densities, which allow
the generation of an electric (magnetic) polarization due to
the presence of a magnetic (electric) field. Let us emphasize
that we are dealing with standard electrodynamics of a
RHM (ϵ > 1; μ > 1; n > 1) supplemented only by addi-
tional field-dependent sources.
Among the choices of accessible magnetoelectric media,

we consider materials characterized by a piecewise constant
value of the MEP ϑ and focus on TIs. Three-dimensional
(3D) strong TIs are a fascinating class of RHM that can
host a conducting helical surface state with an odd number
of fermions at the low-energy limit, each having the
dispersion relation of a nondegenerate Dirac cone with
a crossing point at or close to the Fermi level EF.
These gapless crossing points are called Dirac points.
Nevertheless, TIs behave as magnetoelectric insulators in
the bulk with a finite energy gap. The surface state is further
topologically protected by time-reversal symmetry and/or
inversion symmetry, coupled with spin-momentum locking
properties. The latter means that the spin orientation of
the electrons on the surface Dirac cone is always locked
perpendicularly to their momentum. A distinguishing fea-
ture of 3D strong TIs among magnetoelectrics, is that the
dimensionless parameter ϑ, dubbed as the orbital magneto-
electric polarizability in this case, is of topological nature
and arises from the bulk band structure. It is given by a non-
Abelian Berry flux over the Brillouin zone and results in an
integer multiple of π [24,28,34].
Some general comments regarding the properties of the

additional term Lϑ in the case of TIs are now in order. Let
us recall that the electric and magnetic fields have dimen-
sions of charge divided by distance squared in Gaussian
units (for the moment we retain ℏ and c). In this way, the
contribution of the Lagrangian density Lϑ to the action is
Sϑ ¼ ðcℏ2=e4Þ R dtd3xLϑ. Rewriting E ·B in terms of the
field strength tensor Fαβ ¼ ∂αAβ − ∂βAα, where Aμ is the
electromagnetic potential, and considering a closed space-
time with no boundaries, we get

Sϑ
ℏ

¼ ϑ

32π2

Z
d4xϵαβμν

1

e2
FαβFμν ¼ ϑC2; ð2Þ

where C2 is an integer. This is because in such spaces the
dimensionless integral in Eq. (2) is equal to 32π2C2, where
C2 is the second Chern number of the manifold [35]. Under
changes of ϑ, the quantity expð−iSϑ=ℏÞ must remain
invariant, which means that two values of ϑ differing by
an integer multiple of 2π are equivalent. Further imposing
time-reversal (TR) symmetry yields new constraints on the
values of ϑ. Since E ·B is odd under TR, one could think
that the only allowed value would be ϑ ¼ 0 (modulo 2π).
Nevertheless, the condition expð−iSϑ=ℏÞ ¼ expðþiSϑ=ℏÞ
yields the possibility of having ϑ ¼ π. In this way, we
obtain two families of magnetoelectric materials described
by the choices ϑ1 ¼ 0 (normal insulators) and ϑ2 ¼ π
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(topological insulators). Both values of ϑ are defined
modulo 2π.
Another important property of Sϑ is that the integrand in

Eq. (2) is a total derivative, as can be readily seen by
recalling the Bianchi identity ϵαβμν∂βFμν ¼ 0. In this way,
modifications to Maxwell equations only arise when
∂μϑ ≠ 0, as it happens at the interface Σ of two materials
having different constant values of ϑ, for example. In this
case, the action (2) can be integrated yielding a 2þ 1 action
at the boundaries corresponding to the Chern-Simons term.
This means that at the boundaries of a 3D TI we have a
quantum anomalous Hall (QAH) effect associated with
each value of ϑ, with Hall conductivity given by σH ¼
ϑe2=2πh. In this way, the contribution to the total Hall
conductivity from the interface Σ between a TI and a
regular insulator is

σΣH ¼ e2

h

����� 12
����þm

�
; ð3Þ

since two values of ϑ differing by an integer multiple m of
2π are equivalent.
The half integer contribution to σΣH is a bulk property,

which allows us to distinguish this case from that of a 2D
surface gapped crystal having σH ¼ Ne2=h, withN integer,
thus showing that both conditions are not topologically
equivalent. When dealing with a TR-invariant TI in a region
with no boundaries, the number m remains undetermined.
The integer part of σΣH becomes resolved only in the
presence of a boundary between two TIs with different
values of ϑ, when TR symmetry is broken by gapping the
interface. In this way, we provide an adiabatic transition
between those two topologically inequivalent insulators
and the value of m depends on the specific properties of
such breaking. Such TR symmetry breaking is usually
realized by an external magnetic field across the interface or
by a magnetic doping of the surface.
The existence of TIs was predicted in Refs. [36–38] and

their observation in two-dimensional HgTe=CdTe quantum
wells was reported in Ref. [39]. Then the authors in
Refs. [40–42] discovered that the topological characteri-
zation of the quantum spin Hall insulator state has a natural
generalization in three dimensions. Shortly afterward, this
behavior was predicted in several real materials [43] which
included Bi1−xSbx as well as strained HgTe and α-Sn.
Subsequently, the experimental discovery of the first three-
dimensional TIs in Bi1−xSbx was reported in Ref. [44].
Later, a second generation of TIs, such as Bi2Se3, Bi2Te3,
and Sb2Te3, was identified theoretically in Ref. [45] and
experimentally discovered in Refs. [45,46]. This led to the
detection of a huge variety of TIs [47] and to their
subsequent classification in a periodic table where different
classes of these materials can be identified, distinguishing
them by the presence or absence of time-reversal, particle-
hole, and chiral symmetry [24]. A new class of TIs, called

axion insulators (AXIs), has been recently proposed as a
new arena to probe topological phases. They have the
same bulk MEP ϑ ¼ π as 3D TIs, with gapped both bulk
and surfaces, where the topological index is protected by
inversion symmetry, instead of time-reversal symmetry.
They are expected to show up in magnetically doped TI
heterostructures with magnetization pointing inward and
outward from the top and bottom interfaces of the TI
[48,49]. Also, the possibility of having a different class of
intrinsic axion insulators, which do not require magnetic
doping, has been investigated in a pyrochlore lattice
in Ref. [50].
When time reversal is broken at the interface between a

3D strong TI and a regular one, either by the application
of a magnetic coating and/or by doping the TI with
transition metal elements, the opening of the gap in the
surface states induces several exotic phenomena that can be
tested experimentally. Among them we find the QAH
effect, quantized magneto-optical effect, topological mag-
netoelectric (TM) effect, and image magnetic monopole
effect, all of which are a direct consequence of the change
in the parameter ϑ between the two phases. These effects
can be also produced in AXIs.
The QAH effect has already been experimentally

observed in thin films of the magnetic chromium-doped
topological insulator ðBi; SbÞ2Te3 [51]. In Ref. [52] the
observation of the QAH effect in extremely thin films of the
magnetic topological insulator ðCr0.12Bi0.26Sb0.62Sb0.62Þ2Te3
is reported. The characteristic behavior of the QAH
effect has also been shown experimentally in thin films
of the topological insulator CrxðBi1−ySbyÞ2−xTe3, which
were grown on semi-insulating InP(111) substrates using
molecular beam epitaxy methods [53]. Also, Ref. [54]
demonstrates a high-precision confirmation of the QAH
state in V-doped ðBi; SbÞ2Te3 films, which is a strong
ferromagnetic TI. The QAH effect has also been observed
in AXIs [55]. Employing terahertz time-domain spectros-
copy, quantized magneto-optical effects have been
observed by measuring the topological Faraday and Kerr
rotations in QAH states on CrxðBi0.26Sb0.74Þ2−xTe3 mag-
netic TI films. In this work, the authors also report the
observation of the QAH together with an experimental
indication of the TM effect [56]. Quantized Faraday and
Kerr rotations in magnetic fields higher than 5 T were
observed in the 3D topological insulator Bi2Se3, providing
evidence of the TM effect by an indirect measurement of
the value ϑ ¼ π [57]. Reference [58] reported a quantized
Faraday rotation in high external magnetic fields when
linearly polarized terahertz radiation passes through the
two surfaces of a strained HgTe 3D TI. This constitutes a
direct consequence of the TM effect, thus confirming axion
electrodynamics as the effective theory describing the
response of 3D strong TIs.
Our following discussion of the reversed VC radiation

parallels the analysis of VC radiation in standard refer-
ences [59–61]. We deal with radiation by further extending
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to the time-dependent case the Green’s function method
already developed in Refs. [62,63] to study the static
electromagnetic response of TIs.
The paper is organized as follows. In Sec. II, we review

the effective theory describing the electromagnetic res-
ponse of magnetoelectrics, to be called ϑ-ED. Section III
contains the calculation of the time-dependent Green’s
function (GF) for the electromagnetic potential Aμ arising
from arbitrary sources in the presence of two semi-infinite
magnetoelectric media with different values of the param-
eter ϑ, each having the same permittivity ϵ, and separated
by a planar interface that encodes the manifestation of the
ME effect. This section also reports the results of the far-
field approximation of the GF, which is required to deal
with radiation. We give an analytic expression of the GF in
this limit, whose detailed calculations are presented in the
Appendix. In this way, we determine how the phase of
the GF in standard ED [59] changes due to the presence
of the magnetoelectric media, thus explaining the origin of
reversed VC radiation. In Sec. IV, we consider a charged
particle moving with constant velocity v > c=

