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We consider the formation and evolution of axion quark nugget (AQN) dark matter particles in
the early Universe. The goal of this work is to estimate the mass distribution of these objects
and assess their ability to form and survive to the present day. We argue that this model allows a
broad range of parameter space in which the AQN may account for the observed dark matter mass
density, naturally explains a similarity between the “dark” and “visible” components, i.e.,
Ωdark ∼ Ωvisible, and also offers an explanation for a number of other long-standing puzzles, such
as the “primordial lithium puzzle” and “the solar corona mystery,” among many other cosmological
puzzles.
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I. INTRODUCTION

In this paper we describe a scenario in which dark matter
(DM) consists of macroscopically large, nuclear density,
composite objects known as axion quark nuggets (AQNs)
[1]. In this model the “nuggets” are composed of large
numbers of standard model quarks bound in a nonhadronic
high-density color superconducting (CS) phase. As with
other high-mass dark matter candidates (such as Witten’s
quark nuggets [2]; see Ref. [3] for a review) these objects
are “cosmologically dark” not through the weakness of
their interactions, but due to their small cross section–to–
mass ratio which scales all observable consequences. As
such, constraints on this type of dark matter place a lower
bound on their mass distribution, rather than the coupling
constant.
There are two additional elements in the AQN model

in comparison with the older well-known construction
[2,3]. First, there is an additional stabilization factor
provided by the axion domain walls which are copiously
produced during the QCD transition and which help to
alleviate a number of the problems inherent in the older

models.1 Another crucial additional element in the proposal
is that the nuggets could be made of matter as well as
antimatter in this framework. This novel key element of the
model [1] completely changes the entire framework
because the dark matter density Ωdark and the baryonic
matter density Ωvisible now become intimately related to
each other and proportional to each other, Ωdark ∼ Ωvisible,
irrespective of any specific details of the model, such as the
axion mass or size of the nuggets. It was precisely this
fundamental consequence of the model that was the main
motivation for its construction.
The presence of a large amount of antimatter in the form

of high-density AQNs leads to a large number of observ-
able consequences within of this model as a result of
annihilation events between antiquarks from AQNs and
visible baryons. We refer to Sec. II for a short overview of
the basic results, accomplishments, and constraints of
this model.
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1In particular, the first-order phase transition was a required
feature of the system for the original nuggets to be formed during
the QCD phase transition. However, it is known by now that the
QCD transition is a crossover rather than the first-order phase
transition. Furthermore, the nuggets [2,3] will likely evaporate on
the Hubble time scale even if they had been formed. In case of the
AQNs, the first-order phase transition is not required as the axion
domain wall plays the role of the squeezer. Furthermore, the
argument related to the fast evaporation of the nuggets is not
applicable for the AQNs because the vacuum ground-state
energies inside (CS phase) and outside (hadronic phase) the
nuggets are drastically different. Therefore, these two systems
can coexist only in the presence of the additional external pressure
provided by the axion domain wall, in contrast with original
models [2,3] which must be stable at zero external pressure.
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The only comment we would like to make here is that
some long-standing problems may find their natural reso-
lutions within the AQN framework. The first of these is the
“primordial lithium puzzle” which has persisted for at least
two decades. It has been recently shown [4] that this long-
standing mystery might be naturally resolved within the
AQN scenario. Another example is the 70-year-old mystery
(since 1939) known in the community as “the solar corona
mystery.” It has been recently suggested that this mystery
may also find its natural resolution within the AQN scenario
[5,6] as a result of the annihilation of AQNs in the solar
corona. These two examples show the very broad applica-
tion potential of this model. Furthermore, the corresponding
quantitative results are highly sensitive to the size distribu-
tion of the AQNs, and their ability to survive in unfriendly
environment such as the solar corona or high-temperature
plasma during big bang nuclear synthesis (BBN).
The main goal of the present work is to focus on these

two specific questions about the model which have been
previously ignored (mostly due to oversimplified settings),
with the main goal of a qualitative (order-of-magnitude)
estimate rather than a quantitative description. We are now
in a position to fill this gap and address the hard questions
on the size distribution and survival pattern during the long
evolution of the Universe.
The central result is a demonstration that AQNs of a

sufficient size will survive the high-density plasma of the
early Universe from their formation at the QCD transition
until the present day. However, before turning to the details
of formation and evolution we will briefly review the
relevant properties of the AQN dark matter model, and its
basic predictions, results, and accomplishments in Sec. II.
In Secs. III and IV we discuss the size distribution during
the formation period, while Secs. V–VIII are devoted to an
analysis of the survival features of the AQNs at high (before
the BBN epoch) and low (after the BBN epoch) temper-
atures. In Sec. IX we analyze the present-day observational
constraints on the mass distribution.

II. THE AQN DARK MATTER MODEL

A. The basic predictions, results, and accomplishments

The AQN dark matter model was originally introduced to
resolve two important outstanding problems in cosmology:
the nature of darkmatter and themechanism of baryogenesis.
The connection between these seemingly unrelated questions
is motivated by the apparently coincidental similarity of the
visible and dark matter energy densities,

Ωdark ∼Ωvisible: ð1Þ
If the dark matter is in fact a new fundamental particle then
there is no a priori reason for this similarity, and visible and
dark matter could have formed with widely different energy
densities. However, if these two forms of matter share a
common origin the ratio (1) may have a physical explanation

rather thanbeinga tunedparameter of the theory. In the case of
visiblematter the energydensity is fixed at theQCD transition
when baryons form and acquire their observed mass,2 so we
may ask if the dark matter density may also form at this time.
The AQN proposal represents an alternative to the baryo-

genesis scenario when the “baryogenesis” is replaced by a
charge separation process in which the global baryon
number of the Universe remains zero. In this model the
unobserved antibaryons come to comprise the darkmatter in
the form of dense antinuggets in a CS phase. Dense nuggets
in aCSphase are also present in the system such that the total
baryon charge remains zero at all times during the evolution
of the Universe. The detailedmechanism of the formation of
the nuggets and antinuggets has been recently developed in
Refs. [7–9]. The only comment we would like to make here
is that the energy per baryon charge is approximately the
same for nuggets in a CS phase and visible matter in a
hadronic phase, as both types ofmatter are formedduring the
same QCD transition and both are proportional to the same
fundamental dimensional parameter ∼ΛQCD. Therefore, the
relation (1) is a natural outcome of the framework rather than
a consequence of a fine-tuning.
In the context of the AQN model the dark matter is

formed by the action of a collapsing network of axion
domain walls formed at the QCD transition. These proc-
esses will contribute to direct axion production through the
misalignment mechanism, domain-wall decay, as well as
the nuggets’ formation; see Fig. 1. This process will be
described in detail in Sec. III, and we shall not elaborate on
this topic here.
The result of this “charge separation” process is two

populations of AQNs carrying positive and negative baryon
number. That is, the AQNs may be formed of either matter
or antimatter. However, due to the global CP-violating
processes associated with θ0 ≠ 0 during the early formation
stage (see Fig. 1), the number of nuggets and antinuggets
formed will be different. This difference is always an order
one effect irrespective of the parameters of the theory, the
axion mass ma, or the initial misalignment angle θ0, as
argued in Refs. [7,8]. The disparity between nuggets ΩN
and antinuggetsΩN̄ unambiguously implies that the baryon
contribution ΩB must be of the same order of magnitude as
all contributions are proportional to one and the same
dimensional parameter ΛQCD.
If we assume that all other dark matter components

(including conventional axion production, as shown on
Fig. 1) are subdominant players, one can relate the baryon
charge hidden inside the nuggets with the visible baryon
charge. Indeed, the observations suggest that Ωdark is 5
times greater than ΩB, which in our framework implies that

2Prior to the QCD transition, the quarks and leptons carry
masses generated via the Higgs mechanism, but these are 3 orders
of magnitude smaller than the baryon masses and thus represent a
negligible fraction of the present-day energy density.
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ΩN̄∶ΩN∶ΩB ≈ 3∶2∶1; Ωdark ≈ ðΩN̄ þ ΩNÞ: ð2Þ

This approximate relation represents a direct consequence
of baryon charge conservation,

Buniverse ¼ 0 ¼ Bnugget þ Bvisible − jBjantinugget: ð3Þ

If direct axion production is not negligible, the ratio (2) will
obviously be modified. However, all numerical coefficients
entering Eq. (2) will always be order of one, unless the
axion massma is fine-tuned to saturate the present value for
Ωdark. We refer to the original paper [9] and specifically
Fig. 5 in that paper for a more precise relation between
these two distinct contributions. One should note that the
direct axion production contribution Ωaxion to dark matter
Ωdark is highly sensitive to the axion mass ma in contrast
with the nuggets’ contribution (1) which holds irrespective
of the value of the axion mass ma. In particular, Ωaxion
becomes negligible for sufficiently large axion mass
because it scales as Ωaxion ∼m−7=6

a ; see footnote 4 for
recent numerical estimates. These estimates suggest that if
ma ≥ 10−4 eV, direct axion production is numerically
small, Ωaxion ≪ Ωdark, and therefore, the ratio (2) is
approximately valid.
We may also reformulate Eq. (2) in terms of the number

densities and average mass of the various components,

1

3
hMN̄inN̄ ≈

1

2
hMNinN ≈mBnB; ð4Þ

where the AQNs masses are related to their baryon number
by MN ≈MN̄ ≈mpjBj. The resulting AQNs will be mac-
roscopically large (typically with radii above 10−5 cm) and
of roughly nuclear density, resulting in masses above
roughly a gram. The density of the color superconducting
phase is not precisely known and depends on the exact

phase of matter realized in the AQN. Furthermore, the
axion domain wall surrounding the nugget also contributes
to its mass; see Ref. [9] for quantitative relations. For the
present work we will simply adopt a typical nuclear baryon
number density of order 1040 cm−3 for all our estimates,
such that a nugget with jBj ∼ 1025 has a typical radius of
R ∼ 10−5 cm.
As a result, the effective interaction is very small,

σN=MN ∼ 10−10 cm2=g, where σN ∼ R2 assumes a typical
geometrical cross section. This estimate is well below
the upper limit of the conventional DM constraint
σ=MDM < 1 cm2=g. This is the main reason why, despite
being made from strongly interacting particles, the AQNs
nevertheless behave as cold DM from the cosmological
perspective.
Another fundamental ratio is the baryon-to-entropy ratio

at present time,

η≡ nB − nB̄
nγ

≃
nB
nγ

≈ 6 × 10−10: ð5Þ

In the AQN proposal (in contrast with conventional baryo-
genesis frameworks), this ratio is determined by the
formation temperature Tform ≃ 41 MeV at which the nug-
gets and antinuggets complete their formation; see Fig. 1.
We refer to Ref. [7] for relevant estimates of the parameter η
within the AQN framework. We note that Tform ∼ ΛQCD

assumes a typical QCD value, as it should. This is because
there are no small parameters in QCD and all observables
must be expressed in terms of a single fundamental
parameter, which is ΛQCD. One should add here that the
numerical smallness of the factor (5) is a result of an
exponential sensitivity of η to the formation temperature as
η ∼ expð−mp=TformÞ, with the proton’s mass being a
numerically large parameter when it is written in terms
of the QCD critical temperature mp ≃ 5.5Tc.
It is the purpose of this work to investigate the mass

distribution of AQNs generated by the collapse of the axion
domain-wall network and assess their survival pattern
within the high-density plasma of the early Universe.
The efficiency of the formation process is reflected in
the observed baryon-to-photon ratio (5), which implies that
only a small fraction of the primordial baryonic matter is
successfully bound when the formation is completed at
T ≈ 41 MeV into AQNs and thus protected from further
annihilation.
To conclude this short overview of the basic features of

the AQN framework, we would like to mention that the
AQN dark matter model has recently been applied to a
variety of situations in the early Universe. In particular, it
has been suggested that the anomalously strong 21-cm
absorption feature reported by the EDGES Collaboration
[10] may be driven by an additional component to the large-
wavelength end of the radiation spectrum at early times
[11]. Such a component may be produced by thermal

FIG. 1. This diagram illustrates the interrelation between axion
production due to the misalignment mechanism and the nuggets’
formation which starts before the axion field θ relaxes to zero.
Adopted from Ref. [9].
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emission from a population of AQNs which primarily emit
well below the cosmic microwave background (CMB) peak
and which are not expected to be in thermal equilibrium
with the photons [12].
It has also been suggested that the presence of partially

ionized AQNs at temperatures T ≃ 20 keV soon after the
BBN epoch may result in the preferential capture (and
eventual annihilation) of the highly charged heavy nuclei
with Z ≥ 3 produced during BBN. This proposal offers a
resolution [4] to the long-standing “primordial lithium
puzzle.” While both of these phenomena—which occurred
at very early times in the evolution of the Universe (at
redshifts z ≃ 17 and T ≃ 20 keV, respectively)—are poten-
tially very interesting and important, the underlying physics
and astrophysical backgrounds are not sufficiently well
understood to impose strong constraints on the AQN size
distribution during these earlier times. Instead, the strongest
constraints come from current, more readily observable,
and better understood environments and will be the subject
of Sec. II B of this work.

B. Mass distribution constraints

As stated above, the nuggets are not fundamentally
weakly interacting but are effectively “dark” due to their
large mass and consequent low number density. For
example, the flux of nuggets that should be observed on
or near Earth is

Φ ¼ nNvN ≈
ρDMvN
MN

≈ 1 km−2 yr−1
�
1024

hBi
�
; ð6Þ

and thus direct-detection experiments can impose lower
limits on the value of hBi for the distribution of AQNs.
Limits may also be obtained from astrophysical and
cosmological observations. In this case, any observable
consequences will be scaled by the matter-AQN interaction
rate along a given line of sight,

Φ ∼ R2

Z
dΩdl½nvisibleðlÞ · nDMðlÞ� ∼

1

hBi1=3 ; ð7Þ

where R ∼ B1=3 is the typical size of a nugget
which determines the effective cross section of interaction
between DM and visible matter. Thus, as with direct
detection, astrophysical constraints impose a lower bound
on the value of hBi.
The relevant constraints come from a variety of both

direct-detection and astrophysical observations, which we
summarize here. Further details are available in the original
papers and references therein.

