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Approximate solutions of the Dirac equation are found for ultrarelativistic particles moving in a periodic
potential, which depends only on one coordinate, transverse to the largest component of the momentum of
the incoming particle. As an example, we employ these solutions to calculate the radiation emission of
positrons and electrons trapped in the planar potential found between the (110) planes in silicon. This
allows us to compare with the semiclassical method of Baier, Katkov, and Strakhovenko, which includes
the effect of spin and photon recoil but neglects the quantization of the transverse motion. For high-energy
electrons, the high-energy part of the angularly integrated photon energy spectrum calculated with the
found wave functions differs from the corresponding one calculated with the semiclassical method.
However, for lower particle energies, it is found that the angularly integrated emission energy spectra
obtained via the semiclassical method is in fairly good agreement with the full quantum calculation except
that the positions of the harmonic peaks in photon energy and the photon emission angles are shifted.
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I. INTRODUCTION

Under certain circumstances, when a high-energy
charged particle enters a crystalline medium, the particle
dynamics is not dominated by the scattering on single
atoms but rather by the coherent scattering on many atoms,
resulting in a smooth, bound motion along crystal axes or
planes [1]. This motion leads to radiation emission called
channeling radiation. This has been studied both exper-
imentally [2–13] and theoretically [5,14–17]. Channeling
radiation from high-energy electrons/positrons represents
one of the few experimental realizations of nonperturba-
tive and nonlinear problems in quantum electrodynamics,
where the field strength experienced by the particle in its
rest frame approaches the Schwinger field Ecr ¼ 1.3×
1016 V=cm, see Fig. 1. The only other experiments where
this has been realized were the SLAC laser experiment [18]
and the recently reported experiments [19,20], although
they had a smaller quantum nonlinearity parameter. The
quantum nonlinearity parameter is the ratio of the field
strength experienced by a charged particle in its rest frame
and the Schwinger field strength. While the quantum
treatment of radiation emission in a laser field can be fully
treated using the Volkov state [21–27], no such full treat-
ment has been presented for channeling radiation. The
theory of channeling radiation so far has consisted of a

quantum approach involving wave functions at low particle
energies, but which neglects spin, photon recoil, and
nondipole transitions in the emission process because these
effects are not important at low energies as compared to the
effect of the quantization of the energy levels in the
potential. Such an approach can be found, for example,
in Refs. [6,28,29]. For higher particle energies, the theory
relies on the semiclassical operator method by Baier et al.
[30], which then includes the effects of spin and photon
recoil but neglects the quantization of the transverse
motion. The semiclassical method is relatively easy to
implement numerically, and this explains why this method
is often employed for numerical calculations in crystal
channeling and crystalline undulators [31–33]. In many
of the original theoretical works on channeling radia-
tion, the connection between the Dirac equation and a

FIG. 1. The Feynman diagrams corresponding to the process
under study. The double fermion lines correspond to the electron
solutions of the Dirac equation in the background field of the inter
planar crystal potential, which in the perturbative picture corre-
sponds to including all orders of interactions with this back-
ground field.
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Schrödinger-like equation was seen, but then various
approximations were employed, such as a simplified
potential yielding analytical solutions, the dipole approxi-
mation in the calculation of the radiation, and/or the
assumption that ω=ε is small, where ω is the energy of
the emitted photon and ε is the initial energy of the radiating
particle; see Refs. [34–38]. See also Refs. [39–53] for recent
advancements on the subject of crystal channeling.
In this paper, we present an investigation of planar

channeling, based on wave functions that are approximate
solutions of the Dirac equation in the realistic Doyle-Turner
model of the periodic crystal potential and calculate the
single-photon radiation emission without any of the men-
tioned approximations. Therefore, we now include all
relevant quantum effects, which in some cases yield
differences as compared to the semiclassical theory. In
particular, the fact that the radiation emission stems from
transitions between discrete bound states between the
planes is properly taken into account. We investigate an
example of 20 GeV planar channeled electrons, as in this
case one can have significant radiation emission from
bound states with a low quantum number. In this case,
the quantization of the motion is important, and at the same
time, photon energies comparable to the electron energy are
emitted, such that spin and photon recoil effects are also
important. In addition, for very high particle energies,
transitions from bound states with high to low quantum
numbers become more likely. Therefore, the high-energy
part of the spectrum is different from that obtained via the
semiclassical model, as states with low quantum numbers
are only approximately accounted for by the latter model.
As an example, we will see this effect for planar channeled
electrons with initial energy of 250 GeV and 1 TeV.
We use units where ℏ ¼ c ¼ 1, α ¼ e2, with e being the

positron charge, and the Feynman slash notation such that
=a ¼ aμγμ, where γμ are the Dirac gamma matrices and aμ

is an arbitrary 4-vector. We adopt the metric tensor ημν ¼
diagðþ1;−1;−1;−1Þ. Below, when the term “particle” is
employed, it will refer to either an electron or to a positron.

