
 

Convergence of the light-front coupled-cluster method
in a quenched scalar Yukawa theory

Austin Usselman, Sophia S. Chabysheva, and John R. Hiller
Department of Physics and Astronomy, University of Minnesota-Duluth, Duluth, Minnesota 55812, USA

(Received 7 March 2019; published 13 June 2019)

We explore the convergence of the light-front coupled-cluster (LFCC) method in the context of
two-dimensional quenched scalar Yukawa theory. This theory is simple enough for higher-order LFCC
calculations to be relatively straightforward. The quenching is to maintain stability; the spectrum of the full
theory with pair creation and annihilation is unbounded from below. The basic interaction in the quenched
theory is only emission and absorption of a neutral scalar by the complex scalar. The LFCC method builds
the eigenstate with one complex scalar and a cloud of neutrals from a valence state that is just the complex
scalar and the action of an exponentiated operator that creates neutrals. The lowest order LFCC operator
creates one; we add the next order, a term that creates two. At this order there is a direct contribution to the
wave function for two neutrals and one complex scalar and additional contributions to all higher Fock wave
functions from the exponentiation. Results for the lowest order and this new second-order approximation
are compared with those obtained with standard Fock-state expansions. The LFCC approach is found to
allow representation of the eigenstate with far fewer functions than the number of wave functions required
in a converged Fock-state expansion.
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I. INTRODUCTION

The calculation of the bound states for a given quantum
field theory is an inherently nonperturbative problem.
Various methods can be applied, the best known being,
of course, lattice (gauge) theory [1]. Here we consider a
method based on a Hamiltonian formulation in light-front
coordinates [2,3]. The fundamental bound-state problem is
then the eigenvalue problem

P−jψðPÞi ¼ M2 þ P2⊥
Pþ jψðPi; ð1:1Þ

where P− is the light-front Hamiltonian, M is the mass of
the eigenstate, and P ¼ ðPþ; P⃗⊥Þ is the light-front momen-
tum.1 The Hamiltonian is constructed from the Lagrangian
L for a generic field ϕ as

P− ¼
Z

dx−d2x⊥
�
∶

δL
δð∂þϕÞ

− L∶
�
xþ¼0

: ð1:2Þ

The eigenstate jψðPÞi has definite momentum P, and,
once known, can be used to compute properties of the
state. This formulation is particularly convenient for the
computation of form factors, because jψðPÞi is boost
invariant.
The standard approach to the solution of the eigenvalue

problem is to write the eigenstate as a Fock-state expansion,
which leads to a coupled system of equations for the Fock
wave functions. This coupled system is then converted into
a matrix eigenvalue problem, either by direct discretization,
as in discrete light-cone quantization [4], or by basis
function expansion, as in basis light-front quantization
[5]. However, a finite matrix representation requires a
truncation of the Fock space.
This truncation has serious consequences. In particular,

there can be uncanceled divergences, and self-energy cor-
rections become dependent on the Fock sector and on the
presence of spectator constituents. These are the nonpertur-
bative analog of what would happen to the contribution from
a Feynman diagram if the diagramwere decomposed into the
various time orderings, with the removal of the time order-
ings that involve too many intermediates. These difficulties
led to the idea of sector-dependent renormalization [6–8],
which has its own difficulties [9].
As an alternative, we have developed the light-front

coupled-cluster (LFCC) method [10]. No Fock-space
truncation is invoked. Instead, the eigenstate is written
as coming from the action of an exponentiated operator T
acting on a valence state jϕðPÞi
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1We define light-front coordinates [2] and momenta as x� ¼
t� z, x⃗⊥ ¼ ðx; yÞ, p� ¼ E� pz, p⃗⊥ ¼ ðpx; pyÞ. The mass-shell
condition for the total momentum is then M2 ¼ PþP− − P2⊥.
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jψðPÞi ¼
ffiffiffiffi
Z

p
eT jϕðPÞi; ð1:3Þ

with
ffiffiffiffi
Z

p
a normalization factor.2 The valence state is

something simple that carries all the appropriate quantum
numbers, in addition to the total momentum; for a proton in
QCD it would be the three-quark state. The operator T
increases particle number in various ways and conserves all
the quantum numbers of the valence state; in QCD, T
would include gluon emission from a quark or gluon and
pair creation from a gluon.
The original eigenvalue problem is converted into two

parts, through multiplication by e−T and projection onto the
valence sector and its complement. To express this, we
define the effective Hamiltonian P− ≡ e−TP−eT and the
projection Pv onto the valence sector. We then have

PvP−jϕðPÞi ¼ M2 þ P2⊥
Pþ jϕðPÞi;

ð1 − PvÞP−jϕðPÞi ¼ 0: ð1:4Þ

Roughly speaking, the first equation determinesM and any
wave functions in jϕi, while the second determines the
functions that define the structure of T. In reality, of course,
they are a coupled system, unless the valence state has a
single constituent and therefore no wave functions.
All of this is obviously more complicated than the

original eigenvalue problem, but it is exact. The power
of the approach comes from the approximation step: Rather
than truncate Fock space, we truncate T. Even for the
simplest T operator, its exponentiation allows the eigenstate
to span an infinite Fock space, and, without much difficulty,
one can arrange the approximate eT jϕi to fully explore all
Fock sectors relevant for the quantum numbers of the
valence state. In terms of a Fock-state expansion, what
we have done is to force the wave functions of the higher
Fock sectors to be directly dependent on those of the lower
sectors rather than setting these higher wave functions to
zero, as would happen in a Fock-space truncation. Yet
another way to interpret the LFCC approximation is that the
eigenstate is represented by a generalized coherent state.
In any case, the avoidance of a Fock-space truncation
eliminates the sector dependence and spectator dependence
of self-energy corrections and potentially controls the
uncanceled divergences.
The LFCC equations themselves are also truncated. The

complement projection 1 − Pv is restricted to the lowest set
of Fock sectors necessary to have enough equations to
solve for the functions that define T. This means that the
LFCC method is not variational; the effective Hamiltonian
P− is not Hermitian, and the truncated projections are not