1. Direct detection

As mentioned above, the flux of AQNs at the Earth’s
surface is scaled by a factor of B−1 and is thus suppressed

for large nuggets. For this reason, the experiments most
relevant to AQN detection are not the conventional high-
sensitivity dark matter searches, but rather detectors with
the largest possible search area. For example, it has been
proposed that large-scale cosmic-ray detectors such as the
Auger Observatory or Telescope Array may be sensitive to
the flux of AQNs in an interesting mass range; however,
this sensitivity is strongly limited by the relatively low
velocity of the AQNs, vN ∼ 10−3c [13].
The strongest direct-detection limit is likely set by the

IceCube Observatory’s nondetection of a nonrelativistic
magnetic monopole [14]. While magnetic monopoles and
AQNs interact with the material of the detector in very
different ways, in both cases the interaction leads to
electromagnetic and hadronic cascades along the trajectory
of AQNs (or magnetic monopole) which must be observed
by the detector if such events occur. The nonobservation of
any such cascades would put a limit on the flux of heavy
nonrelativistic particles passing through the detector, which
limits the AQN flux to ΦN ≲ 1 km−2 yr−1 which is mainly
determined by the size of the IceCube Observatory. Similar
limits are also derivable from the Antarctic Impulsive
Transient Antenna [15], though this result depends on
the details of the radio-band emissivity of AQNs. There is
also a constraint on the flux of heavy dark matter with mass
M < 55 g based on the nondetection of etching tracks in
ancient mica [16].
If we take the local dark matter mass density to be

ρ ≈ 0.3 GeV=cm3 and assume that this value is saturated
by AQNs, we may translate the flux constraint ΦN ≲
1 km−2 yr−1 into a lower limit with 3.5σ confidence on
the mean baryon number of the nugget distribution of

hBi > 3 × 1024ðdirect detection constraintÞ; ð8Þ

where we assume 100% efficiency of the observation of the
AQNs passing through the IceCube Observatory. If this
efficiency is lower, the limit (8) will also be weakened.

2. Indirect detection

We also consider the constraints arising from possible
dark matter interactions within the Solar System. These
include a limit from the potential contributions to Earth’s
energy budget which require jBj > 2.6 × 1024 [15], which
is consistent with Eq. (8). It has also been suggested that
there is a strong limit on any annihilating AQN population
due to the low flux of high-energy neutrinos from the Dun
[17]. However, the composite nature of AQNs when the
bulk of quark matter is in a CS phase is likely to result in the
majority of neutrino emission occurring at relatively low
energies where they will be lost in the much larger
conventional solar neutrino background [18].
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3. Galactic observations

It is known that the spectrum from the Galactic center
(where the dark and visible matter densities assume high
values) contains several excesses of diffuse emission the
origin of which is unknown, the best-known example being
the strong galactic 511 keV line [19].
The emission spectrum of AQNs has been studied in a

variety of environments and over a range of energy scales.
As discussed above, the expected diffuse emission due to
AQNs scales as the product of the dark and visible matter
densities (ρDM · ρB) so that the strongest consequences will
be from relatively high-density regions such as the Galactic
center. The dependence on the visible matter density also
means that the AQN model predicts a dark matter contri-
bution to the galactic spectrum that is less spherically
symmetric than is expected for either decaying (∼ρDM) or
self-annihilating (∼ρ2DM) dark matter models, consistent
with observations [19]. The emission spectrum associated
with an AQN population will be distinct from that of more
conventional dark matter candidates in that the most
energetic annihilations will be at the nuclear (∼100 MeV)
scale, implying that any signal will be limited to sub-GeV
energies.
The potential AQN contribution to the Galactic spectrum

has been analyzed across a broad range of frequencies,
from a radio-band thermal contribution to x-ray and γ-ray
photons produced by more energetic annihilation events. In
each case the predicted emission was consistent with
observations and had the possibility of improving the
global fit of galactic emission models. All of these
emissions from different frequency bands are expressed
in terms of the same integral (7), and therefore the relative
intensities are unambiguously and completely determined
by the internal structure of the nuggets which is described
by conventional nuclear physics and basic QED. For further
details, see the original studies in Refs. [20–26] which
contain specific computations in different frequency bands
for galactic radiation, and the short overview in Ref. [27].
To summarize this subsection: the most significant

potential dark matter signal in this context is the galactic
511 keV line (plus related continuum emission in the
100 keV range) resulting from low-energy electron-posi-
tron annihilations through 1S0 and 3S1 positronium for-
mation with consequent decays. These emission features of
the galactic spectrum have proven difficult to explain with
conventional astrophysical sources. At the same time, the
AQN model with the constraints from direct detection
discussed in Sec. II B 1 could offer a potential explanation
for the entire observed 511 keVemission feature (including
the width, morphology, 3γ continuum spectrum, etc.).
If further contributions from conventional astrophysical

sources are discovered the constraint (8) from Sec. II B 1
may be tightened to higher values of hBi. As the line of
sight through the galactic center samples the emission from
a large number of individual AQNs, this measurement is

sensitive only to the average baryon number hBi of the
antimatter AQNs and does not provide any information on
their size distribution, in contrast with the solar observa-
tions discussed in the next subsection, which are highly
sensitive to the size distribution.

4. Solar corona observations

Yet another AQN-related effect might be intimately
linked to the so-called “solar corona heating mystery.”
The renowned (since 1939) puzzle is that the corona has a
temperature T ≃ 106 K which is 100 times hotter than the
surface temperature of the Sun, and conventional astro-
physical sources fail to explain the extreme UV (EUV) and
soft x-ray radiation from the corona 2000 km above the
photosphere. Our comment here is that this puzzle might
find its natural resolution within the AQN framework, as
recently argued in Refs. [5,6,28].
In this scenario the AQNs composed of antiquarks fully

annihilate within the so-called transition region (TR),
providing a total annihilation energy of order

ΔE ≈ 4πb2⊙ρDMvDM ≈ 5 × 1027 erg=s; ð9Þ

where b⊙ is the Sun’s gravitational capture parameter,

b⊙ ≃ R⊙
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ⊙

p
; γ⊙ ≡ 2GM⊙

R⊙v2
: ð10Þ

The estimate (9) is determined by the local dark matter
density, independent of the mass distribution. This value is
suggestively close to the observed EUV luminosity of
1027 erg=s. The EUVemission is believed to be powered by
impulsive heating events known as nanoflares, the origin of
which is unknown. If these nanoflares are in fact AQN
annihilation events [which was precisely the main con-
jecture formulated in Ref. [5] and formally expressed by
Eq. (11); see below] we may extract an upper limit on the
mass distribution for the AQNs because the energy dis-
tribution of the nanoflares has been previously studied in
the context of solar physics.
The main reason for our ability to study the AQN mass

distribution is due to the fact that the nanoflare distribution
has been modeled using magnetohydrodynamics (MHD)
simulations in plasma and solar physics studies to match the
solar observations with simulations. We can use the corre-
sponding results to constrain the AQN mass distribution.
A few comments on nanoflares and the AQN distribution

are in order. First of all, the majority of nanoflares (and,
therefore, individual AQN annihilation events) must be
below the resolution of solar telescopes and they must
interact sufficiently with the corona to deposit the majority
of the available energy in the TR rather than at lower radii.
According to Ref. [29], the resolution limit for flares is
Eres ≈ 3 × 1024 erg ≈ 2 × 1027mpc2 which implies that the
majority of AQNs must have a baryon number below
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B ∼ 1027 or, alternatively, that only a small fraction of their
mass is able to annihilate in the corona, though the later
possibility is disfavored by the analysis of Ref. [6].
Second, various analyses of coronal heating based

on MHD have considered the nanoflares to be a low-
energy continuation of the higher-energy class of solar
flares, despite the fact that they have significantly different
spacial and temporal distributions.3 Under this assumption,
a number of energy distributions have been considered
generally with power-law fits consistent with the better
observed population of flares at larger energies. The
analysis of Ref. [30] favors a power law with slope
α ≈ 2.5, where α is defined as follows:

dN ∼ E−αdE ∼ B−αdB; ð11Þ

where dN is the number of nanoflare events per unit time
with energy between E and Eþ dE. According to the
conjecture formulated in Ref. [5], this distribution coin-
cides with the baryon charge distribution dN=dB which is
the topic of the present work. These two distributions are
tightly linked as these two entities are related to the same
AQN objects according to our interpretation of the
observed nanoflare events.
Third, any population with a slope shallower than α ¼ 2

will experience too few nanoflares to dominate the total
heating budget. However, an alternate analysis [31] con-
sidered a broken power law in which a shallow slope
(α ≈ 1.2) transitions to a steeper slope (α ≃ 2.5) at large
energies. In this case, the heating contribution will be
peaked at the energy where the break in the spectrum
occurs, i.e., the position of the knee. In the model off
Ref. [31] it occurs at E ≃ 1024 erg, which is slightly below
the instrumental resolution energy Eres ≈ 3 × 1024 erg. In
many respects we consider this model to be preferable from
the AQN perspective because it explicitly shows that
nanoflares and flares have different natures, in agreement
with indirect evidence pointing to their distinct origins; see
footnote 3.
While the mechanism of energy release in the AQN

model is substantially different from conventional flare
studies, the nanoflare models of Refs. [30,31] provide a
useful parametrization of the distribution of AQN masses
which may be consistent with the observed degree of
coronal heating and EUV emission.
With this set of observational constraints in mind,

we now turn to the main purpose of this work: a study

of the formation and subsequent evolution of the AQN
population.

III. FORMATION OF THE AQNS

This section should be viewed as an introduction to the
domain-wall formation mechanism, its basic ideas (such as
percolation and the formation of closed surfaces), basic
generic results, and main assumptions. We also give an
overview of some results from our previous studies [7,8],
which represent the starting point of the quantitative
approach which is the subject of the present work. We
also report some new numerical results (supporting the
entire framework) at the very end of this section.
It is known that axion domain walls can form in the early

Universe [32,33]. When the Universe cools down to
Tosc ∼ 1 GeV, the axion mass effectively turns on, the
axion potential gets tilted, and the axion field starts to
oscillate; see Fig. 1. The tilt becomes much more pro-
nounced at the QCD transition Tc ∼ 170 MeV when the
chiral condensate forms. In general, one should expect that
the axion domain walls can form anywhere between Tosc
and Tc; see Fig. 1.
During this time when Tc < T < Tosc, the axions are

emitted and may contribute to the dark matter density. The
conventional mechanism of emission is the misalignment
mechanism [34–36]. The axions may also be radiated due
to the decay of topological defects [37–42]. In both cases
the corresponding contribution is highly sensitive to the
axion mass ma as the corresponding contribution to the
dark matter scales as Ωaxion ∼m−7=6

a . There are a number of
uncertainties and remaining discrepancies in the corre-
sponding estimates. We do not comment on these subtleties
here and refer to the original papers.4

The formation of AQNs always accompanies these two
distinct contributions to ΩDM. However, in comparison
with the misalignment mechanism [34–36] and the decay
of topological defects [37–41], the contribution of the
nuggets to dark matter is always an order-one effect and is
not sensitive to the axion mass ma or the misalignment
angle θ0, as overviewed in the Introduction and expressed
by Eq. (1). The axion field plays a dual role in this
framework: it is responsible for the direct production of
the propagating axions with a contribution which scales as

3Nanoflares appear to occur uniformly across the solar surface,
while larger flares are strongly correlated with active regions.
Furthermore, the EUV intensity (which represents the nanoflare
activity) shows very modest variation within the solar cycle. It is
in drastic contrast with large flares which demonstrate a huge
variation (a factor of 102 or more) in frequency of appearance
within the solar cycle; see the detailed discussions in Ref. [6].

4According to the most recent computations presented in
Ref. [41], the axion contribution to ΩDM as a result of the decay
of topological objects can saturate the observed DM density
today if the axion mass is in the rangema¼ð2.62�0.34Þ10−5 eV,
while earlier estimates suggest that the saturation occurs at a
larger axion mass. This could be due to some other complications
with conventional computations, as argued in Ref. [42]. One
should also emphasize that the computations in Refs. [37–42]
were performed with the assumption that Pecci-Quinn symmetry
was broken after inflation.

GE, LAWSON, and ZHITNITSKY PHYS. REV. D 99, 116017 (2019)

116017-6



Ωaxion ∼m−7=6
a , and it plays a key role in the formation of

AQNs, as discussed in Refs. [7,8].
In the AQN model, we assume the preinflation scenario

in which the Pecci-Quinn phase transition occurs before
inflation [7]. Normally, in this case no topological defects
can form as there is a single vacuum state which occupies
the entire observable Universe; see footnote 4 for clarifi-
cation. This argument is absolutely correct for NDW ≠ 1
axion domain walls which require the presence of different
physical vacua with the same energy. However, NDW ¼ 1
axion domain walls are special in the sense that the axion
field θ interpolates between one and the same physical
vacuum but corresponding to different topological k
branches with θ → θ þ 2πk. As explained in Ref. [7],
different k branches of the same vacuum must be present at
each point in space to provide the 2π periodicity of the
vacuum energy [43,44]. Inflation cannot separate these k
branches. As a consequence, NDW ¼ 1 axion domain walls
can form even in this preinflation scenario with θ inter-
polating between the k ¼ 0 branch (θ ¼ 0) and k ¼ 1
branch (θ ¼ 2π); see Ref. [7] for details.
The key point is that a finite portion (a few percent) of

NDW ¼ 1 walls are formed as closed surfaces. Such
behavior has been observed in numerous numerical sim-
ulations [37,45]; see also Sec. IV for comments and more
details. In previous studies this contribution to Ωaxion (due
to the closed axion domain walls) has been ignored because
these closed surfaces (representing only a few percent of
the total area) collapse as a result of the wall tension and do
not play any significant role in the dynamics of the system.
However, in the AQN framework this small but finite
portion of the closed surfaces plays a key role. This is
because the collapse of the closedNDW ¼ 1 bubbles will be
halted due to the Fermi pressure created by the accumulated
fermions [7]. As a result, the closed NDW ¼ 1 bubbles will
eventually become stable nuggets and serve as dark matter
candidates.
The dynamics of nuggets with size RðtÞ is governed by

the following equation [7]:

σeffR̈ ¼ −
2σeff
R

−
σeff _R

2

R
þ ΔP − 4η

_R
R
− _σeff _R; ð12Þ

where σeff ¼ κ · 8f2amaðtÞ describes the effective domain-
wall tension (which does not coincide with the well-known
expression σ ¼ 8f2ama computed in the thin-wall approxi-
mation), and ΔP is the pressure difference inside and
outside the nugget.
An important element that we want to discuss here (in

addition to our previous studies) is related to the viscosity
term ∼η which enters Eq. (12) and effectively describes the
friction for the domain-wall bubble oscillating in high-
temperature plasma. It is precisely this term that describes
the slow change of the nuggets’ size before the formation is
completed and the nuggets assume their final form at

T ¼ Tform; see Fig. 1. For small oscillations the solution of
Eq. (12) can be approximated as

RðtÞ ¼ Rform þ ðR0 − RformÞe−t=τ cosωt;

ω ∼ R−1
form; τ ∼

σeff
2η

Rform; ωτ ≃
σeff
2η

∼
ΛQCD

ma
;

ð13Þ

which shows the physical meaning of the frequency ω ∼
R−1
form and damping time τ. The parameter τ describes the

time at which the formation is completed. This is a highly
nontrivial parameter as it represents a combination of very
different scales. Indeed, the viscosity η along any path
shown in Fig. 1 is always assumes ΛQCD scale (of course it
is, not known exactly in different phases); the axion scale
appears as it enters through σeff and finally, the cosmo-
logical scale enters as the formation effectively starts at
T ≃ Tc ≃ 170 MeV and must end at T ≃ Tform which
represents a very long cosmological journey with typical
time scale t ∼ T−2 ∼ 10−4 seconds.
It is a highly nontrivial observation that all of these

drastically different scales nevertheless lead to a consistent
picture. Indeed, a typical time for a single oscillation is
ω−1 ∼ 10−14 s for an axion mass ma ∼ 10−4 eV, while the
number of oscillations is very large and of order ωτ ∼ 1010

according to Eq. (13); see also Appendix A. Therefore, the
complete formation of the nuggets occurs on a time scale of
10−4 s, which is precisely the cosmological scale when the
temperature drops to 41 MeV. This scale is known from
completely different arguments related to the estimate of
the baryon-to-photon ratio (5).
Unfortunately, we could not numerically test this amaz-

ing “conspiracy of scales” in our original studies [7,8]. This
is because the factorωτ is very large in comparison with the
other scales of the problem. It is very hard to deal with very
large (or very small) factors in numerical computations.5

This is precisely the reason why in the numerical analyses
in Refs. [7,8] the viscosity term ∼η was artificially enlarged
∼108 times to make Eq. (12) numerically solvable, which is
a conventional technical trick; see footnote 5.
It is one of the goals of the present work to overcome this

technical difficulty by adopting a new numerical method—
coined as the envelope-followingmethod—which can solve
our system successfully while allowing the viscosity term
to keep its real physical magnitude η ∼ Λ3

QCD when the
parameter ωτ ∼ 1010 assumes its very large physical values.
We describe the method and present the numerical analysis
in Appendix A. Here we only summarize the basic results

5Of course, our case is by no means special in this respect: it is
a common problem in any numerical study when some param-
eters assume parametrically large/small values. This is obviously
the case in any numerical studies related to axion physics because
of the drastic separation of scales; see, e.g., Refs. [40–42].