II. WAVE FUNCTIONS

In Ref. [54], we discussed the Dirac equation in a
parabolic potential in the regime where ξ ≪ γ, where ξ
is the typical transverse momentum (here, py) divided by
the electron mass m and γ is the Lorentz gamma factor of
the incoming particle. For channeling, we have that
ξ ¼ γθc, where θc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0=ε

p
is the critical angle for

channeling [1], and so the requirement of validity reduces
to θc ≪ 1 or ε ≫ V0. For silicon, V0 ¼ 22.7 eV, and we
are interested in ultrarelativistic particles with energy on the
scale of GeV, such that this approximation is safely
applicable. Note that at ξ ≫ 1 the overall emission angle
(approximately 2ξ=γ) is much larger than the instantaneous
one (approximately 1=γ), and this corresponds to the

regime where the local constant field approximation
(LCFA), in general, becomes applicable [55]. When ξ is
small, however, the dipole approximation may be used
[55]. Another important parameter is the so-called quantum
nonlinearity parameter already mentioned in the
Introduction and defined by

χ ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðFμνpνÞ2j

p
m3

: ð1Þ

When χ becomes on the order of unity, the effects of
particle spin and photon recoil become important in the
radiation emission process. The quantum description of
radiation emission using wave functions as seen in
Refs. [6,28,29] is valid when χ ≪ 1, because spin effects
and recoil are neglected, and when ξ ≪ 1, because the
magnetic field in the particle’s rest frame is neglected and
only the dipole matrix element is calculated. In the present
paper, we treat the problem from the laboratory frame, and
the field can therefore be described solely by an electro-
static potential φðyÞ. We then assume that the largest
component of the particle momentum is along the x
direction. In Ref. [54] (and see Appendix A), we found
that the positive-energy solutions of the Dirac equation, to
leading order in ξ=γ, can be written as (we set the
quantization volume V ¼ 1)

ψðxÞ ¼ 1ffiffiffiffiffi
2ε

p eiðpxxþpzz−εtÞUðyÞ; ð2Þ

and UðyÞ is given by

UðyÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p �
s

σ·p̃
εþm s

�
IðyÞ; ð3Þ

where p̃ ¼ ðpx − eφðyÞ;−i d
dy ; pzÞ, s is a two-component

vector describing the spin, which we can choose as either
ð 1 0 ÞT or ð 0 1 ÞT, corresponding to spin-up and spin-
down, respectively. Note that in Eq. (3) we approximated

σ · p
εþmþ eφðyÞ ≃

σ · p̃
εþm

; ð4Þ

where p ¼ ðpx;−i d
dy ; pzÞ; see also Appendix A. As already

mentioned, we have taken px to be the longitudinal
direction, that is, in the initial state pz ¼ 0, px > 0 and
px ≃ ε ≫ mξ, where ε ¼ mγ is the initial (constant) energy
of the particle. The function IðyÞ is the solution of the
equation

�
−

1

2ε

d2

dy2
− eφðyÞ

�
IðyÞ ¼ ε2 − p2

x − p2
z −m2

2ε
IðyÞ: ð5Þ

For φðyÞ, we will use the Doyle-Turner model [55–58],
chosen as symmetric around y ¼ 0, which is then given by
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φðyÞ ¼
X∞
l¼−∞

φ1ðy − ldpÞ; ð6Þ

where dp ¼ 1.92 Å is the interplanar distance for the (110)
planes in silicon,

φ1ðyÞ¼ 2
ffiffiffi
π

p
ea0Ndp

X4
i¼1

aiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Biþρ2

p exp

�
−

y2

Biþρ2

�
; ð7Þ

a0 is the Bohr radius, N is the atomic number density,
ρ ¼ 0.106 Å is the thermal vibrational amplitude for
silicon, and the parameters ai and Bi are given in Table I.
Clearly, Eq. (5) corresponds to an eigenvalue problem

in the form we are accustomed to from atomic physics.
The potential φðyÞ is periodic with the period dp. Because
of this periodicity, the solution can be written as a Bloch
wave such that

IðyÞ ¼ eikByukBðyÞ ð8Þ
and where ukBðyÞ is also periodic with period dp. The
quantity kB is the Bloch momentum, which can be taken to
be in the interval 0 ≤ kB < k0, k0 ¼ 2π

dp
. It then follows from

Bloch’s theorem that these solutions form an orthogonal
and complete set of solutions of Eq. (5) [59] (see
Appendix B for a proof that the resulting solutions of
the Dirac equation are also orthonormal within our level of
approximation). Now, we are interested in the solution
ukBðyÞ, which is the nontrivial part of the wave function.
Inserting IðyÞ of Eq. (8) into Eq. (5) gives us the equation
governing ukBðyÞ:�

−
1

2ε

�
d2

dy2
þ 2ikB

d
dy

− k2B

�
þ qφðyÞ

�
ukBðyÞ

¼ ε2 − p2
x − p2

z −m2

2ε
ukBðyÞ: ð9Þ

The periodicity of ukBðyÞ implies that it can be written as
the Fourier series

ukBðyÞ ¼
X
j

cjeijk0y: ð10Þ

To write any periodic function as a Fourier series, the sum
includes infinitely many terms. However, for the numerical

implementation, we are restricted to reducing the series to a
finite sum. When the number of basis vectors is increased,
it is found that the lowest lying states do converge, and
therefore one only needs enough basis elements, that the
sum describing the states of interest has converged to a
fixed degree of accuracy. To ensure normalization, we
should have

