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The semiclassical general formula for the probability of radiation of twisted photons by ultrarelativistic
scalar and Dirac particles moving in the electromagnetic field of a general form is derived. This formula is
the analog of the Baier-Katkov formula for the probability of radiation of one plane wave photon with the
quantum recoil taken into account. The derived formula is used to describe the radiation of twisted photons
by charged particles in undulators and laser waves. Thus, the general theory of undulator radiation of
twisted photons and radiation of twisted photons in the nonlinear Compton process is developed with
account for the quantum recoil. The explicit formulas for the probability to record a twisted photon are
obtained in these cases. In particular, we found that the quantum recoil and spin degrees of freedom
increase the radiation probability of twisted photons in comparison with the formula for scalar particles
without recoil. In the range of applicability of the semiclassical formula, the selection rules for undulator
radiation established in the purely classical framework are not violated. The manifestation of the
blossoming out rose effect in the nonlinear Compton process in a strong laser wave with circular
polarization and in the wiggler radiation is revealed. Several examples are studied: the radiation of mega-
electron-volt twisted photons by 180 GeV electrons in the wiggler, the radiation of twisted photons by
256 MeV electrons in strong electromagnetic waves produced by the CO2 and Ti:Sa lasers, and the
radiation of MeV twisted photons by 51.1 MeV electrons in the electromagnetic wave generated by the
free-electron laser with photon energy 1 keV.
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I. INTRODUCTION

Nowadays, the Baier-Katkov (BK) semiclassical method
[1–4] is a standard tool to describe radiation of plane wave
photons by ultrarelativistic charged particles in external
electromagnetic fields of a general form. This method
effectively includes the quantum recoil experienced by a
charged particle in radiating one hard photon and is
applicable for the energies of radiated photons right up to
the energy of the radiating particle (for other semiclassical
methods see, e.g., Refs. [5–10]). The BKmethod is realized
in several computer codes [11–14] and proved to be very
successful [4,15–22]. A comparison of the radiation prob-
ability obtained by this method with the exact QED results,
when they are obtainable, reveals a spectacular agreement
[2–4,16]. We use this method to derive the radiation
probability of one twisted photon [23–32] by an ultra-
relativistic charged particle with account for the quantum
recoil. In the case of negligible quantum recoil, the obtained
general formula reduces to the one derived in Ref. [33].

According to the BK method, in the ultrarelativistic
limit, the one-photon radiation probability can be calcu-
lated by means of a formula resembling the classical
formula for the intensity of radiation [34,35]. One does not
need to solve the Dirac or Klein-Gordon equations in the
given external fields but just has to find the solution of the
Lorentz equations in these fields. The spin degrees of
freedom are characterized by the spin vector, and its
evolution is governed by the Bargmann-Michel-Telegdi
equation. If the radiation probability is summed over spin
polarizations of the escaping particle and averaged over
spin polarizations of the incoming one, the dynamics of the
spin vector are irrelevant for evaluation of the radiation
probability. All that drastically simplifies the calculations
of radiation probability. Of course, there are certain
limitations of this semiclassical method. The complete
list of them is presented in Sec. II. The main idea standing
behind our derivation of the radiation probability of
twisted photons is to find the approximate expression
for the product of radiation amplitudes using the procedure
developed in Refs. [1–4] and to integrate it over the
azimuth angles of photon momenta with the corresponding
weights. The last step creates the twisted photon in the
out state.
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Having derived the general formula, we employ it to
investigate the radiation probability of twisted photons by
electrons in undulators (Sec. III) and strong laser pulses
(Sec. IV). Currently, the twisted photons of different
spectral ranges are used in fundamental science and
technology [27–32]. In the optical range and below, the
detectors were designed that allow one to decompose an
arbitrary electromagnetic radiation into twisted photons
[36–40]. Even in the x-ray spectral range, the twisted
photons can be directly detected [41]. The formulas we
obtain are aimed to describe correctly the radiation of hard
twisted photons with mega-electron-volt energies and
above that are not accessible for an immediate observation.
The hard twisted photons can be employed to study the
properties of nuclear matter by exciting higher multipole
transitions in nuclei and hadrons (see, e.g., the discussions
in Refs. [24,25,42,43]). Rather recently, it was shown that
hard twisted photons can be generated in the inverse
Compton scattering of low-energy twisted photons
[24,25], in channeling radiation [44,45], and strong laser
pulses [42,46–49]. In Sec. III, we show that mega-electron-
volt photons can be produced by 180 GeV electrons in
helical wigglers. Besides, we develop a general theory of
undulator radiation of twisted photons with the quantum
recoil taken into account. In particular, we show that the
selection rules for the forward radiation of twisted photons
by helical undulators [33,42,46,50–56] are not affected by
the quantum recoil, at least, in the domain of applicability
of the semiclassical method. Then, in Sec. IV, we revisit the
problem of radiation of twisted photons by electrons in
laser waves studied in Refs. [42,46,47]. We generalize the
results of Refs. [42,46,47] to the case of laser waves with an
arbitrary amplitude envelope and include the influence of
quantum recoil. Thus, we develop a general theory of
twisted photon production in the nonlinear Compton
process. Of course, it is just another description of the
nonlinear Compton process usually formulated in terms of
plane wave photons [2–4,15,17,19–21,57–68]. In Sec. IV,
we apply this general theory and describe the radiation of
twisted photons by electrons in strong laser pulses pro-
duced by the free-electron laser (FEL) and CO2 and Ti∶Sa
lasers. The obtained general formulas can be implemented
in computer codes to describe the radiation of twisted
photons by ultrarelativistic charged particles in electro-
magnetic fields of a rather general configuration, in
particular, in channeling.
The paper is organized as follows. In Sec. II, we derive

the general semiclassical formulas for the one-photon
radiation probability of twisted photons by scalar and
Dirac particles and discuss their applicability conditions.
In Sec. III, we elaborate a general theory of undulator
radiation of twisted photons, taking into account the
quantum recoil undergone by a charged particle in radiating
a photon. We also obtain a simple estimate for the number
of radiated twisted photons and specialize the general

applicability conditions to the case of undulator radiation.
As expected, the wiggler radiation of lower harmonics in
which the main part of twisted photons is radiated has a
clear imprint of the “blossoming out rose” effect [9]. In
Sec. IV, we consider the radiation of twisted photons by
charged particles in an intense laser wave of a circular
polarization. In particular, we trace the manifestation of the
blossoming out rose effect in this radiation. Several
examples are presented there. Some cumbersome calcu-
lations are removed to Appendixes A and C. The estimates
of the transverse size of a particle wave packet are
presented in Appendix B. In the Conclusion, we summarize
the results.
We use the system of units such that ℏ ¼ c ¼ 1 and

e2 ¼ 4πα, where α ≈ 1=137 is the fine structure constant.
Besides, we vastly use the notation introduced in Ref. [33].

II. GENERAL FORMULAS

Let us begin with the case of a stationary external
magnetic field. The generalization to the case of a general
electromagnetic field will be given below. In the presence
of the electromagnetic field, the following process is
possible,

e−i → γα þ X; ð1Þ

where e−i is the initial electron in the state i, γα is the twisted
photon [23–27,69–73] recorded by the detector in the state
α, and X denotes the rest of particles that are not recorded
by the detector. Notice that such a detector can be not only a
specially designed detector of twisted photons [36–41] but
a molecule, an atom, a nucleus, etc. The probability of such
an inclusive process equals

wðα; iÞ ¼
X
X

hijÛ−∞;∞jX; γαihγα;XjÛ∞;−∞jii; ð2Þ

where Û is the evolution operator of QED in the presence
of the external field (see, e.g., Refs. [59,74]). In the first
Born approximation with the exact account for the external
electromagnetic field, the final state contains only one
electron,

wðα; iÞ ≈
X
f

hijÛ−∞;∞jf; γαihγα; fjÛ∞;−∞jii; ð3Þ

where f characterizes the final electron state. In this
approximation, using the completeness relation, we obtain

wðα; iÞ ¼ hijÛ−∞;∞jγαihγαjÛ∞;−∞jii; ð4Þ

i.e., the probability of process (1) is equal to the average
number of photons in the final state α. According to (A5),
the twisted photon state can be decomposed into the plane
wave ones [23–27,69–73]. Then,
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wðα;iÞ¼
X
k1;k2

Λ�
α;s;k2

Λα;s;k1
hijÛ−∞;∞js;k2ihs;k1jÛ∞;−∞jii;

ð5Þ

where Λα;s;k are the coefficients of expansion (A5).
Therefore, in the first Born approximation, wðα; iÞ can
be found from the matrix element for the plane wave
photons (see the notation in Ref. [4])

Cðk2;k1Þ ≔
e2

ð2πÞ32Vk0

�
i

����
Z

∞

−∞
dt1dt2eik0ðt1−t2ÞM̂†ðt2;k2ÞM̂ðt1;k1Þ

����i
�
; ð6Þ

which should be integrated over the azimuth angles of the
vectors k1;2 with the corresponding phase factors as in
(A5). Notice that we work in the coordinate system adapted
to the detector of twisted photons with the axis directed
along the unit vector e3 (see, for details, Ref. [33]). The unit
vectors fe1; e2; e3g of this coordinate system constitute a
right-hand triple. The perpendicular components of a vector
are those lying in the plane spanned by fe1; e2g. The
photons are supposed to lie on the mass shell

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21⊥ þ k213

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22⊥ þ k223

q
; ð7Þ

and

k1⊥ ¼ k2⊥; k13 ¼ k23; ð8Þ

i.e., the photon momenta k1;2 differ only by the azimuth
angles. The helicities of photons with momenta k1;2 are
the same.
We will evaluate (6) using the approximation introduced

in Refs. [1–4]. Recall that it is assumed in this approxi-
mation that:
(1) The charged particle is ultrarelativistic, i.e., the

Lorentz factor γ ≫ 1 and ϰ=γ ≪ 1, where
ϰ ¼ maxð1; KÞ, K ¼ hβ⊥iγ is the undulator strength
parameter, and hβ⊥i is a typical value of the velocity
component perpendicular to the detector axis.

(2) The particle wave packet is sufficiently narrow in the
momentum space.

(3) The size of the wave packet in the configuration
space is small in comparison with the typical scale of
variation of the external electromagnetic field
in space.

(4) n1;2 ≔ k1;2=k0 lie inside of the cone directed along
the detector axis (the axis 3) with the opening of
order 2ϰ=γ; i.e., we consider the region where the
main part of radiation is concentrated.

Below, the additional restriction related to the fact that we
consider the radiation of twisted photons will appear. In
contrast to the case of radiation of plane wave photons, we
have to know Cðk2;k1Þ out of the diagonal, and so the
additional assumptions will be needed.
If the above conditions are satisfied, then, in evaluating

average (6) in the leading order in 1=γ, we can use the

analog of the Thomas-Fermi approximation. Namely, the
commutator

jh½P̂μ; Âν�ij=hP̂2i ∼ H
H0γ

2
≪ 1; γ ≫ 1; ð9Þ

is small for large particle energies. Here, H is a typical
magnitude of the electromagnetic field, H0 is the critical
(Schwinger) field, and P̂μ ¼ p̂μ − eAμðx̂Þ. Hence, the non-
commutativity of operators x̂ and P̂ entering into the
operators M̂†ðt2;k2Þ, M̂ðt1;k1Þ can be neglected. At the
same time, the noncommutativity of P̂ and e−ikx̂ in M̂ cannot
be ignored because the exponent is a rapidly varying
function for jkj ∼ ε, where ε is the energy of a charged
particle.