AXION QUARK NUGGET DARK MATTER MODEL: SIZE … PHYS. REV. D 99, 116017 (2019)

116017-7



of these studies which confirm the main features of the
AQN model; see Fig. 2:
(1) The nugget completes its evolution by oscillating

a large number of times ωτ ∼ 1010 before it assumes
its final configuration with size Rform at Tform≈
40 MeV. Therefore, the “conspiracy of scales” phe-
nomenonmentioned above has been explicitly tested.

(2) The chemical potential inside the nugget indeed
assumes a sufficiently large value μform ≳ 450 MeV
during this long evolution. This magnitude is con-
sistent with the formation of a CS phase. Therefore,
the original assumption about the CS phase used in
the construction of the nugget is justified a pos-
teriori.

IV. BARYON CHARGE DISTRIBUTION

The main goal of this section is to calculate the baryon
charge distribution of nuggets in the AQN scenario
and compare it to the observational constraints listed in
Sec. II B. We start in Sec. IVA by describing the basic idea
of the computations. In Secs. IV B and IV C we study initial
size and temperature distributions, respectively. Finally, in
Sec. IV D we present our main results on the nuggets’
distribution dN=dB.

A. Basic idea of the computations

In the present section we need a relation between the
initial size of the nugget R0 formed at the temperature T0

and its total baryon charge when the stage of formation is
completed. The desired relation reads

B ≃ K · R3
0T

3
0; K ≡ π2

27
ffiffiffi
6

p gin ð14Þ

[see Appendix A for a detailed analysis regarding Eq. (14)].
This relation implies that the total baryon charge B of a
stable nugget is completely determined by the initial size
R0 and the initial temperature T0 of the closed domain wall
such that B ∝ ðR0T0Þ3.
Equation (14) tells us that closed domain walls with

different initial radii and temperatures will eventually carry
different baryonic charges B. Since the closed domain walls
can form with different initial radii and at different temper-
atures (Tc ≲ T0 ≲ Tosc), we may map these initial con-
ditions onto a baryon charge distribution of the nuggets
dN=dB.
According to Eq. (14), the baryon charge distribution

(dN=dB) of stable nuggets can be obtained from the initial
size (R0) and initial temperature (T0) distributions of the
closed axion domain walls which form between Tosc and Tc
(the initial stage of the nuggets). We start with the following
equation:

dN ¼ N0 · P · fðR0; T0Þ · dR0dT0; ð15Þ

where dN is the number of closed domain walls with initial
radii in the range ðR0; R0 þ dR0Þ and initial temperatures in
the range ðT0; T0 þ dT0Þ; fðR0; T0Þ is a two-parameter
distribution function which represents the probability
density of a closed domain wall with R0 and T0 in the
above ranges. The factor N0 is the total number of closed
bubbles that form in the early Universe when Ta≲
T0 ≲ Tc, while P is a normalization factor that normalizes
the probability density fðR0; T0Þ to one, i.e.,

ZZ
P · fðR0; T0Þ · dR0dT0 ¼ 1: ð16Þ

The main goal of this section is to develop a technique
which allows to compute fðR0; T0Þ.
To simplify our analysis we assume that all initial closed

domain walls will eventually become stable nuggets. We
clarify this assumption later in the text when we compare
the prediction of our construction with observational
constraints. As the next step, we use Eqs. (14) and (15)
to represent the number of stable nuggets with baryon
charge less than B as follows:

NðBÞ ¼
Z Z

K·R3
0
T3
0
≤B

N0 · P · fðR0; T0Þ · dR0dT0; ð17Þ

where K · R3
0T

3
0 ≤ B constrains the parameter space of the

integration.

FIG. 2. Numerical results for the nugget evolution. The two
solid blue lines represent the upper and lower envelope of R
oscillations, respectively. The shaded light blue region represents
the numerous oscillations. The solid orange line represents the
lower envelope of μ oscillations (we do not show the upper
envelope and the shaded region for μ oscillations to make the
picture more clear). The dashed blue and orange lines represent
Rform and μform using simple analytical arguments as expressed by
Eqs. (A8) and (A9), respectively. We see that they match the
numerical results for the nugget evolution pretty well.
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From Eq. (17), we can further calculate the baryon
charge distribution dNðBÞ=dB which is the main topic of
this section. Obviously, the distribution fðR0; T0Þ which
depends on T0 and R0 in a very nontrivial way plays a
crucial rule in our calculations of the dNðBÞ=dB distribu-
tion. The study of the function fðR0; T0Þ can be approx-
imately separated into two distinct pieces: one part
describes the R0 dependence, while the T0 distribution
can be incorporated separately. The next two subsections
are devoted to an analysis of these two different elements of
the main problem.

B. Initial size distribution

As discussed in Sec. III, in the AQN model the NDW ¼ 1
domain walls are topological defects with the axion field θ
interpolating between the k ¼ 0 (θ ¼ 0) and k ¼ 1
(θ ¼ 2π) branches. Although the k ¼ 0 and k ¼ 1 branches
correspond to the same unique physical vacuum, they
effectively act as two different vacua with the same energy.
The domain walls can interpolate between these (physically
identical but topologically distinct) vacua, similar to a
model with a VðθÞ ∼ cos θ potential, when θ ¼ 0 and θ ¼
2π correspond to one and the same physical vacuum.
Therefore, the NDW ¼ 1 axion domain walls in this
scenario can be treated as Z2 domain walls which greatly
simplifies the computations.
The closed Z2 domain walls have been observed in

simulations of Z2-wall systems [45]. In our case, this means
that closed NDW ¼ 1 axion domain walls can form, which
are the sources of stable nuggets as we discussed in Sec. III.
Furthermore, this analogy will provide us with more useful
information about the initial size distribution of these
closed bubbles. The authors of Ref. [45] pointed out that
the probability of forming a closed Z2 domain wall with
initial radius R0 ≫ ξ (where ξ is the correlation length of
the topological defects) is exponentially suppressed,
∼ exp ð−R2

0=ξ
2Þ. The procedure in Ref. [45] to derive this

relation is briefly reiterated below.
To simulate the Z2 system in three dimensions, we first

divide a big cubic volume into many small cubic cells, each
of which has length ξ. Then, to each cell a number a
number þ1 or −1 is assigned at random with equal
probability p ¼ 0.5. This is the simulation of the phe-
nomenon that different patches (with volume ∼ξ3) of the
space during the phase transition will settle randomly with
equal probability in one of the two vacua (θ ¼ 0 and
θ ¼ 2π in the case of NDW ¼ 1 axion domain walls). The
domain walls lie on the boundaries between cells of
opposite sign. Two neighboring cells are connected if they
have the same sign. Many connected cells can form a
cluster with the same sign. The size s of a cluster is defined
as the number of cells in the cluster. We then can look for
the size distribution of þ1 clusters. (Of course, the size of
−1 clusters will follow the same distribution.) It turns out
that this is a typical problem of percolation theory, which

deals with the statistics of clusters at different values of p.
See Refs. [46,47] for a review of percolation theory.6

In our case, where p ¼ 0.5 in three dimensions, the size
distribution of the finite clusters is known from percolation
theory [46],

ns ∝ s−τ exp ð−λs2=3Þ; ð18Þ

where ns is the number density of finite clusters as a
function of the cluster size s (the number of cells inside a
cluster). Although the distribution (18) is derived for large
clusters s ≫ 1 [46], it turns out that this relation can be
extrapolated down to s ¼ 1 as a very good approximation
[48]. As a consequence, we adopt Eq. (18) for the whole
spectrum s ≥ 1 for further calculations. The two coeffi-
cients τ and λ are p dependent. According to the Ref. [48], λ
has a typical value ∼10 and τ ranges from 1.5 to 2.2 based
on the three-dimensional lattice simulations. Discussing the
exact values of τ and λ at p ¼ 0.5 is beyond the scope of
this work. Instead, we simply adopt λ ¼ 10 and τ ¼ 2 for
further calculations.7 However, as we will see, the shape of
the baryon charge distribution dNðBÞ=dB of nuggets is not
sensitive to the precise numerical values of τ and λ.
The result (18) can be translated into the language of

domain walls straightforwardly. The probability of forming
a closed bubble with radius R0 decreases exponentially
when R0 increases, which can be formally expressed as

dN
dR0

∝ ξ−1
�
R0

ξ

�
2–3τ

· exp

�
−λ

�
R0

ξ

�
2
�
: ð19Þ

To derive this distribution as a function of R0 from Eq. (18),
we use the relations s ≃ R3

0=ξ
3 and ns ¼ 1

V
dN
ds where we get

rid of the simulation volume V (a constant) in Eq. (19). The
parameter ξ is the correlation length of topological defects
as mentioned above, which is also set as the length of a

6In percolation theory, there is a percolation threshold pc at
which an infinite cluster first appears on an infinite lattice. pc ¼
0.31 in three dimensions for a cubic lattice. In our case where the
probability of a cell picking þ1 is p ¼ 0.5, we have one infinite
þ1 cluster (p > pc) and one infinite −1 cluster (1 − p > pc). In
the language of domain walls, this can be interpreted as the
system being dominated by one infinite wall of very complicated
topology [45]. In addition to this infinite domain wall, there are
some closed domain walls (finite clusters) and they satisfy the
size distribution (18). The structure and dynamics of the infinite
domain wall are less important for our present work which
focuses on the closed domain walls.

7λ can also be calculated using the relation λ−1 ≃ jp − pcj−1=σp ,
where λ−1 is the crossover size (see, e.g., Refs. [46,49,50]). This
relation is valid for jp − pcj ≪ 1. The parameter σp ¼ 0.45 in
three dimensions [47]. We then get λ ≈ 0.025 when jp − pcj ≪ 1
is satisfied. In addition, τ ¼ −1=9 for p > pc is obtained in a
field-theoretical formulation of the percolation problem [51].
However, the exact values of λ and τ are not important for us,
since they do not affect the slope of the distribution dNðBÞ=dB,
as we will see in Sec. IV D.
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single cell. The smallest cluster is a cell (s ≥ 1), implying
that the lowest bound of the radius of closed bubbles is
R0 ≳ ξ. Since the relation (18) is applicable for all finite
clusters s ≥ 1 as mentioned above, we adopt Eq. (19) as the
size distribution of all closed bubbles R0 ≳ ξ.
It is very instructive to consider an oversimplified case

where there is no initial temperature distribution. This can
be realized if all of the closed bubbles form at the same
moment (at the same temperature). In this case the
distribution fðR0; T0Þ does not depend on T0 and, accord-
ing to Eq. (19), can be written as fðR0Þ ¼ dN=dR0 ∝
ξ−1ðR0=ξÞ2−3τ exp ½−λðR0=ξÞ2�. Using Eq. (14), this R0

dependence can be translated into a dN
dB distribution:

dN
dB

¼ dN
dR0

dR0

dB

∝
1

Bmin

�
B

Bmin

�
−τ
exp

�
−λ

�
B

Bmin

�2
3

�
; ð20Þ

where Bmin ≡ K · ξ3T3
0. In this oversimplified model where

there is no T0 distribution, we find that dN=dB is greatly
suppressed by the exponential factor∼ exp ½−λðB=BminÞ2=3�.
This essentially would imply that the distribution is strongly
peaked at B ≈ Bmin, while larger bubbles are strongly
suppressed.
As we discuss in the next subsection, the T0 dependence

drastically and qualitatively changes this simplified picture.
The key element is that the closed bubbles initially form at
different temperatures between Tosc and Tc, as discussed
above. The correlation length ξ ∼m−1

a , which is inversely
proportional to the axion mass ma, drastically changes
during this evolution because of the dramatic changes of
the axion mass in this interval.
These profound changes completely modify the basic

features of the distribution function fðR0; T0Þ, which is the
subject of the following subsection. As we shall see below,
the baryon charge distribution satisfies a power law
dN=dB ∝ B−α when T0 dependence is properly incorpo-
rated, rather than following the exponential behavior (20).
This power law is consistent with the parametrization (11)
which has been postulated to fit the observations.
Furthermore, the power-law behavior dN=dB ∝ B−α (as
we discuss below) is not very sensitive to the parameters of
the coefficients τ and λ, and therefore represents a very
robust consequence of the framework.