P
j jcjj2 ¼ 1 (see Appendix B). It is now clear

that this is an eigenvalue problem where the quantized
eigenvalue is

En ¼
ε2 − p2

x − p2
z −m2

2ε
; ð11Þ

where n is the quantum number corresponding to the value
of this energy in ascending order and where n ¼ 0
corresponds the ground state. This equation leads to a
quantization of, e.g., px. That is, if ε is fixed by the
incoming energy of the particle, a larger quantum number n
corresponds to a smaller value of px in order to accom-
modate the larger transverse momentum in the y direction.
From this relation, it is also clear that the quantity 2εEn is
related to the square of the momentum in the y direction,
p2
y. The coefficients cj are found by solving the matrix

eigenvalue problem obtained by inserting Eq. (10) in
Eq. (9), by multiplying by e−ilk0y=dp, and by integrating
over y from −dp=2 to dp=2 to exploit orthogonality,

X
j

1

2ε
ðjk0 þ kBÞ2δj;lcj

þ
X
j

cj
1

dp

Z
qφðyÞeiðj−lÞk0ydy

¼
X
j

ε2 − p2
x − p2

z −m2

2ε
δj;lcj; ð12Þ

where q ¼ e for a positron and q ¼ −e for an electron.
With these results taken into consideration, we now see that
we can write the function UðyÞ in terms of the coefficients
cj such that

UðyÞ ¼
X
j

cjSjeiðjk0þkBÞy; ð13Þ

where

Sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p �
s

σ·pj
εþm s

�
ð14Þ

and where

pj ¼
�
px þ En −

ðjk0 þ kBÞ2
2ε

; jk0 þ kB; pz

�
: ð15Þ

In order to write the momentum in this form, we have
replaced the term with the potential by exploiting Eq. (9).

TABLE I. The parameters for the Doyle-Turner potential of
silicon.

i ai (Å) Bi (Å
2)

1 2.129 1.463
2 2.533 4.173 × 10−1

3 8.349 × 10−1 7.294 × 10−2

4 3.216 × 10−1 9.777 × 10−3
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Before calculating the radiation emission probability, we
will calculate the expectation value of the momentum in
the y direction, as this will provide insight as to how the
momentum relates to the quantum number kB. By inserting
our wave function from Eq. (2) in

hpyi ¼
Z

∞

−∞
ψ†ðxÞ

�
−i

d
dy

�
ψðxÞd3x; ð16Þ

we find that this becomes simply

hpyi ¼
X
j

jcjj2ðjk0 þ kBÞ; ð17Þ

to leading order in our approximation; see Appendix C.

III. SINGLE PHOTON EMISSION

We will now derive the single photon emission proba-
bility. The leading-order S-matrix element for the emission
of a single photon by an electron moving inside the
potential φðyÞ is given by

Sð1Þi→f ¼ −i
ffiffiffiffiffiffi
4π

2ω

r Z
∞

−∞
d4xψ̄fðxÞe=ϵ�eikxψ iðxÞ; ð18Þ

and the emission probability is then

dPð1Þ
i→f ¼ jSð1Þi→fj2

d3pf

ð2πÞ3
d3k
ð2πÞ3 : ð19Þ

By inserting our wave functions and integrating over the
coordinates, which provide energy-momentum conserva-
tion delta functions, we have that

Sð1Þi→f ¼ −iMi→fð2πÞ4δðεf þ ω − εiÞ
× δðpx;i − kx − px;fÞδðpz;i − kz − pz;fÞ
× δðkB;i − ky − kB;f − nBk0Þ; ð20Þ

where nB is the integer such that 0 ≤ kB;f < k0, henceforth
denoted as the first Brillouin zone (FBZ) (see Appendix D
for details on this derivation). In the above expression of the
S-matrix element, we defined the reduced matrix element,

Mi→f ¼ e

ffiffiffiffiffiffi
4π

2ω

r
1

2
ffiffiffiffiffiffiffiffi
εfεi

p
X
j

c�nBþj;fcj;iS̄nBþj;f=ϵkSj;i; ð21Þ

where Sj;i corresponds to the initial state and cj;i is the
coefficient with index j corresponding to the initial state i.
It is therefore seen that one must solve the matrix problem
of Eq. (12) for εf ¼ εi − ω several times, as the final
state depends on the energy of the emitted photon ω and
the Bloch momentum kB;f of the final electron (see
Appendix D for additional details, especially on why
Mi→f reduces to a single sum over j). We find that the

rate corresponding to Eq. (19), when dividing by total
interaction time T int arising from squaring the energy delta
function, is given by

dWð1Þ
i→f ¼

1

ð2πÞ2 jMi→fj2δðεf þ ω − εiÞd3k: ð22Þ

As is usually the case when dealing with calculations
concerning ultrarelativistic particles, it is pertinent to
consider cancellations between the large terms in the
expression in the delta function, εf þ ω − εi because the
relevant transverse energies En, comparable to the potential
depth, are much smaller than the whole energy of the
particle (recall that the former are of the order of several
electron-volts, whereas the latter is of the order of giga-
electron-volts). For this, it is useful to consider the quantity
Δ, which we define via the equation ε ¼ px þ Δ. Inserting
this into the equation for our eigenvalues, Eq. (11), we
obtain that to leading order in En=ε,

