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Motivated by the recently proposed de Sitter swampland conjecture, a formally same condition imposed
instead on the convex and real exact effective potential is contemplated. Compared to the original
conjecture, the modified condition admits a broader class of low-energy effective theories such as those
with local maxima and/or false de Sitter vacua with some restrictions, as long as there is an anti–de Sitter
vacuum. The observed accelerating expansion of the universe might therefore be attributed to a
quintessence or a metastable vacuum. The former solution can be simplified and thus is better compatible
with phenomenological constraints thanks to the convexity of the effective potential. Among the latter class
of solutions is found the enthralling possibility that the modified condition is in fact behind the
experimentally favored metastability of the Higgs potential with an instability scale below or around the
Planck scale.
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A quantum field theory (QFT) is said to belong to the
landscape, if it is a low-energy effective field theory (EFT)
of string theory. Otherwise, it is said to belong to the
swampland [1,2]. These classifications were introduced as
certain classes of theories could not be related to string
theory despite enormous efforts. Motivated by such theo-
retical experience, criteria have been conjectured that are
supposed to characterize EFTs in the landscape or swamp-
land, see for a review [3].
In particular, the lack of any known rigorous construc-

tion of a de Sitter (dS) vacuum from string theory has
recently led to the original version of the dS swampland
conjecture [4],

MPlj∇Vj > cV; 0 < c ∼Oð1Þ; ð1Þ
where MPl is the reduced Planck mass, V is the scalar
potential in the EFT, ∇V is its gradient with respect to the
scalar fields with its norm defined using the metric on the
field space. Indeed, this inequality says that V at any
extremum must be negative, thereby excluding any EFT
with a dS extremum from the landscape. Still to keep our
dS universe within the landscape, we are assumed to be
living not at a (false) vacuum but on a nonvanishing slope
of V in the direction of some scalar field usually dubbed a
quintessence [5,6].

This conjecture has subsequently been refined to incor-
porate as an alternative condition the inequality [7,8],

M2
Pl minð∇i∇jVÞ ≤ −c0V; 0 < c0 ∼Oð1Þ; ð2Þ

which bounds the minimum eigenvalue of the Hessian of
V in an orthonormal frame. (Other ways of refinement have
also been proposed [9].) This refinement followed as
difficulties had been encountered when the original con-
jecture (1) was applied to firmly established phenomeno-
logical particle physics models. The root of the troubles
was that (1) forbids any local maximum of V with a positive
value which appears necessarily in EFTs with (sponta-
neous) symmetry breaking. Known instances include the
center of the Higgs potential [10–13] as well as the local
maxima found in the periodic potentials of the neutral pion
[12] and the hypothetical QCD axion [11]. These counter-
examples are admitted by the refined conjecture (1),(2).
The swampland conjectures have also been put to the test in
the context of cosmic inflation, to reveal differing degrees
of compatibility with the models [14].
As the dS swampland conjectures restrict the scalar

potential, a brief review of its different formulations should
be in order. First of all, one can define the generating
functional,

Z½J� ¼
Z

Dϕ exp

�
i
Z

d4xðL½ϕðxÞ� þ JðxÞϕðxÞÞ
�
; ð3Þ

in terms of the classical Lagrangian L and the external
currents J as sources for the fields ϕ. The connected
generating functional is then given by
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W½J� ¼ −i lnZ½J�; ð4Þ

of which the Legendre transform yields the one-particle
irreducible effective action [15],

Γ½ϕ� ¼ W½J� −
Z

d4xJðxÞϕðxÞ: ð5Þ

The effective potential can be defined as Γ½ϕ� specialized to
coordinate-independent field expectation values [16],

VnpðϕÞ ¼ −
1

VT
Γ½ϕ�

����
ϕ¼const:

; ð6Þ

with the spacetime volume VT factored out. This non-
perturbatively defined exact effective potential Vnp can be
approximated by a perturbation series in the form,

Vnp ≃ Vpert ≡ V0 þ V1 þ V2 þ � � � ; ð7Þ

where V0 coincides with the tree-level potential in the
classical Lagrangian L, and V1;2;… are the loop corrections
at each order. It shall be understood that Vpert may also
include nonperturbative contributions as in the potential of
an axion or mesons.
It is well known that Vnp and Vpert are gauge [16] and

renormalization scale dependent, but their values at the
extrema are not [17] and are regarded as physical quan-
tities, see for scale dependence e.g., [18,19]. This unphys-
ical nature of effective potentials stems from the fact that
their arguments i.e., the scalar field values are not physical
quantities. In perturbation theory, the scale dependence of
Vpert is reduced as higher and higher order loops are
included. This makes it mandatory to perform an all-order
resummation of the large logarithms, when there is an
orders-of-magnitude separation between the scale at which
the input parameters are fixed and the scale at which Vpert is
to be evaluated.
Another remarkable property of Vnp (but not of Vpert) is

its convexity [20]. This means especially that Vnp does not
have any local maximum even if V0 or Vpert does. The
shape of Vnp between the two local minima ϕ1 and ϕ2 of
Vpert is linear [21–23], and thus can be approximated by the
linear interpolation (see e.g., [24,25]),

Vnpðxϕ1 þ ð1 − xÞϕ2Þ ≃ xVpertðϕ1Þ þ ð1 − xÞVpertðϕ2Þ;
0 < x < 1; ð8Þ

analogous to the Maxwell construction for free energies in
thermodynamics, see e.g., [25]. This has also been a
traditional way to resolve doubts about the imaginary part
of Vpert that develops at points where V0 is concave
[16,21,23]. The above construction is guaranteed to inherit
the reality of Vnp originating from its definition.