C. Initial temperature distribution
and the correlation length ξðTÞ

As we discussed in Sec. III, the closed axion domain
walls could form anywhere between Tosc and Tc; see Fig. 1
for the phase diagram corresponding to this evolution. It is
hard to calculate the exact T0 distribution. It is known,
though, that normally the temperature dependence enters

implicitly through the correlation length ξðTÞ which is
highly sensitive to the temperature.
To account for the corresponding modifications we adopt

the conventional assumption that the correlation length is a
few times the domain-wall width, ξðTÞ ∼m−1

a ðTÞ. The
axion mass is known to be a temperature-dependent
function before it reaches its asymptotic value near Tc
because it is proportional to the topological susceptibility.
At sufficiently high temperature T ≫ Tc one can use the
instanton liquid model [52,53] to estimate the power law
maðTÞ ∝ T−β. When the temperature is close to T ≃ Tc one
should use the lattice results to account for the proper
temperature scaling of the axion mass.
The recent lattice QCD result shows8 that maðTÞ ∝ T−β

with β ¼ 3.925 just above Tc [54]. We then can approxi-
mate the correlation length in the entire interval as

ξðT0Þ ¼ ξmin ·

�
T0

Tc

�
β

; Tc ≲ T0 ≲ Tosc; ð21Þ

where ξmin ≡ ξðT0 ¼ TcÞ is the minimal correlation length.
The same ξmin also serves as the minimal radius that closed
bubbles could have because R≳ ξ.
In what follows we also assume the following simple

model to account for the temperature variation of the
dN=dT0 distribution9:

dN
dT0

∝
1

Tc

�
ξðT0Þ
ξðTcÞ

�
δ

∝
1

Tc

�
T0

Tc

�
βδ

; ð22Þ

where δ is a free parameter that can be adjusted to shape
different T0 distributions. This parametrization has the
advantage of producing a simple final expression for the
baryon number distribution while still capturing the essen-
tials of the temperature dependence. The constant 1=Tc has
no special physical meaning but is introduced to balance
the units of the right-hand side and the left-hand side of the
relation. Perhaps the simplest case is δ ¼ 0, in which case
T0 is uniformly distributed, i.e., the probability of forming
nuggets is uniform between Tosc and Tc. One should
emphasize that δ ¼ 0 case is still not reduced to the
oversimplified example mentioned at the end of the
previous subsection. This is because the temperature
dependence explicitly enters through Eq. (22), but it also
enters implicitly through the temperature dependence of the
correlation length ξðTÞ in Eq. (19).

8Reference [54] did not show the value of β explicitly, but it
provided the related data in its Supplement Information. We
get β ¼ 3.925 by fitting the data provided. The lattice results are,
in fact, consistent with analytical models [52,53]; see also
Appendix A for additional details.

9One subtlety is that the effect of the expansion of the Universe
between Tosc and Tc is also included in the model (22), since N is
defined as the number of closed domain walls rather than the
number density.
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For positive δ > 0, the nuggets tend to form close to the
point Tosc, while for negative δ < 0, nuggets tend to form
when the tilt becomes much more pronounced close to the
QCD transition temperature Tc. A sufficiently large
numerical value of jδj > 1 with any sign corresponds to
a very sharp (almost explosive for jδj ≫ 1) increase of the
probability for axion bubble formation at T ≃ Tosc or at
T ≃ Tc depending on the sign of δ. At the same time, jδj ∼ 0
corresponds to a very smooth behavior in the entire
temperature interval (22). We, of course, do not know
any properties of the distribution (22) in strongly coupled
QCD when θ ≠ 0. Therefore, we proceed with our com-
putations with arbitrary δ and make comments on the
obtained properties of the baryon distribution dN=dB as a
function of the unknown parameter δ in next Sec. IV D.
Combining the T0 distribution (22) with the R0 distri-

bution (19), and substituting Eq. (21) into Eq. (19), we
arrive at the following two-parameter distribution function:

fðR0; T0Þ ¼
1

ξminTc
·

�
T0

Tc

�
3βðτ−1Þþβδ

·

�
R0

ξmin

�
2−3τ

× exp

�
−λ

�
R0

ξmin

�
2
�
Tc

T0

�
2β
�
;

Tc ≲ T0 ≲ Tosc; R0 ≳ ξðT0Þ: ð23Þ

Notice that here we use “¼” rather than “∝”. This is
because we have an extra factor P in Eq. (15) which serves
as the normalization factor, and the constant multipliers in
fðR0; T0Þ can be collected and included in P.
With this expression for fðR0; T0Þ and the basic Eq. (17),

we can now proceed with our calculation of the baryon
charge distribution dN=dB. The corresponding results will
be discussed in the next subsection.

D. The dN=dB distribution: results

Substituting Eq. (23) into Eq. (17), one can explicitly
compute the function NðBÞ and the distribution dN=dB. In
what follows it is convenient to introduce the following
dimensionless variables: the baryon charge b ¼ B=Bmin of
the nugget measured from its minimum value Bmin ¼
Kξ3minT

3
c; the relative size r ¼ R0=ξmin of the nugget

measured from its minimum size ξmin; and the relative
temperature u ¼ T0=Tc during formation evaluation in
units of Tc.
In terms of these dimensionless variables the desired

distribution dN=dB can be represented as follows:

dN
dB

¼ N0P
3Bmin

·

�
1

b

�
τ

×
Z

b
1

3ðβþ1Þ

1

du½u3ðβþ1Þðτ−1Þþβδe−λb
2=3u−2ðβþ1Þ � ð24Þ

(see Appendix B for technical details).

One can easily estimate the integral (24) by observing
that it is saturated for very large b ≫ 1 by usat of order

usat ∼ ½λb2=3� 1
2ðβþ1Þ ∼ b

1
3ðβþ1Þ; b ≫ 1 ð25Þ

when the exponential factor in Eq. (24) assumes a value of
order one. Substituting the expression back into Eq. (24),
one arrives at the following asymptotical behavior for the
distribution:

dN
dB

∝ B−α; B ≫ Bmin; ð26Þ

where the final result is expressed in terms of the physical
baryon charge B rather than in terms of the dimensionless
parameter b. The parameter α here is defined in precisely
the same way as it was defined in the observational fitting
formula (11).
The exponent α entering Eq. (26) can be approximated in

the limit B ≫ Bmin as follows:

α ≈ 1 −
βδþ 1

3ðβ þ 1Þ ∼ 1 −
δ

3
; ð27Þ

where in the last step we ignored the factors of order one in
comparison with the known (and very large) value of β ≃ 4
to simplify the qualitative discussions below. The approxi-
mate analytical formula (26) at very large B ≫ Bmin is in
perfect agreement with the numerical analysis presented in
Appendix B.
The behavior (26) is an amazingly simple and profoundly

important result. Indeed, it shows that the exponential
suppression is replaced by the algebraic decay (26) which
is consistent with the observational fitting formula (11). The
“technical” explanation of why this happens is that the
integral (24) is saturated by usat when the exponential factor
in Eq. (24) assumes a value of order one. In terms of the
physical parameters, it is related to the fact that the expo-
nential suppression (23) due to the large size R0 is effectively
removed by a strong temperature dependence with a very
large beta function β. Integration over the entire temperature
interval eventually leads to the algebraic decay (26).
Another important property of Eq. (26) is that the final

result for the slope (27) is not very sensitive to the parameters
λ and τ. The total normalization factor of course is very
sensitive to these parameters, as discussed in Appendix B. It
is also not very sensitive to the well-known parameter β ≈ 4
as long as it is relatively large. The slope α is mostly
determined by δ which may have any sign and effectively
describes the temperature interval where the bubbles are
producedwith the highest efficiency. The fittingmodels (11)
(based on observations that were discussed in Sec. II) can be
reproduced with a negative δ < 0. As we previously
mentioned, a negative δ corresponds to a preference for
bubble formation close to Tc where the axion potential tilt
becomes much more pronounced. Furthermore, a model
with α ≃ 2 corresponds to δ ≃ −3 (strongly peaked at
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T ≃ Tc), while another model with α ≃ 1.2 corresponds to a
more smooth distribution of dN=dB over the entire temper-
ature interval, with δ ≃ −1 corresponding to a mild prefer-
ence for bubble formation at T ≃ Tc.
The last comment we want to make is about the largest

possible size of nuggets. According to percolation theory,
there is no upper limit on the size of finite clusters (closed
domain walls). However, the shape of large clusters may
not be perfectly spherical (in three dimensions) while our
computations are based on the assumption of exact spheri-
cal symmetry of the formed bubbles. Furthermore, the
radius for nonsymmetric bubbles is defined in an average
sense for large closed clusters; see, e.g., Ref. [47] for more
details. The deviation from the ideal spherical shape makes
the large collapsing closed domain walls fragment with
high probability into smaller pieces, and thus could
significantly suppress the possibility of forming large
nuggets.10 The detailed calculations of the suppression
effect from the irregular shape for large clusters is hard to
carry out and also well beyond the scope of the present
work. However, we may introduce a cutoff Bcut to roughly
account for this extra suppression. Above Bcut, no nuggets
can form from the collapse of closed axion domain walls.
This parameter turns out to be useful when we later
calculate the total number of nuggets.
We conclude this section with the following remark. The

main result of our analysis is expressed as Eq. (26) with the
slope (27). This formula represents the baryon charge
distribution immediately after the formation period is
complete when the baryon-to-photon ratio η assumes its
present value (5). This “primordial” distribution of the
nuggets is the subject of a long evolution in hot plasma
which may modify the properties of dN=dB. This problem
of the “survival” of the primordial nuggets is the subject of
the next section.

V. SURVIVAL OF THE PRIMORDIAL
DISTRIBUTION

After the AQNs have formed at T ≈ 40 MeV, the process
of “charge separation” is essentially complete and the
plasma surrounding the nuggets contains exclusively pro-
tons, neutrons, electrons, and positrons. A nugget com-
posed of matter will gradually collect electrons into its
electrosphere as the plasma cools, but apart from this it will
essentially remain in its initial form. The surface layer of
electrons contributes negligibly to the total mass so that the
distribution of nugget masses remains essentially identical
to the primordial distribution discussed above. However,
the AQNs composed of antimatter, which are present in
larger numbers, will be subject to a much more complicated
evolution. The details of this process will be laid out below,

but we first give a general overview of the evolution of the
antimatter AQN mass distribution.
Initially, the plasma surrounding the AQNs is dominated

by electrons and positrons which are roughly as abundant
as the photons, i.e., ne ≃ neþ ≃ nγ ∼ T3. During this phase
the electrosphere captures positrons in those states for
which the binding energy is above the plasma temperature
and expands similarly to the case of a matter nugget.
However, once the temperature drops below the electron
mass T ≤ me the electrosphere can no longer capture free
positrons at a rate sufficient to compensate for annihila-
tions. Below this temperature the electrosphere will begin
to capture free protons which, if they stay bound to the
nugget for a sufficient period of time, will eventually
annihilate with the central quark matter.
The process of capturing protons becomes much more

pronounced after the temperature drops toT ≈ 20 keVwhen
the dominant portion of the positrons in the plasma get
annihilated, while the number densities of electrons and
protons become equal, i.e.,ne ≈ np ∼ ηT3. However, even at
this temperature (as we discuss below) only a very tiny
portion of theAQNs’ baryon chargewill be annihilated, such
that the mass distribution still remains essentially unaffected
by the unfriendly environment of the hot plasma.
Finally, after recombination at T ≤ 1 eV the surrounding

matter is largely neutral and at much lower densities.
During this time, matter (primarily in the form of neutral
hydrogen) will continue to collide with the antimatter
AQNs with some probability of annihilation but at a
relatively low rate. The rare events of annihilation during
the present time lead to a number of observable effects, as
reviewed in Sec. II B.
At each phase of evolution the scattering rate of baryons

on the nugget (and thus the probability of an annihilation)
scales with the cross section of the nugget. This is at least
approximately true even in the case where long-range
electrical effects must be considered as the nuggets’
electrical charge is itself a surface effect. As such, any
change in the mass distribution should be expected to show
a ΔM=M ∼ σ=M ∼ B−1=3 behavior.
The following sections will trace the evolution of the

mass distribution from formation to the present day.
Specifically, in Sec. VI we study the evolution of the
nuggets in very hot plasma before the BBN epoch. In
Sec. VII we analyze the AQN evolution before recombi-
nation, while in Sec. VIII we study the evolution of the
nuggets after recombination including the period of galaxy
formation. Finally, in Sec. IX we study the evolution of the
AQNs in the present-day Universe. We will demonstrate
that, for a range of physically interesting parameters, the
initial population of AQNs will survive until the present
day as a population consistent with all observational
constraints and with the parameter space allowed for the
axion mass and the AQNs’ baryon charge B as discussed in
Sec. II B.

10Ref. [55] presented a similar argument when the author
discussed the possibility of domain-wall membranes (e.g., closed
domain walls) collapsing into black holes.
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VI. PRE-BBN EVOLUTION

The AQN form and settle into a stable color super-
conducting phase at a temperature of approximately
Tform ≈ 40 MeV; see Fig. 1. Once this transition is com-
plete, the AQNs will cease accreting mass and annihilation
with the free baryons in the plasma will become
the dominant process.11 However, annihilation between
an energetic free baryon and the quark content of the AQNs
is a highly nontrivial process, as we discuss below.
We start with the estimates of the collision rate in the pre-

BBN epoch. The corresponding rate between an AQN and
the baryons of the surrounding plasma is

Γcol ¼ 4πR2nBvB ¼ 4πR2
2ζð3Þ
π2

η

�
T
ℏc

�
3

ffiffiffiffiffiffiffi
2T
mp

s
c; ð28Þ

where the baryon number density in plasma nB can be
approximated as nB ∼ ηT3. The total number of collisions
during this time period is saturated by the highest temper-
ature Tform ≃ 40 MeV and can be estimated as follows:

Ncol ¼
Z

dtΓ ¼
Z

Tform

0

dT
dt
dT

Γcol

≈ 3 × 1025
�

Tform

40 MeV

�
1.5
�

R
10−5 cm

�
2

; ð29Þ

where we have used the relation t ∼ T−2 to change to a
temperature integration.
While the number of collisions (29) is comparable to the

total baryon charge B of a nugget, the probability of
annihilation is quiet small. Instead, the most likely inter-
action of any incident matter with the nugget is total
reflection due to a number of reasons: the sharp boundary
between the hadronic and CS phases such that only a very
small fraction κðTÞ ≪ 1 of collisions represented by
Eq. (29) will result in an annihilation. We refer to
Appendix C for order-of-magnitude estimates supporting
the main claim that κðTÞ ≪ 1. A more precise value is not
essential for the arguments that follow.
So long as the electrons and positrons remain relativistic

(and thus are present in numbers comparable to the
photons) all long-range interactions are effectively screened
and the cross section appearing in Eq. (28) is purely the
physical size of the AQNs. As such, the estimate (29)
holds until much lower temperatures when the positrons
have fully annihilated (which approximately occurs
at T ≈ 20 keV) and longer-range interactions become
possible. The estimate (29) implies that the number
of annihilation events does not modify the primordial

spectrum of the AQNs discussed in Sec. IV D because
the relative number of annihilation events is very small,
i.e., ðκNcolÞ=B ∼ κ ≪ 1.
While the baryon charge annihilation events are strongly

suppressed by the factor κ ≪ 1 the eþe− annihilation
events involving particles from the AQNs’ electrosphere
are much more numerous and unsuppressed. One may
therefore wonder if the energy injected by these annihila-
tion events may impact the conventional thermal history of
the Universe. The answer is “no,” as simple estimates for
the extra injected energy (due to the annihilation events
with AQNs) show. Indeed, the relative injection energy due
to AQNs at temperature T in comparison with the average
thermal energy ðTneÞ of the plasma can be estimated as
follows:

1

ðTneÞ
dE
dV

∼
ðR2T2Þη
α2hBi ∼ 10−19

�
T

1 MeV

�
2

ð30Þ

(see the Appendix in Ref. [12]). The basic reason for this
tiny rate is the same as discussed before: the cross section is
proportional to R2 ∼ B2=3, while the number density of the
nuggets is proportional to η=hBi which results in a strong
suppression rate [Eq. (30)]. It is clear that such a small
amount of energy injected into the system will be quickly
equilibrated within the system such that the standard pre-
BBN cosmology remains intact. In other words, the
conventional equation of state and conventional evolution
of the system is unaffected by the presence of AQNs.