ffiffiffi
ϵ

p
in the

direction perpendicular to the interface between the two
magnetoelectrics. Our formalism yields analytic results for
the physical quantities involved. The far-field expressions
for E and B are calculated, together with the angular
distribution of the total radiated energy per unit frequency
d2E=dωdΩ. The resulting angular distribution indicates the
presence of reversed VC radiation, which is the most
important conclusion of our work. Its presence is further
illustrated in polar plots showing the angular distribution of
the reversed VC radiation together with those correspond-
ing to the standard forward VC radiation. In Sec. V, we
calculate the total radiated energy per unit frequency
dE=dω, both in the forward and the backward directions,
together with the number of photons per unit length
radiated in the backward direction. The power per unit
frequency radiated in the backward direction is also
obtained. Section VI is devoted to some numerical esti-
mations of our results considering the topological insulator
TlBiSe2 as one of the semi-infinite media and a regular
insulator with the same permittivity as the other. We have
chosen this material because its electric and topological
properties are known from previous references. We empha-
size that we are not doing any ab initio or experimental
calculation, either on this material or in any other sector of
the manuscript. Let us insist again that our approach is
based on the effective electromagnetic response of mag-
netoelectrics encoded in ϑ-ED. From this point of view, we
assume that any material we refer to has been fully
characterized, meaning that their macroscopic parameters
have been already determined. Section VII comprises a
concluding summary of our results. In the following, we set
ℏ ¼ c ¼ 1, we denote by ημν the Minkowski metric with
signature ðþ;−;−;−Þ, and we take the convention
ε0123 ¼ 1 for the Levi-Civita symbol.

II. ϑ ELECTRODYNAMICS

Let us consider two semi-infinite magnetoelectric media
separated by a planar interface Σ located at z ¼ 0, filling the
regions U1 and U2 of the space, as shown in Fig. (1).
Motivated by the results in Ref. [64], whereby the effects of
the ϑ-term are substantially enhanced with respect to the
optical contributions when both ϑ media have the same
permittivity, we take ϵ1 ¼ ϵ2 ¼ ϵ. In our case, we want to
suppress the transition radiation, which occurs whenever a
charge propagates across two media with different permit-
tivities [65]. This radiation would be present for all particle
velocities and would interfere with the VC radiation we are
interested in, making unnecessarily complicated its theo-
retical discussion, together with hindering its possible
experimental verification. Additionally, we assume that
the parameter ϑ is piecewise constant taking the values ϑ ¼
ϑ1 in the region U1 and ϑ ¼ ϑ2 in the region U2. This is
expressed as

ϑðzÞ ¼ HðzÞϑ2 þHð−zÞϑ1; ð4Þ

where HðzÞ is the Heaviside function with HðzÞ¼1;z≥0;
andHðzÞ ¼ 0; z < 0. In this restricted case, we can take the
action for the effective theory describing the electromag-
netic response of this media as

S½Φ;A� ¼
Z

dtd3x

�
1

8π

�
ϵE2 −

1

μ
B2

�

−
e2

4π2
ϑðzÞE ·B − ϱΦþ J ·A

�
; ð5Þ

where ϱ (J) are charge (current) densities and e2 ¼ α is the
fine-structure constant.
Let us emphasize that we are describing each medium by

a constant MEP ϑ in the bulk, which has the value ϑ ¼ π
(ϑ ¼ 0) for a topological insulator (regular insulator).

FIG. 1. Region over which ϑ-ED is defined, with a uniform
dielectric constant ϵ.
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While there are boundary effects arising from the gapping
of the interface, the MEP ϑ ¼ π of the bulk of the 3D
topological insulator has a gauge-invariant and topological
origin.
The electromagnetic fields E and B are related with the

electromagnetic potentials Φ and A in the standard form

E ¼ −
∂A
∂t −∇Φ; B ¼ ∇ ×A; ð6Þ

as a consequence of the homogeneous Maxwell equations

∇ ·B ¼ 0; ∇ ×E ¼ −
∂B
∂t : ð7Þ

It can be shown that the term E · B is a total derivative,
which tells us that there are no modifications to the
dynamics in the bulk. In this way, all the effects induced
by Lϑ arise on the interface and will manifest themselves
as a consequence of the boundary conditions there.
Performing the variation of the action (5) gives the
following set of modified Maxwell equations:

ϵ∇ ·E ¼ 4πϱþ θ̃δðzÞB · û; ð8Þ

∇ ×B − ϵ
∂E
∂t ¼ 4πJþ θ̃δðzÞE × û; ð9Þ

where û is the outward unit vector normal to the region U1

and

θ̃ ¼ αðϑ2 − ϑ1Þ=π: ð10Þ

In the case of a TI located in region 2 of Fig. 1 (ϑ2 ¼ π), in
front of a regular insulator (ϑ ¼ 0) in region 1, we have

θ̃ ¼ αð2mþ 1Þ; ð11Þ

with m being an integer depending on the details of the TR
symmetry breaking at the interface. For definiteness, we
deal with media having μ ¼ 1. The novelty in the above
equations is that they introduce additional field-dependent
effective charge and current densities

ϱϑ ¼
1

4π
θ̃δðzÞB · û; Jϑ ¼ 1

4π
θ̃δðzÞE × û; ð12Þ

with support only on the interface Σ between the two
media. Consequently, the standard Maxwell equations
remain valid in the bulk. The conservation equation

∇ · Jϑ þ
∂ϱϑ
∂t ¼ 0 ð13Þ

can be readily verified by using Faraday’s law together with
the relation

½∂iδðzÞ�εijkEjuk ¼ δ0ðzÞδ3i εijkEjuk ¼ 0; ð14Þ

which arises since the only nonzero component of uk
is u3 ¼ 1.
The terms proportional to θ̃ in Eqs. (8) and (9) describe

the ME effect, which is the distinctive feature of ϑ-ED.
Let us remark that Eqs. (8) and (9) can also be obtained
starting from the standard Maxwell equation in a material
medium [59,60],

∇ ·D ¼ 4πϱ; ∇ ×H ¼ ∂D
∂t þ 4πJ; ð15Þ

∇ ·B ¼ 0; ∇ ×E ¼ −
∂B
∂t ; ð16Þ

with the constitutive relations

D ¼ ϵE −
α

π
ϑðzÞB; H ¼ Bþ α

π
ϑðzÞE: ð17Þ

Assuming that the time derivatives of the fields are finite
in the vicinity of the interface, the modified Maxwell
equations (8) and (9) yield the following boundary
conditions (BCs)

ϵ½Ez�z¼0þ
z¼0− ¼ θ̃Bzjz¼0; ½û ×B�z¼0þ

z¼0− ¼−θ̃ û ×Ejz¼0; ð18Þ

½Bz�z¼0þ
z¼0− ¼ 0; ½û ×E�z¼0þ

z¼0− ¼ 0; ð19Þ

for vanishing external sources at z ¼ 0. These BCs are
derived either by integrating the field equations over a
pill-shaped region across the interface or by using the
Stokes theorem over a closed rectangular circuit per-
pendicular to the interface [59,60]. The notation is
½V�z¼0þ

z¼0− ¼Vðz¼0þÞ−Vðz¼0−Þ, Vjz¼0¼Vðz¼0Þ, where
z ¼ 0� indicates the limits z ¼ 0� η, with η → 0, respec-
tively. The continuity conditions (19) imply that the right-
hand sides of the discontinuity conditions (18) are well
defined and they represent self-induced surface charge
and surface current densities, respectively. The BCs (18)
clearly illuminate again the ME effect, which is localized
just at the interface Σ between the two media.

III. GREEN’S FUNCTION METHOD

In this section, we extend to the case of time-dependent
ϑ-ED with planar symmetry the Green’s function method
discussed in Ref. [63] for the static limit. A first step in
this direction was presented in Ref. [62]. The knowledge of
the GF allows us to compute the electromagnetic fields
for an arbitrary distribution of sources, as well as to solve
problems with given Dirichlet, Neumann, or Robin boun-
dary conditions on arbitrary surfaces. In what follows, we
restrict ourselves to contributions of free external sources
Jμ ¼ ðϱ; JÞ located outside the interface Σ and to systems
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without boundary conditions imposed on additional surfa-
ces, except for the boundary conditions at infinity.
A compact formulation of the problem can be given in

terms of the potential Aμ ¼ ðΦ;AÞ, which satisfies the
equations

½½□2�μν − θ̃δðzÞε3μαν∂α�Aν ¼ 4πJμ; ð20Þ

in the modified Lorenz gauge

ϵ
∂Φ
∂t þ∇ ·A ¼ 0; ð21Þ

with the operator

½□2�μν ¼ ðϵ□2;□2δijÞ; □
2 ¼ ϵ∂2

t −∇2: ð22Þ

The current is Jμ ¼ ðϱ; JÞ. The BCs (18) and (19) reduce to

Aμjz¼0þ
z¼0− ¼ 0; ϵ∂zA0jz¼0þ

z¼0− ¼ −θ̃ε30αν∂αAνjz¼0;

∂zAijz¼0þ
z¼0− ¼ −θ̃ε3iαν∂αAνjz¼0; ð23Þ

in terms of the vector potential. Next we introduce the
Green’s function Gν

σðx; x0Þ satisfying

½½□2�μν − θ̃δðzÞε3μαν∂α�Gν
σðx; x0Þ ¼ 4πημσδ

4ðx − x0Þ;
ð24Þ

together with the BCs arising from Eq. (23), in such a way
that the four potential is