Δ ¼ En þ
p2
z þm2

2ε
: ð23Þ

Defining k ¼ ωðcos θ; sin θ cosφ; sin θ sinφÞ, we can
rewrite the argument of the remaining energy delta function
as (note that in the present problem it is convenient to use
the x axis as the polar axis)

fðθÞ ¼ εf þ ω − εi

¼ Enf − Eni þ
p2
z;f þm2

2εf
−
p2
z;i þm2

2εi

þ px;f − px;i þ ω

≃ Enf − Eni þ
m2

2εf
−
m2

2εi

þ ωθ2

2

�
1þ ωsin2φ

εf

�
: ð24Þ

We define θ0 as the positive solution of the equation
fðθ0Þ ¼ 0. When considering bound states, the energies En
become nearly independent of kB, as seen in Fig. 2. In this
case, one can isolate the emission angle as

θ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEni − EnfÞ þ m2

εi
− m2

εf

ωð1þ ωsin2φ
εf

Þ

vuuut ; ð25Þ

and the threshold for a given transition is given by the
condition where the numerator vanishes, which gives us
that

ωth;q ¼ εi

0
@1 −

1

1þ 2εiðEni
−Enf

Þ
m2

1
A: ð26Þ
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IV. SEMICLASSICAL METHOD

In order to compare with the classical theory, we will
derive a formula for the emitted power in the case of a
periodic transverse motion, and then in the end, this can be
turned into a semiclassical formula by comparing with the
expression of Baier et al. [see Eq. (28) below]. Classically,
the emitted energy per unit frequency and solid angle can
be written as [60,61]

d2ICl

dωdΩ
¼ e2ω2

4π2

����
Z

∞

−∞
ðn − vÞeikxdt

����
2

; ð27Þ

where kμ ¼ ðω; kÞ is the wave 4-vector of the emitted
radiation, where xμ ¼ ðt; rÞ is the 4-position of the particle,
v its velocity, and n ¼ k=ω. In the semiclassical formalism,
the same quantity is given by [30,55,61]

d2I
dωdΩ

¼ e2ω02

4π2

�
ε2 þ ε02

2ε2

����
Z

∞

−∞
ðn − vÞeik0xdt

����
2

;

þω2m2

2ε4

����
Z

∞

−∞
eik

0xdt

����
2
�
; ð28Þ

where ε0 ¼ ε − ω, ω0 ¼ ωε=ε0 and k0 ¼ kε=ε0 (this result
holds in the case when the sum over final particle spins and
photon polarizations and the average over initial spins are
taken). As was shown in Refs. [61,62], we need only to
calculate the transverse components of the integrand for
ultrarelativistic particles as the longitudinal component is
suppressed by at least a factor of 1=γ in comparison.
Therefore, for the classical formula, we have to calculate

Z
∞

−∞
eiωðt−n·rÞdt ¼

Z
∞

−∞
eiωðt−n⊥·r⊥−nxxðtÞÞdt: ð29Þ

Sincemost of the radiation is emitted in the forward direction
for ultrarelativistic particles, we may perform the small-
angle expansion, and so we write nx ¼ 1 − θ2

2
and xðtÞ ¼

hvxitþ δxðtÞ, where we exploit the fact that the motion is
quasiperiodic. For this reason, the quantity δxðtÞ is a periodic
function. By using the fact that v2 is approximately con-

served, we have that hvxi ≃ 1 − 1
2γ2

− v2⊥
2
; see also Ref. [60].

Inserting this result in the above expression and canceling
the large terms, we obtain

Z
∞

−∞
eiωðt−n·rÞdt

¼
Z

∞

−∞
e
iω½tðθ2

2
þhv2⊥i

2
þ 1

2γ2
Þ−n⊥·r⊥−δx�dt: ð30Þ

Now, if hv⊥i is zero, i.e., we have chosen the coordinate
system where this is the case, we can exploit that r⊥ and

δx are periodic and write
R∞
−∞ fðtÞdt ¼ P

l

R ðlþ1ÞT
lT fðtÞdt,

where T is the period of the motion, and change variable at

which point the Dirichlet kernel appears, which can be
replaced by a sum of delta functions. Thus, we obtain