VII. POST-BBN EVOLUTION

At temperatures below Tγ ≃me the electrons and posi-
trons begin to annihilate, causing their density to fall as
∼e−me=T until a major portion of the positrons get com-
pletely annihilated, while the number densities for electrons
(ne) and protons (nB) become approximately equal at
T� ≃ 20 keV. This is the consequence of the same “charge
separation” effect (replacing “baryogenesis” in the AQN
framework) when more antimatter than matter is hidden in
the form of dense nuggets, as reviewed in Sec. II.
This regime when the AQNs are present in the plasma at

T� ≃ 20 keV has been recently discussed in Ref. [4] in
quite a different context and for very different purposes. To
be more specific, it has been shown that the primordial
abundance of Li and Be nuclei will be depleted in
comparison with conventional BBN computations.12 This
effect represents the resolution of the “primordial Li
puzzle” within the AQN framework.

11The plasma already possesses the required baryon asymme-
try at this time so only the antimatter AQNs will be subject to
annihilation, while the AQNs made of matter experience only
elastic scattering.

12The effect is due to the exponentially strong enhancement of
the capture probability (and subsequent annihilation of Li and Be
ions) by antinuggets. Technically, the effect for heavy ions with
large Z ≥ 3 occurs due to the very strong enhancement factor
∼ exp Z; see Ref. [4] for details.
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The main goal of the present work is very different,
though the plasma regime surrounding the AQNs is the
same with T ≲ T�. In the present paper we study the
survival pattern of the nuggets themselves, in contrast with
the studies in Ref. [4] where the main question was the
analysis of the relative densities δnZ=nZ of primordial
nuclei with charge Z as a result of the presence of AQNs in
plasma.
We start our analysis by highlighting the basic features of

the AQN electrosphere in the regime T ≲ T� using simple
qualitative arguments. Later in the text we will support
these arguments by providing some analytical formulas. At
T ≈ T� when the external positron density essentially
vanishes the boundary conditions for the AQNs’ electro-
sphere fundamentally change, resulting in a new charge
distribution.13 Below T� some fraction of the electrosphere
positrons will be replaced by protons to fit with the new
long-distance, proton-dominated boundary condition. The
exact proton-to-positron ratio of the electrosphere will be
determined by the rates at which captured protons are
annihilated by the nuggets and positrons are annihilated by
external electrons, and the rate at which beta processes can
replace near-surface positrons.
Further from the quark surface the positrons are more

weakly bound and the thermal behavior becomes important
for the distribution. In this regime the density as a function
of height scales as [24,25],

neþ ¼ TN

2πα

1

ðzþ z̄Þ2 ; z̄−1 ≈me

ffiffiffiffiffiffiffiffi
2πα

p �
TN

me

�
1=4

; ð31Þ

where the approximate value of z̄ is taken from matching
this solution to the numerical solution from higher
densities.
The main observation here is that a T ≠ 0 environment

leads to the ionization of the loosely bound positrons such
that the antinuggets will be in a negatively charged
configuration with charge −Q estimated as follows:

Q ≃ 4πR2

Z
∞

z0

nðzÞdz ∼ 4πR2

2πα
· ðT

ffiffiffiffiffiffiffiffiffiffiffiffi
2meT

p
Þ ð32Þ

where we assume that some loosely bound positrons will be
stripped off the electrosphere as a result of the nonzero
temperature.14 This negative charge of the antinugget
implies that the protons from the plasma might be captured

by the nugget by screening the charge (32). This obviously
implies that the effective cross section for capturing the
protons ∼4πR2

capðTÞ will be drastically larger than 4πR2

from our previous estimates (28)–(29) when the electro-
sphere is entirely made of positrons, not protons.
In principle, the distribution of protons surrounding the

nugget should be determined through a Thomas-Fermi
computation similar to that performed in Ref. [25] but
allowing for the presence of protons as well as positrons
and using the early Universe plasma density as the r → ∞
boundary condition. However, for present order-of-magni-
tude estimates we will assume a simple power-law scaling
with exponent p,

npðrÞ ¼ n0

�
R
r

�
p
; ð33Þ

with the normalization n0 set to match the total charge
given in Eq. (32). This assumption is consistent with our
numerical studies [25] of the electrosphere with p ≃ 6 for
positrons. It is also consistent with the conventional
Thomas-Fermi model at T ¼ 0; see Ref. [4] for references
and details. We keep the parameter p arbitrary to demon-
strate that our main claim is not very sensitive to our
assumption on the numerical value of p. With these
assumptions the baryon number density n0 in close vicinity
of the nugget can be estimated as follows:

n0 ¼
p − 3

4πR3
Q: ð34Þ

One should note that the behavior of the proton cloud may
deviate significantly from Eq. (33) at very small and very
large radii; however, we simply want to determine the
approximate scale over which electromagnetic effects will
act. In this context the simple form of Eq. (33) should be
sufficient. This behavior will continue until the proton
density matches that of the surrounding plasma, which
gives us a radius for the overdensity of protons surrounding
the nugget,

�
Rcap

R

�
p
∼
�
n0
ηnγ

�
∼ 1012 ·

�
20 keV

T

�
3=2

: ð35Þ

This increase in the effective scattering length of the
nuggets will boost the number of interactions and may
result in an increased annihilation rate. Most importantly,
these captured protons will spend an extended amount of
time near the surface of the AQNs, giving them an
increased opportunity to annihilate. Again, we stress that
this increased rate of proton capture is effective only after
the positrons are fully annihilated and the protons are the
only positive charge carriers in the plasma, which happens
at T ≃ T� ≃ 20 keV.

13One should emphasize that the presence of the electrosphere
itself is a very generic phenomenon, and its main features are
determined by the boundary conditions deep inside the nugget
where the lepton’s chemical potential is fixed as a result of beta
equilibrium, similar to the analysis in the context of strange stars;
see Ref. [3] for a review.

14We estimated the position of the cutoff z > z0 ¼ ð2meTÞ−1=2
in Ref. [4]. We emphasize that all of our estimates that follow are
not very sensitive to the cutoff scale z0.
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In particular, for p ≃ 6 the effective capture distance Rcap

is of order

Rcap ≃ 102 ·

�
20 keV

T

� 3
2p

R; ð36Þ

which of course drastically changes the collision rate, as
will be estimated below. The scaling (36) holds as long as
the thermal equilibrium between the nuggets and surround-
ing plasma is maintained. Equation (36) breaks down at
sufficiently large Rcap when the power-law scaling (33) is
replaced by an exponential behavior due to Debye screen-
ing. Numerically, Debye screening becomes operational at
R ≃ 10Rcap at T ≃ 20 keV; see Appendix A in Ref. [4].
We may now perform the same estimates as in Eq. (28)

but using the larger capture cross section of Eq. (36), i.e.,

ΓcolðTÞ ¼ 4πR2
capðTÞnBðTÞvBðTÞ: ð37Þ

The total number of collisions during this time is saturated
by the highest temperature T ≃ T� such that the integral can
be estimated as follows:

NcolðTÞ ¼
Z

T�

0

dT
dt
dT

ΓcolðTÞ

∼ 1024
�

T
20 keV

�ð3
2
−3
pÞ
�

R
10−5 cm

�ð2−2
pÞ
; ð38Þ

where we use p ¼ 6 for numerical estimates. Equation (38)
represents a full analog of the estimate (29) obtained for the
pre-BBN epoch.
While the number of scatterings occurring in this low-

temperature regime is slightly below the number occurring
just after nugget formation as estimated in Eq. (28), we
expect the evolution of the AQN baryon number to be
dominated by these low-energy collisions in which the
AQNs and baryonic matter temporarily form a bound state.
This is because, as argued above, collisions at tens of MeV
are highly likely to result in elastic scattering, while
electromagnetically bound protons have a much larger
opportunity to overlap with the quark modes of the color
superconductor and eventually annihilate.
The similarity in the total number of collisions in the

estimates (29) and (38) at Tform ≃ 40 MeV and T�≃
20 keV, respectively, can be easily understood from the
following simple observations. The baryon number density
in plasma scales as T3, the proton’s velocity in plasma
scales as T1=2, and the cosmic time scales as T−2. All of
these factors result in drastic changes in the rate between
Tform ≃ 40 MeV and T� ≃ 20 keV with an approximate
suppression factor ðT�=TformÞ3=2 ∼ 10−5. However, this
substantial suppression in the temperature is mostly com-
pensated by an enhancement in effective cross section
ðRcap=RÞ2 ∼ 104; see the estimate (36). These two effects

work in opposite directions which explains why our
estimates for the collision rates (38) and (29) are numeri-
cally close.
We summarize this section with the following comment.

The total number of collisions (38) is still much smaller
than the typical baryon charge hBi ∼ 1025 of the nuggets,
such that the majority of the nuggets will survive the post-
BBN epoch as only a small portion of the collisions will
eventually lead to annihilation events. Therefore, from
these estimates we conclude that the post-BBN epoch does
not modify the primordial spectrum of the AQNs.
At this point a thoughtful and careful reader may wonder

how it could happen that the number of annihilation events
estimated above is sufficiently small that all nuggets with
B > 1024 can easily survive the unfriendly hot and dense
environment of the early Universe according to the esti-
mates (38) and (29). At the same time, it has been argued
recently in Refs. [5,6,28] that nuggets of all sizes will
experience complete annihilation in the solar corona when
the AQNs enter the solar atmosphere. How can these two
claims be consistent? We refer the readers to Appendix D
which specifically addresses this question, where we
emphasize a number of crucial differences between the
two cases.
The only comment we would like to make here is that the

drastic enhancement of the rate of annihilation in the solar
corona is due to the propagation of AQNs with supersonic
speed (above the escape velocity v > 600 km=s at the solar
surface) in the ionized plasma with a very large Mach
number M ¼ v=cs ≃ 10, where cs is the speed of sound in
the solar atmosphere. It is well known that a moving body
with such a large Mach number will inevitably generate a
shock wave and an accompanying temperature disconti-
nuity with turbulence in the vicinity of a moving body. As a
result of this complicated nonequilibrium dynamics, the
effective cross section may be drastically increased in the
course of shock-wave propagation due to the capture (with
subsequent annihilation) of a large number of ions from the
plasma. These features of AQNs in the solar corona should
be contrasted with the AQNs’ adiabatic evolution in the
plasma of the early Universe with its relatively slow
evolution.

VIII. POST-RECOMBINATION EVOLUTION

The integral (38) is saturated by the highest possible
value T ≃ T� ≃ 20 keV because the largest collision rate
occurs precisely at that time. As the temperature slowly
decreases due to the Universe’s expansion one should not
expect any dramatic changes until the recombination epoch
at T ≃ 0.3 eV. At this point the Universe becomes neutral
and the scattering cross section of matter with the AQNs no
longer receives a boost from electromagnetic effects
analogous to Eq. (36). Therefore, these generic arguments
suggest that the collision rate diminishes even faster after
recombination, implying that the size distribution of the
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AQNs essentially does not change during that epoch. These
generic arguments obviously do not apply to violent
environments during galaxy or star formation (which occur
during this epoch), which will be analyzed later in this
section.
In spite of this relatively dilute environment, the rare

events of annihilation of the AQNs with surrounding
baryons still occur even at such low density. The corre-
sponding radiation due to the annihilation processes, while
negligible in comparison with the dominant CMB radia-
tion, may nevertheless leave some imprints which could be
observed today, as argued in Ref. [12]. This is due to some
specific features of the spectrum characterizing the AQN
annihilation events: the low-energy tail of the radiation due
to the annihilation processes with the nuggets has a
spectrum ∼ ln ν which should be contrasted with conven-
tional CMB blackbody radiation characterized by ν2

behavior at low ν ≪ T; see Ref. [12] for the details.
As we mentioned above, the violent environment during

galaxy or star formation requires a special treatment
because it may potentially change the generic argument
that this epoch is essentially irrelevant to the AQNs’
survival pattern. In what follows we compare the environ-
ment during galaxy and star formation with corresponding
features in the solar corona (where it has been argued that
complete annihilation of AQNs occurs) in the context of the
AQN annihilation rate. The outcome of this comparison
and corresponding conclusion will be formulated at the
very end of this section.
The complete annihilation of AQNs in the solar

corona—as discussed in Refs. [5,6] and reviewed in
Appendix D—is the direct consequence of a few factors:
(1) The relatively large density in the transition re-

gion, n ∼ 1011 cm−3.
(2) The very large velocity of the nuggets on the solar

surface, v > v⊙ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM⊙=R⊙

p
≃ 600 km=s. This

is of course a result of strong gravitational forces
∼M⊙ localized over a relatively small distance R⊙.

(3) The large velocity v greatly exceeds the speed of
sound cs ≃

ffiffiffiffiffiffiffiffiffiffiffiffi
T=mp

p
. This implies that the Mach

number is very large, M ≡ v=cs ≫ 1, such that
shock waves inevitably form.

(4) The high ionization of the plasma due to the high
temperature T ≃ 106 K in the transition region.