equivalent to minimization of the expectation value
hψ jP−jψi.
One price to be paid for the gains of the LFCC method is

that the LFCC equations are nonlinear. The existence of a
solution can be difficult to guarantee. However, a linearized
perturbative solution shows that the LFCC equations resum
perturbation theory to all orders for a restricted set of
diagrams. (The restriction arises because of the truncation
of T.) This implies that, for weak coupling, a physical
solution must exist. Depending on the structure chosen for
T and jϕi, the physical solution may disappear as the
coupling is increased. An explicit example of this appears
in an application to ϕ4 theory [12], where the solution for
the lowest-order approximation for T does not extend
beyond a certain coupling strength. This is likely due to
the restriction of the valence state to a single constituent in a
regime near the critical coupling where all Fock sectors
should contribute strongly.
One question that immediately arises has to do with the

convergence of the method, in the sense that as one relaxes
the truncations of T and 1 − Pv, how does the solution
improve? The present work answers this question in a
particular context, with an application to quenched scalar
Yukawa theory [13] in two dimensions.3 In general, the
correspondence between perturbation theory and the LFCC
resummation at weak coupling shows that the convergence
of the LFCC method is closely related to the convergence
of perturbation theory at weak coupling. To get beyond
weak coupling, we compare a nonperturbative Fock-state
expansion calculation to LFCC calculations done with T
operators of increasing complexity.
The quenching of the theory eliminates potential con-

cerns about the vacuum. Recent work [15–19] has empha-
sized the need for care in considering the vacuum on the
light front, but here no vacuum bubbles can occur. This also
means that the Fock wave functions of a massive state do
not include vacuum contributions and therefore have a
direct physical interpretation. This is not generally true in
equal-time quantization, where one must compute the
vacuum state as well as massive states; as an example,
see the work on ϕ4 theory by Rychkov and Vitale [20].
The Lagrangian, Hamiltonian, and Fock-state expansion

for quenched scalar Yukawa theory are given in Sec. II. The
formulation of the LFCC method for this theory is
developed in Sec. III. The results for both the Fock-state
expansion method and the LFCC method are presented and
compared in Sec. IV, with a brief summary provided in
Sec. V. Details of numerical methods and diagrammatic
rules are left to appendices.

2This construction was inspired by the coupled-cluster method
used in many-body problems of nuclear physics and quantum
chemistry [11].

3The restriction to two dimensions is to disentangle the
convergence question from regularization and renormalization
issues. The quenching, to eliminate pair production, is necessary
for the theory to have a spectrum bounded from below [14].
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II. QUENCHED SCALAR YUKAWA THEORY

The Lagrangian for scalar Yukawa theory [13] is

L¼j∂μχj2−m2jχj2þ1

2
ð∂μϕÞ2−

1

2
μ2ϕ2−gϕjχj2; ð2:1Þ

where χ is a complex scalar field with mass m and ϕ is a
real scalar field with mass μ. The two fields are coupled by
a Yukawa term with strength g. In two dimensions, the
light-front Hamiltonian density is

H ¼ m2jχj2 þ 1

2
μ2ϕ2 þ gϕjχj2: ð2:2Þ

The mode expansions for the fields are4

χ ¼
Z

dpffiffiffiffiffiffiffiffiffi
4πp

p ½cþðpÞe−ipx−=2 þ c†−ðpÞeipx−=2�; ð2:3Þ

ϕ ¼
Z

dpffiffiffiffiffiffiffiffiffi
4πp

p ½aðpÞe−ipx−=2 þ a†ðpÞeipx−=2�: ð2:4Þ

The nonzero commutation relations of the creation and
annihilation operators are

½c�ðpÞ; c†�ðp0Þ� ¼ δðp − p0Þ;
½aðpÞ; a†ðp0Þ� ¼ δðp − p0Þ: ð2:5Þ

In terms of these operators, the quenched light-front
Hamiltonian P− ¼ R

dx−H ¼ P−
0 þ P−

int is specified by

P−
0 ¼

Z
dp

m2

p
½c†þðpÞcþðpÞ þ c†−ðpÞc−ðpÞ�

þ
Z

dp
μ2

p
½a†ðpÞaðpÞ� ð2:6Þ

and

P−
int ¼ g

Z
dpdqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πpqðpþ qÞp f½c†þðpþ qÞcþðpÞ

þ c†−ðpþ qÞc−ðpÞ�aðqÞ þ H:c:g: ð2:7Þ

Pair creation and annihilation terms are suppressed, to
stabilize the spectrum.
We seek eigenstates of P−, for which the two-

dimensional light-front mass eigenvalue problem is

P−jψðPÞi ¼ M2

P
jψðPÞi: ð2:8Þ

We limit this to the charge-one sector. In the next section,
we consider the LFCC approach to the solution of this

eigenvalue problem, but here we develop the standard
Fock-state expansion approach, to use as a basis for
comparison.
We write the Fock-state expansion of the eigenstate as

jψðPÞi ¼
X∞
n¼0

Pn=2

Z �Yn
i¼1

dxi

�
θ

�
1 −

X
i

xi

�

× ψnðx1;…; xnÞ
1ffiffiffiffiffi
n!

p
Y
i

a†ðxiPÞ

× c†þ

��
1 −

X
i

xi

�
P

�
j0i: ð2:9Þ

Projection of the eigenvalue problem ontoQ
n0
j a†ðyjPÞc†þðð1 −

P
n0
j yiÞPÞj0i, and division by μ2,

yields coupled equations for the Fock-state wave func-
tions ψn�

m̃2

1 −
P

jyj
þ
X
j

1

yj

�
ψnðy1;…; ynÞ

þ λffiffiffi
n

p
Xn
j

ψn−1ðy1;…; yj−1; yjþ1;…; ynÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yjð1 −