Z
∞

−∞
eiωðt−n·rÞdt

¼ Cðω; θÞ
X
l

δ

�
ω

2γ2ω0

ð1þ γ2θ2 þ γ2hv2⊥iÞ − l

�
; ð31Þ

where ω0 ¼ 2π
T and where we introduced the function

Cðω; θÞ ¼
Z

T

0

e
iω½tðθ2

2
þhv2⊥i

2
þ 1

2γ2
Þ−n⊥·r⊥−δx�dt: ð32Þ

Analogously, we introduce the quantity

D⊥ðω; θÞ ¼
Z

T

0

v⊥e
iω½tðθ2

2
þhv2⊥i

2
þ 1

2γ2
Þ−n⊥·r⊥−δx�dt: ð33Þ

For the integral with the velocity, completely analogous steps
can be taken, and therefore we have that
Z

∞

−∞
v⊥eiωðt−n·rÞdt

¼ D⊥ðω; θÞ
X
l

δ

�
ω

2γ2ω0

ð1þ γ2θ2 þ γ2hv2⊥iÞ − l

�
:

ð34Þ

By inserting these quantities into the classical formula
and using that the delta function squared gives us the delta
function again with a factor of Δφ=2π ¼ T intω0=2π.
Therefore, we obtain that the emitted energy per unit time
T int is given by

ωdWCl ¼ e2ω
4π2

ω2
0

2π

×
X
l

ðjCðω; θl;ClÞn⊥ − D⊥ðω; θl;ClÞj2Þdωdφ;

ð35Þ

wherewe used the delta function to integrate over the angle θ
such that

θl;Cl ¼
1

γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ2ω0l

ω
− ð1þ γ2hv2⊥iÞ

r
: ð36Þ

Note that for the sake of convenience we have introduced
here a “classical” emission probability, even though such
a quantity has a meaning only within the quantum theory.
By performing the appropriate substitutions of ω → ω0 and
by putting in the front factors as in Eq. (28), we can obtain
the semiclassical version of the result in the form
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ωdW ¼ e2ω0

4π2
ω2
0

2π

X
l

�
ε2 þ ε02

2ε2
jCðω0; θlÞn⊥ − D⊥ðω0; θlÞj2

þ ω2m2

2ε4
jCðω0; θlÞj2

�
dωdφ; ð37Þ

where

θl ¼
1

γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ2ω0l
ω0 − ð1þ γ2hv2⊥iÞ

r
: ð38Þ

The threshold is therefore found to be at

ωth;B ¼ ε
2γω0l

mð1þ γ2hv2⊥iÞ þ 2γω0l
: ð39Þ

A. Local constant field approximation

We will compare our results with the often used local
constant field approximation. The emission rate in a
constant field characterized by χ is given by [55]

dW
du

¼ α

π
ffiffiffi
3

p m2

ε

1

ð1þ uÞ2
�
1þ ð1þ uÞ2

1þ u
K2=3

�
2u
3χ

�

−
Z

∞

2u=3χ
K1=3ðzÞdz

	
; ð40Þ

where u ¼ ω=ðε − ωÞ and Kν is the modified Bessel
function of the second kind of order ν. The LCFA then
amounts to calculating the Lorentz force trajectory through
the external field, and then one can evaluate χðtÞ, and the
emission rate is then averaged over times using the above
formula. In the current case, one can average over the
period T. The formula of Eq. (40) can be derived directly

from Eq. (28) by writing it as a double integration over two
times t1 ¼ t − τ=2 and t2 ¼ tþ τ=2 and performing the
Taylor expansion of the trajectory rðt� τ=2Þ in τ in terms
of the velocity and acceleration at time t and keeping only
terms up to the acceleration as was done in Ref. [55];
therefore, the semiclassical spectra will go towards the
LCFA spectra when it is adequate to keep only these terms,
and this is the case when the field varies slowly over the
formation length lf ¼ 2γ2ð1 − ω=εÞ=ω [55], and therefore
for large values of ω, it is expected that the SC spectra agree
with the LCFA.

V. DISCUSSION OF RESULTS

In Fig. 2, we show the energy bands for a positron with
100 MeV in the Doyle-Turner potential describing the
(110) planes of silicon. It is noted that the energy En of
bound states with small values of n is almost independent
of kB. In Fig. 3, we show a plot of the expectation value of
the transverse momentum py, and we see that the bound
states, with En < V0, have hpyi ≃ 0, and for the states
above the barrier, the quantity hpyi steadily increases with
En. Also, it depends on kB in such a way that half of the
FBZ describes particles going to the left and the other half
describes particles going to the right. In Fig. 4, we show the
total power of a 250 GeVelectron/positron, calculated with
the LCFA, depending on the initial position y0, when
assuming the beam angular divergence is negligible, i.e.,
much smaller than the critical angle θc. What can be seen
from this figure is that in both cases of the electron and
positron, particles which start out close to the plane (here,
y0 ¼ 0) have a larger radiation power. However, for
positrons, as they are repelled from the planes, this means
a large oscillation amplitude and therefore large n quantum
number, while for electrons, which are attracted to the
planes, starting close to the plane means a small oscillation
amplitude, and therefore small n quantum numbers radiate

FIG. 3. A plot of the expectation value of py as function of the
quantum numbers kB and n for a 100 MeV positron, correspond-
ing to Fig. 1.
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0

10
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30

0 0.2 0.4 0.6 0.8 1

FIG. 2. The potential φðyÞ along with the positron energy bands
in the first Brillouin zone for the energy ε ¼ 100 MeV. This
energy was chosen to have a reasonable number of levels so that
the plot is not cluttered.