Recalling these properties of effective potentials, one
might then ask a natural question: which V does the dS
swampland conjecture concern? In this work, the quantum
limit of choosing Vnp shall be entertained, in which case the
original conjecture (1) would read

MPlj∇Vnpj > cVnp; 0 < c ∼Oð1Þ: ð9Þ

As has been pointed out recently [26], this modification
weakens (1) to such an extent that the supplementary
condition (2) would not be needed to accommodate the
particle physics models with a local maximum in the
potential [10–13]. Paraphrased in terms of Vpert, (9) does
not prohibit any of its local maxima, dS or not, since they
are all flattened in Vnp. For the same reason, it is obviously
more permissive than the original (1) as well as the refined
dS swampland conjectures (1),(2). Note that (2) becomes
redundant, thereby rendering both versions of the con-
jectures equivalent, if V therein is replaced by Vnp [26].
A global minimum still needs to be negative.
An immediate consequence of (9) would therefore be

that a dS space cannot be ascribed to a global minimum
of Vpert. Given the astronomical observations indicating a
small but positive vacuum energy, this would imply that we
are not living in a true vacuum. There are two ways to
negate the last noun phrase: (a) a false vacuum, or (b) a
nonvacuum. Note that the former possibility has not been
mentioned in Ref. [26].
Option (b) would mean that j∇Vpertj > 0 in fact where

we are living owing to a nonvanishing slope in the direction
of an extra scalar field such as a quintessence. This bears a
similarity to how a quintessence reconciles the original dS
conjecture (1) with the cosmological constant [4]. A major
difference is however that the local maximum of the
perturbative Standard Model (SM) Higgs potential would
not require a complicated interaction between the quintes-
sence and the Higgs [10], as Vnp has no local maximum.
It would therefore be enough to add quintessence terms
simply to the Higgs potential, thereby eluding the con-
straints from a long-range force and time dependence of the
proton-to-electron mass ratio [13].
With option (a), one can tell further details of the

metastability with the aid of a “Maxwell construction.”
First, imagine a perturbative potential having only two
minima which are connected by the scalar field direction ϕ.
Replacing Vnp between these two minima by (8) lets (9) be
represented by a pair of inequalities,

VpertðϕþÞ <
MPl

c

����VpertðϕþÞ − Vpertðϕ−Þ
ϕþ − ϕ−

����; ð10aÞ

Vpertðϕ−Þ < 0; ð10bÞ

where ϕ� are the field values at our false and the true vacua,
respectively. These conditions are depicted in the left panel
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of Fig. 1, where c is assumed to be larger than unity as
suggested by some reported lower bounds on j∇Vj=V in
type IIA/B compactifications [4]. Essentially, the global
minimum Vpertðϕ−Þ is constrained to be firstly negative and
then deep enough to meet the lower bound on j∇VnpðϕþÞj.
It might happen that Vpertðϕ−Þ is at the end of the validity
range of QFT which is assumed to be MPl based on the
distance conjecture [2]. In such a case, (10b) would not
apply as the slope does not vanish at ϕ−. If the cutoff on jϕj
is smaller than MPl=c, there would be another logical
possibility that VpertðϕÞ does not necessarily need to cross
the grey line. It would only need to cross the slanted grey
dotted line and then hit the cutoff at a nonvanishing slope.
Numerically, VpertðϕþÞ ∼OðmeV4Þwould be in most cases
negligible compared to typical scales characterizing Vpert

such as the width and height of its barrier. Therefore, the
grey upper bound on Vpertðϕ−Þ with a mild kink would be
approximated excellently by a straight horizontal line in the
left panel of Fig. 1.
A reflection symmetry of the potential would simplify

the scrutiny as illustrated in the right panel of Fig. 1. The
“Maxwell construction” would then be a constant between
the two global minima which (9) would require to be
negative. In this case, VpertðϕÞ would need to cross zero
within the validity range of QFT, whether the slope
vanishes at the global minima or not.
Subdividing option (a), the metastability of our electro-

weak vacuum might be attributed to (a1) a new direction in
the field space, or (a2) the SM Higgs. Once an extra field is
admitted as in case (a1), it is straightforward to build a
model with metastability and there are already many such

examples as: supersymmetry with charge and/or color
breaking minima [27–29], metastable supersymmetry
breaking sectors [30], relaxion mechanism [31], scalar
extensions of the Higgs sector [32], among others. In
models with a stable Higgs potential, metastability would
thus serve as a hint on the vacuum structure altered by the
additional fields.
The remaining most predictive scenario would be case