The combination of these factors leads to complete
annihilation of AQNs, as reviewed in Appendix D.
While individual (violent) conditions from the list above
may emerge during galaxy or star formation, the combi-
nation of all four elements does not occur, in general,
during this epoch. Therefore, we do not expect any
considerable modification of the size distribution of the
nuggets after the recombination.
Indeed, the baryon density during the structure formation

epoch does not exceed nB ∼ 1 cm−3. Furthermore, the
typical velocities of particles in the gas are of the same

order of magnitude as the speed of sound, i.e., v ∼ cs ∼
102 km=s such that one should use the conventional
formula to estimate the collision rate without any additional
enhancement factors related to the Mach number M, i.e.,

Γcol ∼ 4πR2nBvB ∼ 10−2 s−1
�

n
1 cm−3

��
v

100 km=s

�
:

The total number of collisions Ncol during the Hubble time
H−1 at redshift z ∼ 10 is of order

Ncol ∼ Γcol ·H−1 ∼ 1014
�

n
1 cm−3

��
v

100 km=s

�
; ð39Þ

which represents a tiny portion of the average baryon
charge hBi ∼ 1025 of a nugget. Furthermore, even if in
some small regions the relative velocities of the AQNs and
baryons exceed the speed of sound cs this does not lead to
shock-wave formation, similar to our discussions about the
solar corona (reviewed in Appendix D). This is because the
shock-wave phenomenon is based on an effective descrip-
tion of the system when the hydrodynamical description is
justified, which implies that the typical distance between
the particles ∼n−1=3 must be much smaller than the size
of a moving body ∼R. This approximation is obviously
badly violated for the AQNs during the structure formation
epoch. Therefore, according to our estimate Ncol ≪
hBi ∼ 1025, and we conclude that the size distribution of
AQNs is not modified during the era of structure formation.
A similar conclusion also holds for another violent

epoch—star formation—which could also potentially
modify the AQN size distribution. The corresponding
analysis can be separated into two different stages: the
final stage of formation when typical parameters are similar
to our analysis of the Sun, and the initial stage of star
formation characterized by the density ranging from
n ∼ 1015 to n ∼ 100 cm−3 depending on the size of the
infall cloud, which ranges from r ∼ 10−1 to r ∼ 106 AU;
see Ref. [56].
We start our estimates from the final stage of formation

when the stars assume their final form. In this case, all of
the nuggets that will be captured by a star will be
completely annihilated, similar to our studies of the Sun.
However, the portion of the AQNs that will be captured by
the stars is very tiny in comparison with the total number of
nuggets. The corresponding portion of the affected nuggets
can be estimated in the terms of the capture impact
parameter bcap which is typically only a few times the
star’s size R⋆,

bcap ≃ R⋆
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ⋆

p
; γ⋆ ≡ 2GM⋆

R⋆v2
; ð40Þ

where v ∼ 10−3c is the typical velocity of the nuggets far
away from the star. The rate of the total mass annihilation
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dMann=dt of all nuggets captured (and consequently
annihilated) by the star can be estimated as follows:

dMann

dt
∼ 4πb2capvρDM ≃ 3 × 1030

�
v

10−3c

�
mp

s
; ð41Þ

where we used the solar parameters for the numerical
estimates and assumed that ρDM is saturated by AQNs.15

The upper limit of the total mass annihilated by a single star
can be estimated by multiplying Eq. (41) by the total
lifetime of star, which can be approximated as H−1, i.e.,

Mann ≤
dMann

dt
·H−1 ∼ 1048mp ∼ 1021 kg: ð42Þ

The estimate (42) should be compared with the total mass
of the star M⋆ ∼M⊙ ∼ 1030 kg. As the stars represent only
a fraction of the total baryonic matter of the Universe, and
there is 5 times as much DM as baryonic matter, one can
infer from Eq. (42) that the annihilated portion of DM (due
being capturing by stars) represents only a small portion
(≲10−10) of the total dark matter content of the Universe.
We now turn to the estimates of the AQN annihilation

pattern during the initial stage of star formation. In this
case, the DM nuggets passing through the infall cloud
experience annihilation events. The corresponding total
annihilated baryon charge for a single nugget (as a result of
this passage) can be estimated as follows:

Ncol ∼ πR2nBL ∼ 109 ·

�
nB

1 cm−3

�
·

�
L

106 AU

�
; ð43Þ

which represents a tiny portion of the average baryon
charge hBi ∼ 1025. In the estimate (43) we used the most
generic configurations for when AQNs enter a large region
with L ∼ 106 AU characterized by nB ∼ 1 cm−3, while the
passage of nuggets through a small, well-localized region
L ∼ 10−1 AU with high density nB ∼ 1015 cm−3 is highly
unlikely as it represents a very small portion of the total
AQN flux. But even in this case the total number of
annihilation events Ncol ∼ 1017 remains small in compari-
son with the average baryon charge hBi ∼ 1025.
We conclude this section with the following comment.

Violent events such as galaxy formation or star formation
after recombination do not drastically modify the size
distribution of the nuggets, similar to our previous
analysis devoted to the different epochs of the
Universe’s evolution. The basic reason for this conclusion

is that the nuggets—which can undergo complete
annihilation—represent only small portion of the entire
population according to Eq. (42), while the majority of the
nuggets will lose a very tiny portion of their baryon charge
during the Hubble time according to Eq. (39).

IX. PRESENT-DAY MASS DISTRIBUTION

After recombination, the size distribution of AQNs is
essentially fixed until the present day.16 We may formulate
the change in baryon number as a result of post-formation
annihilation as

ΔB ¼ f1NcolðT > T�Þ þ f2NcolðT < T�Þ; ð44Þ

where f1 and f2 are the fractions of collisions in the
positron-dominated and proton-dominated phases which
result in the annihilation of a unit of baryon charge from the
AQN with the collision rates taken from Eqs. (29) and (38),
respectively. If we assume the original nugget distribution
defined by Bmin, Bcut, and α as discussed in Sec. IV D, we
may use Eq. (44) to translate the distribution formed above
T ≈ 40 MeV to a present-day mass distribution. Note that
since R ∝ B1=3 the first term in Eq. (44) scales as B2=3

according to Eq. (29), while the second scales as B5=9

according to Eq. (38).
We may then write the late-time baryon number dis-

tribution based on the result (26) obtained from percolation
theory as follows17:

dN
dB

¼ N0

�
Bmin

B

�
α

; B ≫ Bmin; ð45Þ

where B is the present-day baryon number of the AQN and
we have ignored the small portion ΔB related to the
annihilation processes as discussed above.
For a given environment the constant N0 may be fixed if

AQNs are assumed to provide all of the dark matter mass.18

We also assume that one and the same α describes the mass
distribution for all values of B. It may or may not be a
correct assumption as some nanoflare models fit the solar

15We comment here that in the case of the Sun the energy
released as a result of annihilation events with the rate (41)
represents approximately 10−7 of the total solar luminosity
radiated from the solar corona in the form of the EUVand x rays,
which represents the resolution of the solar corona heating
problem within the AQN scenario, as suggested in Refs. [5,6].

16Obviously, the distribution may develop localized anisotropy
in regions of particularly high matter density such as stars or
planets, but these local effects are not the subject of the present
work.

17Equation (26) formally holds only for asymptotically large
B ≫ Bmin, but in fact it remains valid for almost the entire region
of B with the exception of a small region in the vicinity of Bmin;
see Fig. 4 in Appendix B.

18As we reviewed in Sec. II, conventional axion production
due to the misalignment mechanism and domain-wall decay
always accompanies the nuggets’ formation and contributes to
the total DM density; see Fig. 1. However, the relative contri-
bution of these well-studied mechanisms to ρDM strongly depends
on the axion mass ma and it is likely to be negligible for
sufficiently large axion mass; see Ref. [9] for the corresponding
plots.
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corona heating with different exponents α for small and
large values of B; see below for additional comments.
With the assumptions just formulated, one can represent

ρDM as follows:

ρDM ¼
Z

Bcut

Bmin

mpB
dN
dB

dB; ð46Þ

where dN has the physical meaning of the AQN number
density per unit volume19 per baryon charge interval dB,
while mpBðdN=dBÞ has the physical meaning of the mass
density per unit volume hidden in the form of nuggets with
baryon charge from B to Bþ dB. The relation (46) allows
us to solve for the normalization factor in Eq. (45) for
different values of the exponent α:

N0 ¼ ðα − 2Þ ρDM
mpB2

min

; α > 2;

N0 ¼
ρDM

mpB2
min lnðBcut=BminÞ

; α ¼ 2;

N0 ¼ ð2 − αÞ ρDM
mpB2

cut

�
Bcut

Bmin

�
α

; α < 2; ð47Þ

where we have again assumed that ΔB ≪ B represents a
small fraction of the initial baryon number as argued to be
the case in previous Secs. VI and VII.
Note that α ¼ 2marks the slope at which the distribution

transitions from being mass dominated by the bottom end
to the higher end. Distributions with α > 2 are largely
defined by the mass scale Bmin, while the typical mass scale
for shallower sloped distributions with α < 2 is dominated
by Bcut.
Given the profile of Eq. (45), we may now ask what

range of parameters are consistent with the observational
constraints discussed in Sec. II B. As argued above, we
expect that f1 ≪ f2 so that the majority of annihilations
occur below T ∼ 20 keV; if this is the case, then the
parameter space of the AQN model may be largely defined
by four variables: Bmin, Bcut, α, and ΔB ∼ f2. As discussed
in Sec. IV D, these parameters are not theoretically well
constrained. Indeed, while the theoretical analysis predicts
the generic power-law behavior (26), the numerical value
for the exponent α is expressed in terms of the parameter δ
according to Eq. (27) which itself describes some features
of the bubble’s formation during the QCD transition at
T ∼ Tc, which are basically unknown in strongly coupled
QCD.
The observational constraints are less trivial and much

more interesting. First of all, there are constraints on α
which come primarily from solar data. As we discussed in

Sec. II B 4, the solar corona measurements are sensitive to
the full distribution rather than simply the average value
hBi. If the nuggets are to explain the solar heating problem
as argued in Refs. [5,6,28], then we require that the
majority of heat input comes from lower-energy unobserv-
able events and thus must have α > 2. This option is
consistent with the analysis of the nanoflare distribution
performed in Ref. [30] where the authors claimed that
the best fit to the data is achieved with α ≃ 2.5, while
numerous attempts to reproduce the data with α < 2 were
unsuccessful.
Another option advocated in Ref. [31] is that the nano-

flare distribution consists of two different exponents: the
events below E ≤ 1024 erg are described by α ≃ 1.2, while
the higher-energy events with E ≥ 1024 erg are described
by α ≃ 2.5. In terms of the baryon charge distribution (45),
the model in Ref. [31] corresponds to the nugget mass
distribution with α ≃ 1.2 and a cutoff scale near Bcut ∼ 1027.
The higher-mass nuggets with Bcut ≥ 1027 are described
by α ≃ 2.5.
Assuming that the distribution (45) can be approximately

used in close vicinity of Bmin one can relate the average
baryon number hBi and Bmin as

hBi ≈ α − 1

α − 2
Bmin; α > 2; ð48Þ

so that for any α > 2 the average hBi and Bmin are at the
same scale. One should not literally use the relation (48) as
the distribution (45) cannot be numerically trusted in close
vicinity of Bmin; see comments in footnote 17. If one uses
the observational constraint on hBi from Eq. (8) one can
impose the constraint on Bmin ≳ 1024 from Eq. (48).
For the AQN population to survive as high-mass dark

matter candidates we require Bmin > ΔB which, from
Eq. (38), suggests a lower bound below ∼1024, although
(as argued above) this scale considers the number of
collisions between the background plasma with an AQN
rather than the number of annihilation events ΔB. The only
robust constraint on Bmin comes from the observational side
[Eq. (8)] which can be expressed in terms of hBi as
discussed above.
These considerations lead us to two general classes of

AQN distributions which will be consistent with all known
direct and indirect constraints. These models are essentially
equivalent to a variety of nanoflare distributions [30,31]
expressed in terms of the baryon charge number with the
only additional condition. The nanoflare models must
satisfy the condition Bmin > 1024 in order to be consistent
with the independent observational constraint (8). There are
plenty of models in Refs. [30,31] that satisfy this condition
and saturate the required energy budget for the corona
heating, and we shall not elaborate on this topic here.
We consider this phenomenon to be a highly nontrivial

self-consistency check of the AQN framework when the

19Note that the definitions of N and N0 here are slightly
different from those in Sec. IV where N and N0 are the total
numbers rather than number densities.
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allowed window for the baryon charge B and the fitted
energy spectrum for nanoflares overlap, with the identi-
fication E ≃ 2mpc2B. On the one hand, this window
represents a cumulative constraint from a number of
astrophysical, cosmological, satellite, and ground-based
observations and experiments (as reviewed in Sec. II),
which are consistent with analytical results based on
percolation theory discussed in Secs. III and IV. On the
other hand, this window largely overlaps with constraints
originated from completely independent physics: solar
corona heating when the nanoflare distribution (11) with
energy E is identified with the AQN distribution (45) with
baryon charge B.

X. CONCLUSION

The main results of this work can be formulated as
follows.
(1) We used an approach coined as the envelope-

following method to overcome a common numerical
problem with the drastic separation of scales in the
system. In our case the scales are the QCD scale
∼ΛQCD, the axion scale ∼ma, and the cosmological
time scale t0 ∼ 10−4 s. The results support our
original assumptions that the chemical potential
inside the nugget indeed assumes a sufficiently large
value μform ≳ 450 MeV during this long cosmologi-
cal evolution. This magnitude is consistent with the
formation of a CS phase; see Fig. 2.

(2) The nuggets complete their formation precisely in
the region of Tform ≈ 40 MeV where they should
(see Fig. 2), as this corresponds to the temperature
where the baryon-to-photon ratio η assumes its
present value (5).

(3) Items 1 and 2 represent a highly nontrivial consis-
tency check of the AQN framework when three
drastically different scales (ΛQCD, axion mass ma,
and cosmological time scale t0) “conspire” to
produce a self-consistent picture.

(4) We argued that the nuggets’ distribution must have
the algebraic behavior (26) as a direct consequence
of a generic feature of the percolation theory. The
exponent α cannot be predicted theoretically, but
according to Eq. (27) it can be expressed in terms of
another parameter which is sensitive to axion do-
main-wall formation during the QCD epoch.

(5) We argued that the nuggets survive both the pre-
BBN and post-BBN evolutions (as estimations in
Secs. VI and VII show) as long as they are
sufficiently large to satisfy the observational con-
straint (8). The essential reason for this is that the
fraction of annihilated AQNs scales with the cross
section–to–mass ratio ∼B−1=3 and thus nuggets of
sufficiently large B will remain largely unaltered by
annihilation events after their formation.

(6) We argued that the present-day baryon charge
distribution (45) is consistent with the nanoflare
distribution (11) which was fitted to describe the
solar corona observations. This represents a highly
nontrivial consistency check of the proposal [5,6,28]
that the AQNs made of antimatter are the nanoflares
postulated long ago.