A. Scalar particle

For a scalar charged particle, we have [4]

M̂ðt1;k1Þ ¼ P̂−1=2
0 ðf�1P̂ðt1ÞÞe−ik1x̂ðt1ÞP̂−1=2

0 ;

M̂†ðt2;k2Þ ¼ P̂−1=2
0 ðf2P̂ðt2ÞÞeik2x̂ðt2ÞP̂−1=2

0 ; ð10Þ

where f1;2 ¼ fðk1;2Þ are the polarization vectors of physical
photons. All the operators in (10) are given in the
Heisenberg representation with the Hamiltonian

Ĥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂2 þm2

e

q
þ eA0ðx̂Þ: ð11Þ

Henceforth, we perform our calculations in the Coulomb
gauge. Notice that A0 ¼ 0 in the case of time-independent
magnetic field. However, we leave A0 intact since its
presence influences the derivation only in one point
[Eq. (22)], which we shall discuss separately below. To
avoid additional complications with the vacuum definition
(see, e.g., Refs. [59,74–76]), we suppose that

jeA0j ≲me; ð12Þ

which is fulfilled for all the electromagnetic fields achiev-
able at the present moment in laboratories. Therefore, P0 ¼
meγ ≈ ε up to the terms of order 1=γ.
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Let us carry the exponent entering into M̂†ðt2;k2Þ to the
right and the one entering into M̂ðt1;k1Þ to the left,

M̂†ðt2;k2ÞM̂ðt1;k1Þ
¼ P̂−1=2

02 ðf2P̂2ÞP̂0−1=2
02 eik2x̂2e−ik1x̂1P̂0−1=2

01 ðf�1P̂1ÞP̂−1=2
01 ;

ð13Þ

where

P̂0
01;2 ¼ P0ðP̂0

1;2Þ; P̂0
1;2 ≔ P̂1;2 − k1;2; ð14Þ

and P̂1;2 ≡ P̂ðt1;2Þ. Then, we transform the operator expres-
sion

eik2x̂2e−ik1x̂1 ¼ eik⊥2x̂⊥2eik3x̂32e−ik3x̂31e−ik⊥1x̂⊥1

¼ eik⊥2x̂⊥2eiĤτðe−iĤτÞP̂3→P̂3−k3e
−ik⊥1x̂⊥1 ; ð15Þ

where τ ≔ t2 − t1. To proceed, we assume that

e−ik⊥1;2x̂⊥1;2 jii ≈ e−ik⊥1;2x⊥1;2 jii; ð16Þ

where x1;2 is the average value of the corresponding
operator with respect to the state jii. The approximate
equality takes place, if

k⊥σ⊥ ≪ 1; ð17Þ

where σ⊥ is a typical transverse (with respect to the detector
axis) size of the wave packet in the configuration space.
The condition (17) is absent in considering the radiation of
plane wave photons by the BK method. The reason is that
the dependence of radiation probability for twisted photons
on the transverse structure of a particle wave packet is
stronger than for plane wave photons. It is not surprising
as, in contrast to plane wave photons, the probability to
record a twisted photon depends on the photon momentum
component perpendicular to the detector axis.
Notice that condition (17) also arises in considering the

radiation of twisted photons by a bunch of charged particles
[77,78]. When condition (17) is satisfied, the probability
of radiation of a twisted photon by the bunch of N particles
is the same as for one charged particle, multiplied by N
(incoherent radiation) or by N2 (coherent radiation). To put
it differently, the form of the wave packet does not affect the
radiation spectrum of twisted photons in this case. It is clear
that if (17) is violated the approximation we use cannot be
employed. In that case, the probability of radiation of
twisted photons depends severely on the form of the wave
packet and is not determined only by the average values of
the particle momentum and coordinate. In particular, none
of the fine effects stemming from the form of the wave
packet of a charged particle (see, e.g., Refs. [26,79–84])
can be reproduced by the semiclassical approach

considered here. However, condition (17) cannot be
strongly violated. It was shown in Refs. [77,78] that, in
a general position, the coherent radiation produced by a
smooth wave packet of a charged particle is strongly
suppressed for k⊥σ⊥ ≳ 3 due to destructive interference
of the radiation amplitudes coming from different points of
the wave packet.
Furthermore, we have

jh½e−ik⊥1;2x̂⊥1;2 ; P̂�ij=jhP̂2ij1=2 ∼ k0ϰ=ðεγÞ≲ ϰ=γ; ð18Þ

i.e., up to the terms of order ϰ=γ, we can carry these
exponents through the operators entering into M̂†

2 and M̂1

and make use of (16). Now, take into account that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP3 − k3Þ2 þ P2⊥ þm2

q
≈ ðP0 − k0Þ

�
1þ k0P0 − k3P3

ðP0 − k0Þ2
−

k2⊥
2ðP0 − k0Þ2

�
: ð19Þ

The approximation (19) is valid, provided

P0k0ð1 − n _xÞ
ðP0 − k0Þ2

∼
k0=P0

ð1 − k0=P0Þ2
ϰ2

γ2
≪ 1: ð20Þ

If ϰ=γ is small, estimate (20) holds up to k0 ≲ P0. Then,
repeating the calculations presented in Ref. [4], we can
write

e−ik0τeiĤτðe−iĤτÞP̂3→P̂3−k3

¼ Texp

�
i
Z

τ

0

dtðH − k0 −HP̂3→P̂3−k3Þ
	
: ð21Þ

Therefore,

e−ik0τeiĤτðe−iĤτÞP̂3→P̂3−k3 ≈ e
−i P̂0

P̂0−k0
½k0τ−k3ðx32−x31Þ−k2⊥τ=ð2P̂0Þ�;

ð22Þ

where we have used the fact that, in the time-independent
magnetic fields, P0 ¼ mγ is an integral of motion of the
Lorentz equations. It is argued in Ref. [4] that approxima-
tion (22) is valid in the leading order in ϰ=γ for general
nonstationary external electromagnetic fields as well,
provided

2π=ðTεÞ ≪ 1; ð23Þ

where T is a typical timescale or length scale of changing of
the external electromagnetic fields. In that case, P̂0 should
be replaced by P̂0i in (22), i.e., by the particle energy in the
initial state jii where the external fields are absent. This
prescription ensures, in particular, that the right-hand side
of (22) is invariant under translations in the spacetime.
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Disentangling expression (15) and taking into account
the conditions 1–4 and Eqs. (9) and (17), we can replace the
operators in matrix element (6) by their average values. In
particular,

P̂0
01;2 → P0

01;2 ¼ P0ðP1;2 − k1;2Þ ≈ P01;2 − k0: ð24Þ

As for exponent (22), this replacement is justified when the
dispersion of

qk0

Z
τr

0

dtð1−n3β3Þ≈qk0

Z
τr

0

dt
1þn2⊥γ2þβ2⊥γ2

2γ2
ð25Þ

is much less than unity, where τr is the radiation formation
time in the laboratory frame, n⊥ ≔ k⊥=k0, and we
neglected the last term in the exponent in (22) as it is
small in comparison with the first two [see (44) below]. By
the order of magnitude,

τrqk0
1þ n2⊥γ2 þ β2⊥γ2

2γ2
∼ N; ð26Þ

where N is the number of periods of particle motion. Then,
for an isoenergetic wave packet, we have the condition

N
hδβ2⊥iγ2

1þ n2⊥γ2 þ β2⊥γ2
≪ 1; ð27Þ

where hδβ2⊥i is a typical value of the variance of β⊥ for a
given particle wave packet.
Thus, in the scalar case,

Cðk2;k1Þ ¼
e2

ð2πÞ32Vk0
cðk2Þc�ðk1Þ; ð28Þ

where

cðkÞ ≔
Z

∞

−∞
dte−iqi½k0−k2⊥=ð2P0iÞ�tþiqik3x3þik⊥x⊥q1=2ðf _xÞ;

ð29Þ

and

_xðtÞ ¼ PðtÞ=P0ðtÞ; qðtÞ ¼ P0ðtÞ=P0
0ðtÞ; ð30Þ

and qi ¼ P0i=P0
0i. Recall that P0i is the energy of particle in

the initial state and P0
0i ¼ P0i − k0. The approximate

expression for probability (5) derived from (28) is non-
negative. Furthermore, matrix element (28) with the photon
momenta satisfying (8) transforms properly under trans-
lations in the spacetime, xμ → xμ þ aμ, viz.,

Cðk2;k1Þ → Cðk2;k1Þeiðk2⊥−k1⊥Þa⊥ ; ð31Þ

where a⊥ is the translation 4-vector component perpen-
dicular to the detector axis.
Employing formula (A5), we find the leading contribu-

tion to the probability of radiation of a twisted photon by a
charged scalar particle with the quantum recoil taken into
account,

dPðs;m; k⊥; k3Þ ¼ e2
����
Z

∞

−∞
dte−iqi½k0−k2⊥=ð2P0iÞ�tþiqik3x3q1=2

×

�
1

2
½_xþa− þ _x−aþ� þ _x3a3

�����2

×

�
k⊥
2k0

�
3 dk3dk⊥

2π2
; ð32Þ

where

a� ≡ a�ðs;m; k3; k⊥;xÞ; a3 ≡ a3ðs;m; k⊥;xÞ: ð33Þ

Recall that we use the system of units such that e2 ¼ 4πα.
In the case q ≈ 1, i.e., when the energy of the radiated
photon is negligibly smaller than the energy of charged
particle, formula (32) passes into formula (36) in Ref. [33].
As a rule, q ≈ const in the ultrarelativistic limit, and so q1=2

can be removed from the integrand of (32). Since q > 1, we
see that the quantum recoil tends to increase the radiation
probability in comparison with the answer which does not
include it.

B. Dirac particle

In case of radiation of twisted photons by the
Dirac particles, the considerations are analogous but more
cumbersome. Using the notation of Ref. [4], we have
approximately

Mðt1;k1Þ ¼
�
me

P01

�
1=2

ūs0 ðP1Þf̂�1e−ik1x1usðP1Þ
�
me

P01

�
1=2

¼ e−ik1x1

�
me

P0
01

�
1=2

ūs0 ðP0
1Þf̂�1usðP1Þ

�
me

P01

�
1=2

;

M†ðt2;k2Þ ¼
�
me

P02

�
1=2

ūsðP2Þf̂2eik2x2us0 ðP2Þ
�
me

P02

�
1=2

¼
�
me

P02

�
1=2

ūsðP2Þf̂2us0 ðP0
2Þ
�
me

P0
02

�
1=2

eik2x2 ;

ð34Þ

where s and s0 characterize the initial and final electron spin
states. For brevity, we do not write the hats over the
operators P and x anymore. Further, we employ formu-
las (15) and (22), substitute all the operators by their
averages, sum over spin polarizations of the escaping
electron, and average over spin polarizations of the incom-
ing electron. As a result, we come to
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1

2

X
spins

M†ðt2;k2ÞMðt1;k1Þ →
1

2
Sp½ðA�

2 − iðB�
2σÞÞðA1 þ iðB1σÞÞ� ¼ A�

2A1 þ ðB�
2B1Þ; ð35Þ

where

A1;2 ¼ −
ðf�1;2P1;2Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0
01;2P01;2

q
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0
01;2 þme

P01;2 þme

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P01;2 þme

P0
01;2 þme

s !
;

B1;2 ¼ −
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0
01;2P01;2

q
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0
01;2 þme

P01;2 þme

s
½f�1;2;P1;2� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P01;2 þme

P0
01;2 þme

s
½f�1;2;P0

1;2�
!
: ð36Þ

In the ultrarelativistic limit, we can neglect the mass in expressions (36) since it gives the contributions of order 1=γ as
compared to the main contribution. Then,

A�
2A1 þ ðB�

2B1Þ ¼
1

4P0
01P

0
02

½ðP01 þ P0
01ÞðP02 þ P0

02Þðf2 _x2Þðf�1 _x1Þ

− k20ðf2; _x1 − n1Þðf�1; _x2 − n2Þ þ k20ðf2f�1Þð _x2 − n2; _x1 − n1Þ�: ð37Þ

This expression turns into formula (2.41) in Ref. [4] for k1;2 ¼ k.
The integration over azimuth angles of the vectors k1;2 is considered in Appendix C. With the aid of the notation

introduced there, we can write

dPðs;m; k⊥; k3Þ ¼ e2
Z

∞

−∞

dt1dt2
4P0

01P
0
02

e−iðk0−k2⊥=ð2P0iÞÞqiðt2−t1Þþik3qiðx23−x13Þ

×

�
ðP01 þ P0

01ÞðP02 þ P0
02Þ
�
1

2
½_x1−a�− þ _x1þa�þ� þ _x13a�3

��
1

2
½_x2þa− þ _x2−aþ� þ _x23a3

�

þ k20
4
½ð_x1þa�þ − in⊥a�þðm − 1ÞÞð_x2−aþ þ in⊥aþðm − 1ÞÞ

þ ð_x1−a�− þ in⊥a�−ðmþ 1ÞÞð_x2þa− − in⊥a−ðmþ 1ÞÞ�
	�

k⊥
2k0

�
3 dk3dk⊥

2π2
ð38Þ

in the leading order in ϰ=γ. Here,

a�≡a�ðs;m;k3;k⊥;x2Þ; a3≡a3ðs;m;k⊥;x2Þ;
a��≡a��ðs;m;k3;k⊥;x1Þ; a�3≡a�3ðs;m;k⊥;x1Þ: ð39Þ

The approximate expression (38) for probability density (5)
is non-negative. In the case k0 ≪ ε1;2, formula (38) passes
into expression (36) in Ref. [33] without the quantum recoil
due to photon radiation. Just as for the scalar particle case,
we see that the quantum recoil tends to increase the
radiation probability as compared to the formula without
recoil. As long as

P0 þ P0
0

2P0
0

¼ 1þ q
2

;
k0
P0
0

¼ q − 1≕ δq; ð40Þ

the second and third terms in (38) are proportional to ðδqÞ2,
while the first term is proportional to ð1þ δq=2Þ2. Thus, in
the limit of small recoil, q ≈ 1, the second and third terms
can be neglected, and the contribution of the first term is the

same as in the case of a scalar particle (32) since
q1=2 ≈ 1þ δq=2. The spin effects become irrelevant in this
limit within the bounds of the approximations made in
deriving (38).
Contrary to the classical formula for radiation proba-

bility, expression (38) does not factorize into c�c, where c
is determined by the particle trajectory. This is a conse-
quence of the fact that the averaging over spin polarizations
was performed and the quantum recoil was taken into
account. If one neglects the recoil, the created radiation
will be described by a coherent state in the Fock space
[33,69,85–87], and nontrivial quantum correlations will be
absent. In the case of a scalar charged particle, formula (32)
does factorize into the amplitude and its complex conjugate,
and the nontrivial quantum correlations are absentwithin the
bounds of the approximations made.
Notice that formulas (32) and (38) describe the radiation

produced by one charged particle. As a rule, in real experi-
ments, the bunch of charged particles radiates. Under usual
conditions, radiation amplitudes of hard photons produced
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by different particles in the bunch add up incoherently; i.e.,
expression (32) or (38) should be summed over different
particles in the bunch. In Refs. [77,78], the simple formulas
were obtained, allowing one to find the radiation of twisted
photons by a bunch of charged particles using the one-
particle radiation probability distribution. These formulas
can be applied to (32) and (38), as the initial plane wave
matrix elements (31) transform correctly under translations.
Below, we shall employ the formulas from Ref. [77] for
axially symmetric bunches. Such bunches are created, for
example, in the electron-positron collider VEPP-2000,
Novosibirsk [88].