TOBIAS N. WISTISEN and ANTONINO DI PIAZZA PHYS. REV. D 99, 116010 (2019)

116010-6



more for electrons. This, combined with the fact that
electrons will generally have an emission spectrum dis-
tributed around larger photon energies, implies that all the
quantum effects mentioned in the Introduction may become
important. In Fig. 5, we show the calculation of the photon
emission spectra for a 20 GeV electron in the state with
n ¼ 20. This value of n was picked as states around this
value of n have the largest rate of emission. In the particular
case seen in Fig. 5, we can see the influence of the quantum
effects in the following way. The fact that the classical
calculation differs from the semiclassical method of Baier
et al. means that the effects of spin and of photon recoil are
present, i.e., that χ is large enough that these effects are
sizable. At the same time, we see that the calculations
presented here differ from the semiclassical of Baier et al.
because the quantum number, n ¼ 20, of this state is not
large enough that the quantization of the motion can be
completely neglected. In addition, we have that ξ is on the
order of unity, and therefore one can apply neither the
constant field approximation nor the dipole approximation.
We see, however, in Fig. 5 that the overall level of the
semiclassical spectrum falls together with the quantum
results obtained here, while the most noticeable difference
is in the position of the thresholds, which should also be
clear from Eqs. (26) and (39); see Refs. [54,63], where this
is also found for different field configurations. Here, it is
seen that the threshold depends critically on the difference
in energy between the quantized levels in the transverse
potential, information which is not contained in the semi-
classical method. In an experiment, one would, however,
only obtain an average over the spectra corresponding to
different states, and therefore these details would likely be
washed out. Definitive distinction could, however, be
observed if the emitted photon energy ω could be measured
along with the emission angles θ and φ. This can be seen
from Eqs. (25) and (38), which show that also the emission

angle depends on the level spacing. In addition, a quali-
tative difference appears: the semiclassical treatment pre-
dicts that θ depends only on ω, while in the full calculation
presented here, there is also a dependence on φ when
ω ∼ ε − ω, i.e., when χ is no longer small. In Fig. 6, we
show that, while the same differences of the position of the
thresholds can be seen here, the effect is very small for
positrons with larger values of n typically, as explained.
However, if we picked a positron in a lower lying state,
differences in the spectrum comparable to those seen in
Fig. 5 would be seen, but such low lying states have a low
total radiated power for positrons and therefore do not
contribute much to the spectrum when averaged over initial
conditions. In Fig. 7, we show the calculation for a
250 GeV electron in the n ¼ 45 state, which corresponds
to the particles with the largest power, i.e., the peak in Fig. 4
for electrons. We compare to the semiclassical, classical,
and LCFA models. As expected, the LCFA approximation
agrees with the semiclassical one for large photon energies,
where the formation length is short. It is seen that the
classical calculation fails for large photon energies, as
expected. For the very high-energy part of the spectrum, it
is also observed that the full quantum calculation is
different from the semiclassical result. From Eq. (26), it
can be seen that larger values of the difference Eni − Enf

imply a larger value of the emitted energy threshold.
Therefore, the high-energy part of the photon spectrum
arises from transitions where the electron goes from the
initial state with n ¼ 45 to a state with a low value of
the quantum number n. Now, in the semiclassical method,

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6
250 GeV e-

250 GeV e+

FIG. 4. The total power, relative to the average, of a 250 GeV
electron/positron incident at the position y0 with zero angle.
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FIG. 5. The differential power (probability per unit time
multiplied by the photon energy) for the case of a 20 GeV
electron in the state n ¼ 20 between the (110) planes of silicon.
The label “quantum” is the calculation carried out by employing
the wave functions found in this paper, “Baier SC” is the
semiclassical method of Baier et al. for a particle with the same
transverse mechanical energy, and “classical” is using the
classical formula for radiation emission.
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the wave functions of both initial and final states are
approximated in a way which is only valid when the
corresponding discrete quantum numbers are large. Since
this is not the case for the final state, the semiclassical result
differs from the full quantum one. In Fig. 8, the same effect
is seen for the case of a 1 TeVelectron in the n ¼ 120 state
initially. In this case, the effect is more pronounced and far
above the level of the Bethe-Heitler bremsstrahlung, which
is approximately ωdWBH=dω ≃ 2.8 × 10−6 eV; see the
section on “Passage of Particles Through Matter” in
Ref. [64]. Therefore, if one carries out a precise measure-
ment of the high-energy part of the spectrum, the discrep-
ancy between the two models could be experimentally
tested. In Fig. 9, we show the spectra for a 1 TeV positron
with a large n quantum number, and in this case, the
semiclassical method works well.