P
i≠jyiÞð1 −

P
n
i yiÞ

q
þ λ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p Z
dxθ

�
1 − x −

X
i

yi

�

×
ψnþ1ðy1;…; yn; xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − x −
P

iyiÞð1 −
P

iyiÞ
p ¼ M2

μ2
ψnðy1;…; ynÞ:

ð2:10Þ

Here m̃≡m=μ is a dimensionless relative mass and
λ≡ g=ð ffiffiffiffiffiffi

4π
p

μ2Þ is a dimensionless coupling strength. We
solve this system numerically by first truncating the
Fock space at n ¼ nmax neutrals and expanding the wave
functions in a symmetrized monomial basis. The details
are discussed in Appendix A, and the results in Sec. IV.
The structure of the eigenstate is studied by considering

the relative probabilities for Fock sectors with different
numbers of neutrals. These are formed as the ratio

Rn ≡ 1

ψ2
0

Z Y
i

dxiθ

�
1 −

X
i

xi

�
jψnj2: ð2:11Þ

Results for these ratios are shown in Sec. IV.

III. LIGHT-FRONT COUPLED-CLUSTER
METHOD

The LFCC method constructs the charge-one eigenstate
in the form

jψi ¼
ffiffiffiffi
Z

p
eTc†þj0i; ð3:1Þ

4Beginning here and for the remainder of the paper the þ
superscript of the light-front momentum is suppressed.
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where c†þj0i is the single-particle valence state. The T
operator is expanded in a sequence T ¼ P

nTn, with

Tn ¼
Z Yn

i

dxidppn=2tnðx1;…; xnÞ

×
Yn
i

a†ðxipÞc†þ
��

1 −
Xn
i

xi

�
p

�
cþðpÞ: ð3:2Þ

The factor pn=2 is included to keep Tn dimensionless; p is
the natural scale, being the momentum flowing through the
operator.
The action of Tn is to increase the number of neutrals

by n, and the exponentiation of T provides for generation of
all possible (quenched) charge-one Fock states, even if T is
truncated to only T1. Without truncation, the functions tn
provide for an exact solution, with a duality between the tn
and the Fock-state wave functions ψn. However, without
truncation the eigenvalue problem is equivalent to an
infinite coupled system of nonlinear equations for these tn.
We can then study the convergence of the LFCC method

as the number of terms in T is increased. Here we consider
the first two terms, T1 and T2, and compare results with
those from the truncated Fock-state expansion.
The LFCC form of the eigenvalue problem is

PvP−c†þðPÞj0i ¼
M2

P
c†þðPÞj0i;

ð1 − PvÞP−c†þðPÞj0i ¼ 0: ð3:3Þ

Independent of the level of truncation for T, the first
equation becomes

m2

P
c†þðPÞj0i þ

gffiffiffiffiffiffi
4π

p
Z

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðP − qÞqPp t1ðq=PÞffiffiffiffi
P

p c†þðPÞj0i

¼ M2

P
c†þðPÞj0i: ð3:4Þ

The contributions to this equation come from the P−
0 and

P−
intT1 terms in P−, as represented diagrammatically in

Fig. 1. On division by μ2, the projected valence equation
reduces to the following expression for the eigenmass M:

M2

μ2
¼ m̃2 þ λ

Z
dxt1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp ≡ m̃2 þ λΔ: ð3:5Þ

The self-energy term is then specified by

Δ ¼
Z

dxt1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp : ð3:6Þ

The function t1 is to be obtained by solving the remaining
LFCC equations.
With each truncation of T there is a matching truncation

of the projector 1 − Pv to include only enough Fock sectors
to determine the unknown functions in the retained terms
of T. Given the truncation to T ¼ T1 þ T2, the equations
for t1 and t2 take the form of two projections, onto the
sectors with one and two neutrals. The contributions to the
first projection come from

P−→P−
intþP−

0 T1−T1P−
0 −T1P−

intT1þ
1

2
P−

intT
2
1þP−

intT2:

ð3:7Þ

These terms are represented in Fig. 2 and yield the
following equation for t1:

0 ¼ λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞp þ

�
m̃2

1 − y
þ 1

y
− m̃2

�
t1ðyÞ − λt1ðyÞ

Z
1

0

dxt1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp þ 1

2

λ

1 − y
t1ðyÞ

Z
1−y

0

dxt1ð x
1−yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − y − xÞp
þ 1

2

λffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
Z

1−y

0

dxt1ð y
1−xÞt1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞð1 − y − xÞp þ 2λffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
Z

1−y

0

dxt2ðy; xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − y − xÞp : ð3:8Þ

The equation (3.8) for t1 can be obtained either by explicitly carrying out the contractions of annihilation and creation
operators or by diagrammatic rules listed in Appendix B.
The first term in the second line of Eq. (3.8) can be simplified by rescaling the integration variable x by 1 − y; this shows

the integral to be equal toΔ. The same self-energy integral appears in the last term of the first line. The terms proportional to
Δ can then be collected with the m̃ terms, to introduce M2 with use of (3.5)

FIG. 1. Diagrammatic representation of the valence equation.
Rules for diagrams are given in Appendix B.
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�
M2

μ2
−
M2=μ2

1 − y
−
1

y

�
t1ðyÞ ¼

λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞp þ 2λffiffiffiffiffiffiffiffiffiffiffi

1 − y
p

Z
1−y

0

dxt2ðy; xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − y − xÞp

þ 1

2

λffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
�Z

1−y

0

dxt1ð y
1−xÞt1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞð1 − y − xÞp −
Δffiffiffiffiffiffiffiffiffiffiffi
1 − y

p t1ðyÞ
�
: ð3:9Þ

For the truncation T ¼ T1, this equation, with the t2 term
removed, is all that need be solved.
The appearance of the physical mass M in the invariant-

mass terms on the left of (3.9) is typical of the LFCC
method, where self-energy corrections are independent of
the Fock sector and independent of spectators. This avoids

the use of the sector-dependent bare masses that are
frequently introduced in truncated Fock-state-expansion
calculations [6–9], where self-energy corrections are sector
and spectator dependent.
The contributions to the second projection, onto the two-

neutral sector, come from the following terms in P−:

P− → P−
0T2 − T2P−

0 þ 1

2
P−

0 T
2
1 − T1P−

0 T1 þ
1

2
T2
1P

−
0

þ P−
intT1 − T1P−

int þ
1

6
P−

intT
3
1 −

1

2
T1P−

intT
2
1

þ 1

2
T2
1P

−
intT1 þ

1

2
P−

intT1T2 þ
1

2
P−

intT2T1

− T1P−
intT2 − T2P−

intT1: ð3:10Þ

Graphical representations of these terms are given in
Figs. 3–7. They and the rules in Appendix B yield the
equation for t2 as

FIG. 2. Diagrammatic representation of the projection onto the one-neutral Fock sector.