AμðxÞ ¼
Z

d4x0Gμ
νðx; x0ÞJνðx0Þ; ð25Þ

determined up to homogeneous solutions of Eq. (20).
We solve Eq. (24) along the same lines introduced in
Refs. [62,63]. First we take advantage of the translational
invariance in time and in the transverse directions
x and y by introducing the reduced Green’s function
gμνðz; z0;k⊥;ωÞ, such that [59]

Gμ
νðx; x0Þ ¼ 4π

Z
d2k⊥dω
ð2πÞ3 eik⊥·R⊥e−iωðt−t0Þ

× gμνðz; z0;k⊥;ωÞ;

≡
Z

∞

−∞
dωGμ

νðx;x0;ωÞe−iωðt−t0Þ; ð26Þ

whereR⊥¼ðx−x0Þ⊥¼ðx−x0;y−y0Þ and k⊥ ¼ ðkx; kyÞ is
the momentum perpendicular to the vector û in Fig. 1. The
resulting equation for gμν is

½Oμ
ν þ iθ̃δðzÞε3μανkα�gνσðz; z0;k⊥;ωÞ ¼ ημσδðz − z0Þ;

ð27Þ

where kα ¼ ðω;k⊥; 0Þ, and Oμ
ν is given by Eq. (22) after

the replacements ∇2 → −k2⊥ þ ∂2=∂z2 and ∂t → −iω
are made.
To solve Eq. (27) we employ the—by now—standard

method [66] to deal with δ-like interactions, whereby a
convenient free GF can be used to integrate the GF
equation (27). By free, here we mean a GF satisfying
Eq. (24) with θ̃ ¼ 0 and which can be written in the same
form as in Eq. (26). To this end, we consider the reduced
free Green’s functionHρ

ν associated with the operatorOμ
ν

previously defined, which solves

Oμ
ρHρ

νðz; z0;k⊥;ωÞ ¼ ημνδðz − z0Þ ð28Þ

and satisfies standard boundary conditions at infinity.
From now on, calligraphic letters will denote free GFs, i.e.,
GFs that are independent of ϑ. Separating the components,
we have

ϵðk2⊥ − ω2ϵ − ∂2
zÞH0

0ðz; z0;k⊥;ωÞ ¼ δðz − z0Þ;
ϵðk2⊥ − ω2ϵ − ∂2

zÞH0
iðz; z0;k⊥;ωÞ ¼ 0;

ðk2⊥ − ω2ϵ − ∂2
zÞHi

0ðz; z0;k⊥;ωÞ ¼ 0;

ðk2⊥ − ω2ϵ − ∂2
zÞHi

jðz; z0;k⊥;ωÞ ¼ δijδðz − z0Þ; ð29Þ

which implies

H0
iðz; z0;k⊥;ωÞ ¼ 0 ¼ Hi

0ðz; z0;k⊥;ωÞ ð30Þ

and leaves us with only

ϵðk2⊥ − ω2ϵ − ∂2
zÞH0

0ðz; z0;k⊥;ωÞ ¼ δðz − z0Þ; ð31Þ

ðk2⊥ − ω2ϵ − ∂2
zÞHi

jðz; z0;k⊥;ωÞ ¼ δijδðz − z0Þ: ð32Þ

This system can be solved in terms of the function
F 0ðz; z0;k⊥;ωÞ satisfying

ðk2⊥ − ω2ϵ − ∂2
zÞF 0ðz; z0;k⊥;ωÞ ¼ δðz − z0Þ; ð33Þ

plus the standard BCs at infinity. The result is [59]

F 0ðz; z0;k⊥;ωÞ ¼
ieikzjz−z0j

2kz
; ð34Þ

with

kz ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃20 − k2⊥

q
; if k̃0 > kk⊥k;

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ − k̃20

q
; if k̃0 < kk⊥k;

ð35Þ

where we define k̃0 ¼ ω
ffiffiffi
ϵ

p
with ω > 0 and k̃α ¼

ð ffiffiffi
ϵ

p
ω;k⊥; 0Þ; k̃αk̃α ¼ ϵω2 − k2⊥ ¼ k̃2. In this way, we

obtain
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H0
0ðz; z0;k⊥;ωÞ ¼

1

ϵ
F 0ðz; z0;k⊥;ωÞ; ð36Þ

Hi
jðz; z0;k⊥;ωÞ ¼ F 0ðz; z0;k⊥;ωÞδij: ð37Þ

Then, Eq. (27) can be integrated usingHν
σðz; z0Þ as follows

gνσðz; z0;k⊥;ωÞ ¼ Hν
σðz; z0Þ −

Z
dz00Hν

βðz; z00Þiθ̃δðz00Þ

× ε3βαγkαgγσðz00; z0;k⊥;ωÞ; ð38Þ

yielding

gνσðz; z0;k⊥;ωÞ ¼ Hν
σðz; z0Þ

−Hν
βðz; 0Þiθ̃ε3βαγkαgγσð0; z0;k⊥;ωÞ:

ð39Þ

An example of the flexibility of this method is given in
Ref. [62], where the free GF was chosen to satisfy the
required BCs in order to limit the space in direction z to the
region between two metallic plates parallel to the interface.
Equation (39) reduces the calculation of gνσ to solving a set
of linearly coupled algebraic equations. The details of the
procedure for solving Eq. (39) are presented in Ref. [63].
The solution is

g00ðz; z0;k⊥;ωÞ ¼
1

ϵ
ḡ00ðz; z0;k⊥;ωÞ;

giμðz; z0;k⊥;ωÞ ¼ ḡiμðz; z0;k⊥;ωÞ;
gμiðz; z0;k⊥;ωÞ ¼ ḡμiðz; z0;k⊥;ωÞ; ð40Þ

where

ḡμνðz; z0;k⊥;ωÞ ¼ ημνF 0ðz; z0;k⊥;ωÞ
þ iεμνα3kαPðz; z0;k⊥;ωÞ
þ θ̃F 0ð0; 0;k⊥;ωÞPðz; z0;k⊥;ωÞ
× ½kμkν − ðημν þ uμuνÞk2�; ð41Þ

and

Pðz; z0;k⊥;ωÞ ¼ −θ̃
F 0ðz; 0;k⊥;ωÞF 0ð0; z0;k⊥;ωÞ

ϵ − θ̃2k̃2F 0
2ð0; 0;k⊥;ωÞ

;

ð42Þ

with uμ ¼ ð0; 0; 0; 1Þ. It is interesting to observe that the
term Pðz; z0;k⊥;ωÞ is proportional to eikzðjzjþjz0jÞ, whose
phase is finally responsible for the reversed VC radiation,
as we will show in Sec. IV.
Since the only difference between the GFs Gμ

ν and Ḡμ
ν

is that G0
0 ¼ Ḡ0

0=ϵ, with all other terms being equal,
it is convenient to present the barred GFs that are

obtained once ḡμνðz; z0;k⊥;ωÞ is substituted in Eq. (26).
The full GF matrix Ḡμ

νðx;x0;ωÞ can finally be written as
the sum of three terms, Ḡμ

νðx;x0;ωÞ¼ Ḡμ
ED νðx;x0;ωÞþ

Ḡμ
θ̃ ν
ðx;x0;ωÞþḠμ

θ̃2 ν
ðx;x0;ωÞ, where the three pieces are

Ḡμ
ED νðx;x0;ωÞ ¼ ημν4π

Z
d2k⊥
ð2πÞ2 e

ik⊥·R⊥ ie
i

ffiffiffiffiffiffiffiffiffiffi
k̃20−k

2⊥
p

jz−z0j

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃20 − k2⊥

q ;

Ḡμ
θ̃ νðx;x0;ωÞ ¼ iεμνα3

4πθ̃

4n2 þ θ̃2

Z
d2k⊥
ð2πÞ2 e

ik⊥·R⊥kα

×
ei

ffiffiffiffiffiffiffiffiffiffi
k̃20−k

2⊥
p

ðjzjþjz0jÞ

k̃20 − k2⊥
;

Ḡμ
θ̃2 νðx;x0;ωÞ ¼ 4πiθ̃2

4n2 þ θ̃2

Z
d2k⊥
ð2πÞ2

× ½kμkν − ðημν þ uμuνÞk2�

× eik⊥·R⊥ e
i

ffiffiffiffiffiffiffiffiffiffi
k̃20−k

2⊥
p

ðjzjþjz0jÞ

2ðk̃20 − k2⊥Þ3=2
: ð43Þ

Let us emphasize that the potentials and the resulting
electromagnetic fields must be calculated using the GF
Gμ

νðx;x0;ωÞ. In the static limit (ω ¼ 0), the result (43)
reduces to that reported in Refs. [63].
The next step is to evaluate the GFs (43) in the far-field

approximation corresponding to the coordinate conditions

kxk ≫ kx0k; R⊥ ¼ kðx − x0Þ⊥k ≃ kx⊥k ¼ ρ;

jzj þ jz0j ≃ jzj; ð44Þ
where kxk ¼ r → ∞, ρ → ∞, and z → ∞. In this approxi-
mation, the integrals in Eqs. (43) include rapidly oscillating
exponential functions whose leading contributions are
calculated in the stationary phase approximation and
subsequently verified by the steepest descent method
[67–69]. Also we make repeated use of the generic
Sommerfeld identity [70]

i
Z

∞

0

k⊥dk⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃20 − k2⊥

q J0ðk⊥R⊥Þei
ffiffiffiffiffiffiffiffiffiffi
k̃20−k

2⊥
p

jZj ¼ eik̃0R

R
; ð45Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2⊥ þ Z2

p
. We consider mainly two cases:

(i) Z ¼ jz − z0j where R is denoted by R and (ii) Z ¼
jzj þ jz0j whereR is denoted by R̃. The detailed calculation
is presented in the Appendix and the results in the far-field
approximation are

Ḡμ
ED νðx;x0;ωÞ ¼ ημν

eik̃0r

r
e−ik̃0n̂·x

0
; ð46Þ

Ḡμ
θ̃ νðx;x0;ωÞ ¼ εμν

α3 2θ̃

4n2 þ θ̃2
sα

j cos θj
eik̃0r

r

× eik̃0ð−n⊥·x0⊥þjz0 cos θjÞ; ð47Þ
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Ḡμ
θ̃2 νðx;x0;ωÞ ¼ θ̃2

4n2 þ θ̃2
eik̃0r

rcos2θ
Cμ

νðx; nÞ

× eik̃0ð−n⊥·x0⊥þjz0 cos θjÞ; ð48Þ

where we define

Cμ
νðx; nÞ ¼

0
BBB@

sin2θ −x=rn −y=rn 0

x=rn −1=n2 0 0

y=rn 0 −1=n2 þ sin2θ 0

0 0 0 0

1
CCCA:

ð49Þ

Here sα ¼ ð1=n; n̂Þ, n̂ is a unit vector in the direction of x,
and n⊥ ¼ ðx=r; y=r; 0Þ ¼ sin θðcosϕ; sinϕ; 0Þ is a vector
in the direction of x⊥ with kn⊥k ¼ sin θ. In Eq. (49) we
have introduced the shorthand notation x ¼ r sin θ cosϕ
and y ¼ r sin θ sinϕ in spherical coordinates.
As explained in the Appendix, the results for the far-field

approximation of the GFs in Eqs. (46)–(48) are valid
whenever 0< θ< θC ¼ cos−1ð1=vnÞ< cos−1ð1=nÞ≪ π=2,
in such a way that there are no divergences arising from the
factors proportional to 1= cos θ in the GFs, since θ is never
equal to π=2.
The GFs (46)–(48) together with Eqs. (6) and (25) yield

electromagnetic fields whose Cartesian components behave
like ðeik̃0r=rÞFðθÞ in the far-field approximation. Recalling
that k̃0 ¼ ω

ffiffiffi
ϵ

p
and using Maxwell equations to leading

order in 1=r we verify the expressions

n̂ · E ¼ 0; n̂ · B ¼ 0; B ¼ ffiffiffi
ϵ

p
n̂ ×E; ð50Þ

which are the distinctive feature of the radiation fields. The
three vectors E, B, and n̂ define a right-handed triad
resulting in the Poynting vector for a material media with
μ ¼ 1,

S ¼ 1

4π
E ×H ¼

ffiffiffi
ϵ

p
4π

jEj2n̂; ð51Þ

where n̂ is in the direction of the phase velocity of the
outgoing wave, as appropriate for right-handed materials.
Finally, it is pertinent to emphasize an important differ-

ence in the phase of the exponentials related to the source
variables x0 in the GFs (46)–(48). In the first case, we
encounter the exponential eik̃0R, which in the coordinate
approximation of the far-field zone produces the phase
ik̃0ðr − n⊥ · x0⊥ − z0 cos θÞ characteristic of radiation in
standard electrodynamics [59]. On the other hand, the
contributions to the GF proportional to θ̃ and θ̃2 involve the
exponential eik̃0R̃ with R̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2⊥ þ ðjzj þ jz0jÞ2

p
,

which can be presented as follows:

R̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 − ðz − z0Þ2 þ ðjzj þ jz0jÞ2;

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ 2ðjzz0j þ zz0Þ;

q
¼ r − n⊥ · x0⊥ þ jz0 cos θj; ð52Þ

in the far-field approximation. From the second line in
Eq. (52), we remark that whenever the sign of zz0 is positive
we will have an additional relative phase contributing to the
GFs, which will show up in observable quantities as the
radiated power, for example. The term ðjzj þ jz0jÞ2 can
ultimately be traced back to the form of the reduced GF
(41) together with expressions (34) and (42). As we will
show in the next section, reversed VC radiation arises
precisely due to the contribution jz0 cos θj in the phase of
the GF deriving from the term ðjzj þ jz0jÞ2.

IV. THE REVERSED VAVILOV-ČERENKOV
RADIATION

Let us now consider a particle with charge qmoving with
constant velocity vû, perpendicular to the interface Σ
defined by the x–y plane (z ¼ 0), as shown in Fig. 1.
The charge and current densities are

ϱðx0;ωÞ ¼ q
v
δðx0Þδðy0Þeiωz0

v ; Jðx0;ωÞ ¼ qδðx0Þδðy0Þeiωz0
v û;

ð53Þ

where we henceforth assume v > 1=
ffiffiffi
ϵ

p
> 0. Instead of an

infinite path for the charge, wewill take its movement in the
interval z ∈ ð−ζ; ζÞ, with ζ ≫ v=ω. In the far-field
approximation, the resulting components of the electric
fieldEðx;ωÞ ¼ −ik̃0n̂A0ðx;ωÞ þ iωAðx;ωÞ, calculated in
terms of the potential Aμðx;ωÞ via Eq. (25), are

E1ðx;ωÞ ¼ − sin θ
iωqeik̃0r

vrn

�
cosϕI1ðω; θÞ þ nI2ðω; θÞ

×
2θ̃

4n2 þ θ̃2

�
sinϕ
j cos θj − θ̃

cosϕ
2n

��
; ð54Þ

E2ðx;ωÞ ¼ − sin θ
iωqeik̃0r

vrn

�
sinϕI1ðω; θÞ − nI2ðω; θÞ

×
2θ̃

4n2 þ θ̃2

�
cosϕ
j cos θj þ θ̃

sinϕ
2n

��
; ð55Þ

E3ðx;ωÞ ¼ sin θ
iqωeik̃0r

vrn

�
ðvn − cos θÞ I1ðω; θÞ

sin θ

−
2θ̃

4n2 þ θ̃2
θ̃
I2ðω; θÞ
2 cot θ

�
: ð56Þ

We can verify that n̂ ·E ¼ 0 as required. The magnetic
field can be obtained from Eq. (50). The integrals I1ðω; θÞ
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and I2ðω; θÞ appear when taking the convolution of the
charge and current densities with the GF components in
Eqs. (46)–(48). They are defined by

I1ðω; θÞ ¼
Z

ζ

−ζ
dz0ei

ωz0
v ð1−vn cos θÞ ¼ 2 sin ðζΞ−Þ

Ξ−
; ð57Þ

I2ðω; θÞ ¼
Z

ζ

−ζ
dz0eik̃0jz0 cos θjþiωz0

v ¼ sin ðζΞ̃−Þ
Ξ̃−

þ sin ðζΞ̃þÞ
Ξ̃þ

þ 2i
sin2 ðζ

2
Ξ̃−Þ

Ξ̃−
− 2i

sin2 ðζ
2
Ξ̃þÞ

Ξ̃þ
;

ð58Þ

where

Ξ� ¼ ω

v
ð1� vn cos θÞ; Ξ̃� ¼ ω

v
ð1� vnj cos θjÞ:

ð59Þ

In the following, we will learn that the production of VC
radiation depends on the zeros of Ξ� and Ξ̃�, which
determine the angle θC of the VC cone. Then it is
reasonable to expect that the j cos θj dependence of Ξ̃�
yields new possibilities. In calculating the right-hand
side of Eqs. (57) and (58) in the limit ζ ≫ v=ω, which
effectively means ζ → ∞, we encounter expressions like
sinðζaNÞ=ðaNÞ, which behave as πδðaNÞ [71]. We take
advantage of this δ-like behavior by setting equal to zero all
the rapidly oscillating contributions arising from those
functions with an argument that can never be zero, like
Ξ̃þ, for example. This is relevant to obtain the final
expression for I2ðω; θÞ, which then simplifies to