VI. CONCLUSION

In conclusion, we have shown how to find approximate
solutions of the Dirac equation for describing the motion of
relativistic electrons and positrons in a periodic potential
which depends on one transverse coordinate, as compared
to the direction of the largest momentum (here indicated as
the x direction). We have shown how to calculate the
emission rate of a single photon from transitions between
the corresponding quantum states exactly, that is, without
the use of either the dipole approximation or the local
constant field approximation. Therefore, we have been able
to calculate single-photon planar channeling radiation,
with all relevant quantum effects included: the effects of

electron/positron spin and photon recoil during the emis-
sion, which the semiclassical method also incorporates, but
also the effects of the quantization of the transverse motion.
For planar channeling, and in particular for positrons, we
saw that the semiclassical approximation of Baier et al.
(beyond the local constant field approximation) is accurate
in describing the energy distribution of the emitted photon,
when integrated over angles. For electrons, differences are
more noticeable. For low electron energies, a clear exper-
imental measurement of such differences would require
angular resolution of the emitted photons along with their
energy. However, for higher-energy electrons, a difference
could potentially be detected experimentally, even in the
angularly integrated emission spectrum for emitted photons
with high energy.
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APPENDIX A

The general (un-normalized) solution to the Dirac equa-
tion with potential energy VðrÞ ¼ −eφðrÞ can be written as
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FIG. 7. The differential power (probability per unit time
multiplied by the photon energy) for the case of a 250 GeV
electron in the state n ¼ 45 between the (110) planes of silicon.
The label “quantum” is the calculation carried out by employing
the wave functions found in this paper, “Baier SC” is the
semiclassical method of Baier et al. for a particle with the same
transverse mechanical energy, “classical” is using the classical
formula for radiation emission, and LCFA is the local constant
field approximation.
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FIG. 6. The differential power (probability per unit time
multiplied by the photon energy) for the case of a 10 GeV
positron in the state n ¼ 150 between the (110) planes of silicon.
The label “quantum” is the calculation carried out by employing
the wave functions found in this paper, and “Baier SC” is the
semiclassical method of Baier et al. for a particle with the same
transverse mechanical energy.
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ψðr; tÞ ¼ e−iεt
�
ϕðrÞ
χðrÞ

�
: ðA1Þ

The Dirac equation then becomes

ðεþ eφ −mÞϕðrÞ ¼ σ · p̂χðrÞ; ðA2Þ

ðεþ eφþmÞχðrÞ ¼ σ · p̂ϕðrÞ: ðA3Þ

If we insert χðrÞ from Eq. (A3) in Eq. (A2), we can obtain an
equation for ϕðrÞ:

ðεþ eφ −mÞϕðrÞ

¼ σ · p̂
1

ðεþ eφþmÞ σ · p̂ϕðrÞ

¼ 1

ðεþ eφþmÞ ½σ · p̂�2ϕðrÞ − i
eσ · E

ðεþ eφþmÞ2 σ · p̂ϕðrÞ

¼ 1

ðεþ eφþmÞ p̂
2ϕðrÞ − i

eσ · E
ðεþ eφþmÞ2 σ · p̂ϕðrÞ:

ðA4Þ

Now, let us multiply with ðεþ eφþmÞ; then,

p̂2ϕðrÞ − i
eσ · E

εþ eφþm
σ · p̂ϕðrÞ

¼ ðεþ eφþmÞðεþ eφ −mÞϕðrÞ
¼ ½ðεþ eφÞ2 −m2�ϕðrÞ
¼ ½ε2 þ 2εeφþ e2φ2 −m2�ϕðrÞ: ðA5Þ

Now, if we neglect the spin-field interaction terms and the
field squared term e2φ2, this becomes

�
1

2ε
p̂2 − eφ

�
ϕðrÞ ¼ ε2 −m2

2ε
ϕðrÞ: ðA6Þ

The electron solution is then

ψðr; tÞ ¼ e−iεt
� ϕðrÞ

σ·p̂
ε−VðrÞþmϕðrÞ

�
: ðA7Þ

The expression from Eq. (3) is then obtained by setting
ϕðrÞ ¼ eiðpxxþpzzÞIðyÞs, where s is a 2-dimensional spinor

and expanding ðε − VðrÞ þmÞ−1 ≃ ðεþmÞ−1ð1þ VðrÞ
εþmÞ

and keeping this correction term with the potential only
on the σxpx term, as here this correction yields the leading
order in ξ=γ on σx.