FIG. 3. Diagrammatic representation of the projection onto the
two-neutral Fock sector of the P− terms P−

0 T2 − T2P−
0 .
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0 ¼ 2

�
m̃2

1 − y1 − y2
þ 1

y1
þ 1

y2
− m̃2

�
t2ðy1; y2Þ þ

1

2

t1ð y2
1−y1

Þt1ðy1Þ
y1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y1

p þ 1

2

t1ð y1
1−y2

Þt1ðy2Þ
y2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p þ 1

2

t1ð y2
1−y1

Þt1ðy1Þ
y2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y1

p

þ 1

2

t1ð y1
1−y2

Þt1ðy2Þ
y1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p þ 1

2

m̃2t1ð y2
1−y1

Þt1ðy1Þ
ð1 − y1 − y2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y1

p þ 1

2

m̃2t1ð y1
1−y2

Þt1ðy2Þ
ð1 − y1 − y2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p −
m̃2t1ð y2

1−y1
Þt1ðy1Þ

ð1 − y1Þ3=2

−
m̃2t1ð y1

1−y2
Þt1ðy2Þ

ð1 − y2Þ3=2
−
t1ð y2

1−y1
Þt1ðy1Þ

y1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y1

p −
t1ð y1

1−y2
Þt1ðy2Þ

y2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p þ 1

2

m̃2t1ð y2
1−y1

Þt1ðy1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y1

p þ 1

2

m̃2t1ð y1
1−y2

Þt1ðy2Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p

þ λt1ðy1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2ð1 − y1Þð1 − y1 − y2Þ

p þ λt1ðy2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1ð1 − y2Þð1 − y1 − y2Þ

p − λ
t1ð y2

1−y1
Þ

ð1 − y1Þ ffiffiffiffiffi
y1

p − λ
t1ð y1

1−y2
Þ

ð1 − y2Þ ffiffiffiffiffi
y2

p

þ 1

6

�Z
1−y1−y2

0

dx
λt1ð y2

1−y1−x
Þt1ð y1

1−xÞt1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞð1 − y1 − y2Þð1 − y1 − xÞð1 − y1 − y2 − xÞp þ ðy1 ↔ y2Þ

�

þ 1

6

�Z
1−y1−y2

0

dx
λt1ð y2

1−y1−x
Þt1ð x

1−y1
Þt1ðy1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − y1Þð1 − y1 − y2Þð1 − y1 − xÞð1 − y1 − y2 − xÞp þ ðy1 ↔ y2Þ
�

þ 1

6

�Z
1−y1−y2

0

dx
λt1ð x

1−y1−y2
Þt1ð y2

1−y1
Þt1ðy1Þ

ð1 − y1 − y2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − y1Þð1 − y1 − y2 − xÞp þ ðy1 ↔ y2Þ

�

−
1

2

�Z
1−y1

0

dx
λt1ð y2

1−y1
Þt1ð x

1−y1
Þt1ðy1Þ

ð1 − y1Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − y1 − xÞp þ ðy1 ↔ y2Þ

�

−
1

2

�Z
1−y1

0

dx
λt1ð y2

1−y1
Þt1ð y1

1−xÞt1ðxÞ
ð1 − y1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞð1 − y1 − xÞp þ ðy1 ↔ y2Þ

�

þ 1

2

�Z
1

0

dx
λt1ð y2

1−y1
Þt1ðy1Þt1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞð1 − y1Þ
p þ ðy1 ↔ y2Þ

�

þ
Z

1−y1−y2

0

dx
λt2ð y1

1−x ;
y2
1−xÞt1ðxÞ

ð1 − xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − y1 − y2Þð1 − y1 − y2 − xÞp

þ
�Z

1−y1−y2

0

dx
λt2ð x

1−y1
; y2
1−y1

Þt1ðy1Þ
ð1 − y1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − y1 − y2Þð1 − y1 − y2 − xÞp þ ðy1 ↔ y2Þ

�

þ
Z

1−y1−y2

0

dx
λt1ð x

1−y1−y2
Þt2ðy1; y2Þ

ð1 − y1 − y2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − y1 − y2 − xÞp

þ
�Z

1−y1−y2

0

dx
λt1ð y2

1−y1−x
Þt2ðy1; xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − y1 − xÞð1 − y1 − y2Þð1 − y1 − y2 − xÞp þ ðy1 ↔ y2Þ
�

− 2

�Z
1−y1

0

dx
λt1ð y2

1−y1
Þt2ðy1; xÞ

ð1 − y1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − y1 − xÞp þ ðy1 ↔ y2Þ

�
− 2

Z
1

0

dx
λt2ðy1; y2Þt1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp : ð3:11Þ

We solve these equations numerically, as discussed in Appendix A, both for t1 alone and the coupled system, for t1 and t2.