(a2) without any extra field responsible for the metasta-
bility. This might be because there are no extra scalars at all
or none of them induces a deeper minimum. An obvious
but fascinating implication would then be that the pertur-
bative SM Higgs potential is destined to be metastable.
In this case, a more concrete statement can be made in

the context of the SM. Assuming that ϕ− ≫ ϕþ≈
246 GeV, one can use the renormalization group (RG)
improved tree-level potential, Vpertðϕ−Þ ¼ λðϕ−Þϕ4

−=4,
with the running quartic Higgs coupling λðμÞ at the
renormalization scale μ ¼ ϕ−. The preceding discussions
about condition (9) on symmetric potentials would then
lead to the requirement that λðμÞ turn negative below or
around MPl, an upper limit due to the distance conjecture
[2] as well as the inherent ultraviolet cutoff of the EFT
within which the β-function of λ is computed.
It is amusing to notice that this prediction of an

instability scale below or around MPl is pleasantly con-
sistent with the already favored interpretation of the
experimental data, even though it is demanded independ-
ently of the low-energy boundary conditions on the running
couplings. The RG evolution of λ has been analyzed
employing higher order corrections at the accuracy of
2-loop matching at the weak scale plus 3-loop running

FIG. 1. Schematic shapes of perturbative scalar potentials (thick) allowed (solid) or disallowed (dashed) by (10) and the corresponding
“Maxwell constructions” (thin), for c > 1. The global minima of each potential cannot lie in the light grey region. For c < 1, the
horizontal part of the grey line in the left panel would extend up to the right border.
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up to high scales [19,33,34]. A first resulting feature to
notice is that λðμÞ maintains a single minimum, positive or
negative, around 1017–18 GeV while the top quark and
Higgs masses as well as the strong coupling constant are
varied by �3σ [33]. The upper end of this range would
therefore bound a zero of λðμÞ from above, if it exists. Then,
the central values of the SM parameters point to metasta-
bility of the Higgs potential with λðμÞ crossing zero at a
scale around μ ∼ 1010 GeV, which can vary between 108

and 1018 GeV if 3σ uncertainties in the data are taken into
account. Additional ambiguity in the instability scale
arising from its gauge dependence has been investigated
numerically [35].
There have been attempts to understand this intriguing

selection of a special point in the parameter space: there
might be an underlying theory which brings the SM to that
particular point via the matching conditions [29,36]; near-
criticality might be an attractor within the multiverse [37].
Yet another inspiring possibility would be that inequality
(9) is in fact the reason behind the metastability of the
Higgs potential, if the condition has relevance to physical
laws of nature such as the still developing theory of
quantum gravity.
It is hard to judge whether (9) has something to do with

string theory or not. As it turns out, the condition is at
variance with the original motivation for (1),(2), i.e., to
exclude dS minima. On the contrary, (9) admits false dS
vacua albeit with restrictions on j∇Vnpj=Vnp. Neither has it
been proved however that the landscape contains no dS
vacua. From the field theoretic point of view, the use of Vnp

in conjecture (1) has been advocated [26], emphasizing the
necessity of large scale nonperturbative scalar field fluc-
tuations for a consistent low-energy description of the
theory. In particular, it is not clear how to interpret the dS
criteria as imposed on Vpert if it has an imaginary part. This
doubt would be naturally resolved by employing Vnp

instead which is real-valued by definition. In any case,
one might make at least the following conservative state-
ments. It is a natural extrapolation of (1),(2) to incorporate
into V therein as many quantum effects as there are. The

criterion thus modified is less restrictive than the original
but not trivial either, and furthermore suggests intriguing
phenomenological scenarios including a potential solution
to a big puzzle raised by accelerator physics.
To sum up, a theoretical constraint on quantum field

theoretic models has been considered. Its form is identical
to the original dS swampland conjecture except that the
effective potential is assumed to integrate all possible
(non)perturbative quantum effects, thereby guaranteeing
its reality. Due to the convexity of the exact effective
potential Vnp, the modified condition is more permissive
than the original as well as the refined conjectures.
Specifically, it accepts local maxima and false dS vacua
in the perturbative potential Vpert as long as the slope of
Vnp is everywhere steep enough, although the true vacua
must still be anti–de Sitter. This naturally resolves con-
flicts with the essential local maxima in established
particle physics models. Moreover, it opens up the
possibility of attributing the observed positive cosmo-
logical constant not only to a quintessence but also to a
metastable dS vacuum. In the former case, the quintes-
sence might avoid phenomenological obstacles thanks to
its simpler interactions with the Higgs. In the latter case,
the Higgs potential would need to have a deeper minimum
unless the metastability is caused by an extra scalar field.
The Higgs instability scale is then predicted to be below or
around MPl, from the distance conjecture plus the ultra-
violet cutoff of the EFT. This might shed light on the well
known near-critical structure of the SM Higgs potential
for the preferred values of low-energy data including the
top quark and Higgs masses.
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