III. FORWARD RADIATION BY CHARGED
PARTICLES IN UNDULATORS

Let us apply the general formulas derived in the
preceding section to the forward radiation of charged
particles in undulators with the quantum recoil taken into
account. We shall investigate the undulator radiation in the
dipole regime for an arbitrary periodic trajectory of a
charged particle. As for the wiggler case, we shall obtain

the exact expression for the probability of radiation of
twisted photons by charged particles moving along an ideal
helix (the helical wiggler).

A. Scalar particle

The general formula for the radiation probability of a
twisted photon by a scalar charged particle has the form
(32). The radiation of twisted photons by undulators
without quantum recoil was described in Ref. [33]
(Sec. V). Comparing Eq. (82) in Ref. [33] with (32), we
see that the account for quantum recoil leads only to a
change of the energy spectrum of radiated photons and to
the appearance of the common factor q when the forward
radiation produced by a scalar particle in the undulator in
the dipole regime and in the ideal helical wiggler is
considered. Notice that, according to the Lorentz equations,

q ¼ qi ¼ const ð41Þ

for the motion of charged particles in undulators. As a
result, in the dipole approximation,

dPðs;m; k⊥; k3Þ ¼ e2n3⊥
X∞
n¼1

δ2N



qk0

�
1 − n3υ3 −

n⊥k⊥
2P0

�
− nω

�

× q

�
δm;1

�
k⊥υ3 þ

ωnn⊥
n3 − s

�
2

jrþðnÞj2 þ δm;−1

�
k⊥υ3 þ

ωnn⊥
n3 þ s

�
2

jr−ðnÞj2
	
dk3dk⊥

16
; ð42Þ

where the notation introduced in Ref. [33] was used. As in the case of radiation without recoil, the main part of forward
radiation consists of twisted photons with m ¼ �1.
The energy spectrum is found from the equation

P0kn0

�
1 − n3υ3 −

n2⊥kn0
2P0

�
¼ nωðP0 − kn0Þ: ð43Þ

In virtue of condition (17) with minimum σ⊥ taken from (B6), the last term in the parentheses on the left-hand side is small
and should be taken into account perturbatively. Indeed,

1 − n3υ3 −
n2⊥kn0
2P0

≈
1þ K2 þ n2⊥γ2 − n2⊥γ2kn0=P0

2γ2
¼ 1þ K2 þ n2⊥γ2=q

2γ2
: ð44Þ

For k0 ∼ ε, it follows from (17) and (B6) that n⊥γ ≪ K, and the contribution of this term can be neglected as compared to
the contributions of the first terms. For k0 ≪ ε, obviously, the contribution of this term is also negligibly small in
comparison with the contributions of the first terms in this expression. Then, the physical solution to (43) takes the form

kn0 ¼
P0ð1 − n3υ3Þ

n2⊥

�
1þ k̄n0

P0

−

�

1þ k̄n0
P0

�
2

−
2k̄n0n

2⊥
P0ð1 − n3υ3Þ

�
1=2
	

≈
P0ð1þ K2 þ n2⊥γ2Þ

2n2⊥γ2

�
1þ k̄n0

P0

−

�

1þ k̄n0
P0

�
2

−
4k̄n0n

2⊥γ2
P0ð1þ K2 þ n2⊥γ2Þ

�
1=2
	
; ð45Þ

where

k̄n0 ≔
ωn

1 − n3υ3
ð46Þ
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is the energy of the radiated twisted photon without
quantum recoil. If condition (17) with minimum σ⊥ taken
from (B6) is fulfilled, the last term under the square root in
(45) is small. Developing (45) as a series, we obtain in the
leading order

kn0 ¼
nω

1−n3υ3þnω=P0

¼ k̄n0
1þ k̄n0=P0

⇔
1

kn0
¼ 1

k̄n0
þ 1

P0

: ð47Þ

In fact, this is the BK prescription for the shift of the energy
spectrum due to quantum recoil. Formulas (45) and (47)
imply that kn0 < P0 ≈ ε.
Using formulas from Ref. [33], the probability of

radiation of twisted photons by a scalar charged particle
moving along an ideal helix can readily be derived even in
the wiggler regime. Denoting by χ ¼ �1 the helicity of the
particle trajectory, we find from (32) that

dPðs;m; k⊥; k3Þ ¼ e2n3⊥δ2N


qk0

�
1 − n3υ3 −

n⊥k⊥
2P0

�
− χmω

�

× q


�
υ3 − χ

n3ωm
n⊥k⊥

�
Jm

�
k⊥K
ωγ

�
− χ

sK
n⊥γ

J0m

�
k⊥K
ωγ

��
2 dk3dk⊥

4
: ð48Þ

Thus, the selection rule m ¼ χn for the forward radiation produced by an ideal helical wiggler survives even when the
quantum recoil is taken into account, within the bounds of the approximations made in deriving formula (32). The energy
spectrum of radiated twisted photons is given by (45) and (47). Notice that formula (48) is the exact one. In contrast to
expression (42), its domain of applicability is not restricted to the dipole regime. The particular case of formula (42) can be
reproduced from (48) by expanding the latter in a Taylor series in K.

B. Dirac particle

In the dipole approximation, it is necessary to expand the integrand of (38) into series in K and take into account only the
leading contribution (see the estimates in Sec. 5. A of Ref. [33]). Then, up to a common factor, the first term in the curly
brackets in (38) turns into the same expression as that appearing when the quantum recoil is neglected,

1

4
ðP0 þ P0

0Þ2


−δm;1

�
in⊥

n3 − s
_r2þ þ k⊥υ3r2þ

��
in⊥

n3 − s
_r1− þ k⊥υ3r1−

�

− δm;−1

�
in⊥

sþ n3
_r2− − k⊥υ3r2−

��
in⊥

sþ n3
_r1þ þ k⊥υ3r1þ

��
: ð49Þ

The second term in the curly brackets in (38) standing at k20=4 is written as

n2⊥
ðsþ n3Þ2



_r1þδm;−1 − in⊥

�
δm;0 þ

1

2
δm;1k⊥r1− −

1

2
δm;−1k⊥r1þ

��

×



_r2−δm;−1 þ in⊥

�
δm;0 þ

1

2
δm;1k⊥r2þ −

1

2
δm;−1k⊥r2−

��

þ n2⊥
ðs − n3Þ2



_r1−δm;1 þ in⊥

�
δm;0 þ

1

2
δm;1k⊥r1− −

1

2
δm;−1k⊥r1þ

��

×



_r2þδm;1 − in⊥

�
δm;0 þ

1

2
δm;1k⊥r2þ −

1

2
δm;−1k⊥r2−

��
: ð50Þ

Expanding r1;2 into a Fourier series and integrating over the time variable, we have

dPðs;m;k⊥;k3Þ¼e2n3⊥
X∞
n¼1

δ2N



qk0

�
1−n3υ3−

n⊥k⊥
2P0

�
−nω

�

×

�
δm;1



ðP0þP0

0Þ2
�
k⊥υ3þ

ωnn⊥
n3−s

�
2

þ k2⊥
ðn3−sÞ2

�
ωn−

n⊥k⊥
2

�
2

þ n2⊥k4⊥
4ðn3þsÞ2

�
jrþðnÞj2

þδm;−1



ðP0þP0

0Þ2
�
k⊥υ3þ

ωnn⊥
n3þs

�
2

þ k2⊥
ðn3þsÞ2

�
ωn−

n⊥k⊥
2

�
2

þ n2⊥k4⊥
4ðn3−sÞ2

�
jr−ðnÞj2

	
dk3dk⊥
64P0

0
2
: ð51Þ
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As in the case of a scalar particle, only the twisted photons with m ¼ �1 are radiated. The photon energy spectrum has the
form of (45) and (47).
Performing calculations along the same lines as in the case of a scalar particle, we find for an ideal helical wiggler the

exact result

dPðs;m; k⊥; k3Þ ¼ e2n3⊥δ2N


qk0

�
1 − n3υ3 −

n⊥k⊥
2P0

�
− χmω

�

×

�
ðP0 þ P0

0Þ2

�

υ3 − χ
n3ωm
n⊥k⊥

�
Jm − χ

sK
n⊥γ

J0m

�
2

þ k2⊥
4ðn3 þ sÞ2

�
K
γ
Jmþ1 − χn⊥Jm

�
2

þ k2⊥
4ðn3 − sÞ2

�
K
γ
Jm−1 − χn⊥Jm

�
2
	
dk3dk⊥
16P0

0
2
: ð52Þ

The argument of the Bessel functions is the same as in
formula (48). Employing the recurrence relations for the
Bessel functions and keeping in mind that n3 ≈ 1, the last
two terms in the curly brackets can be brought to

k20


�
ωm
n⊥k⊥

− 1

�
Jm þ sK

n⊥γ
J0m

�
2

; ð53Þ

to the accuracy with which we work. Setting υ3 ¼ n3 ¼ 1
in the first term in the curly brackets in (52), we obtain

dPðs;m;k⊥;k3Þ≈e2n3⊥δ2N


qk0

�
1−n3υ3−

n⊥k⊥
2P0

�
−χmω

�

× ð1þq2Þ

�

1−χ
ωm
n⊥k⊥

�
Jm−χ

sK
n⊥γ

J0m

�
2

×
dk3dk⊥

8
: ð54Þ

The forward radiation of twisted photons in helical wig-
glers obeys the selection rule m ¼ χn within the bounds of
the approximations made (see Fig. 1). Comparing (48) with
(54), we see that the probability of radiation of twisted
photons by Dirac particles is always bigger than the same
quantity for scalar particles since ð1þ q2Þ=2 > q for q > 1
(see Fig. 2). For q ≈ 1, the respective radiation probabilities
are almost equal. Of course, developing (54) as a Taylor
series in K, one reproduces the particular case of (51).

C. Number of radiated twisted photons

Let us find the number of radiated twisted photons with a
given projection of the total angular momentum m per
energy interval k0 and the total number of radiated twisted
photons. Further, we set χ ¼ 1, since χ ¼ −1 can be
obtained by the substitution m → −m, s → −s. To shorten
formulas, we suppose that the last term in the round
brackets in (43) is small and the energy spectrum is given
by (47). Then,

FIG. 1. The radiation of twisted photons by 180 GeVelectrons in the helical wiggler. The seventh harmonic is presented. The wiggler
period is 0.72 cm, the number of periods N ¼ 15, and the magnetic field strength in the wiggler is 63.3 kG. The applicability conditions
(84) are satisfied for σ⊥ ≲ 103m−1

e . The photon energy is measured in the electron rest energies. Left panel: The probability of recording
a twisted photon produced by one electron in the wiggler against the photon energy. Left inset: The probability distribution overm. Right
inset: The relative change of radiation probability due to quantum recoil: η ≔ ðdPcl − dPÞ=dPcl, where dPcl is the radiation probability
without quantum recoil. Right panel: The distribution over m of the probability per particle to record a twisted photon produced by an
incoherent axially symmetric bunch of particles in the wiggler. The radial bunch profile is Gaussian with the width σ ¼ 125 μm. The
angular momentum per photon is the same as for radiation of one electron. Inset: The asymmetry of distribution over m.
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δ2N ½qk0ð1 − n3υ3Þ −mω�dk3dk⊥
¼ δ2NðxÞ

dk0dx
υ3qn⊥ω

≈ δ2NðxÞ
dk0dx
qn⊥ω

: ð55Þ

As long as the function δ2NðxÞ is localized near the point
x ¼ 0 for N ≳ 5, the integral over x can easily be found:Z

∞

−∞
dxδ2NðxÞ ¼ N: ð56Þ

Substituting (55) and (56) into (48) and (54), we obtain
dPðs;m; k0Þ=dk0. The analogous formulas can be obtained
in the dipole case as well. However, in that case, the
overlapping of harmonics has to be taken into account.
Namely, the integration over x results in