FIG. 4. Same as Fig. 3 but for the P− terms 1
2
P−

0 T
2
1 − T1P−

0 T1 þ 1
2
T2
1P

−
0 .
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The relative probabilities for different Fock sectors can
be computed from the expansion of the exponential form of
the LFCC approximation

jψi ¼
ffiffiffiffi
Z

p
eT1þT2c†þðPÞj0i

≃
ffiffiffiffi
Z

p �
1þ T1 þ

�
T2 þ

1

2
T2
1

�
þ � � �

�
c†þðPÞj0i:

ð3:12Þ

The Fock state wave functions can be extracted by
comparison with the Fock state expansion in (2.9), after
the actions of the operators T1 and T2 are taken into
account. We find ψ0 ¼

ffiffiffiffi
Z

p
, ψ1ðxÞ ¼

ffiffiffiffi
Z

p
t1ðxÞ, and

FIG. 5. Same as Fig. 3 but for the P− terms P−
intT1 − T1P−

int.

FIG. 6. Same as Fig. 3 but for the P− terms 1
6
P−

intT
3
1 − 1

2
T1P−

intT
2
1 þ 1

2
T2
1P

−
intT1.

FIG. 7. Same as Fig. 3 but for the P− terms 1
2
P−

intT1T2 þ 1
2
P−

intT2T1 − T1P−
intT2 − T2P−

intT1.
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ψ2ðx1; x2Þ ¼
ffiffiffiffi
Z
2

r �
2t2ðx1; x2Þ þ

t1ð x2
1−x1

Þt1ðx1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x1

p

þ
t1ð x1

1−x2
Þt1ðx2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

�
: ð3:13Þ

The relative probabilities for the one- and two-neutral
sectors can then be computed as before, using (2.11).
The necessary integrals can be done analytically for the
basis function expansions introduced in Appendix A;
however, for the cross term between the second and third
terms of ψ2, the analytic result is the value of a hyper-
geometric function and that term is instead integrated
numerically with Gauss-Legendre quadrature. The overall
normalization Z is not computable in a finite sum, which is
the motivation for considering relative probabilities, rather
than absolutes. Fock sectors higher than the two-neutral
sector can be considered, but the wave functions become
much more complicated.

IV. RESULTS

The results for the mass M in the Fock-state expansion
method are shown in Figs. 8–10. Both the basis size and the
Fock-space limit are increased to achieve convergence for
the lowest eigenstate; however, for the ultrarelativistic case
of m̃ ¼ m=μ ¼ 10, convergence of the Fock-space expan-
sion is not achieved for stronger coupling values, as can be
seen in Fig. 10. On the other hand, convergence for the
nonrelativistic case of m̃ ¼ 0.1 is almost immediate.
From the solutions to the LFCC equations, we compute

the mass eigenvaluesM and the relative probabilities of the
one- and two-neutral Fock sectors. The masses are shown
in Figs. 8–10, where we plot results for both T1 alone
and T1 þ T2.

Results for relative probabilities are plotted in
Figs. 11–13. These show that as the neutral constituents
become lighter, making m̃ larger, the importance of the
higher Fock sectors increases dramatically. The LFCC
approximation for the one-neutral Fock wave function
yields a nearly exact match to the one-neutral relative
probability; this is seen in Figs. 11–13, where the solid line
representing the LFCC result passes through the points
from the converged Fock-state-expansion results for the
one-neutral probabilities. We interpret this agreement to
mean that the effect of the higher Fock sectors on the one-
neutral wave function is well represented by the LFCC
approximation to these higher sectors.
The results show that the LFCC truncation to T1 þ T2 is

sufficient to replicate the converged Fock-state expansion
results, with T1 alone just as good as a two- or three-neutral
Fock-sector truncation. Thus the LFCC approximation,

0

FIG. 8. The mass eigenvalue ratio M2=μ2 as a function of the
dimensionless coupling λ for a series of Fock-space truncations
and for the LFCC approximation T ¼ T1. The mass ratio of the
constituents is m̃≡m=μ ¼ 0.1. The basis sets in each Fock
sector were limited to orders N ¼ 10, 14, and 7 for nmax ¼ 1, 2,
and 3, respectively. The basis set for the LFCC result has a
maximum order of N1 ¼ 9. Addition of the T2 operator does not
significantly change the LFCC results.

FIG. 9. Same as Fig. 8 but for a constituent mass ratio of m̃ ¼ 1
and with both LFCC approximations T ¼ T1 and T ¼ T1 þ T2.
The basis sets in each Fock sector were limited to orders N ¼ 2,
6, 12, 10, and 8 for nmax ¼ 1, 2, 3, 4, and 5, respectively. The
basis sets for the LFCC results have maximum orders of N1 ¼ 5
and N2 ¼ 5.

FIG. 10. Same as Fig. 9 but for the mass ratio of the constituents
is m̃ ¼ 10. The basis sets in each Fock sector were limited to
orders N ¼ 5, 5, 4, 3, and 3 for nmax ¼ 1, 2, 3, 4, and 5,
respectively, and to N ¼ 2 for all higher Fock sectors. The basis
sets for the LFCC results have maximum orders of N1 ¼ 5 and
N2 ¼ 3. In this case, the Fock-space expansion has not converged
near M ¼ 0. Also, the nonlinear system solver failed to converge
for the LFCC approximation with λ beyond 10.6 when T2 was
included.
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using only the two functions t1ðyÞ and t2ðy1; y2Þ of one and
two variables, respectively, is sufficient to represent infor-
mation that the Fock-space expansion encodes in many
more wave functions. In addition, the number of basis
functions required to represent the Fock wave functions is
significantly greater than the number required for the LFCC
functions. Thus, the matrix representation is much smaller
for the LFCC approximation, which is ample compensation
for its nonlinearity.

The failure of the nonlinear solver to converge5 for strong
coupling in the ultrarelativistic case occurs in the same
coupling range where the Fock-state expansion fails to con-
verge.This isnearwhereM tends tozeroandmaybe indicative
of the incompleteness of theory. Quenching may have stabi-
lized the spectrum, but the theory is no longer a complete
quantumtheory.Asdiscussed in theIntroduction,asimilar lack
of solution convergence has been observed in ϕ4 theory [12].