I2ðω; θÞ ¼
sin ðζΞ̃−Þ

Ξ̃−
þ 2i

sin2 ðζ
2
Ξ̃−Þ

Ξ̃−
: ð60Þ

Recalling that B ¼ n̂ × ðnEÞ for radiation fields, with
n ¼ ffiffiffi

ϵ
p

, the angular distribution of the total radiated
energy per unit frequency in the interval −ζ < z < þζ
with ζ → ∞ is [59,60]

d2E
dωdΩ

¼ nr2

4π2
E�ðx;ωÞ · Eðx;ωÞ; ð61Þ

which can be written as the sum of the following three
terms:

d2E1

dωdΩ
¼ nω2q2

4π2

�
1 −

1

v2n2

�
I2
1ðω; θÞ; ð62Þ

d2E12

dωdΩ
¼ −

nω2q2

2π2
θ̃2

4n2 þ θ̃2

�
1 −

1

v2n2

�
I1ðω; θÞ

× Re½I2ðω; θÞ�; ð63Þ

d2E2

dωdΩ
¼ nω2q2

4π2
θ̃2

4n2 þ θ̃2

�
1 −

1

v2n2

�
jI2ðω; θÞj2: ð64Þ

To obtain the above expressions, we have used again the
δ-like behavior of the functions I1 and I2 by replacing θ by
θC ¼ cos−1ð1=vnÞ in all the functions of θ that multiply
them. We have verified the cancellation of the terms pro-
portional to θ̃3. Also, the addition of the contributions in the
term containing the factor 1=ð4n2 þ θ̃2Þ2 is such that the
final result ends up being proportional to θ̃2=ð4n2 þ θ̃2Þ.
The quantity d2E=dωdΩ is also referred to as the

spectral distribution of the radiation [59], a shorter syn-
onymous that we will use in the following. Let us observe
that the above distributions have azimuthal symmetry and
are even functions of both the angle θ [recall Eqs. (57) and
(60)] and the MEP θ̃. In other words, the leading corrections
arising from the ME effect are of order θ̃2. Setting θ̃ ¼ 0 we
recover the well-known expression for the spectral distri-
bution of the radiation in the standard VC case [61]

d2E1

dωdΩ
¼ nω2q2

π2

�
1 −

1

v2n2

�
sin2 ðζΞ−Þ

Ξ2
−

: ð65Þ

Substituting I1ðω; θÞ and I2ðω; θÞ from Eqs. (57) and (60)
in Eqs. (63) and (64), we have

d2E12

dωdΩ
¼ −

nω2

π2
θ̃2q2

4n2 þ θ̃2

�
1 −

1

v2n2

�

×
sin ðζΞ−Þ sin ðζΞ̃−Þ

Ξ−Ξ̃−
; ð66Þ

d2E2

dωdΩ
¼ nω2

4π2
θ̃2q2

4n2 þ θ̃2

�
1 −

1

v2n2

�

×

�
sin2 ðζΞ̃−Þ

Ξ̃2
−

þ sin4 ðζ
2
Ξ̃−Þ

1
4
Ξ̃2
−

�
: ð67Þ

Equations (65)–(67) summarize the spectral distribution of
the radiation when the charges passes through a ϑ medium.
The δ-like behavior of the functions appearing there
yields the VC radiation condition sin2 θC ¼ 1 − 1=ðv2n2Þ
and clearly shows that the distributions (65) and (66)
contribute only to the forward Vavilov-Čerenkov radiation
with cos θC ¼ 1=ðnvÞ > 0. This is precisely due to the
dependence upon j cos θj in the angular distribution origi-
nating from Ξ̃− in Eq. (59).
Even though the spectral distribution in Eq. (66) depends

on Ξ̃−, its contribution shows up in a product that behaves
like δð1 − vn cos θÞ × δð1 − vnj cos θjÞ in the limit of large
ζ. This yields a nonzero spectral distribution d2E12=dωdΩ
only when cos θ > 0, i.e., in the forward direction. On the
contrary, the distribution d2E2=dωdΩ contributes both to
the forward VC cone (cos θ > 0), as well as to the back-
ward VC cone (cos θ < 0) because Ξ̃−, depending upon
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j cos θj, admits also a zero in the range π=2 < θ < π. In
other words, radiation is also detected in the backward
direction, i.e., cos θ < 0, according to the angular distri-
bution (67). This defines the reversed VC cone and
constitutes the most important result of the manuscript.
The forward VC radiation receives corrections of order

θ̃2 with respect to the standard case. The reversed VC
radiation is purely of order θ̃2 and, in general, will be
strongly suppressed with respect to the forward output,
however, it is different from zero. If the angle of the forward
cone is θ0, the one corresponding to the reversed cone will
be π − θ0. Since this is standard electrodynamics plus
additional field-dependent sources at the interface, the
group and phase velocities of the electromagnetic wave
are parallel, as already pointed out after Eq. (51). In fact this
model provides the usual interpretation of the radiation of a
system observed at an arbitrary solid angle dΩ [59,60].
Figures 2 and 3 show the spectral distribution in the

case of pure forward VC radiation, Eq. (65), in a dielectric
with n ¼ 2 and θ̃ ¼ 0, for the average frequency of ω ¼
2.5 eV (500 nm) in the VC radiation spectrum. In each
figure, the particle moves from left to right along the line
(π − 0). In Fig. 2, the dashed purple line corresponds to
v ¼ 0.9 and ζ ¼ 1.0 eV−1 and the solid cyan line to v ¼
0.5009 and ζ ¼ 2.8 eV−1. Such low values of ζ are chosen
to illustrate the emergence of the forward radiation lobes. In
Fig. 3, the dashed purple line corresponds to v¼0.9 and

ζ¼340 eV−1 and the solid cyan line to v ¼ 0.5009 and ζ ¼
4800 eV−1. Such an increase in each value of ζ is enough to
show the appearance of the forward VC cone in both cases.
Figures 4 and 5 include the spectral distribution of the

radiation arising from the contribution of Eq. (67) in a
medium with θ̃ ≠ 0, which clearly show the presence of
reversed VC radiation. This term also provides corrections
to the forward VC radiation. Both additions are highly
suppressed with respect to the forward VC radiation, so that
the scales in both figures are separately chosen such as to
make these small, but nonzero, contributions clearly
visible. Here we take again the frequency of ω ¼ 2.5 eV
and the charge propagates now in a ϑ medium with n ¼ 2

and θ̃ ¼ 11α, from left to right along the line (π − 0). In
Fig. 4, the dashed purple line corresponds again to v ¼ 0.9
and ζ ¼ 1.0 eV−1 and the solid cyan line to v ¼ 0.5009 and
ζ ¼ 2.8 eV−1. The contribution of d2E2=dωdΩ to the
forward and reversed VC cones are displayed in Fig. 5,
where the parameters ζ have been modified with respect to
those in Fig. 4 by increasing them to 343 eV−1 (dashed
purple line) and 4830 eV−1 (solid cyan line), respectively.
All the spectral distributions we have plotted are calculated
from the respective expressions d2E=dωdΩ and the results
are expressed in units of the common factor q2=π2 ¼
7.4 × 10−4 for q ¼ ffiffiffi

α
p

. Let us emphasize that the negative
contribution in Eq. (66) only diminishes the radiation in the

FIG. 2. Angular distribution for the radiated energy per unit
frequency in the case of standard (θ̃ ¼ 0) forward VC radiation
for n ¼ 2 and ω ¼ 2.48 eV. The dashed purple line corresponds
to v ¼ 0.9 and ζ ¼ 1.0 eV−1 and the solid cyan line to v ¼
0.5009 and ζ ¼ 2.80 eV−1. The scale in the polar axis is in
arbitrary dimensions and runs from zero to ten. The charge moves
from left to right.

FIG. 3. Angular distribution for the radiated energy per unit
frequency in the case of standard (θ̃ ¼ 0) VC radiation for the
choices for n ¼ 2, ω ¼ 2.48 eV. The dashed purple line corre-
sponds to v ¼ 0.9 and ζ ¼ 343 eV−1 and the solid cyan line to
v ¼ 0.5009 and ζ ¼ 4830 eV−1. The scale in the polar axis is in
arbitrary dimensions and runs from 0 to 106. The charge moves
from left to right.
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forward direction but does not affect the reversed VC
radiation.
The full spectral distribution of the total radiated energy

is given by the sum of Eqs. (65)–(67) and it is plotted in

Fig. 6. The scale of the polar plot is in arbitrary dimensions
and runs from 0 to 106. On the left side of the figure we plot
an enlargement in the backward direction showing the
onset of the reversed VC radiation. Here the radial scale
goes from 0 to 102 showing the high suppression of the

FIG. 5. Angular distribution for the radiated energy per unit
frequency in the case of reversed VC radiation for n ¼ 2,
ω ¼ 2.48 eV, and θ̃ ¼ 11α. The solid cyan line corresponds to
v ¼ 0.5009 and ζ ¼ 4830 eV−1, and the dashed purple line to
v ¼ 0.9 and ζ ¼ 343 eV−1. The scale in the polar axis is in
arbitrary dimensions and runs from 0 to ∼102. The charge moves
from left to right.

FIG. 6. Angular distribution for the total radiated energy per unit frequency for the full VC radiation for the choices for n ¼ 2,
ω ¼ 2.48 eV, and θ̃ ¼ 11α. The dashed purple line corresponds to v ¼ 0.9 and ζ ¼ 343 eV−1 and the solid cyan line to v ¼ 0.5009 and
ζ ¼ 4830 eV−1. The scale of the polar plot is in arbitrary dimensions and runs from 0 to 106. On the left side of the figure we plot an
enlargement in the backward direction showing the onset of the reversed VC radiation. Here the radial scale goes from 0 to 102. The
charge moves from left to right.

FIG. 4. Angular distribution for the radiated energy per unit
frequency in the case of reversed VC radiation for n ¼ 2,
ω ¼ 2.48 eV, and θ̃ ¼ 11α. The solid cyan line corresponds to
v ¼ 0.5009 and ζ ¼ 2.8 eV−1 and the dashed purple line to v ¼
0.9 and ζ ¼ 1.0 eV−1. The scale in the polar axis is in arbitrary
dimensions and runs from 0 to 2 × 10−3. The charge moves from
left to right.
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radiation in the backward direction with respect to that in
the forward direction.