X∞
n¼1

δ2N ½qk0ð1−n3υ3Þ−nω�dk3dk⊥

→N
X∞
n¼1

θk0



nω

1þnω=P0

;
nω

1−υ3þnω=P0

�
dk0
qn⊥ω

; ð57Þ

where

θx½a; b� ≔
�
1; x ∈ ½a; b�;
0; x ∉ ½a; b�; ð58Þ

and n⊥ is to be expressed through kn0 by using (47).
The twisted photons with large projections m of the total

angular momentum can be produced by undulators only in
the wiggler regime. When m≳ 5, the Bessel functions
entering into (48) and (54) are expressed through the Airy

functions [9] with (see the notation in Eq. (122) of
Ref. [33])

x ≈ 1 −
4n2⊥γ2K2

ð1þ K2 þ n2⊥γ2Þ2q2
: ð59Þ

For the probability of radiation of twisted photons with the
total angular momentum projection m, m≳ 5, not to be
exponentially suppressed, quantity (59) must be small. This
is achieved when K ≳ 3 and

nk ≔ n⊥γ=K ≈ 1: ð60Þ

Then, it follows from (54), (55), and (56) that

dPðs;m; k0Þ
dk0

≈ πNα
K2

γ2
qþ q−1

2ω

�
2

m

�
4=3


Ai0ðyÞ

þ snk

�
1 − q

1þ n2k
2n2k

��
m
2

�
1=3

AiðyÞ
�
2

;

ð61Þ

where

y ≈
�
m
2

�
2=3


1 −

4n2k
ð1þ n2kÞ2q2

�
; ð62Þ

and nk should be expressed in terms of km0 from (47) and
(60). The Airy function and its derivative drop exponen-
tially to zero for y≳ 1=2. Therefore, the radiation of twisted
photons is exponentially suppressed when

FIG. 2. The radiation of twisted photons by 51.1 MeVelectrons evolving in the circularly polarized electromagnetic wave produced by
the FEL with the photon energy 1 keV, intensity 3.38 × 1015 W=cm2, and amplitude envelope (163) with N ¼ 20. These data
correspond to Ω ≈ 1.96 × 10−3 and f0 ≈ 8.54 × 10−8. The applicability conditions (84) are satisfied for σ⊥ ≲ 103m−1

e . The photon
energy is measured in the electron rest energies. Left panel: The head-on collision. The first harmonic (166) for radiation without recoil
(classical), scalar, and Dirac particles is depicted. For the parameters chosen, the quantum recoil halves the energy of radiated photons in
comparison with formula without recoil. The probability of radiation of twisted photons by Dirac particles is bigger than the same
quantity for scalar particles, which, in turn, is bigger than the probability of radiation of twisted photons without quantum recoil [see the
discussion after Eq. (54)]. Right panel: The laser wave is overtaking the electron. The first harmonic (166) is shown. The quantum recoil
is negligible in this case. Insets: The distribution over m at the main maximum of the harmonic.
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m≳mc; mc ≔ minðð1 − q−2Þ−3=2; K3Þ=
ffiffiffi
2

p
: ð63Þ

The second quantity in the min function appearing in
the definition of mc comes from the estimate of subsequent
terms of the expansion of y in K−1 (see Eq. (120)
of Ref. [33]).
The distribution (61) reaches the maximum at

nk ≈ q − sc0ð2=mÞ1=3; ð64Þ

where c0 ≈ 0.58 is found from the equation

ðAi0ðc20Þ − c0Aiðc20ÞÞ0 ¼ 0: ð65Þ

If m < mc, then

dPðm; k0Þ
dk0

¼
X
s¼�1

dPðs;m; k0Þ
dk0

ð66Þ

possesses the maxima at points (64) with s ¼ �1 and the
local minimum at the point nk ≈ q. For m≳mc, the
maxima coalesce in the point nk ≈ q.
Such behavior of radiation maxima is expectable, if one

bears in mind that the wiggler radiation is just the
synchrotron one in the Lorentz frame in which the electron
is at rest on average. The intensity profiles of lower
synchrotron harmonics, m ≪ mc, were thoroughly inves-
tigated in Sec. 1.3.4 of Ref. [9], in which the effect of a
blossoming out rose was revealed. The maxima of intensity
of these harmonics do not lie in the orbit plane in the
ultrarelativistic limit. In the orbit plane, the intensity of these
harmonics possesses a local minimum. For large harmonics,
m≳mc, thisminimumdisappears. Themaxima andminima
of intensities of synchrotron harmonics in the laboratory
frame are found from the standard transformation law for
angles

sin θ ¼ sin θ0

1þ ½1 − ð1þ K2Þ=γ2�1=2 cos θ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p

γ
; ð67Þ

where θ0 is the polar angle counted in the “synchrotron”
frame and θ is the same angle in the laboratory frame. In the
synchrotron frame, the electron has the Lorentz factor

γs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
ð68Þ

and is ultrarelativistic in the wiggler case. The orbit plane,
θ0 ¼ π=2, is seen in the laboratory frame at the angle
θ ¼ arcsinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
=γÞ ≈ K=γ.We shall return to the effect

of the blossoming out rose in Sec. IV.
Now, we find a loose estimate for the number of twisted

photons radiated by the right-handed helical wiggler at the
harmonic n ¼ m. The function (61) is peaked at nk ≈ 1.
The width of this peak can be found from the equation

1 −
4n2k

ð1þ n2kÞ2q2
¼ b

�
2

m

�
2=3

; ð69Þ

where b ∼ 1. Solving this equation, we obtain

Δnk ≈ 2q½bð2=mÞ2=3 þ q−2 − 1�1=2: ð70Þ

Take into account that

dk0 ¼ −
υ3
n3

k20
ωm

K2

γ2
nkdnk: ð71Þ

Then, assuming ðq − 1Þm1=3 ≪ 1 and multiplying the
value of dP=dnk at the point nk ¼ 1 by Δnk, we arrive at

ΔPðs;mÞ ≈ 4παNð2=mÞ1=3½bð2=mÞ2=3 þ q−2 − 1�1=2

× Ai02
��

m
2

�
2=3

ð1 − q−2Þ
�
: ð72Þ

This quantity is independent of K. In the classical limit,
q ¼ 1, we have

ΔPðs;mÞ ≈ 1.1 × 10−2Nm−2=3; ð73Þ

for b ¼ 1.3 [in Eq. (135) of Ref. [33], the other quantity
was estimated]. Such a value of b is taken for concordance
of the estimate with the numerical calculations. This
estimate shows, in particular, that, in describing the leading
contribution to radiation of twisted photons produced in
wigglers, the one-photon approximation is justified when

Nm−2=3 ≲ 10: ð74Þ

If this condition is violated, the trajectory can be partitioned
into pieces such that condition (74) is satisfied for each part
of the trajectory. The probabilities of radiation from differ-
ent parts of the trajectory should be summed and a change
of the electron energy momentum due to the radiation
reaction on the each part of the trajectory is to be taken into
account. In the classical regime, q − 1 ≪ 1, the Landau-
Lifshitz equation can be employed to describe the effective
electron dynamics [15,19–21,34,35,89–97].

D. Applicability conditions.

Let us find the domain of applicability of the above
formulas for the radiation of twisted photons in undulators
with the quantum recoil taken into account. To shorten
formulas, we suppose that all the dimensional quantities are
measured in the units of the electron rest energy or in the
electron Compton wavelengths.
Formula (63) implies that the quantum recoil dimini-

shes the maximum attainable value of m for the twisted
photons generated in the forward undulator radiation.
Another restriction on the maximum m follows from the
requirement (17). If
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n⊥γσ⊥ ≪ 1; ð75Þ

then (17) holds. The condition (75) can be satisfied only in
the dipole regime. In the wiggler case, the main part of
radiation is produced with n⊥γ ≈ K ≳ 3 and Eq. (75) is not
fulfilled even for the wave packet with cross-size (B6).
If

n⊥γσ⊥ ≳ 1; ð76Þ

then (17) and (47) imply

k̄m0 =γ ¼ q − 1≲ 1=ð10n⊥γσ⊥Þ ⇒ q − 1 ≪ 1; ð77Þ

i.e., in radiating a photon, the quantum recoil experienced
by the electron should be small. In the wiggler case, for
nk ≈ 1, we obtain

m≲ K=ð10ωγσ⊥Þ ¼ R=ð10σ⊥Þ; ð78Þ

where K ¼ ωγR and R is the radius of the spiral turn along
which the electron is moving. Taking into account (B6), we
deduce the upper estimate

m≲ RK=10; ð79Þ

where recall that R is measured in the Compton wave-
lengths ƛC. The estimates (78), (79) are the necessary
conditions for the model of a point particle to be used. In
this case, the localized wave packet of a particle radiating
twisted photons in a wiggler can be characterized only by
the average coordinate and momentum. As we see, the
quantum recoil should be small for that to be the case.
It is useful to write restrictions (63) and (78) as a system

of inequalities specifying the admissible region on the
plane ðkm0 =ε; mÞ:

km0
γ
≲ 1

4

�
2

m

�
2=3

; m≲ K3ffiffiffi
2

p ;
km0
γ
≲ 1

10Kσ⊥
: ð80Þ

Note that km0 ≈ k̄m0 . One can distinguish two cases:

iÞ 5σ⊥ > K; iiÞ 5σ⊥ < K: ð81Þ

In case i, the region (80) is reduced to a rectangle,

km0
γ
≲ 1

10Kσ⊥
; m≲ K3ffiffiffi

2
p : ð82Þ

The twisted photons with the maximum energy and
projection of the total angular momentum are produced
when inequalities (82) turn into the equalities. In case ii, the
region (80) has nontrivial angular points at

km0 ¼ γ

10Kσ⊥
; m ¼ ð5Kσ⊥Þ3=2ffiffiffi

2
p ;

km0 ¼ γ

2K2
; m ¼ K3ffiffiffi

2
p ; ð83Þ

which coalesce for 5σ⊥ ¼ K. In terms of m, the three
inequalities in (80) are written as

m≲ 1

2

�
K2

γω

�
3=5

; m≲ K3ffiffiffi
2

p ; m≲ K
10σ⊥γω

; ð84Þ

respectively.

IV. RADIATION BY CHARGED PARTICLES IN
THE LASER WAVE

Let us apply the above general formulas for a description
of radiation of twisted photons by an ultrarelativistic
charged particle in the laser wave of a circular polarization.
We suppose that the one-photon radiation gives the leading
contribution to radiation of twisted photons. Then, we can
employ the formulas from the preceding sections to
describe this radiation. The strength tensor of the electro-
magnetic field reads as (we use the notation borrowed from
Refs. [94,95,98])

eFμν ¼ fðξÞh½μ− ½hν�1 cosφðξÞ þ hν�2 sinφðξÞ�; ð85Þ

where hμ− ¼ ð1; 0; 0; ζÞ, hμ1;2 ¼ δμ1;2, the function fðξÞ
characterizes the amplitude of the electromagnetic
field, and φðξÞ is the phase, where ξ ¼ hμ−xμ ¼ x0 − ζx3.
We consider the situation in which the electromagnetic
wave propagates along the axis of the detector of twisted
photons. The quantity ζ ¼ �1, where the upper sign
corresponds to the case in which the wave moves toward
the detector and the lower sign is for the case in which the
wave moves from the detector.
It is useful to convert all the quantities to the

dimensionless ones using the Compton wavelength as a
unit length. Then, for example, the laser wave with
intensity 1022 W=cm2 and photon energy 1.53 eV [99]
corresponds to

jfj ≈ 1.47 × 10−4; jΩj ≈ 2.99 × 10−6: ð86Þ

The Lorentz equations are easily solved for arbitrary
function fðξÞ (see, e.g., Eq. (51) of Ref. [94] with λ ¼ 0
and Ref. [34]),
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x1ðξÞ ¼ x1ð0Þ þ r1ð0Þξ − υ−1−

Z
ξ

0

dx
Z

x

0

dyfðyÞ cosφðyÞ;

x2ðξÞ ¼ x2ð0Þ þ r2ð0Þξ − υ−1−

Z
ξ

0

dx
Z

x

0

dyfðyÞ sinφðyÞ;

x0ðξÞ þ ζx3ðξÞ ¼
Z

ξ

0

dx



υ−2− þ

�
r1ð0Þ − υ−1−

Z
x

0

dyfðyÞ cosφðyÞ
�

2

þ
�
r2ð0Þ − υ−1−

Z
x

0

dyfðyÞ sinφðyÞ
�

2
�
;