V. SUMMARY

We have shown that the LFCC approximation provides
an efficient representation of a massive eigenstate in
quenched scalar Yukawa theory. We have also found that
the LFCC approximation converges quickly as more terms
are added to the T operator. From a numerical standpoint,
there is also an efficiency in the basis size required for a
matrix representation of the fundamental equations; the
LFCC functions are fewer in number than the Fock wave
functions, depend on fewer variables, and need fewer basis
functions for their accurate representation.
In doing these calculations, we have developed dia-

grammatic methods for the construction of the LFCC
equations. These significantly reduce the effort involved,
compared to literally carrying out contractions of creation
and annihilation operators in matrix elements of the
effective LFCC Hamiltonian. Extension to other theories
should be straightforward.
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APPENDIX A: NUMERICAL METHODS

1. Fock-state expansion

We solve the coupled system (2.10) for the Fock-state
wave functions ψn in (2.9) by first expanding the wave
functions in a simple polynomial basis

ψnðy1;…; ynÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1 � � � yn

�
1 −

X
i

yi

�s

×
XN
mj

cðnÞmjP
ðnÞ
mj ðy1;…; ynÞ; ðA1Þ

FIG. 11. Relative probabilities Rn for a sequence of Fock
sectors as functions of the dimensionless coupling λ for a
constituent mass ratio of m̃ ¼ 0.1. Results for the one and
two-neutrals Fock sectors in the LFCC approximation are also
included.

FIG. 12. Same as Fig. 11 but for m̃ ¼ 1.

FIG. 13. Same as Fig. 11 but for m̃ ¼ 10.

5A calculation done using Mathematica also fails to converge
and instead indicates that the desired physical solution has ceased
to exist.
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where m is the order of the polynomial PðnÞ
mj , j is an index

that differentiates distinct polynomials of the same order
(which is nontrivial for multivariate polynomials), N is the

maximum order included, and the cðnÞmi are unknown
coefficients to be obtained. The polynomials are chosen
to be simple monomials, suitably symmetrized but not
orthogonal. They take the form

PðnÞ
mj ðy1;…; ynÞ ¼ yj11 y

j2
2 …yjnn þ � � � ; ðA2Þ

with
P

n
i ji ¼ m. The truncation of the basis to the order N

is, of course, an approximation necessary for a finite matrix
representation; we study convergence with the respect to
this truncation, allowing N to be different for each Fock
sector.
Projection of the nth equation onto each basis function,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1 � � � ynð1 −

P
iyiÞ

p
PðnÞ
m0j0 ðy1;…; ynÞ, yields a matrix rep-

resentation of the original coupled system

X
mj

h
TðnÞ
m0j0;mjc

ðnÞ
mj þ Vðn;nþ1Þ

m0j0;mj c
ðnþ1Þ
mj þ Vðn;n−1Þ

m0j0;mj c
ðn−1Þ
mj

i

¼ M2

μ2
X
mj

SðnÞm0j0;mjc
ðnÞ
mj : ðA3Þ

The individual matrices are

TðnÞ
m0j0;mj ¼

Z Yn
i

dyi½m̃2y1 � � � yn þ ny2 � � � yn�

× PðnÞ
m0j0 ðy1;…; ynÞPðnÞ

mj ðy1;…; ynÞ; ðA4Þ

Vðn;nþ1Þ
m0j0;mj ¼ λ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p Z Yn
i

dyi

Z
1−
P
i

yi

0

dxy1 � � � yn

× PðnÞ
m0j0 ðy1;…; ynÞPðnþ1Þ

mj ðy1;…; yn; xÞ; ðA5Þ

Vðn;n−1Þ
m0j0;mj ¼ λ

ffiffiffi
n

p Z Yn
i

dyiy1 � � � yn−1PðnÞ
m0j0 ðy1;…; ynÞ

× Pðn−1Þ
mj ðy1;…; yn−1Þ; ðA6Þ

and

SðnÞm0j0;mj ¼
Z Yn

i

dyiy1 � � � yn
�
1 −

X
i

yi

�
PðnÞ
m0j0 ðy1;…; ynÞ

× PðnÞ
mj ðy1;…; ynÞ: ðA7Þ

The integrals can be done analytically in terms of the
generalized β function

Z
dx1 � � � dxnxk11 � � � xknn ð1 − x1 − � � � − xnÞ

¼ k1! � � � kn!
ðk1 þ � � � þ kn þ nþ 2Þ! ðA8Þ

This allows for efficient calculation of all the integrals, with
the different β-function evaluations done recursively and
stored for use.
If the basis functions were orthogonal, SðnÞ would be

diagonal, of course. However, we implicitly orthogonalize
the basis by performing a singular-value decomposition
SðnÞ ¼ UðnÞWðnÞUðnÞT . The columns of the matrix UðnÞ are
the eigenvectors of SðnÞ, andWðnÞ is a diagonal matrix of the
eigenvalues. The U matrices then define an orthogonal
transformation to new vectors of coefficients c⃗ðnÞ0 ¼
ðWðnÞÞ1=2UðnÞTc⃗ðnÞ and new matrices, such as TðnÞ0 ¼
ðWðnÞÞ−1=2UðnÞTTðnÞUðnÞðWðnÞÞ−1=2. The new matrix prob-
lem is no longer of the generalized type, but simply

X
mj

h
TðnÞ0
m0j0;mjc

ðnÞ0
mj þ Vðn;nþ1Þ0

m0j0;mj c
ðnþ1Þ0
mj þ Vðn;n−1Þ0

m0j0;mj c
ðn−1Þ0
mj

i

¼ M2

μ2
cðnÞ0m0j0 : ðA9Þ

The lowest eigenvalue is extracted by standard procedures
for symmetric matrices.
The convergence of such a calculation, with respect to

the basis size, is illustrated in Fig. 14. Convergence is quite
rapid in general; for stronger coupling values, near where
M becomes zero, larger basis sizes are needed.