V. TOTAL RADIATED ENERGY

In this section, we calculate the total energy per unit
frequency radiated by the charge on its path from −ζ toþζ.
Let us first review the calculation of dE1=dω, following the
procedure in Ref. [61]. Integrating expression (65) with
respect to the solid angle we obtain

dE1

dω
¼ 2nω2q2

π

�
1 −

1

v2n2

�Z
1

−1
dðcos θÞ sin

2 ðζΞ−Þ
Ξ2
−

: ð68Þ

The δ-like behavior of the integrand in the limit ζ ≫ ω=v
shows that the radiation is sharply localized in a main lobe
around the angle θC given by cos θC ¼ 1=ðvnÞ, yielding a
contribution only in the forward direction. Therefore,
making the change of variable u ¼ ωζ

v ð1 − vn cos θÞ, we
can safely extend the integration limits of u to �∞ as long
as we include the maximum located at u ¼ 0. The result is

dE1

dω
¼ 2ωq2ζ

π

�
1 −

1

v2n2

�Z
∞

−∞
du

sin2 u
u2

;

¼ q2ωL

�
1 −

1

v2n2

�
; ð69Þ

where we have introduced the total length L ¼ 2ζ traveled
by the particle, thus recovering the standard result [61]. In
other words, we are estimating the contribution from each
sharply localized lobe as

Z
lobe

dðcos θÞ sin
2 ðζΞ−Þ
Ξ2
−

¼ ζ

ωn

Z þ∞

−∞
du

sin2 u
u2

¼ ζπ

ωn
:

ð70Þ

The next term comes from the angular integration of
Eq. (66),

dE12

dω
¼ −

nω2

π2
θ̃2q2

4n2 þ θ̃2

�
1 −

1

v2n2

�

×
Z

dΩ
sin ðζΞ−Þ sinðζΞ̃−Þ

Ξ−Ξ̃−
: ð71Þ

The presence of j cos θj from the function ðζΞ̃−Þ in the
integrand requires separating the integration with respect
to θ into the regions 0 < θ < π=2 and π=2 < θ < π.
After splitting the integral as required and setting equal
to zero the rapidly oscillating contribution proportional to
sin ðζΞ−Þ in the region π=2 < θ < π, we are left with

dE12

dω
¼ −

θ̃2q2

4n2 þ θ̃2
2nω2

π

�
1 −

1

v2n2

�

×
Z

1

0

dðcos θÞ sin
2 ðζΞ−Þ
Ξ2
−

: ð72Þ

Again, this contribution to the radiation is only in the
forward direction and it is concentrated in a main lobe
around θC. Making use of Eq. (70) yields

dE12

dω
¼ −

θ̃2q2

4n2 þ θ̃2
2ωζ

π

�
1 −

1

v2n2

�Z
∞

−∞
du

sin2u
u2

;

¼ −
θ̃2q2

4n2 þ θ̃2
ωL

�
1 −

1

v2n2

�
: ð73Þ

The calculation of dE2=dω starts from Eq. (67), whose
separate contributions are

d2E2a

dωdΩ
¼ nω2

4π2
θ̃2q2

4n2 þ θ̃2

�
1 −

1

v2n2

�
sin2ðζΞ̃−Þ

Ξ̃2
−

; ð74Þ

d2E2b

dωdΩ
¼ nω2

4π2
θ̃2q2

4n2 þ θ̃2

�
1 −

1

v2n2

�
sin4ðζ

2
Ξ̃−Þ

1
4
Ξ̃2
−

: ð75Þ

The presence of j cos θj in Ξ̃− indicates that now the
radiation is concentrated in two main lobes, one around
θC, contributing to the forward radiation, and the other
around π − θC, contributing to the reversed VC radiation.
Taking into account both lobes when integrating Eq. (74)
over the solid angle and using Eq. (70), we find

dE2a

dω
¼ θ̃2q2

4n2 þ θ̃2
ωL
2

�
1 −

1

v2n2

�
: ð76Þ

The term d2E2b=dωdΩ in Eq. (75) also contributes both to
the forward and backward radiation and differs from the
case of (74) by the replacements Ξ̃− → Ξ̃−=2 and
sin2 u → sin4 u. Nevertheless, we obtain the same result
as in Eq. (76),

dE2b

dω
¼ θ̃2q2

4n2 þ θ̃2
ωL
2

�
1 −

1

v2n2

�
: ð77Þ

Therefore, the total radiated energy per unit frequency is

dE
dω

¼ dE1

dω
þ dE12

dω
þ dE2a

dω
þ dE2b

dω
;

¼ q2ωL

�
1 −

1

v2n2

�
; ð78Þ

which corresponds to the same expression as in the absence
of the ϑ medium. At this stage, we do not know whether
Eq. (78) is just a coincidence or there is a fundamental
reason for this result. For our purposes, the main point is

FRANCA, URRUTIA, and RODRÍGUEZ-TZOMPANTZI PHYS. REV. D 99, 116020 (2019)

116020-12



that the total energy distribution (78) is split into a nonzero
reversed VC radiation (RVCR)

dERVCR

dω
¼ 1

2

�
dE2a

dω
þ dE2b

dω

�
;

¼ q2ωL

�
1 −

1

v2n2

��
1

2

θ̃2

4n2 þ θ̃2

�
ð79Þ

together with a modified forward VC radiation (FVCR)

dEFVCR

dω
¼ q2ωL

�
1 −

1

v2n2

��
1 −

1

2

θ̃2

4n2 þ θ̃2

�
: ð80Þ

We can restate expression (79) in terms of the number of
photons radiated per unit length and per unit frequency as

d2NRVCR

dLdω
¼ α

�
1 −

1

v2n2

��
1

2

θ̃2

4n2 þ θ̃2

�
: ð81Þ

Another relevant parameter is the power radiated per unit
frequency in the backward direction,

d2ERVCR

dtdω
¼ v

d2ERVCR

dLdω
¼ q2ωv

�
1 −

1

v2n2

��
1

2

θ̃2

4n2 þ θ̃2

�
;

ð82Þ

whose estimation in Table I will be used for further
comparison with alternative predictions.

VI. ORDER OF MAGNITUDE EVALUATIONS

In order to present some numerical estimations, we use
the setup in Fig. 1 where medium 1 is a regular insulator
with ϵ ¼ 4, μ ¼ 1, and ϑ ¼ 0, and medium 2 is the
topological insulator TlBiSe2 with ϵ ¼ 4, n ¼ 2, μ ¼ 1,
ϑ ¼ π, and 0 < m < 5 [72]. This choice ofm yields a value
of θ̃ in the range ½α; 11α�, which very much suppresses the
backward radiation as compared with the forward output.
Our numerical estimations do not consider the frequency
dependence of the refraction index. In this way, we can
calculate the ratio

dERVCR=dω
dEFVCR=dω

¼ 1

8

�
θ̃

n

�
2

; ð83Þ

where we also take 4n2 ≫ θ̃2. For the topological insulator
TlBiSe2 the above ratio ranges between 1.7 × 10−6 and
2.0 × 10−4 for the choices θ̃ ¼ α and θ̃ ¼ 11α, respectively.
In Table I, we show the power radiated per unit frequency
in the backward direction, given by Eq. (82), for TlBiSe2
with θ̃ ¼ 11α. The results are in units of [μW=eV], for
ω ∈ ½2; 8� eV. This range includes the major sector of
the frequency spectrum in the forward VC radiation. The
conversion to MKS units is 1 μW=eV ¼ 6.24 × 1012 s−1,
which is equal to 4.11 × 10−4 eV in units where
c ¼ ℏ ¼ 1.

VII. SUMMARY

We have considered the radiation produced by an electric
charge propagating with constant velocity v in direction û
(shown in Fig. 1) between two ϑ media with the same
permittivity, whose electromagnetic response is driven by
the modified Maxwell equations (7)–(10). When v is higher
than the speed of light in the media, we discover the
emission of reversed VC radiation, codified in the angular
distribution given by Eq. (67) and illustrated in Figs. 4–6.
These right-handed ϑ media are realized in nature as
magnetoelectric materials, among which we find topologi-
cal insulators, having positive permittivity, permeability,
and index of refraction.
The main characteristics of the reversed VC radiation we

have discovered are the following: (i) The threshold
condition v > c=n for the velocity of the charge must be
satisfied as in the standard case. (ii) The reversed VC
radiation occurs for all frequencies in the VC spectrum and
it is always accompanied by forward VC radiation. (iii) The
energy loss per unit frequency of the reversed VC radiation
is highly suppressed with respect to the forward output
according to Eq. (83). A comparison with measurements of
reversed VC radiation in metamaterials can be established
by interpreting this suppression as due to the detection of
radiation at an effective frequency ωeff ¼ ωθ̃2=8n2, accord-
ing to Eq. (79). Standard Čerenkov counters work in the
range of 140–800 nm corresponding to 8.9–1.6 eV, respec-
tively. Taking an average of 500 nm (2.5 eV), we would
expect detectable reversed VC radiation at ωeff in the range
from 4 × 10−3 meV for θ̃ ¼ α to 0.5 meV for θ̃ ¼ 11α,
respectively, using TlBiSe2 as a ϑ medium. However,
recent measurements of reversed VC radiation in meta-
materials show that these estimations are within the
experimental capabilities. Reversed VC radiation has been
measured at a frequency of 2.85 GHz, equivalent to
1.2 × 10−2 meV, in an all-metal metamaterial consisting
of a square waveguide loaded with complementary
electric split-ring resonators [17]. Likewise, reversed VC
radiation in the range ð3.4–3.9Þ × 10−2 meV has also been

TABLE I. This table shows the orders ofmagnitude for the power
radiated per unit frequency in the backward direction (reversed VC
radiation) when a particle with v ¼ 0.8 and charge q ¼ ffiffiffi

α
p

propagates across the interface of a normal insulator and the
topological insulator TlBiSe2 characterized by n ¼ 2, θ̃ ¼ 11α.