ξ ¼ υ−τ; ð87Þ

where rμ ≔ υμ=υ−, υμ is the 4-velocity, υμυ
μ ¼ 1,

υ− ≔ υ0 − ζυ3 ¼ const, τ is the proper time, and it is
assumed that x0 ¼ x3 ¼ 0 at the initial instant of time. It
is clear this assumption does not destroy the generality of
our considerations. Upon shifting x0 and x3 by constants,
the amplitude of radiation of a twisted photon changes by
an overall phase, which does not affect the probability to
record the twisted photon by detector. It is convenient to
pass in formulas (32) and (38) from the integration variable
t to the variable ξ. The corresponding derivatives take the
form

r1ðξÞ¼ r1ð0Þ−υ−1−

Z
ξ

0

dxfðxÞcosφðxÞ;

r2ðξÞ¼ r2ð0Þ−υ−1−

Z
ξ

0

dxfðxÞsinφðxÞ;

r0ðξÞþζr3ðξÞ¼ υ−2− þðr1ð0Þ−υ−1−

Z
ξ

0

dxfðxÞcosφðxÞÞ2

þ
�
r2ð0Þ−υ−1−

Z
ξ

0

dxfðxÞsinφðxÞ
�

2

:

ð88Þ
To obtain analytic formulas, we assume that the phase

φ ¼ Ωξþ φ0; ð89Þ

where Ω is the frequency of the electromagnetic wave and
φ0 is the initial phase. The amplitude is chosen as

fðξÞ ¼ const; ξ ∈ ½0; 2πN�; ð90Þ

where N is the number of periods of the electromagnetic
wave. The amplitude vanishes outside this interval; i.e., it is
assumed that the laser wave pulse possesses sharp rising
and descending edges. In that case, employing the notation
from Eqs. (32) and (38), we have

r� ¼ r̄� � iKυ−1− e�iφ;

r0 ¼ 1

2υ2−
½υ2− þ 1þ K2 þ ῡ2⊥ − 2Kῡ⊥ sinðφ − ρÞ�;

r3 ¼ ζ

2υ2−
½1þ K2 þ ῡ2⊥ − υ2− − 2Kῡ⊥ sinðφ − ρÞ�; ð91Þ

where K ≔ f=Ω,

r̄� ≔ r�ð0Þ ∓ iKυ−1− e�iφ0 ; ῡ⊥ ≔ υ−jr̄�j; ð92Þ

and ρ ¼ arg r̄þ. The solution to the Lorentz equations is
given by

x� ¼ x̄� þ r̄�ξþ
K
υ−Ω

e�iφ;

x0 ¼ 1

2υ2−



ðυ2− þ 1þ K2 þ ῡ2⊥Þξþ 2ῡ⊥

K
Ω
ðcosðφ − ρÞ

− cosðφ0 − ρÞÞ
�
;

x3 ¼ ζ

2υ2−



ð1þ K2 þ ῡ2⊥ − υ2−Þξþ 2ῡ⊥

K
Ω
ðcosðφ − ρÞ

− cosðφ0 − ρÞÞ
�
; ð93Þ

where

x̄� ≔ x�ð0Þ −
K
υ−Ω

e�iφ0 : ð94Þ

Notice that if the charged particle moves initially along
the axis of the twisted photon detector, viz., r�ð0Þ ¼ 0,
then r̄� ≠ 0.

A. Radiation without recoil

Let us consider the radiation of twisted photons in the
case in which the quantum recoil is negligible. To find the
probability of radiation [(36), [33] ], it is necessary to
evaluate the amplitudes

I3 ¼
Z

TN

0

dξr3ðξÞe−ik0ðx0−n3x3Þjmðk⊥xþ; k⊥x−Þ;

I� ¼ in⊥
s ∓ n3

Z
TN

0

dξr�ðξÞe−ik0ðx0−n3x3Þjm∓1ðk⊥xþ; k⊥x−Þ:

ð95Þ

Then, the probability to record the twisted photon is
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dPðs;m;k⊥;k3Þ¼ e2
����I3þ1

2
Iþþ1

2
I−

����2n3⊥dk3dk⊥16π2
: ð96Þ

In formula (95), the contributions from the parts of the
particle trajectory with ξ ∉ ½0; 2πN� are neglected. These
contributions correspond to the edge radiation. They can be
ignored when the energies of recorded photons are suffi-
ciently large. A thorough description of the edge radiation
in terms of twisted photons is given in Ref. [100].
The evaluation of integrals (95) is performed analogously

to the case of undulator radiation studied inRef. [33]. First of
all, we shift the integration variable ξ → ξþ TN=2 and
make use of the addition theorem (A6) in Ref. [33] (see also
Ref. [101]) for the Bessel functions,

jmðk⊥xþ;k⊥x−Þ¼
X∞
l¼−∞

jm−lðk⊥zþ;k⊥z−Þjlðk⊥yþ;k⊥y−Þ;

ð97Þ

where

z� ≔ x̄�þ r̄�TN=2; y�≔ r̄�ξþ
K
υ−Ω

e�iφ: ð98Þ

Now, the phase φ0 entering into φ includes πN. We denote
this phase by φ0N. Notice that, on shifting the variable ξ, the
phase φ0 appearing explicitly in formulas (92), (93), and
(94) does not change. Substitute the integral representation

jlðk⊥yþ; k⊥y−Þ ¼ i−l
Z

π

−π

dψ
2π

eilψeik⊥ðy2 sinψþy1 cosψÞ ð99Þ

into (97) and then (97) into (95). As a result, the expression
standing in the exponent in the integrand of I3 becomes

− i
k0
2υ2−

ξ½ð1 − ζn3Þð1þ K2 þ ῡ2⊥Þ þ ð1þ ζn3Þυ2−
− 2n⊥ῡ⊥υ− cosðψ − ρÞ� þ iη sinðφþ δÞ þ ilψ ; ð100Þ

up to a constant term that does not influence the probability
of radiation. Here,

η cos δ ≔
Kk0
υ−Ω

ðn⊥ sinψ − ð1 − ζn3Þr̄2Þ;

η sin δ ≔
Kk0
υ−Ω

ðn⊥ cosψ − ð1 − ζn3Þr̄1Þ: ð101Þ

Using the Fourier series expansion

eiη sinðφþδÞ ¼
X∞
n¼−∞

einðφþδÞJnðηÞ; ð102Þ

the integral over ξ is reduced to the deltalike sequence

Z
TN=2

−TN=2

dξ
2π

e−ixnξ¼δNðxÞ; δNðxnÞ≔
sinðTNxn=2Þ

πxn
: ð103Þ

The argument of the regularized delta function reads

xn ¼
k0
2υ2−

½ð1 − ζn3Þð1þ K2 þ ῡ2⊥Þ þ ð1þ ζn3Þυ2−
− 2n⊥ῡ⊥υ− cosðψ − ρÞ� −Ωn: ð104Þ

For N large, the main contribution to the integral over ψ
comes from the pointswhere the argument of the regularized
delta function vanishes.
Below, we shall assume that Ω > 0 and, at the end, shall

discuss how the results change for Ω < 0. The condition
xn ¼ 0 can be conveniently written as

xn ¼
Ω
2
ðbn þ anÞ½cos ξn − cosðψ − ρÞ� ¼ 0; ð105Þ

where the notation has been introduced [33]

an ≔ n − k0ω−1þ ; bn ≔ k0ω−1
− − n;

ξn ≔ arccos
bn − an
bn þ an

; ð106Þ

and

ω�≔
2Ωυ2−

ð1−ζn3Þð1þK2þ ῡ2⊥Þþð1þζn3Þυ2−∓ 2n⊥ῡ⊥υ−
:

ð107Þ

If N is so large that δNðxnÞ removes the integration over ψ,
then the energy spectrum of radiated twisted photons
consists of the intervals

k0 ∈ n½ω−;ωþ�; n ¼ 1;∞: ð108Þ

The radiation is suppressed outside these intervals. These
intervals become overlapping starting from the harmonic
number

n0 ¼
ω−

ωþ − ω−
: ð109Þ

When k0 belongs to the intervals, an ≥ 0, bn ≥ 0,
and ξn ∈ ½0; π�.
As a result, neglecting the terms at nonpositive n, we have

I3≈
X∞
n¼1

X∞
l¼−∞

jm−lðk⊥zþ;k⊥z−Þ
Z

π

−π
dψδNðxnÞeinðδþφ0NÞþilψ i−l

×
ζ

2υ2−
½ð1þK2þ ῡ2⊥−υ2−ÞJnðηÞ

þ iKῡ⊥ðe−iðδþρÞJn−1ðηÞ−eiðδþρÞJnþ1ðηÞÞ�: ð110Þ
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As for the rest integrals, we obtain similarly

I� ≈
X∞
n¼1

X∞
l¼−∞

jm−lðk⊥zþ; k⊥z−Þ
Z

π

−π
dψδNðxnÞeinðδþφ0NÞþiðl∓1Þψ i−l

∓ n⊥
s ∓ n3

½r̄�Jn � iKυ−1− Jn∓1e∓iδ�; ð111Þ

where the arguments of the Bessel functions are the same as in (110). To obtain (111), one needs to shift the
summation index l → l ∓ 1 in the series (97). Taking into account estimates (C7), the total contribution to the radiation
amplitude takes the form

I3 þ
1

2
ðIþ þ I−Þ ≈

X∞
n¼1

X∞
l¼−∞

jm−lðk⊥zþ; k⊥z−Þ
Z

π

−π

dψ
2

δNðxnÞeinðδþφ0NÞþilψ i−lgnðψÞ; ð112Þ

where

gnðψÞ ≔ ζ
1þ K2 þ ῡ2⊥ − υ2−

υ2−
Jn þ ζ

iKῡ⊥
υ2−

ðe−iðδþρÞJn−1 − eiðδþρÞJnþ1Þ −
2

n⊥
e−isψ

�
r̄sJn þ s

iK
υ−

Jn−se−isδ
�
: ð113Þ

The last expression can be rewritten in terms of the Bessel function and its derivative with the same index:

gnðψÞ ¼ 2



ζ
1þ K2 þ ῡ2⊥ − υ2−

2υ2−
−

isKn
n⊥υ−η

e−isðδþψÞ þ ζ
Kῡ⊥n
υ2−η

sinðδþ ρÞ − r̄s
n⊥

e−isψ
�
Jn

−
2iK
n⊥υ−



e−isðδþψÞ − ζ

n⊥ῡ⊥
υ−

cosðδþ ρÞ
�
J0n: ð114Þ

Further, we suppose that N is so large that δNðxnÞ removes
the integration over ψ. The solution of (105) is, evidently,

ψ ¼ ρ� ξn: ð115Þ

As in the case of undulator radiation, the three cases occur
[33]: (a) the regular case ξn ≠ f0; πg, (b) the weakly
degenerate case ξn ¼ f0; πg, and (c) the strongly degen-
erate case an ¼ bn ¼ 0.
Let us begin with the regular case. For N large, in the

leading order, we deduce

δNðxnÞ≈
θðanÞθðbnÞ
Ω
ffiffiffiffiffiffiffiffiffiffi
anbn

p ½δðψ−ρ−ξnÞþδðψ −ρþξnÞ�: ð116Þ

The delta functions remove integration in (112). The
remaining sum over l can be performed by using the relation

X∞
k¼−∞

tkjkðp; qÞ ¼ eðpt−q=tÞ=2; ð117Þ

which follows from Eq. (A7) in Ref. [33]. Then, up to an
irrelevant phase,

I3þ
1

2
ðIþþ I−Þ≈

X∞
n¼1

θðanÞθðbnÞ
2Ω

ffiffiffiffiffiffiffiffiffiffi
anbn

p einφ0Nfeinδþimψþik⊥jzþjcosðψ−argzþÞgnðψÞjψ¼ρþξn
þeinδþimψþik⊥jzþjcosðψ−argzþÞgnðψÞjψ¼ρ−ξng:

ð118Þ

In the photon energy range in which the harmonics do not overlap, we obtain

dPðs;m; k⊥; k3Þ ≈ e2
X∞
n¼1

θðanÞθðbnÞ
4Ω2anbn

jeinδþimψþik⊥jzþj cosðψ−arg zþÞgnðψÞjψ¼ρþξn

þ einδþimψþik⊥jzþj cosðψ−arg zþÞgnðψÞjψ¼ρ−ξn j2n3⊥
dk3dk⊥
16π2

: ð119Þ

The dependence on m for the energies k0 belonging to the spectral band with number n is periodic with
the period [33]
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Tm ¼
�
π=ξn; ξn ∈ ð0; π=2Þ;
π=ðπ − ξnÞ; ξn ∈ ½π=2; πÞ: ð120Þ

Of course, this periodicity holds only for those
quantum numbers m where δNðxnÞ can be replaced by
delta function (116).
Now, we turn to the weakly degenerate case. Let an ¼ 0,

bn > 0, i.e., k0 ¼ nωþ. Then,

bn ¼ nðωþω−1
− − 1Þ; ξn ¼ 0; ψ ¼ ρ: ð121Þ

We assume that N is so large that all the integrand functions
in (112), apart form δNðxnÞ, can be taken at the point ψ ¼ ρ
and be removed from the integrand. In that case, the
integral arises:

Z
π

−π
dψδNðxnÞ ≈

Z
∞

−∞
dψ

sin½πNnðωþω−1
− − 1Þψ2=4�

πΩnðωþω−1
− − 1Þψ2=4

¼ Ω−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8N

nðωþω−1
− − 1Þ

s
: ð122Þ

The probability to record a twisted photon becomes

dPðs;m; k⊥; k3Þ ≈ e2
NjgnðρÞj2n3⊥

Ω2nðωþω−1
− − 1Þ

dk3dk⊥
8π2

: ð123Þ

For bn ¼ 0, an > 0, i.e., for k0 ¼ nω−, the similar calcu-
lations lead to

dPðs;m; k⊥; k3Þ ≈ e2
Njgnðπ − ρÞj2n3⊥
Ω2nð1 − ω−ω

−1þ Þ
dk3dk⊥
8π2

: ð124Þ

In the domain where the applicability conditions of the
approximations made are fulfilled, the explicit dependence
of the twisted photon radiation probability onm disappears.
In the strongly degenerate case, the spectral bands (108)

turn into narrow lines k0 ¼ nωþ ¼ nω−. This happens
when ῡ⊥ ≈ 0. Then,

η ¼ Kk⊥
υ−Ω

; δ ¼ π=2 − ψ : ð125Þ

The functions,

xn ¼
k0
2υ2−

½ð1 − ζn3Þð1þ K2Þ þ ð1þ ζn3Þυ2−� −Ωn;

gn ¼ ζ
1þ K2 − υ2−

υ2−
Jn −

2K
n⊥υ−

Jn−s

¼


ζ
1þ K2 − υ2−

υ2−
−

2Ωn
n⊥k⊥

�
Jn −

2sK
n⊥υ−

J0n; ð126Þ

do not depend on ψ , and the integral over ψ in (112) is
readily performed. As a result,

I3þ
1

2
ðIþþ I−Þ≈πδNðxnÞjm−nðk⊥zþ;k⊥z−Þeinφ0ð−1ÞnNgn:

ð127Þ

The probability to record a twisted photon is given by

dPðs;m; k⊥; k3Þ ¼ e2δ2NðxnÞJ2m−nðk⊥jzþjÞg2nn3⊥
dk3dk⊥

16
:

ð128Þ

If k⊥jzþj ≪ 1, then the selection rule m ¼ n is fulfilled
[33,42,46,50–56].
Let us show how the above results are modified for

Ω < 0. The sign change of Ω corresponds to a change of
polarization of the incident electromagnetic wave (85).
This, in turn, leads to a change of handedness of the helix
along which the charged particle is moving. Upon changing
the sign of Ω, formulas (106)–(109) remain valid with the
replacement Ω → jΩj. Since the substitution Ω → −Ω
results in

K → −K; n → −n; ð129Þ

we have

gnðψÞ → ð−1ÞngnðψÞ: ð130Þ

Therefore, on substitutingΩ → −jΩj in (119), (123), (124),
and (128), one must set

einδ → e−inδ ð131Þ

in formula (119); formulas (123) and (124) remain intact;
and in formula (128), one needs to replace

J2m−nðk⊥jzþjÞ → J2mþnðk⊥jzþjÞ: ð132Þ

For k⊥jzþj ≪ 1, the selection rule in the strongly degen-
erate case looks like m ¼ −n.
Consider in more detail the cases in which the electro-

magnetic wave propagates toward the detector of twisted
photons or from it. In these cases, the electron bunch moves
approximately along the direction of propagation of the
electromagnetic wave or in the opposite direction, respec-
tively. In the case in which the electromagnetic wave
propagates toward the detector, we have ζ ¼ 1 and

υ− ≈
1þυ2⊥
2γ

∼
ϰ2

2γ
; υ⊥∼ϰ; ῡ⊥≲ϰ; n⊥≲ϰ

γ
: ð133Þ

The bounds of the spectral bands (108) are expressed
through

ω� ≈Ω

�

1 ∓ n⊥ῡ⊥
2υ−

�
2

þ n2⊥
4υ2−

ð1þ K2Þ
�
−1

∼Ω: ð134Þ
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In the strongly degenerate case, the radiation spectrum
becomes

k0 ≈Ωn


1þ n2⊥

4υ2−
ð1þ K2Þ

�
−1
; n ¼ 1;∞: ð135Þ

For n ≥ 5, the Bessel functions entering into gn can be
expressed through the Airy functions (see Eq. (122) in
Ref. [33] and also Ref. [9]) with

x ¼ 1 −
16K2υ2−=n4⊥

ð1þ K2 þ 4υ2−=n2⊥Þ2
: ð136Þ

For the radiation probability not to be exponentially sup-
pressed, this quantity should be small x≲ 1=20. This
occurs for K ≳ 3 and

n⊥ ≈
2υ−
K

≈
1þ υ2⊥
γK

∼
ϰ

γ
: ð137Þ

In that case, the radiation probability drops exponentially to
zero at the harmonic numbers [33]

n ≳ K3ffiffiffi
2

p : ð138Þ

If the electromagnetic wave moves from the detector,
i.e., the head-on collision of the laser wave with the bunch
of charged particles is considered, then ζ ¼ −1, and

υ− ≈ 2γ; ῡ⊥ ≲ ϰ; n⊥ ≲ ϰ=γ; ð139Þ

and also

ω� ≈
Ωυ2−

1þ K2 þ ðῡ⊥ ∓ n⊥υ−=2Þ2
∼
4Ωγ2

ϰ2
: ð140Þ

The analysis in this case is completely analogous to the
analysis of the undulator radiation [33] at the observation
angle θ ≔ ῡ⊥=γ and the undulator frequency ω ≔ 2Ω
(cf. Eq. (85) of Ref. [33]). In the strongly degenerate case,
the radiation spectrum looks like

k0 ≈
Ωnυ2−

1þ K2 þ n2⊥υ2−=4
; n ¼ 1;∞: ð141Þ

For n ≥ 5, the radiation probability is not exponentially
suppressed at K ≳ 3 if n⊥ ≈ K=γ and n ≲ K3=

ffiffiffi
2

p
.

B. Radiation with recoil

Now, we take the quantum recoil into account. In the
case ζ ¼ 1, estimate (134) holds. Therefore, the quantum
recoil can be neglected for reasonable photon energies of
the laser wave [see Eq. (86)]. In that case, the probability to

record a twisted photon radiated by both scalar and Dirac
particles is described by formula (36) in Ref. [33]. Thus,
formulas obtained above remain intact with good accuracy.
In the case ζ ¼ −1, the quantum recoil can be significant.

Since the approximate equality (139) is valid, the quantity

q ¼ P0=P0
0 ¼ υ0=υ00 ¼ γ=ðγ − k0Þ

≈ υ−=ðυ− − 2k0Þ ¼ const; ð142Þ
up to the terms of order ϰ2=γ2. Hence, the probability to
detect a twisted photon radiated by a charged scalar particle
with the quantum recoil taken into account (32) is obtained
from the formulas above, where the recoil was ignored, by
multiplying the probability by q and substituting

k0 → k̄0 ≔ qk0 ð143Þ
in the definitions of an, bn (106) and the radiation spectrum
(108). As was discussed in the preceding sections, the term
standing in the exponent and proportional to k2⊥=ð2P0iÞ can
be safely neglected. As far as the strongly degenerate case
(128) is concerned, substitution (143) has to be done in
formula (126) for xn, and, of course, (128) must be
multiplied by q.
The treatment of the Dirac particle case is a bit more

complex. The probability to record a twisted photon equals

dPðs;m; k3; k⊥Þ ¼ dP1ðs;m; k⊥; k3Þ þ dPaðs;m; k⊥; k3Þ;
ð144Þ

where dP1ðs;m; k⊥; k3Þ is the contribution of the first term
in (38) and dPaðs;m; k⊥; k3Þ is the contribution of the
second and third terms in (38). As long as (142) holds,
the contribution of the first term in (38) is evaluated as in the
case of negligible quantum recoil: the probability to record a
twisted photon without recoil must be multiplied by

ð1þ qÞ2=4; ð145Þ
and substitution (143) must be performed in the definitions
of an and bn (106) and the radiation spectrum (108).
The contribution of the last two terms in (38) has to be

evaluated from scratch. It follows from the explicit expres-
sions for the mode functions [see Eq. (13) in Ref. [33]) that
for s ¼ −1 the third term in (38) can be omitted, while for
s ¼ 1, the second term can be thrown out. Let

Ia≔
k0
4υ00

Z
TN

0

dξe−ik̄0ðx0−n3x3Þ½rsa−s− isn⊥r0a−sðmþ sÞ�:

ð146Þ
The contribution of the last two terms in (38) is propor-
tional to the modulus squared of this integral. For the head-
on collision, we have

r0 ≈ 1=2: ð147Þ

SEMICLASSICAL PROBABILITY OF RADIATION OF … PHYS. REV. D 99, 116016 (2019)

116016-17



Then, performing the calculations completely analogous to
the case of negligible recoil, we find

Ia ≈
k0
4υ00

X∞
n¼1

X∞
l¼−∞

jm−lðk⊥zþ; k⊥z−Þ

×
Z

π

−π
dψδNðxnÞeinðδþφ0NÞþilψ i−lganðψÞ; ð148Þ

where

ganðψÞ ≔
�
1 − 2

r̄s
n⊥

e−isψ
�
JnðηÞ −

2isK
n⊥υ−

Jn−sðηÞe−isðδþψÞ;

ð149Þ

and xn has the form (105) with

an ≔ n − k̄0ω−1þ ; bn ≔ k̄0ω−1
− − n;

ξn ≔ arccos
bn − an
bn þ an

: ð150Þ

The approximate expressions for ω� are written in (140).
Let us consider separately the regular, weakly degener-

ate, and strongly degenerate cases. In the regular case,
under the same assumptions that were made in considering
the first term in (38), we deduce up to an irrelevant phase,

Ia ≈
k0
4υ00

X∞
n¼1

θðanÞθðbnÞ
Ω
ffiffiffiffiffiffiffiffiffiffi
anbn

p einφ0Nfeinδþimψþik⊥jzþj cosðψ−arg zþÞganðψÞjψ¼ρþξn
þ einδþimψþik⊥jzþj cosðψ−arg zþÞganðψÞjψ¼ρ−ξng: ð151Þ

The respective contribution to the probability, in the region of photon energies where the harmonics do not overlap,
becomes

dPaðs;m; k⊥; k3Þ ≈
e2k20
16υ020

X∞
n¼1

θðanÞθðbnÞ
Ω2anbn

jeinδþimψþik⊥jzþj cosðψ−arg zþÞganðψÞjψ¼ρþξn

þ einδþimψþik⊥jzþj cosðψ−arg zþÞganðψÞjψ¼ρ−ξn j2n3⊥
dk3dk⊥
16π2

: ð152Þ

This expression, just as the contribution of the first term
in (38), is a periodic function of m with the period
given in (120).
In the weakly degenerate case, for an ¼ 0, bn > 0, i.e.,

k̄0 ¼ nωþ, we obtain

dPaðs;m;k⊥;k3Þ≈e2
k20
υ020

NjganðρÞj2n3⊥
Ω2nðωþω−1

− −1Þ
dk3dk⊥
32π2

: ð153Þ

If bn ¼ 0, an > 0, i.e., k̄0 ¼ nω−, then

dPaðs;m;k⊥;k3Þ≈e2
k20
υ020

Njganðπ−ρÞj2n3⊥
Ω2nð1−ω−ω

−1þ Þ
dk3dk⊥
32π2

: ð154Þ

These expressions are independent of m.
In the strongly degenerate case an ¼ 0, bn ¼ 0, we

suppose that ῡ⊥ ¼ 0. Then, xn does not depend on ψ ,

gan ¼ JnðηÞ −
2K
n⊥υ−

Jn−sðηÞ

¼
�
1 −

2nΩ
n⊥k⊥

�
JnðηÞ −

2sK
n⊥υ−

J0nðηÞ ¼ gn; ð155Þ

and relations (125) take place. The contribution to the
probability to detect a twisted photon is

dPaðs;m; k⊥; k3Þ

¼ e2
k20
υ020

δ2NðxnÞJ2m−nðk⊥jzþjÞg2nn3⊥
dk3dk⊥

64
: ð156Þ

The total probability (144) becomes [cf. Eq. (54)]

dPðs;m; k⊥; k3Þ

¼ e2ð1þ q2Þδ2NðxnÞJ2m−nðk⊥jzþjÞg2nn3⊥
dk3dk⊥

32
: ð157Þ

For k⊥jzþj ≪ 1, the selection rule m ¼ n is fulfilled. As in
the case of forward undulator radiation, the applicability
conditions (74) and (84) must be satisfied. The number of
twisted photons recorded by the detector is approximately
given by (73).