2. LFCC approximation

To solve the LFCC equations for t1 and t2, given in (3.9)
and (3.11), we expand these functions in the basis set used
for the Fock-state wave functions as

FIG. 14. The mass eigenvalue as a function of the basis order N
in the top Fock sector of two neutrals for selected coupling
strengths λ ¼ 0.2, 0.4, 0.6, and 0.7. The mass values decrease
with increasing λ. The constituent mass ratio m̃ is equal to 1. The
maximum polynomial order in the one-neutral sector is 2.
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t1ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞ

p XN1

m

amP
ð1Þ
m ðyÞ; t2ðy1; y2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1y2ð1 − y1 − y2Þ

p XN2

m

bmP
ð2Þ
m ðy1; y2Þ: ðA10Þ

Here the index m represents both the order and implicitly, in the case of two variables, the distinction between linearly
independent polynomials of the same order. The equation for t1 is projected onto the single-variable basis functionsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞp

Pð1Þ
m0 ðyÞ, and the equation for t2 is projected onto

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1y2ð1 − y1 − y2Þ

p
Pð2Þ
m0 ðy1; y2Þ. The matrix representation of

the equation for t1 is then

0 ¼
�
m̃2 þ λ

2
Δ
�
A1
m0mam − ðm̃2 þ λΔÞA2

m0mam þ Bm0mam þ λCm0 þ λ

2
Dm0mlamal þ 2λFm0mbm ðA11Þ

and that for t2 is

0 ¼ 2

��
m̃2 þ λ

2
Δ
�
G1

m0m − ðm̃2 þ λΔÞG2
m0m þ G3

m0m

�
bm

þ
��

m̃2 þ λ

3
Δ
�
H1

m0ml − 2

�
m̃2 þ λ

2
Δ
�
H2

m0ml þ ðm̃2 þ λΔÞH3
m0ml þH4

m0ml

�
amal

þ 2λIm0mam þ λ

3
Jm0mklamakal þ λKm0mlbmal; ðA12Þ

with sums over repeated indices implied,

Δ ¼
X
m

Cmam ðA13Þ

and the associated matrices defined by

A1
m0m ¼

Z
1

0

dyyPð1Þ
m0 ðyÞPð1Þ

m ðyÞ; ðA14Þ

A2
m0m ¼

Z
1

0

dyyð1 − yÞPð1Þ
m0 ðyÞPð1Þ

m ðyÞ; ðA15Þ

Bm0m ¼
Z

1

0

dyð1 − yÞPð1Þ
m0 ðyÞPð1Þ

m ðyÞ; ðA16Þ

Cm0 ¼
Z

1

0

dyPð1Þ
m0 ðyÞ; ðA17Þ

Dm0ml ¼
Z

1

0

dy
Z

1−y

0

dx
y

1 − x
Pð1Þ
m0 ðyÞPð1Þ

m

�
y

1 − x

�
Pð1Þ
l ðxÞ

¼
Z

1

0

dx
Z

1

0

dzzð1 − xÞPð1Þ
m0 ðzð1 − xÞÞPð1Þ

m ðzÞPð1Þ
l ðxÞ; ðA18Þ

Fm0m ¼
Z

1

0

dy
Z

1−y

0

dxyPð1Þ
m0 ðyÞPð2Þ

m ðy; xÞ; ðA19Þ

G1
m0m ¼

Z
1

0

dy1dy2y1y2P
ð2Þ
m0 ðy1; y2ÞPð2Þ

m ðy1; y2Þ; ðA20Þ
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G2
m0m ¼

Z
1

0

dy1dy2y1y2ð1 − y1 − y2ÞPð2Þ
m0 ðy1; y2ÞPð2Þ

m ðy1; y2Þ; ðA21Þ

G3
m0m ¼ 2

Z
1

0

dy1dy2y2ð1 − y1 − y2ÞPð2Þ
m0 ðy1; y2ÞPð2Þ

m ðy1; y2Þ; ðA22Þ

H1
m0ml ¼

Z
1

0

dy1dz2y1z2ð1 − y1ÞPð2Þ
m0 ðy1; z2ð1 − y1ÞÞPð1Þ

m ðy1ÞPð1Þ
l ðz2Þ; ðA23Þ

H2
m0ml ¼

Z
1

0

dy1dz2y1z2ð1 − y1Þð1 − z2ÞPð2Þ
m0 ðy1; z2ð1 − y1ÞÞPð1Þ

m ðy1ÞPð1Þ
l ðz2Þ; ðA24Þ

H3
m0ml ¼

Z
1

0

dy1dz2y1z2ð1 − y1Þ2ð1 − z2ÞPð2Þ
m0 ðy1; z2ð1 − y1ÞÞPð1Þ

m ðy1ÞPð1Þ
l ðz2Þ; ðA25Þ

H4
m0ml ¼

Z
1

0

dy1dz2y1ð1 − y1Þð1 − z2ÞPð2Þ
m0 ðy1; z2ð1 − y1ÞÞPð1Þ

m ðy1ÞPð1Þ
l ðz2Þ

−
Z

1

0

dy1dz2z2ð1 − y1Þ2ð1 − z2ÞPð2Þ
m0 ðy1; z2ð1 − y1ÞÞPð1Þ

m ðy1ÞPð1Þ
l ðz2Þ; ðA26Þ

Im0m ¼
Z

1

0

dy1dy2y1P
ð2Þ
m0 ðy1; y2ÞPð1Þ

m ðy1Þ −
Z

1

0

dy1dz2z2ð1 − y1Þð1 − z2ÞPð2Þ
m0 ðy1; z2ð1 − y1ÞÞPð1Þ

m ðz2Þ; ðA27Þ

Jm0mkl ¼
Z

1

0

dy1dz1dz2½y1z2ð1 − y1Þð1 − z1ÞPð2Þ
m0 ðy1; z2ð1 − y1Þð1 − z1ÞÞ

− 3z1ð1 − y1Þz2ð1 − z1ð1 − y1ÞÞ2ð1 − z2ÞPð2Þ
m0 ðz1ð1 − y1Þ; z2ð1 − y1Þð1 − z1ÞÞ

þ z1ð1 − y1Þz2ð1 − z1Þð1 − y1ÞPð2Þ
m0 ðz1ð1 − y1Þ; z2ð1 − y1Þð1 − z1ÞÞ�Pð1Þ

m ðz2ÞPð1Þ
k ðz1ÞPð1Þ

l ðy1Þ; ðA28Þ

Km0ml ¼
Z

1

0

dy1dz1dz2½z1z2ð1 − y1Þ2ð1 − z1Þ2Pð2Þ
m0 ðz1ð1 − y1Þ; z2ð1 − y1Þð1 − z1ÞÞPð2Þ

m ðz1; z2ð1 − z1ÞÞPð1Þ
l ðy1Þ

þ 2y1z2ð1 − y1Þð1 − z2ÞPð2Þ
m0 ðy1; z2ð1 − y1ÞÞPð2Þ

m ðz1ð1 − z2Þ; z2ÞÞPð1Þ
l ðy1Þ

− 4y1z2ð1 − y1Þ2ð1 − z2ÞPð2Þ
m0 ðy1; z2ð1 − y1ÞÞPð2Þ

m ðz1ð1 − y1Þ; y1ÞÞPð1Þ
l ðz2Þ

þ 2y1z2ð1 − y1Þ2ð1 − z1ÞPð2Þ
m0 ðy1; z2ð1 − y1Þð1 − z1ÞÞPð2Þ

m ðy1; z1ð1 − y1ÞÞPð1Þ
l ðz2Þ�: ðA29Þ

For the D matrix, a change of variables has been shown
explicitly; similar rescalings are done for many of the other
matrices. These rescalings arrange for the arguments of the
polynomials to be polynomials and for all integration
ranges to be from 0 to 1. The integrals are then linear
combinations of simple integrals of monomials.
The nonlinear matrix equations obtained in this way are

then solved by a modification of the Powell hybrid method