It is the central claim of this work that there exists a
larger amount of the allowed parameter space across which
the AQN model is consistent with all available cosmologi-
cal, astrophysical, satellite, and ground-based constraints.
While the model was invented long ago to explain the
observed relation Ωdark ∼ Ωvisible, it may also explain a
number of other observed phenomena, such as the excesses
of galactic emission in different frequency bands as
reviewed in Sec. II. This model also offers a resolution
of the so-called “primordial lithium puzzle” and the 70-year
old “solar corona mystery” (as mentioned in the
Introduction) when one uses precisely the same parameters
and the same distribution (45) advocated in the present
work. However, all of these manifestations of the AQN
model are indirect in nature. Therefore, one can always find
tons of alternative explanations for the same phenomena.
In this respect the recent proposal advocated in

Refs. [57–59] to search for axions (which will inevitably
be produced as a result of the annihilation processes of the
antimatter nuggets with surrounding matter) is a direct
manifestation of the AQN model. These axions will be
emitted when AQNs disintegrate in the solar corona.
Axions will also be emitted when the nuggets hit the
Earth and continue to propagate deep underground and
loose baryon charge, accompanied by the emission of
axions. In fact, the observation of these axions with very
distinct spectral properties in comparison with conventional
galactic axions would be the smoking gun supporting the
entire AQN framework. We finish this work on this positive
and optimistic note.
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APPENDIX A: Nugget evolution from T0 to Tform

In this Appendix we discuss the time evolution of a
nugget from T0 to Tform both analytically and numerically.
We start with the Lagrangian that dominates the nugget
evolution,

L ¼ 4πσeffR2

2
_R2 − 4πσeffR2 þ 4πR3

3
ΔP: ðA1Þ

There is a slight difference between this expression and the
Lagrangian adopted in Refs. [7,8]. Here we replace
the domain-wall tension σ ¼ 8f2ama with the effective
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domain-wall tension σeff ¼ κ · σ. The phenomenological
parameter κ accounts for the difference between the domain-
wall tension of a nugget σeff and that of a planar domain wall
σ [9]. In general, the effective domain-wall tension σeff is
smaller than σ with 0 < κ < 1.20 ΔP is the pressure differ-
ence inside and outside the nugget, which is [7]

ΔP ¼ PðFermiÞ
in þ Pðbag constantÞ

in − Pout

¼ gin

6π2

Z
∞

0

k3dk

expðk−μT Þ þ 1
− EBΘðμ − μ1Þ

�
1 −

μ21
μ2

�

−
π2goutT4

90
: ðA2Þ

The first term on the right-hand side of Eq. (A2) is the Fermi
pressure inside the nugget. The second term is the contri-
bution from the MIT bag model with the famous “bag
constant” EB ∼ ð150 MeVÞ4. Θ is the unit step function
which implies that this term turns on at large chemical
potential μ > μ1 when the nugget is in the CS phase, while it
vanishes at small chemical potential μ < μ1when the nugget
is in the hadronic phase. The parameter μ1 is estimated to be
∼330 MeV [1] when the baryon density is close to the
nuclear matter density. The third term is the pressure from
quark-gluon plasma (QGP) at high temperature outside the
nugget. The parameter gout ≃ ð7

8
4NcNf þ 2ðN2

c − 1ÞÞ is the
degeneracy factor of the QGP phase.
From the Lagrangian (A1) we obtain the equation of

motion [Eq. (12)],

σeffR̈ ¼ −
2σeff
R

−
σeff _R

2

R
þ ΔP − 4η

_R
R
− _σeff _R : ðA3Þ

Following the same procedure as in Ref. [7], we insert the
QCD viscosity term ∼4η _R

R to effectively describe the
friction for the domain-wall bubble oscillating in an
unfriendly environment. The difference from the equation
of motion in Ref. [7] is that here we have an extra term
∼ _σeff _R. This term occurs because the tension σeff itself is a

function of time since σeff ¼ κ · 8f2amaðtÞ. We treat the
axion massma more precisely for it is a time (temperature)-
dependent function rather than a constant. The parameter
fa and the function maðtÞ can be obtained from the axion
model. Then, with an appropriate choice of κ, we can
determine how σeff evolves with the cosmological time.
According to Refs. [7,8], the baryon charge accumulated

on the wall is

Bwall ¼ gin · 4πR2 ·
Z

d2k
ð2πÞ2

1

expðk−μT Þ þ 1
; ðA4Þ

where R is the radius of the nugget, and gin ¼ 2NcNf ≃ 12

and μ are the degeneracy factor and the chemical potential
of the baryon charge in the vicinity of the wall, respectively.
The accumulated baryon charge Bwall is assumed to be a
constant [7], which can be expressed as

d
dt

BwallðtÞ ¼ 0: ðA5Þ

In principle, we can get the time evolution of the nugget by
numerically solving the two ordinary differential
equations (A3) and (A5). However, before we do the
numerical calculations, we can get some profound analyti-
cal results from the above equations.
The nugget starts its evolution at T0 with the initial

chemical potential of the baryon charge on the wall being
approximately zero, μ0 ≃ 0. From Eq. (A4), we can get the
initial baryon charge accumulated on the wall,

BwallðT ¼ T0Þ ≃
π2

6
ginR2

0T
2
0: ðA6Þ

Then the nugget completes its formation at Tform when the
nugget stops oscillating with _RðtÞ ≃ 0, R̈ðtÞ ≃ 0, _μðtÞ ≃ 0.
All features of the nugget (radius, chemical potential, etc.)
should remain almost constant after the formation point
(T ¼ Tform) until the very end (t → ∞) (T → 0). Thus, with
Rform ≃ RðT ¼ 0Þ and μform ≃ μðT ¼ 0Þ we get

BwallðT ¼ 0Þ ≃ gin · 4πR2
form ·

Z
μform

0

d2k
ð2πÞ2

≃ ginR2
formμ

2
form: ðA7Þ

According to Eq. (A5), Bwall is conserved during evolution.
Therefore, by equating Eq. (A6) with Eq. (A7) we arrive at

R2
form

R2
0

¼ π2

6
·
T2
0

μ2form
: ðA8Þ

Also, with all of the derivative terms vanishing after Tform,
from Eq. (A3) we get

20There are two main reasons for the difference between σeff
and σ, which are discussed in detail in Ref. [9]. We briefly
summarize the two reasons here. The first reason is that nuggets
with baryon charge accumulated inside will finally become stable
in the CS phase. Thus, in our case the axion domain-wall solution
interpolates between topologically distinct vacuum states in the
hadronic (outside the nugget) and CS (inside) phases, in contrast
to a conventional axion domain wall which interpolates between
distinct hadronic vacuum states. The chiral condensate may or
may not be formed in the CS phase, which could make the
topological susceptibility in the CS phase much smaller than in
the conventional hadronic phase. The second reason is that
σ ¼ 8f2ama is derived using the thin-wall approximation, which
could be badly violated in the case of the closed domain wall
when the radius and the width of the wall are of the same order of
magnitude. This effect is expected to drastically reduce the
domain-wall tension.
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Rform ≃ RðT ¼ 0Þ ≃ 2σeffðT ¼ 0Þ
ΔPðT ¼ 0Þ ; ðA9Þ

where the pressure difference ΔPðT ¼ 0Þ can be obtained
from Eq. (A2),

ΔPðT ¼ 0Þ ≃ ginμ4form
24π2

− EB

�
1 −

μ21
μ2form

�
: ðA10Þ

We notice that Rform and μform are completely solvable from
Eqs. (A8) and (A9), and they are determined by the initial
values R0 and T0.
An important feature of nugget evolution is that baryon

charges not only occur on the wall of the nugget, but they
also accumulate in the bulk of the nugget. The chemical
potential μ on the wall gradually increases due to nugget
contraction. As a consequence, the chemical potential in the
bulk of the nugget increases, maintaining equilibrium with
the chemical potential on the wall, which causes the
accumulation of baryon charges in the bulk of the nugget.
As explained in Ref. [7], the net flux of baryons entering
and leaving the nugget ΔΦ≡Φin−Φout is negligibly small,
but the sum of these two fluxes hΦi≡ 1

2
ðΦin þΦoutÞ is

very large and the nugget can entirely refill its interior with
fresh particles within a few oscillations. The high exchange
rate hΦi implies that the entire nugget could quickly reach
chemical equilibrium. The result is that the initially
baryonically neutral nugget evolves into one completely
filled with quarks (or antiquarks for antinuggets).
Therefore, we expect that the nugget will become stable
at Tform with the entire nugget in equilibrium, with the same
chemical potential μform. Thus, the total baryon charge
carried by the stable nugget is

B ≃ gin ·
4π

3
R3
form ·

Z
μform

0

d3k
ð2πÞ3 ≃

2

9π
ginR3

formμ
3
form: ðA11Þ

Then, using Eq. (A8) we can express B as

B ≃
π2

27
ffiffiffi
6

p ginR3
0T

3
0 ≡ K · R3

0T
3
0; ðA12Þ

where K ≡ π2

27
ffiffi
6

p gin is a constant introduced for conven-

ience. This relation is applied in Sec. IV to calculate the
baryon charge distribution of nuggets.
Next, we are going to numerically solve the differential

equations (A3) and (A5) to get the nugget evolution.
To numerically solve the two equations, we first need to
know how the effective domain-wall tension σeffðtÞ ¼
κ · 8f2amaðtÞ evolves as a function of time. One of the
most updated results for the axion mass maðTÞ is based on
high-temperature lattice QCD [54]. The topological sus-
ceptibility of QCD, χðTÞ, is plotted in Fig. 2 in Ref. [54] as
a function of the cosmological temperature T. The data

points of the figure are also provided in Table 9 in the
Supplementary Information of the same paper, fitting
which we get the expression for χðTÞ as

χðTÞ
MeV4

¼ 3.27 × 107Θ½T − 150 MeV�

þ Θ½150 MeV − T� 3.94 × 1024

ðT=MeVÞ7.85 ; ðA13Þ

whereΘ is the unit step function. Then we can get the axion
mass using the relation

maðTÞ ¼
χ1=2ðTÞ

fa
: ðA14Þ

Equations (A13) and (A14) explicitly show that before the
QCD transition the axion mass increases rapidly with the
exponent β ¼ 7.85=2 ¼ 3.925 as the cosmological temper-
ature decreases (see Ref. [53] for a similar result). Then the
axion acquires its asymptotic mass near the QCD transition
and remains constant after that.
The cosmological time-temperature relationship is also

useful in our numerical calculations, which in the radiation-
dominated era is well known as

TðtÞ
1 MeV

≃ 1.56g⋆ðTÞ−1
4

�
1 sec
t

�1
2

; ðA15Þ

where g⋆ðTÞ is the number of effective degrees of freedom
of all relativistic particles at temperature T. Since the major
part of the nugget’s evolution occurs after the QCD
transition, we treat g⋆ðTÞ as a constant for simplicity with
g⋆ ¼ 17.25 (see, e.g., Ref. [60]) as in the hadronic phase.
In the present work, we are not going to solve the nugget

evolution with the parameters (such as κ, fa, T0, and R0)
taking many different values. Instead, we solve it with these
parameters by taking a group of reasonable values as an
example. They are taken as κ ¼ 0.04, fa ¼ 1010 GeV,
T0 ¼ 200 MeV, and R0 ¼ 6 × 10−4 cm. Of course the
group of parameters can vary a lot, but it is not the subject
of the present work to numerically study how varying these
parameters will affect the nugget evolution.
As we discussed in Sec. III, when we try to solve the two

differential equations we immediately meet the multiple-
scale problem ωτ ∼ 1010 which implies that the nugget will
not settle down until after billions of oscillations. The
enormous number of oscillations make the code extremely
time consuming, which makes it almost impossible to
completely solve the system numerically. To make the
numerical solution feasible, the QCD viscosity term η was
artificially enlarged by 8 or 9 orders in our previous
calculations in Refs. [7,8].
In this paper, we adopt a different numerical method

coined as the “envelope-following method” to solve the
system, with the viscosity term keeping its physical
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magnitude η ∼ Λ3
QCD when the parameter ωτ ∼ 1010

assumes its very large physical value. We believe
that this will make our numerical result for the nugget
evolution more trustworthy. The motivation for using the
envelope-following method and how it works are briefly
explained below.
We notice that although a nugget oscillates very fast

during evolution, the amplitude of oscillation decreases
very slowly for each given cycle. The peaks of oscillations
in fact form a “smooth” line which we call an envelope. We
realize that if we can find a way to numerically solve the
envelope, then it is unnecessary to know the full details of
all oscillations. The envelope-following method turns out to
be very beneficial for our study of the nugget oscillations.
The method is efficient in solving highly oscillatory
ordinary differential equations, which was illustrated in
Ref. [61]. We briefly summarize the basic idea here.
We start with the initial conditions R ¼ R0, _R ¼ 0 (and

μ ¼ μ0), which corresponds to the first peak of R oscil-
lations and we label this peak as point a. Then we solve the
differential equations until we get the next peak b of R
oscillations, which should be slightly smaller than the first
peak. This step is very fast since we solve the equations for
just one oscillation. Joining points a and b, we get a secant
line. This secant line is then used to project the solution to
point a0 which is many oscillations away. Starting with a0 as
the new peak, we solve the differential equations until we
get the next peak b0, etc. We repeat the above procedure of
drawing the secant line, projecting the solution, and finding
the next peak. After several projections, we get the upper
envelope of R oscillations. Using the same method, we can
find the lower envelope of R oscillations and also the
envelopes of μ oscillations. We should point out that,
although the details of the oscillations are not important to
us, we can recover them locally if we substitute the
corresponding envelope information into the differential
equations as the initial conditions.
We plot the numerical result for the nugget evolution

solved using the envelope-following method in Fig. 2 with
the group of parameters chosen above. In Fig. 2, we see that
in this case the nugget completes its evolution at ∼40 MeV.
The formation chemical potential is∼450 MeV, well above
the threshold of the CS phase μ1 ¼ 330 MeV. Also, we see
that the theoretical analysis of Rform and μform (denoted by
the dashed blue and dashed orange lines, respectively) from
Eqs. (A8) and (A9) matches the numerical result pretty
well, which verifies the validity of the two equations as well
as the relation (A12) (B ∝ R3

0T
3
0).