C. Examples

As is seen from (128) and (157), the electrons moving in
the laser wave represent a pure source of twisted photons
only in the strongly degenerate case in which ῡ⊥ ≈ 0 and
k⊥jzþj ≈ 0. For this to be the case, the initial data must be
taken in the form [see (92), (94), and (98)]

rþð0Þ ¼ iKυ−1− eiφ0 ; xþð0Þ ¼ Kυ−1− Ω−1eiφ0 : ð158Þ
Since it is very hard to control the initial phase of a laser
wave, in the wiggler regime, K ≳ 3, it is practically
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impossible to launch the electron to the electromagnetic
wave so that the radiation produced by it would correspond
to the strongly degenerate case. For an arbitrarily chosen
phase, equalities (158) are strongly violated, harmonics

(108) spread violently, and the twisted photon detector
records a wide distribution over m (see Fig. 3). In this case,
the twisted photons escape the laser wave at large angles to
the detector axis rather than move along it (see Fig. 4).

(a) (b) (c)

FIG. 4. The coordinates x, y and “velocities” rx, ry for head-on collision of an electron with the circularly polarized electromagnetic
wave produced by the Ti:Sa laser. The parameters are the same as in Fig. 3. The electron moves initially along the detector axis. The
initial laser wave phase φ0 ¼ 0. The lengths are measured in the Compton wavelengths. a) The amplitude envelope has the form (90).
b) The amplitude envelope is given in (163). c) The amplitude envelope is f0 sin4ðΩξ=ð2NÞÞ.

FIG. 3. The radiation of twisted photons in head-on collision of 256 MeV electrons with the circularly polarized electromagnetic wave
produced by the Ti∶Sa laser. The parameters are the same as in Fig. 6, but the laser pulse amplitude envelopes are different. Left panel: The
amplitude envelope has the form (90). The initial laser wave phase φ0 ¼ 0. The maximum near k0 ¼ 3ωþ is shown. Right panel: The
amplitude envelope is f0 sin4ðΩξ=ð2NÞÞ. The third harmonic (166) is depicted. Insets: The distribution over m at the main maximum.
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It turns out that this situation can be improved if one takes
into account that, usually, the laser wave pulses generated in
experiments have no sharp rising and descending edges. The
amplitude envelope fðξÞ is a smooth function vanishing at
ξ ¼ f0; TNg and f0ðξÞ=fðξÞ ∼ 1=N. For N ≳ 10, this
entails that the radiation probability ceases to depend
virtually on the initial phase φ0. As a result, it is possible
to choose the initial velocity and entrance point of the
electron to the electromagnetic wave so that the correspond-
ing radiation will be a sufficiently pure source of twisted
photons.
Indeed, under the restrictions on the form of the envelope

mentioned above, the integrals entering into the general
solution (87), (88) of the Lorentz equations can be
approximately evaluated for N ≳ 10. Integrating once by
parts and keeping only the integrated term, we obtain
[cf. Eq. (91) and (93)]

x�≈x�ð0Þþ r�ð0Þξþ
K
υ−Ω

e�iφ;

x0≈
1

2υ2−



ðυ2−þ1þK2þυ2⊥ð0ÞÞξþ2υ⊥ð0Þ

K
Ω
cosðφ−ρÞ

�
;

x3≈
ζ

2υ2−



ð1þK2þυ2⊥ð0Þ−υ2−Þξþ2υ⊥ð0Þ

K
Ω
cosðφ−ρÞ

�
;

ð159Þ

where K ≔ fðξÞ=Ω and

r�≈ r�ð0Þ� iKυ−1− e�iφ;

r0≈
1

2υ2−
½υ2−þ1þK2þυ2⊥ð0Þ−2Kυ⊥ð0Þsinðφ−ρÞ�;

r3≈
ζ

2υ2−
½1þK2þυ2⊥ð0Þ−υ2− −2Kυ⊥ð0Þsinðφ−ρÞ�:

ð160Þ

The accuracy of this approximation increases as N
increases. As is seen, the form of the trajectory is almost
the same as in the case of a laser wave with constant
amplitude but without strong dependence on the initial
phase. Now, the dependence on the initial phase is con-
tained only in φ.
Substituting approximate trajectory (159) and (160) into

(95), it is easy to see that the pure source of twisted photons
can be obtained when

xþð0Þ ≈ 0; υ⊥ð0Þ ≈ 0; ð161Þ

i.e., in the strongly degenerate case. In this paper, we will
investigate only this case. The plots of typical trajectories in
this case are presented in Fig. 4. The calculations are
performed along the same lines as those made above,
except that the shift ξ → ξþ TN=2 is unnecessary. In

particular, formulas (125) and (126) hold, and the radiation
amplitude is proportional to

I3 þ
1

2
ðIþ þ I−Þ ¼

1

2

X∞
n¼−∞

jm−nðk⊥xþð0Þ; k⊥x−ð0ÞÞeinφ0

×
Z

TN

0

dξgnðξÞe−iξxnðξÞ: ð162Þ

On stretching the variable ξ → TNξ, it is clear that the
integral over ξ can be approximately evaluated by using the
saddle point approximation. For the envelope with one
maximum as, for example,

fðξÞ ¼ f0 sin2ðΩξ=ð2NÞÞ; ð163Þ

the function ξxnðξÞ has two extrema, ξ�ðk0Þ, on the interval
ð0; TNÞ, in a general position. At these extrema,

kn0 ¼
2Ωnυ2−

ð1 − ζn3Þð1þ K2 þ 2ξKK0Þ þ ð1þ ζn3Þυ2−
> 0:

ð164Þ

Therefore, we have

I3þ
1

2
ðIþþI−Þ≈

ffiffiffi
π

2

r X∞
n¼−∞

jm−nðk⊥xþð0Þ;k⊥x−ð0ÞÞeinφ0

×



gnðξÞe−iξxnðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iðξxnðξÞÞ00
p ����

ξ¼ξþ

þgnðξÞe−iξxnðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðξxnðξÞÞ00

p ����
ξ¼ξ−

�
;

ð165Þ

where the principal branch of the square root is taken. The
contribution of the boundaries is suppressed since, in the
leading order in 1=N, the same contribution but with
opposite sign comes from the edge radiation (see, for
details, e.g., Refs. [98,100]). As a result, the contributions
of the internal stationary points are only relevant. One of
the extremum points, ξþ, is close to the point where
f0ðξÞ ¼ 0; i.e., KðξÞ is close to its maximum value at this
point. Taking into account the form of gnðξÞ, we see that
this stationary point gives the leading contribution to (165).
The main maximum is located approximately at

kn0≈
2Ωnυ2−

ð1−ζn3Þð1þK2
maxÞþð1þζn3Þυ2−

; Ωn>0: ð166Þ

In fact, the maximum is slightly shifted to the right
since the stationary point ξþ is displaced a little
from the extremum of KðξÞ. If k⊥jxþð0Þj ≪ 1, then
jm−nðk⊥xþð0Þ; k⊥x−ð0ÞÞ ¼ δmn, and
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dPðs;m; k⊥; k3Þ ¼ e2
���� gmðξÞe−iξxmðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iðξxmðξÞÞ00
p ����

ξ¼ξþ

þ gmðξÞe−iξxmðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðξxmðξÞÞ00

p ����
ξ¼ξ−

����2n3⊥ dk3dk⊥
32π

:

ð167Þ
At the extremum points, ξ ∼ N, x0nðξÞ ∼ 1=N, and x00nðξÞ∼
1=N2. Therefore, the radiation probability is proportional
to N.
The dependence of the probability density on k0 differs

from the profile δ2NðxmÞ and is depicted in Figs. 5, 6, and
7. As is seen, the radiation probability dPðmÞ is nearly
zero for k0 < km0 ; then, it rapidly grows in the vicinity of
k0 ¼ km0 , and for k0 > km0 , it declines to zero and
oscillates. When n⊥γ ≲ Kmax=2, this decrease is quite
slow. So, for these values of n⊥, the radiation probability
dPðm; k0Þ taken in the neighborhood of the point k0 ¼ km0
can contain a considerable contribution of photons with
the projection of the total angular momentum m − 1. For
very small n⊥, the contribution of photons with all the
lower projections of the angular momentum are relevant

(see Figs. 5 and 6). When n⊥γ ≈ Kmax, the peaks of
dPðm; k0Þ with different m are well separated. In that
case, the radiation at k0 ≈ km0 consists of twisted photons
with the projection of the angular momentum m; i.e., the
selection rule m ¼ χn is fulfilled, where n is the number
of harmonic (166) and χ ¼ �1 is the handedness of the
helix along which the electron is moving.
As follows from (73), most of twisted photons are

radiated at lower harmonics (166). In the wiggler case,
K ≫ 1, these harmonics are fairly well described as the
Lorentz-boosted lower harmonics of synchrotron radiation
[see the discussion after (66)]. They would perfectly
coincide if the charged particle moved along an ideal
helix. Those lower harmonics were studied in Ref. [9], in
which the effect of blossoming out rose was established; in
the ultrarelativistic limit, these harmonics do not drive to
the orbit plane, and the maximum intensity of radiation of
every harmonic is achieved at some finite angle to the orbit
plane. These angles for β ¼ 1 are given in Sec. 1.3.4 of
Ref. [9]. The maxima of the first harmonic are located at the
angles θ0 ¼ f0; πg.
In the laboratory frame, the imprint of this effect on the

properties of radiation is as follows. One observes the

FIG. 5. The radiation of twisted photons in head-on collision of 256 MeVelectrons with the circularly polarized electromagnetic wave
produced by the CO2 laser with the wavelength 10 μm, intensity 1018 W=cm2, and amplitude envelope (163) with N ¼ 20. These data
correspond to Ω ≈ 2.8 × 10−7 and f0 ≈ 1.47 × 10−6. The first three harmonics (166) are depicted. The applicability conditions (84) are
satisfied for σ⊥ ≲ 103m−1

e . The photon energy is measured in the electron rest energies. Insets: The distribution over m at the main
maximum of harmonics.
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maxima of radiation of twisted photons at these harmonics
at the angles taken from Ref. [9] and substituted into (67).
The orbit plane is seen in the laboratory frame as a conewith
opening 2K=γ. Since, in the synchrotron frame, the front

lobes are mostly right-handed polarized (if, in the laboratory
frame, the particlemoves along a right-handed helix) and the
back lobes are mostly left-handed polarized, and this
property is Lorentz invariant, in the laboratory frame, the

FIG. 6. The radiation of twisted photons in head-on collision of 256 MeVelectrons with the circularly polarized electromagnetic wave
produced by the Ti:Sa laser with parameters (86) and amplitude envelope (163) with N ¼ 20. The first three harmonics (166) are
depicted. The applicability conditions (84) are satisfied for σ⊥ ≲ 103m−1

e . The photon energy is measured in the electron rest energies.
Insets: The distribution over m at the main maximum of harmonics.

FIG. 7. The imprint of the blossomingout rose effect [9] on the radiation of twisted photons in head-on collision of electronswith circularly
polarized electromagnetic wave produced by the CO2 (left panel) and Ti:Sa (right panel) lasers. The parameters are the same as in Figs. 5 and
6.The first harmonic (166)with s ¼ −1 dominates. This is just aLorentz-boosted back lobeof the first harmonic of synchrotron radiation (see
Sec. 1.3.4 ofRef. [9]). It ismostly left-handedpolarized, and this property is preservedby theLorentz transformations.This harmonicdoesnot
die out even for n⊥ ≈ 1. Upper left insets: The distributions over m at the main maxima of the first two harmonics. Upper right insets: The
distribution over m at the main maximum of the third harmonic. Lower insets: The second and third harmonics are separately depicted.
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twisted photons with s ¼ 1 dominate for n⊥ < K=γ, while
for n⊥ > K=γ, the twisted photons with s ¼ −1 prevail. The
first harmonic with s ¼ −1 does not die out for large n⊥ and
even for n⊥ ≈ 1. The plots of lower harmonics are presented
in Fig. 7. Strictly speaking, formula (38) is not applicable for
so large n⊥. However, in the case of small quantum recoil,
we can use exact formula (36) in Ref. [33]. Numerical
calculation shows that Eq. (38) of the present paper and
Eq. (36) in Ref. [33] give the same results in this case.