[22] as implemented in the general nonlinear equation
solver ‘hybrj’ of the MINPACK set of subroutines [23]. The
method is recursive; the initial guess for the unknown
coefficients is taken to be zero for the lowest coupling
strength and, as an increasing series of coupling strengths is

considered, the next initial guess is the solution for the
previous coupling strength.
For the case where only T1 is included and we solve

only (3.9) for t1 with t2 ¼ 0, convergence with respect
to basis size is very rapid when m̃ ¼ 1. The results for
N1 ¼ 1 and N1 ¼ 2 are indistinguishable on a graph.
For the full solution, with both T1 and T2 included, the
dependence on N2, the maximum order for the t2 basis,
is shown in Fig. 15. Convergence is again quite rapid,
except for stronger coupling where M2 approaches zero.
For smaller and larger values of m̃, convergence is
slower for t1, requiring N1 ¼ 9 for m̃ ¼ 0.1 and N1 ¼ 5
for m̃ ¼ 10. Convergence for t2 is quicker, using

USSELMAN, CHABYSHEVA, and HILLER PHYS. REV. D 99, 116011 (2019)

116011-12



N2 ¼ 3, except for strong coupling in the case of
m̃ ¼ 10 where the nonlinear equation solver was unable
to converge to a solution.

APPENDIX B: RULES FOR DIAGRAMS

Although the LFCC equations for the t functions can be
constructed by carrying out the contractions of creation and
annihilation operators, the construction can be simplified
by use of a set of rules for operator diagrams that depict the
structure of the contractions. The rules are as follows:
(1) Represent the terms of P− by crosses for the charged

and neutral mass terms and simple vertices for neutral
creation and annihilation, as shown in Fig. 16.

(2) Represent T1 and T2 by the vertices shown in
Fig. 17.

(3) For each Fock-sector projection, draw all possible
diagrams connecting the valence state to that Fock
sector. The connections between vertices and/or
crosses represent contractions. Each diagram must
include a term from P− once and only once and may
include as many T1 and/or T2 vertices as needed, to

the left and right of the P− insertion, to reach the
chosen sector.

(4) In each diagram, label each line with a momentum
fraction, starting from 1 for the line acting on the
charge-one valence state on the right and ending
with y1 through yn for the n neutrals in the projected
sector on the left; conserve momentum at each
vertex.

(5) Construct the expression corresponding to the dia-
gram from the individual vertices and crosses, and
integrate over any loop momentum fractions, with
the upper limit set by the fractions entering and
leaving the loop.

(6) For each product of m T1 and T2 vertices to the left,
include a factor of ð−1Þm=m! and for each to right, a
factor of 1=m!; these come from the expansion of the
exponential e�ðT1þT2Þ.

(7) Symmetrize with respect to permutations of
y1;…; yn and with respect to the neutral lines from
T2 vertices.

As an almost trivial example, the diagrams contributing
to the terms on the right of the valence equation (3.5) are
shown in Fig. 1. A less trivial example is the set of diagrams
for the one-neutral projection, shown in Fig. 2. Except for
the 1

2
P−

intT
2
1 term in (3.7), there is only one diagram for each

term in P−; for 1
2
P−

intT
2
1 there are two. The rules then

yield (3.8).

FIG. 16. Diagrammatic representation of the terms in P− and their corresponding expressions. Solid lines represent the charged scalar
and dashed, the neutral. A cross designates a mass term. The diagrams represent operators acting to the right; e.g., the last diagram
corresponds to the annihilation of a neutral.

FIG. 17. Diagrammatic representation of the T1 and T2

operators, and their corresponding expressions, acting to the
right and creating one or two neutrals, respectively, by first
annihilating a charged scalar with momentum fraction x.

FIG. 15. LFCC results for the mass eigenvalue ratioM2=μ2 as a
function of the dimensionless coupling λ for a range of basis sizes
for t2. The basis set was limited to maximum order of N2 ¼ 1
through 5, with the t1 basis size set at maximum order N1 ¼ 2.
The mass ratio of the constituents is m̃≡m=μ ¼ 1.
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