ωðeVÞ d2ERVCR=dtdω (μW=eV)

2 3.5 × 10−3

4 7.0 × 10−3

6 1.0 × 10−2

8 1.4 × 10−2
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experimentally verified in a phased electromagnetic dipole
array used to model a moving charged particle [15].
Our estimations for d2ERVCR=dtdω in Table I are in the

range 10−3–10−2 μW=eV, in the frequency interval of
2–8 eV. They are smaller by a factor of 10−4–10−3 than
the maximum output of ∼10 μW=eV theoretically pre-
dicted to occur in the narrow interval of 5.7–6.5 eV in a
metal-insulator-metal waveguide [18]. In such a waveguide
with a core thickness of a ¼ 20 nm, surface plasmon
polaritons excited by an electron moving at v ¼ 0.8
produce reversed VC radiation.
A qualitative argument for the existence of the reversed

Čerenkov radiation in a ϑ media can be given by extending
the interpretation of the static fields produced by a point
charge located in front of a topological insulator in terms of
electric and magnetic images [33,63]. When the charge q
moves from region 1 to region 2, as we have assumed
here, the effect of the interface Σ can be replaced by
introducing a moving image electric charge q̃ ¼ −qθ̃2=
ð4n2 þ θ̃2Þ together with a moving image magnetic monop-
ole g̃ ¼ 2qθ̃=ð4n2 þ θ̃2Þ, both located in region 2 and
moving towards region 1. These images would contribute
to the physical fields only in region 1 with their own
forward VC radiation in the far-field zone, which turns out
to be in the reversed direction with respect to the incident
charge. As shown in Ref. [59], a magnetic monopole g
propagating with a velocity v > 1=n also produces a
forward VC cone, with radiated energy per unit length
and per unit frequency given by

d2Emonopole

dLdω
¼ ω g2n2

�
1 −

1

v2n2

�
; ð84Þ

in complete analogy with Eq. (69). From this point of view,
the dominant contribution to the reversed VC radiation of
the incident charge would arise from the image magnetic
monopole since g ∼ θ̃ and the image electric charge would
contribute with higher order terms of order q̃2 ∼ θ̃4. A
detailed calculation of the radiation fields in region 1
produced by this configuration is further required to test
this interpretation, in particular, to verify that the final
factor depending on θ̃ will have the correct form given in
Eq. (79). As it is well known, image charges are only useful
mathematical tools in the description of electromagnetic
phenomena and do not represent physically existing enti-
ties. In our case, the physical response of the medium is
produced by the time-varying electric charge densities
and Hall currents induced at the interface Σ due to the
magnetoelectric effect. The verification of the above inter-
pretation of the reversed VC radiation is beyond the scope
of the present paper and is postponed for future work.
Our results apply for any material that supports the

magnetoelectric effect, in such a way that its electromag-
netic response can be described by ϑ-ED. In the particular
case of a topological insulator, the conditions for the

realization of such effect are (i) the topological insulator
should be in the 3D regime, (ii) all the surfaces need to be
gapped with the chemical potential lying within the gaps,
and (iii) the dynamics of the interior of the topological
insulator should be invariant under time-reversal symmetry
or inversion symmetry, in order to keep ϑ ¼ π in the bulk
[48]. In this work, we have highlighted the case of 3D
strong topological insulators, which require time-reversal
symmetry breaking in the surfaces to realize the topological
magnetoelectric effect. This can be achieved by magneti-
cally gapping all the interfaces, in such a way that the entire
sample behaves as an insulator having a magnetoelectric
coupling of exactly ϑ ¼ π [73]. Since we have assumed that
charged particles are moving with constant velocity across
the material, it would be advisable to break the time-
reversal symmetry by doping the surfaces with thin
ferromagnetic films instead of switching on an external
magnetic field. In any case, the velocity of such moving
particles has the lower limit of c=n but must be large
enough so that there is no appreciable deflection of the
charge when going through the magnetically doped
material. The velocity of the external moving charges is
independent of the Fermi velocity of the electrons on the
2D surfaces and the Fermi energy can comfortably lie in the
middle of the gap between the Dirac cones. We expect our
results to hold also in the case of magnetically doped AXIs.
They are heterostructures in which magnetic ions are added
to the vicinity of the top and bottom interfaces of a 3D
strong topological insulator, like ðBi; SbÞ2Te3, for example.
In this way, their electromagnetic response is still coded in
ϑ-ED. Even though the upward-downward magnetic coat-
ing in opposite interfaces will produce a change in the sign
of ϑ ¼ π when going from one interface to the other, this
will make the contribution of both interfaces to the spectral
distribution of the reversed VC radiation to add up. This is
because each contribution depends on θ̃2, respectively,
according to Eqs. (11) and (67).
Finally, we comment on the condition ϵ1 ¼ ϵ2, imposed

at the beginning of Sec. II in order to get rid of the
otherwise unavoidable transition radiation and aimed to
present a clean derivation of the reversed VC radiation. We
do not mean that relaxing the equal permittivity condition
will eliminate the presence of RVC radiation, but we only
claim that the choice ϵ1 very different from ϵ2 will make
transition radiation interfere with the VC radiation, requir-
ing a new theoretical discussion as well as hindering any
experimental detection. In fact, the spectral distribution of
the transition radiation might also display unexpected
corrections arising from ϑ-ED. In realistic terms, the equal
permittivity condition means that ϵ1 and ϵ2 could be chosen
such that their values are as close as possible. This
condition can be considered as a useful restriction in the
planning of a possible experimental setup and looks
plausible since the refraction indices of normal insulators
cover a wide range of values.

FRANCA, URRUTIA, and RODRÍGUEZ-TZOMPANTZI PHYS. REV. D 99, 116020 (2019)

116020-14



ACKNOWLEDGMENTS

O. J. F. has been supported by the doctoral fellowship
CONACYT-271523. O. J. F., L. F. U., and O. R. T. acknowl-
edge support from the CONACYT Project No. 237503.
Support from the project # IN103319 from Dirección
General de Asuntos del Personal Académico (Universidad
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APPENDIX: GREEN’S FUNCTION IN THE
RADIATION ZONE

In this Appendix, we obtain the far-field approximation
for the GFs in Eq. (43) through the stationary phase method
[67]. We review the contribution of standard ED and con-
sider only Ḡμ

θ̃ ν
ðx;x0;ωÞ to illustrate the procedure of how

to deal with the additional contributions arising from Lϑ.
Let us start with the components Ḡμ

ED νðx;x0;ωÞ.
The double integral in k⊥ is conveniently calculated by
expressing the area element in polar coordinates d2k⊥ ¼
k⊥dk⊥dφ and choosing the k⊥x axis in the direction of the
vectorR⊥ ¼ ðx − x0Þ⊥. This defines the coordinate system
S to be repeatedly used in the following and shown in
Fig. 7. Writing k⊥ ·R⊥ ¼ k⊥R⊥ cosφ and recalling that
the angular integral provides a representation of the Bessel
function J0ðk⊥R⊥Þ [74], we obtain

Ḡμ
ED νðx;x0;ωÞ ¼ iημν

Z
∞

0

k⊥dk⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃20 − k2⊥

q J0ðk⊥R⊥Þ

× ei
ffiffiffiffiffiffiffiffiffiffi
k̃20−k

2⊥
p

jz−z0j ¼ ημν
eik̃0R

R
; ðA1Þ

with R ¼ kx − x0k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2⊥ þ ðz − z0Þ2

p
, where the right-

hand side of the above equation is a direct consequence of
the Sommerfeld identity [70]. Moreover, the coordinate
conditions

kxk ≫ kx0k; R⊥ ¼ kðx − x0Þ⊥k ≃ kx⊥k ¼ ρ;

jzj þ jz0j ≃ jzj; ðA2Þ

in the far-field approximation produce the well-known
result for Ḡμ

ED ν in standard ED [59],

Ḡμ
ED νðx;x0;ωÞ → ημν

eik̃0ðr−n̂·x0Þ

r
; ðA3Þ

with n̂ being a unit vector in the direction of x and kxk ¼ r.
For future purposes, it will be convenient to go back to

the generalized Sommerfeld identity in Eq. (45) and to
rewrite it in terms of Hankel functions. We start from

J0ðxÞ ¼
1

2
ðHð1Þ

0 ðxÞ þHð2Þ
0 ðxÞÞ; ðA4Þ

where Hð1Þ
0 and Hð2Þ

0 are the Hankel functions, together

with the reflection formula Hð1Þ
0 ðeiπxÞ ¼ −Hð2Þ

0 ðxÞ, which
allows us to extend the integration interval to −∞. The
result is

eik̃0R

R
¼ i

2

Z
∞

−∞; C

k⊥dk⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃20 − k2⊥

q Hð1Þ
0 ðk⊥R⊥Þei

ffiffiffiffiffiffiffiffiffiffi
k̃20−k

2⊥
p

jZj; ðA5Þ

with R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2⊥ þ Z2

p
and where Z can be conveniently

chosen. Here C denotes the path of integration defined in
Fig. 2.2.5 of Ref. [67].
Now, we calculate the far-field approximation of Ḡμ

θ̃ ν
.