APPENDIX B: Calculations of NðBÞ and dN=dB

In this Appendix we show the details of calculating
Eqs. (17) and (23), to support the results in Sec. IV D. We
first rewrite Eq. (17) as

NðBÞ ¼ N0P
Z

Tc·

�
B

Kξ3
min

T3c

� 1
3ðβþ1Þ

Tc

dT0

Z ð B
KT3

0

Þ13

ξðT0Þ
dR0 f; ðB1Þ

with the limits of integration written explicitly, which can
be explained as follows. The integral (B1) is performed
over the region KR3

0T
3
0 ≤ B with the constraints Tc ≲ T0 ≲

Tosc and R0 ≳ ξðT0Þ from the model of T0 and R0

distributions. We show the region of integration in
Fig. 3, where the parameter space Tc ≲ T0 ≲ Tosc and R0 ≳
ξðT0Þ is represented by the colored region. The green lines
are the contour lines of B with KR3

0T
3
0 ¼ B for different

values of B. Then the region of integration is the area
enclosed by the solid black lines and one of the green lines
(to the left of the green line), from which we can obtain
the limits of integration. The lower limit of R0 is
Rlower ¼ ξðT0Þ; the upper limit of R0 is on the green line
Rupper ¼ ½B=ðKT3

0Þ�1=3; the lower limit of T0 is Tc. The
upper limit of T0 is a little complicated: it could either be
the intersection of the line ξðT0Þ and the green line which
is Tupper ¼ Tc · ½B=ðKξ3minT

3
cÞ�1=3ðβþ1Þ, or simply Tupper ¼

Tosc, depending on the value of B. However, we are not
likely to have the chance to use the latter case with Tupper ¼
Tosc as the upper limit of T0, which is explained as follows.
If we want the upper limit of T0 in the integration to be

Tosc, then B has to be larger than Bcross ¼ Kξ3ðToscÞT3
osc,

the value of B at the crossing point where the line ξðT0Þ

FIG. 3. Parameter space of R0 and T0. The colored region
represents the initially allowed (R0, T0) values for the formation of
closed domain walls. Different colors represent different magni-
tudes of fðR0; T0Þ which decreases from the light yellow part to
the deep blue part [gradually away from the correlation length
ξðT0Þ]. The green lines are the contour lines of B, i.e., each line
corresponds to the same value of B, with B increasing from left to
right.
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intersects the horizontal line T0 ¼ Tosc. We should com-
pare Bcross with the minimal baryon charge Bmin ¼ Kξ3minT

3
c

which corresponds to the closed domain wall initially
forming at T0 ¼ Tc with R0 ¼ ξmin. We get

Bcross ¼
�
Tosc

Tc

�
3ðβþ1Þ

Bmin ≃ 1015Bmin; ðB2Þ

where we approximate it using Tosc=Tc ≃ 10 and
β ≃ 3.925. We see that the range is 15 orders of magnitude
wide, which is large enough for us to match the baryon
charge distribution of nuggets with the energy distribution
of solar nanoflares. Therefore, we choose T0 as Tupper ¼
Tc · ½B=ðKξ3minT

3
cÞ�1=3ðβþ1Þ for the upper limit in Eq. (B1).

Next, we are going to calculate Eq. (B1). Using the
definitions r ¼ R0=ξmin and u ¼ T0=Tc, we rewrite
Eq. (23) in a more concise way,

fðr; uÞ ¼ 1

ξminTc
· u3βðτ−1Þþβδ · r2−3τ · e−λr

2u−2β : ðB3Þ

Substituting fðr; uÞ into Eq. (B1) and using the definition
b ¼ B=Bmin, we arrive at

NðbÞ ¼ N0P · Tcξmin

Z
b

1
3ðβþ1Þ

1

du
Z

u−1b
1
3

uβ
drfðr; uÞ

¼ N0P
Z

b
1

3ðβþ1Þ

1

du
Z

u−1b
1
3

uβ
dr½u3βðτ−1Þþβδ

×r2−3τ · e−λr
2u−2β �; ðB4Þ

from which we get

dN
dB

¼ 1

Bmin

dN
db

¼ N0P
3Bmin

· b−τ

×
Z

b
1

3ðβþ1Þ

1

duu3ðβþ1Þðτ−1Þþβδ · e−λb
2
3u−2ðβþ1Þ

: ðB5Þ

This can be further simplified using

Z
b

1
3ðβþ1Þ

1

dtume−λb
2=3u−n

¼ 1

n
ðλb2=3Þ1þm

n · Γ
�
−
1þm
n

; λb
2
3u−n

�				u¼b
1

3ðβþ1Þ

u¼1

≃
1

n
ðλb2=3Þ1þm

n · Γ
�
−
1þm
n

; λ

�
; for b ≫ 1; ðB6Þ

where m≡ 3ðβ þ 1Þðτ − 1Þ þ βδ and n≡ 2ðβ þ 1Þ;
Γðs; xÞ ¼ R∞

x ts−1e−tdt is the incomplete gamma function.
To obtain the last approximate equality, we neglect the
term Γð− 1þm

n ; λb2=3Þ since it is far smaller than the term

Γð− 1þm
n ; λÞ for b ≫ 1. The condition b ≫ 1 is satisfied for

a wide range of B values, which are generally several orders
larger than Bmin. Substituting Eq. (B6) into Eq. (B5), we
arrive at

dN
dB

¼ N0P
3Bmin

1

n
λ
1þm
n Γ

�
−
1þm
n

; λ

�
· b−1þ

βδþ1

3ðβþ1Þ; b ≫ 1:

ðB7Þ

We see that dN=dB follows a power-law distribution,

dN
dB

∝ b−α; with α ¼ 1 −
βδþ 1

3ðβ þ 1Þ ; b ≫ 1; ðB8Þ

which verifies the relation (26). The finite-cluster param-
eters τ (contained in m) and λ that we discuss in Sec. IV B

(a)

(b)

FIG. 4. The relation between dN=dB and b≡ B=Bmin. We
choose τ ¼ 2, λ ¼ 10, and β ¼ 3.925 for both panels. The
difference between panels (a) and (b) is the value of δ. In panel
(a) δ ≈ −1 and thus α ¼ 1.2; in panel (b) we choose δ ≈ −4 to
make α ¼ 2. The solid black and dashed green lines in each panel
represent Eqs. (B5) and (B8), respectively (the prefactor
N0P=Bmin in the two equations is rescaled to completely show
dN=dB in the range from 0 to 1 for illustrative purposes).
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only affect the relative magnitude of dN=dB, but not the
slope of the power-law distribution −α.
The parameter β describing the relation between the

axion mass and cosmological temperature is well calculated
[54] (see also Appendix A for more details). The other
parameter δ from the model of the T0 distribution [Eq. (22)]
is relatively adjustable, which can result in different slopes
for the power-law distribution dN=dB. This parameter
(which may have any sign) describes the distribution of
bubble formation. As we explained in the main text, a
positive δ corresponds to the preference for bubble for-
mation close to Tosc, while a negative δ corresponds to the
preference for bubble formation close to Tc with a much
stronger tilt of the axion potential.
We plot the baryon charge distribution of nuggets in

Fig. 4. We choose τ ¼ 2, λ ¼ 10, and β ¼ 3.925 for both
panels. The difference between them is the value of δwhich
is highly underdetermined. In Fig. 4(a), we choose δ ≈ −1
to make α ¼ 1.2. The solid black line is the plot of
Eq. (B5), which represents the exact result for the distri-
bution. As a comparison, we also plot the approximate
relation (B8) represented by the dashed green line, which is
straight in the log-log scale. We see that the approximate
relation (B8) matches the exact result (B5) pretty well after
the turning point where the condition b ≫ 1 becomes valid.
In Fig. 4(b), we consider the case δ ≈ −4 which corre-
sponds to α ¼ 2. All other ingredients are the same as in the
first panel.

APPENDIX C: On the estimate of the parameter
κðTÞ during pre-BBN evolution

The main goal of this Appendix is to make an order-of-
magnitude estimate of the parameter κðTÞ which is an
important element of our analysis in Sec. VI. In simple
quantum-mechanical terms, the parameter κðTÞ is defined
as the transmission coefficient for the baryon to enter and
annihilate inside the nugget, while the reflection coefficient
½1 − κðTÞ� describes the probability for the baryon to reflect
off of the sharp surface of the nugget. One should
emphasize that the system cannot be formulated in the
simple terms normally used for a one-particle quantum-
mechanical description. Instead, a proper study of this
phenomenon would require a nonperturbative quantum-
field-theoretic description as many-body effects play a
crucial role in the computations. This is because the key
element of the analysis must be a description of physics at
the interface between the hadronic phase (as the proton’s
wave function is formulated in terms of the quarks) and a
CS phase characterized by the diquark vacuum condensate.
One should emphasize that the diquark condensate is not a
local object, but rather a complicated coherent super-
position of quarks similar to a Cooper pair in conventional
superconductors.
In spite of the complicated annihilation pattern of a

baryon in the hadronic phase with diquarks in the CS phase

as highlighted above, one can easily carry out a simple,
order-of-magnitude estimate demonstrating that κðTÞ ≪ 1,
which is precisely the main goal of this Appendix. To
simplify things we separate the suppression factor κ into
two pieces: κ ∼ κ1 · κ2, where κ1 is defined as the dynamical
suppression factor, while κ2 is defined as the kinematical
suppression factor (see below).
The dynamical suppression factor κ1 can be easily

understood from the internal structure of the axion domain
wall represented by the heavy η0 field which accompanies
the axion field in the AQN model. The corresponding
very sharp QCD structure has a width ∼m−1

η0 ≪ Λ−1
QCD; see

Ref. [62]. Therefore, one should expect some suppression
due to the sharp potential,

κ1ðTÞ ∼
�

E
ΛQCD

�
3

∼
�

T
ΛQCD

�
3

; ðC1Þ

where we assume that the typical energy E of the three
incoming quarks making up the proton is of order T, while
the typical strength of the “potential” is order of ΛQCD. We
emphasize that we should formulate the problem in terms
of quarks (rather than in terms of a single proton’s wave
function) because the annihilation pattern should include
three antiquarks from a different CS phase. The suppression
parameter κ1ðTÞ represents the probability for simultaneous
transmission of three quarks. We note that the factor
E=ΛQCD ≪ 1 in Eq. (C1) for a sharp surface is a very
generic quantum-mechanical feature, which is not even
sensitive to the sign of the interaction. It can be checked
with the simple quantum-mechanical problem of the
scattering of a low-energy particle with E → 0 on a δðxÞ
potential.
There is another suppression factor κ2ðTÞ related to the

strong mismatch between the wave functions of the quarks
in the hadronic phase and antiquarks in the CS phase. The
corresponding suppression always has a factor 1=N! for N
constituents, which is N ¼ 3 for a proton.21 κ2ðTÞ also
depends on the overlapping features of the wave functions
from drastically different phases (hadronic vs CS phase).
Therefore, we can represent κ2ðTÞ as follows:

κ2ðTÞ ∼
1

N!
· ðoverlapping integralsÞ: ðC2Þ

Collecting the estimates (C1) and (C2) together, one should
expect that

21We use the generic factor N instead of 3 in Eq. (C2) on
purpose to emphasize that the annihilation process of N different
constituents must find their counterparts with precisely matching
wave functions for successful annihilation.
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κðTÞ≲ 10−3 for T ≃ 40 MeV; ΛQCD ≃ 170 MeV;

ðC3Þ

which represents our final estimate for the suppression
factor κðTÞ used in Sec. VI. The order-of-magnitude
estimate (C3) is sufficient for qualitative arguments, sug-
gesting that the nuggets easily survive the dense and hot
environment after formation.
It is interesting to note that the solitons and antisolitons

[which can be represented as coherent superpositions of a
large number (N → ∞) of constituents] in condensed
matter physics do not normally annihilate, but rather
experience an elastic scattering, which can be thought as
the manifestation of the factor 1=N! in Eq. (C2). It is also
known that the antiproton does not easily annihilate with a
large nuclei (considered to be in a nuclear matter phase),
but could have a lifetime as long as ∼20 fm=c instead of
the conventional ∼fm=c scale [63]. This suppression of
annihilation can be attributed to our “overlapping” factor
in Eq. (C2).

APPENDIX D: AQNs in the corona: Turbulence and
effective cross section with plasma

The main goal of this Appendix is to explain the crucial
differences between our analyses presented in Secs. V–VII
where we argued that very few annihilation events may
occur in the early Universe. At the same time, it has been
argued in Refs. [5,6,28] that nuggets of all sizes will
undergo complete annihilation in the solar corona when
AQNs enter the solar atmosphere. There is no contradiction
between these two claims.
Indeed, our estimates (29) and (38) indicate that

ΔB ≪ B during the entire evolution of the Universe from
soon after the nuggets’ formation at T ≈ 40 MeV until the
present time. We consider two different regimes: during the
hottest period of evolution with T� < T < 40 MeV (when
the nuggets’ electrosphere is made of positrons and the
annihilation of baryon charge is highly unlikely), and when
the temperature drops to below T� ≈ 20 keV (when the
electrosphere contains a significant number of protons and
baryon charge annihilation may occur as estimated in
Sec. VII).
This number of collisions in plasma at T� ≈ 20 keV

should be compared with the number of collisions when an
AQN enters the solar corona. The corresponding estimate
goes as follows; see Refs. [5,6,28] for the details. First, we
estimate the ionized charge of the nugget in terms of the
internal temperature TI [similarly to our estimate Eq. (32)],

Q ≃ 4πR2

Z
∞

z0

nðzÞdz ∼ 4πR2

2πα
· ðTI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2meTI

p
Þ; ðD1Þ

where TP is the temperature of the surrounding plasma. The
difference between TP and TI is enormous (as emphasized
in Ref. [6]) and is related to the fact that the nugget

propagates in the solar corona with velocity v≳ 600 km=s
(the escape velocity of the Sun) which greatly exceeds the
speed of sound cs in the corona, i.e., the Mach number
M≡ v=cs ∼ 10. It is well known that a moving body with
such a large Mach number will inevitably generate shock
waves. It is also known that a shock wave generates a
discontinuity in temperature, which for large Mach num-
bers M ≫ 1 can be approximated as follows:

T2

T1

≃M2 ·
2γðγ − 1Þ
ðγ þ 1Þ2 ; γ ≃ 5=3; ðD2Þ

where the temperature T1 ≃ TP is identified with the
temperature of the surrounding unperturbed plasma, while
the high temperature T2 can be thought of as the internal
temperature of the nuggets TI . This very high internal
temperature TI=TP ∼M2 that develops due to the shock
wave makes a huge difference in comparison with the
analysis in Sec. VII for plasma in thermal equilibrium
at T ≃ T�.
The effective cross section of AQNs with surrounding

protons can be estimated as πR2
eff , where Reff corresponds

to the distance where protons from the plasma with energy
∼TP can be captured by the nugget,

TP ∼
Qα

Reff
: ðD3Þ

Combining Eqs. (D1) with (D3), one can estimate the
enhancement of the effective cross section in comparison
with the naive estimate πR2 as follows:�

Reff

R

�
2

≃
8ðmeTPÞR2

π

�
TI

TP

�
3

∼M6: ðD4Þ

This enhancement factor, of course, is different for different
nugget velocities as the Mach numberM varies with v. This
enhancement factor obviously also changes with time and
solar altitude as a result of the motion with the friction and
radiation. One should also emphasize that there will be very
efficient energy and momentum exchange and heat transfer
to the surrounding plasma as a result of nonequilibrium
dynamics in the form of the turbulence that develops in the
vicinity of the shock-wave front. It should be contrasted
with the analysis in Sec. VII when the system is in perfect
thermal equilibrium. The numerical simulations performed
in Ref. [6] suggest that most of the nuggets lose their entire
baryon charge due to the annihilation ΔB ≃ B in the
vicinity of the transition region at an altitude ∼2000 km
where it is known that drastic changes in temperature and
pressure occur.
From the AQN perspective such unusual features of the

transition regions as well as the “solar corona heating
puzzle” are understood in terms of dark matter nuggets
which continuously hit the solar atmosphere with a flux
that has the correct magnitude to saturate the EUVand soft
x-ray radiation from the corona.
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