V. CONCLUSION

Let us summarize the results. Using the BK semiclassical
approach [1–4], we derived the general formula for the
one-photon radiation probability of a twisted photon by
scalar (32) and Dirac (38) ultrarelativistic particles moving
in the electromagnetic field of a general configuration. This
formula takes into account the quantum recoil undergone
by a charged particle in radiating the twisted photon and, in
the case of negligible recoil, turns into the formula given in
Ref. [33]. It also gives the average number of photons in the
out state and the probability of inclusive process (1) in the
first Born approximation. Then, we applied this formula to
radiation of charged particles in helical undulators and in
circularly polarized laser waves with a plane wave front.
The explicit formulas for the probability to record the
twisted photon by a detector were obtained in these cases.
The inclusion of quantum recoil forbids radiation of twisted
photons with energies larger than the initial particle energy.
We established that, as a rule, the quantum recoil increases
the total yield of radiation in comparison with classical
formulas (see Fig. 2) and, at the same time, diminishes the
energy of radiated photons. The spin degrees of freedom of
a radiating particle increase the probability of radiation of
twisted photons.
The conditions when the developed semiclassical

approach is justified were found and analyzed. The most
stringent among these conditions is (17). It guarantees that,
in describing the radiation of twisted photons, it is
sufficient to characterize the particle wave packet by its
average coordinate and momentum. In particular, it turns
out that the radiation of twisted photons with large
projection m of the total angular momentum produced
by electrons in helical wigglers and strong laser waves can
be described semiclassically only in the case of a small
quantum recoil. In the dipole regime, the quantum recoil
can be substantial and still be described semiclassically (see
Fig. 2). We found estimate (73) for the number of twisted

photons with large projections of the total angular momen-
tum produced in the forward radiation. We also described
the effect of the blossoming out rose [9] in the radiation of
twisted photons by electrons evolving in strong laser waves
with circular polarization and wigglers (see Fig. 7).
For an example, we considered the radiation of twisted

photons with large angular momentum in the helical
wiggler (see Fig. 1) and in the circularly polarized strong
laser waves produced by the CO2 and Ti:Sa lasers (Figs. 3,
5, 6, and 7). The parameters are given in these figures. In
particular, we showed that mega-electron-volt twisted
photons with m ∼ 5 can be generated in helical wigglers.
As for lasers, we found that the design of a sufficiently pure
source of twisted photons based on the nonlinear Compton
process is only possible for long laser pulses, N ≳ 10, with
a smooth amplitude envelope. For short pulses, the escape
direction of a twisted photon depends severely on the initial
phase of a laser wave that is virtually uncontrollable.
Therefore, the detector (the atom, for example) will feel
the radiation consisting of twisted photons with a wide
spread of the total angular momentum projections m (see
Fig. 3). For the systems concerned, we also described the
effect of a finite width of a particle bunch on the incoherent
radiation of twisted photons [77].
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APPENDIX A: TWISTED PHOTONS IN TERMS
OF PLANE WAVES

For the convenience of the reader, we shall provide the
representation of the states of twisted photons in terms of
the plane wave ones (see the detailed exposition, e.g., in
Ref. [25]). The states describing the photons with plane
wave front,

js; k1; k2; k3i; ðA1Þ

and the states of twisted photons,

js;m; k⊥; k3i; ðA2Þ

constitute the complete sets in the Hilbert space of one-
particle states:

X
s¼�1

Z
Vdk
ð2πÞ3 2k0js; k1; k2; k3ihs; k1; k2; k3j ¼

X
s¼�1

X∞
m¼−∞

Z
∞

−∞

L3dk3
2π

Z
∞

0

Rdk⊥
π

2k0js;m; k⊥; k3ihs;m; k⊥; k3j ¼ 1: ðA3Þ

The states are normalized as
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hs; k1; k2; k3js; k1; k2; k3i ¼ hs;m; k⊥; k3js;m; k⊥; k3i
¼ ð2k0Þ−1; ðA4Þ

where k0 ¼ jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k33

q
. One can decompose the state

(A2) in terms of the states (A1). Carrying out rather simple
calculations, we come to

js;m; k⊥; k3i ¼
ffiffiffiffiffiffiffiffiffiffiffi
2k0V

p
2
ffiffiffiffiffiffiffiffiffi
RL3

p
�
k⊥
k0

�
1=2

×
Z

π

−π

dφ
2π

i−meimφjs; k⊥ cosφ; k⊥ sinφ; k3i:

ðA5Þ

Obviously, the states describing twisted photons depend on
the choice of the detector axis (the axis 3) and transform
nontrivially under translations perpendicular to this axis.
Such a dependence is well known and was measured
experimentally (see, e.g., Refs. [39,43,102–106]).

APPENDIX B: ESTIMATES OF THE WAVE
PACKET WAIST

The estimate (17) is the most stringent condition on
the range of applicability of formula (32). It is absent in
the semiclassical description of radiation of plane wave
photons [4]. The narrower the transverse size of a particle
wave packet is, the better this condition is satisfied.
Currently, there are techniques allowing one to produce
the electron wave packets with the transverse size of order
1 Å [107]. For a particle, which is at rest on average, the
width of the wave packet cannot be smaller than the
Compton wavelength. Otherwise, the momentum uncer-
tainty is larger than 2m, and the height of a potential barrier
confining such a particle must be larger than 2m. Such fields
create electron-positron pairs, and the problem becomes
essentially multiparticle. Nevertheless, if the electron is
moving on average, then its wave packet can be squeezed
more strongly in the transverse directions with the aid of
the fields not exceeding the critical (Schwinger) field in the
laboratory frame. In the comoving reference frame, the
potential well depth can become larger than the critical one,
but this does not result in pair creation. In passing to the
comoving frame, the magnetic field arises, and the respec-
tive invariants of the electromagnetic field remain the same
as in the laboratory frame.
This situation is naturally realized for axial channeling of

particles in crystals (see for details, e.g., Refs. [4,8,9,89,108]).
Suppose that the particle momentum component p3 ≫ me
and jp1;2j ≪ p3. Then, the solution of the stationary Dirac
or Klein-Gordon equations is reduced approximately to the
solution of the Schrödinger equation with a certain effective
potential Uðx⊥Þ,

�
p2⊥
2meff

þ U

�
ψ ¼ δEψ ; ðB1Þ

where δE ¼ E −meff , m2
eff ≔ m2

e þ p2
3, and it is assumed

that jUj ≪ meff and jδEj ≪ meff . The effective mass is well
approximated by

meff ≈ γme: ðB2Þ

The potential barrier of the height U0 can hold a particle
with typical momentum uncertainty

jΔp⊥j≲
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffU0

p
: ðB3Þ

Then, from the uncertainty relation, we obtain the mini-
mum transverse size

σm⊥ ∼ ð2meffU0Þ−1=2 ≈ 1=ðθcεÞ; ðB4Þ

where the critical Lindhard angle has been introduced:

θc ≔
ffiffiffiffiffiffiffiffiffi
2U0

ε

r
; U0 ∼ Zα2me: ðB5Þ

Since β⊥ ≈ θc, then

σm⊥ ∼ 1=ðmeKÞ: ðB6Þ

As we see, the transverse size of the particle wave
packet can be much smaller than the Compton wavelength
for axal channeling in the wiggler regime [109,110]. The
maximum transverse squeezing of a particle wave packet is
achieved at

σm⊥ ∼ 1=ðmeγÞ: ðB7Þ

However, this is possible only in the external fields of the
same order as the critical one in the laboratory frame. Such
maximally localized wave packets were investigated in
Refs. [111,112].
Consider the fulfillment of condition (17) for axial

channeling with the wave packet transverse size (B6).
The respective undulator frequency is estimated as

ω ∼
πθc
d

; ðB8Þ

where d is the channel width,

d ∼ 1 Å ∼ 103m−1
e : ðB9Þ

Then, in the dipole regime, at the nth harmonic

k0 ∼ 2ωγ2n: ðB10Þ

Hence,
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k⊥σm⊥ ∼ 2π
n⊥γ
med

n ≪ 1: ðB11Þ

Bearing in mind that n⊥γ ≲ 1, we see that (17) is satisfied.
This condition is fulfilled even for σ⊥ ¼ d in the dipole
regime for not-too-large harmonic numbers. In the wiggler
case for n⊥γ ≈ K, we have

k0 ∼ ωγ2n=K2: ðB12Þ

Then,

k⊥σm⊥ ∼
πn

medK
≪ 1: ðB13Þ

In fact, condition (17) is already satisfied for σ⊥n ≲ d=10.
The energy shift due to quantum recoil was neglected in
these formulas. The inclusion of quantum recoil only
improves the estimate.
The dynamical picture looks as follows. Thewide particle

wave packet falls onto the crystal surface and, in the
channeling regime, is split intowave packets with transverse
sizes from (B6) up to d. Because of interaction with the
crystalline potential and other electrons, the different parts of
the wave packet moving in different channels do not almost
interfere. This picture, of course, agrees with the quantum
channeling theory where the states of electrons are usually
described by Bloch waves [4,8]. In our case, if the particle is

in channeling regime, the overlap integrals are small, and so
the parts of the electron wave packet do not virtually
interfere. To describe the radiation of twisted photons
produced by each part of such dispersed wave packet,
Eq. (38) can be used. As the particle escaped the crystal,
the parts of the wave packet spread in the transverse
directions with the characteristic velocity β⊥ ≈ θc.

APPENDIX C: EVALUATION OF INTEGRALS
OVER THE AZIMUTH ANGLE

It is convenient to evaluate the integrals over the azimuth
angles of the vectors k1;2 in expression (37) as follows. Up
to a common factor, which can be restored easily from
(A5), we have the correspondence

f�1 →
�
1

2
½a�þeþ þ a�−e−� þ a�3e3

�
e−ik3q1x13 ≕ a�1;

f2 →

�
1

2
½aþe− þ a−eþ� þ a3e3

�
eik3q2x23 ≕ a2: ðC1Þ

Hereinafter, for brevity, we write only those arguments of
the mode functions a�;3, a��;3 that differ from those written
in Eq. (39). The basis vectors ei are defined in Eq. (9) of
Ref. [33]. Notice that q1;2 ¼ qi in (37), but we keep q1;2
different. Then, for example,

ðf�1 _x1Þðf2 _x2Þ → eik3ðq2x23−q1x13Þ
�
1

2
½_x1−a�− þ _x1þa�þ� þ _x13a�3

��
1

2
½_x2þa− þ _x2−aþ� þ _x23a3

�
¼ ða�1 _x1Þða2 _x2Þ: ðC2Þ

The additional powers of k1;2 can be obtained by differentiation of the expression with respect to

b1;2 ≔ q1;2x31;2e3 þ x⊥1;2: ðC3Þ

For example,

k0ðf2f�1Þð _x2k1Þ → ik0

�
_x23

∂
∂b13 þ _x2þ

∂
∂b1þ þ _x2−

∂
∂b1−

�
ða�1a2Þ: ðC4Þ

The derivatives of the mode functions are calculated with the aid of relations (A3) in Ref. [33]. They read as

∂a2
∂b2þ ¼ k⊥

2
a2ðm − 1Þ; ∂a2

∂b2− ¼ −
k⊥
2
a2ðmþ 1Þ; ∂a2

∂b23 ¼ ik3a2;

∂a�1
∂b1þ ¼ −

k⊥
2
a�1ðmþ 1Þ; ∂a�1

∂b1− ¼ k⊥
2
a�1ðm − 1Þ; ∂a�1

∂b13 ¼ −ik3a�1: ðC5Þ

Applying these relations to the expression in the square brackets in (37), we arrive at the rather bulky formula
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ðP01 þ P0
01ÞðP02 þ P0

02Þða�1 _x1Þða2 _x2Þ þ k20½ða�1a2Þð _x1 − n3e3; _x2 − n3e3Þ − ða�1; _x2 − n3e3Þða2; _x1 − n3e3Þ�

þ ik0k⊥
2

½ða�1ðm − 1Þ; ð _x2 − n3e3Þa2− − _x2−a2Þ − ða�1ðmþ 1Þ; ð _x2 − n3e3Þa2þ − _x2þa2Þ
− ðð _x1 − n3e3Þa�1− − _x1þa�1; a2ðm − 1ÞÞ þ ðð _x1 − n3e3Þa�1þ − _x1−a�1; a2ðmþ 1ÞÞ�

þ k2⊥
4
½a�1−ðmþ 1Þa2þðm − 1Þ þ a�1þðm − 1Þa2−ðmþ 1Þ − a�1þðmþ 1Þa2þðmþ 1Þ

− a�1−ðm − 1Þa2−ðm − 1Þ þ 2ða�1ðmþ 1Þ; a2ðmþ 1ÞÞ þ 2ða�1ðm − 1Þ; a2ðm − 1ÞÞ�; ðC6Þ

where n3 ¼ k3=k0. Now, take into account that, in the region where the radiation of an ultrarelativistic particle is
concentrated,

k0=ε≲ 1; j_x�j ∼ ϰ=γ; j_x3j ≈ 1; j_x3 − n3j≲ ϰ2=γ2; jn⊥j≲ ϰ=γ; n3 ≈ 1; ðC7Þ

where n⊥ ¼ k⊥=k0. It follows from the explicit expressions for the mode functions that

ja��j ∼ ja�j≲ γ=ϰ; ja3j ∼ ja��a∓j ∼ 1: ðC8Þ

Expanding the scalar products in (C6) and neglecting the terms of order ϰ=γ ≪ 1 in comparison with the main contribution,
we obtain

eik3ðb23−b13Þ
�
ðP01þP0

01ÞðP02þP0
02Þ
�
1

2
½_x1−a�−þ _x1þa�þ�þ _x13a�3

��
1

2
½_x2þa−þ _x2−aþ�þ _x23a3

�

þk20
4
½ð_x1þa�þ− in⊥a�þðm−1ÞÞð_x2−aþþ in⊥aþðm−1ÞÞþð_x1−a�−þ in⊥a�−ðmþ1ÞÞð_x2þa− − in⊥a−ðmþ1ÞÞ�

	
: ðC9Þ

Setting q1;2 ¼ qi and taking into account the common factor in (37), we deduce (38).
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