Starting from the second expression in Eqs. (43) and
choosing the coordinate system S previously introduced
in Fig. 7, Ḡμ

θ̃ ν
can be rewritten as

Ḡμ
θ̃ ν
ðx;x0;ωÞ ¼ iεμνα3

2θ̃

4þ θ̃2
Iαðx;x0;ωÞ; ðA6Þ

where we define the following integrals:

Iαðx;x0;ωÞ ¼
Z

∞

0

k⊥dk⊥
k̃20 − k2⊥

ei
ffiffiffiffiffiffiffiffiffiffi
k̃20−k

2⊥
p

ðjzjþjz0jÞ

×
Z

2π

0

dφ
2π

eik⊥R⊥ cosφkα; ðA7Þ

which we subsequently separate according to α ¼ 0 and
α ¼ k ¼ 1, 2. Rewriting the angular integration in terms of
Bessel functions and employing the expression (A5) for the
Sommerfeld integral with Z ¼ jzj þ jz0j, we obtain

FIG. 7. The vectors k⊥;k⊥x
;k⊥y

, and R⊥ in the coordinate
system S.
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I0ðx;x0;ωÞ ¼ ω

2

Z
∞

−∞C

k⊥dk⊥
k̃20 − k2⊥

Hð1Þ
0 ðk⊥R⊥Þ

× ei
ffiffiffiffiffiffiffiffiffiffi
k̃20−k

2⊥
p

ðjzjþjz0jÞ; ðA8Þ

Ikðx;x0;ωÞ ¼ i
2R⊥

ðx − x0Þ⊥k
∂

∂R⊥

Z
∞

−∞C

k⊥dk⊥
k̃20 − k2⊥

×Hð1Þ
0 ðk⊥R⊥Þei

ffiffiffiffiffiffiffiffiffiffi
k̃20−k

2⊥
p

ðjzjþjz0jÞ: ðA9Þ

Next, we implement the far-field conditions (A2),
yielding

Hð1Þ
0 ðk⊥ρÞ ∼

ffiffiffiffiffiffiffiffiffiffiffi
2

πk⊥ρ

s
eik⊥ρ−i

π
4 ðA10Þ

in the limit ρ → ∞ and z → ∞. Then, the following
product reduces to

Hð1Þ
0 ðk⊥ρÞei

ffiffiffiffiffiffiffiffiffiffi
k̃20−k

2⊥
p

jzj ∼

ffiffiffiffiffiffiffiffiffiffiffi
2

πk⊥ρ

s
eik⊥ρ−i

π
4
þi

ffiffiffiffiffiffiffiffiffiffi
k̃20−k

2⊥
p

jzj; ðA11Þ

in each of the integrands of Eqs. (A8) and (A9). This factor
is a rapidly oscillating function of k⊥ that allows one
to apply the stationary phase approximation to evaluate
the dominant contribution [67,68]. Recalling that kz ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃20 − k2⊥

q
, the stationary phase condition is

ðk⊥Þs ¼ k̃0ρ=r; ðkzÞs ¼ k̃0jzj=r; ðA12Þ

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
. Moreover, in Eqs. (A8) and (A9), we

can estimate k̃20 − k2⊥ ¼ k2z ≃ ðkzÞskz around the point
where the phase is stationary. Using again the Som-
merfeld identity (A5) with R ¼ R̃ and Z ¼ jzj þ jz0j, we
arrive at

I0ðx;x0;ωÞ ¼ ωr

ik̃0jzj
eik̃0R̃

R̃
; ðA13Þ

Ikðx;x0;ωÞ ¼ i
ðx − x0Þ⊥k

k̃0jzj
r

�
k̃0
R̃2

þ i

R̃3

�
eik̃0R̃; ðA14Þ

where

R̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2⊥ þ ðjzj þ jz0jÞ2

q
: ðA15Þ

Finally, we complete the far-field approximation in
Eqs. (A13) and (A14) by writing

R̃ ¼ r − n⊥ · x0⊥ þ jz0 cos θj; ðA16Þ

with n⊥ ¼ sin θðcosϕ; sinϕ; 0Þ. The results are

I0ðx;x0;ωÞ ¼ eik̃0r

inrj cos θj e
ik̃0ð−n⊥·x0⊥þjz0 cos θjÞ; ðA17Þ

Ikðx;x0;ωÞ ¼ n⊥keik̃0r

irj cos θj e
ik̃0ð−n⊥·x0⊥þjz0 cos θjÞ; ðA18Þ

where we have dropped terms of Oðr−2Þ and higher.
Next we comment on a technical point, which fortu-

nately is not relevant to our purposes. On one hand, the
integrand in Eq. (A8) has poles at k⊥ ¼ �k̃0. At the same
time, the stationary point obtained in Eq. (A12) indicates
that ðk⊥Þs ¼ k̃0 sin θ. Both values coincide for θ ¼ �π=2
indicating the factor of the exponential is not a smooth
function around the stationary point now. In this way, the
stationary phase calculation requires some modifications,
which we do not pursue in this work. The reason we do not
require such improvements is because the VC cone con-
dition demands 0 < θC < cos−1ð1=nÞ, which is always far
away from the dangerous point θ ¼ π=2, unless n is
extremely large. In other words, our calculation in the
stationary phase method is still a good approximation for
the far-field behavior of our GFs when θ < π=2. An
analogous situation occurs when dealing with the steepest
descent method [75–77].
At this point and as a matter of consistency, we show

that the stationary phase method and the steepest descent
method lead to the same results, under a similar restriction
for θC. Let us recall that the latter method [67,69] allows the
calculation of the leading contribution to the integral

I ¼
Z

eλhðtÞfðtÞdt; ðA19Þ

when a rapidly varying exponential factor multiplies the
function fðtÞ, which must have a smooth behavior in
the region close to the stationary phase point, yielding the
result

I ∼ eλhðt0Þfðt0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2π

λh00ðt0Þ

s
; ðA20Þ

where t0 is such that h0ðt0Þ ¼ 0. From Eqs. (A8) and (A9),
we extract the required integral as

K1ðx;ωÞ ¼
Z

∞

−∞; C

k⊥dk⊥
k̃20 − k2⊥

Hð1Þ
0 ðk⊥R⊥Þei

ffiffiffiffiffiffiffiffiffiffi
k̃20−k

2⊥
p

ðjzjþjz0jÞ;

ðA21Þ

whose asymptotic behavior for k̃20 > k2⊥ is

K1ðx;ωÞ ∼
Z

∞

−∞; C

k⊥dk⊥
k̃20 − k2⊥

ffiffiffiffiffiffiffiffiffiffiffi
2

πk⊥ρ

s
eik⊥ρ−i

π
4ei

ffiffiffiffiffiffiffiffiffiffi
k̃20−k

2⊥
p

jzj:

ðA22Þ
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Since the rapidly oscillating phase in Eq. (A22) coincides
with that of Eq. (A11) in the far-field regime, the stationary
point of K1ðx;ωÞ is also given by the conditions in
Eq. (A12), yielding

eik⊥R⊥−iπ4ei
ffiffiffiffiffiffiffiffiffiffi
k̃20−k

2⊥
p

ðjzjþjz0jÞjk⊥¼k⊥s
¼ eik̃0R̃−i

π
4 ðA23Þ

as the phase at the stationary point. After this, we require
computation of the second derivative of the phase at the
stationary point in the far-field regime, which is

d2

dk2⊥

�
k⊥ρ −

π

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃20 − k2⊥

q
jzj
�����

k⊥¼k⊥s

¼ −
r3

k̃0z2
: ðA24Þ

Substituting Eqs. (A23) and (A24) in Eq. (A20), we obtain
that the leading-order term calculated by this method is

K1ðx;ωÞ ∼ eik̃0ðr−n⊥·x0⊥þjz0 cos θjÞ 2

ik̃0jzj
; ðA25Þ

where we have disregarded π=4 in front of k̃0r → ∞ and
we have replaced R̃ by its expression (A16). Inserting
Eq. (A25) in the expressions (A8) and (A9), we obtain the
results given in Eqs. (A17) and (A18) by the stationary
phase method. Therefore, putting together Eqs. (A17) and
(A18) in Eq. (A6), we find the final expression for
Ḡμ

θ̃ ν
ðx;x0;ωÞ as

Ḡμ
θ̃ ν
ðx;x0;ωÞ ¼ εμν

α3 2θ̃

4ϵþ θ̃2
sα

j cos θj
eik̃0r

r

× eik̃0ð−n⊥·x0⊥þjz0 cos θjÞ; ðA26Þ

where sα ¼ ð1=n; n̂Þ.
The calculation of Ḡμ

θ̃2 ν
proceeds along similar lines and

the final result is summarized in the equations

Ḡμ
θ̃2 ν

ðx;x0;ωÞ ¼ θ̃2

4n2 þ θ̃2
eik̃0r

rcos2θ
Cμ
νðx; nÞ

× eik̃0ð−n⊥·x0⊥þjz0 cos θjÞ; ðA27Þ

where

Cμ
νðx; nÞ ¼

0
BBB@

sin2θ −x=rn −y=rn 0

x=rn −1=n2 0 0

y=rn 0 −1=n2 þ sin2θ 0

0 0 0 0

1
CCCA:

ðA28Þ

We have also verified that the steepest descent method
[67,69] gives the same results as the stationary phase
approximation in the calculation of the required rapidly
oscillating integrals for this contribution.
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