APPENDIX B

The electron state can be written as (putting back in the
volume factor)

ψp;sðxÞ ¼
1ffiffiffiffiffiffiffiffi
2εV

p e−iεnteiðpxxþkByþpzzÞ
X
j

cjSjeijk0y; ðB1Þ

where Sj is a bispinor defined as

Sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p �
s

σ·pj
εþm s

�
; ðB2Þ
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FIG. 8. The differential power (probability per unit time
multiplied by the photon energy) for the case of a 1 TeV electron
in the state n ¼ 120 between the (110) planes of silicon.
The labels have the same meaning as in Fig. 7.
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FIG. 9. The differential power (probability per unit time
multiplied by the photon energy) for the case of a 1 TeV positron
in the state n ¼ 1512 between the (110) planes of silicon.
The labels have the same meaning as in Fig. 7.
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where pj ¼ ðpx þ En −
ðjk0þkBÞ2

2ε ; jk0 þ kB; pzÞ and then

Z
ψ†
p0ψpdV ¼ 1

2V
ffiffiffiffiffiffi
ε0ε

p ð2πÞ3δðpx − p0
xÞδðpz − p0

zÞ

×
X
j;j0

cjðpÞc�j0 ðp0ÞS0†j0Sjδ

× ðkB − k0B þ ðj − j0Þk0Þ: ðB3Þ

Explicitly, we have that cj ¼ cjðε; kB; nÞ. Now, since both
kB and k0B obey that 0 ≤ kB < k0, we have that −k0 <
kB − k0B < k0 and therefore kB − k0B can never be an integer
value of k0 unless kB − k0B ¼ 0, and therefore we can write

δðkB − k0B þ ðj − j0Þk0Þ ¼ δðkB − k0BÞδj;j0 ðB4Þ
Z

ψ†
p0ψpdV ¼ 1

2V
ffiffiffiffiffiffi
ε0ε

p ð2πÞ3δðpx − p0
xÞδðpz − p0

zÞ

× δðkB − k0BÞ
X
j

cjðε; kB; nÞ

× c�jðε; kB; n0ÞS0†j Sj: ðB5Þ

However, the vector c is a normalized (jcj ¼ 1) eigenvector
of a Hermitian matrix, and the vectors corresponding to n
and n0 have different eigenvalues of this matrix and are
therefore orthogonal, so

Z
ψ†
p0ψpdV ¼ 1

2V
ffiffiffiffiffiffi
ε0ε

p ð2πÞ3δðpx − p0
xÞδðpz − p0

zÞ

× δðkB − k0BÞδn;n0
X
j

jcjj2S0†j Sj: ðB6Þ

Now, consider

S0†j Sj ¼ ðεþmÞ
�
s0†sþ s0†

σ · pj
εþm

σ · pj
εþm

s

�

¼ s0†s
�
ðεþmÞ þ p2j

εþm

�
; ðB7Þ

and therefore

X
j

jcjj2S0†j Sj ≃ 2εδs0;s: ðB8Þ

There, ≃ refers only to the normalization. The states are
exactly orthogonal, but in the normalization, we neglect
corrections which are suppressed by at least ξ=γ compared
to leading order. So, finally,

Z
ψ†
p0ψpdV ¼ ð2πÞ3

V
δðpx − p0

xÞδðpz − p0
zÞ

× δðkB − k0BÞδn;n0δs0;s: ðB9Þ

APPENDIX C

Inserting our wave functions into the expression from the paper, only the y component is nontrivial:

hpyi ¼
1

2εL

Z �
e−ikBy

X
l

c�l S
†
l e

−ilk0y
��

−i
d
dy

��
eikBy

X
j

cjSjeijk0y
�
dy

¼ 1

2εL

Z �X
l

c�l S
†
l e

−iðlk0þkBÞy
��

−i
d
dy

��X
j

cjSjeiðjk0þkBÞy
�
dy

¼ 1

2εL

Z �X
l

c�l S
†
l e

−iðlk0þkBÞy
��X

j

ðjk0 þ kBÞcjSjeiðjk0þkBÞyÞdy

¼ 1

2εL

Z �X
j;l

ðjk0 þ kBÞcjc�l S†l Sjeiðj−lÞk0y
�
dy: ðC1Þ

Now, due to periodicity of the integrand, we have that

1

L

Z
L=2

−L=2
eiðj−lÞk0ydy ¼ 1

dp

Z
dp=2

−dp=2
eiðj−lÞk0ydy ¼ sincððj − lÞπÞ ¼ δj;l ðC2Þ

and so

hpyi ¼
1

2ε

�X
j

jcjj2ðjk0 þ kBÞS†jSj
�

¼ 1

2ε

�X
j

jcjj2ðjk0 þ kBÞ
�
ðεþmÞ þ p2j

εþm

��
; ðC3Þ
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and setting pz ¼ 0,

p2j ¼
�
px þ En −

ðjk0 þ kBÞ2
2ε

�
2

þ ðjk0 þ kBÞ2 ≃ p2
x;

ðC4Þ
and therefore

1

2ε

�
ðεþmÞ þ p2j

εþm

�
≃ 1: ðC5Þ

And so within our level of approximation, we have that

hpyi ≃
X
j

jcjj2ðjk0 þ kBÞ: ðC6Þ

APPENDIX D

Starting from

Sð1Þfi ¼ ie

ffiffiffiffiffiffi
4π

2ω

r
1

2
ffiffiffiffiffiffiffiffi
εfεi

p ð2πÞ3δðpx;i − kx − px;fÞ

× δðpz;i − kz − pz;fÞδðεf þ ω − εiÞ

×
Z

∞

−∞
ŪfðyÞ=ϵ�eiðkB;i−ky−KB;fÞyUiðyÞdy; ðD1Þ

we insert the wave functions in terms of the plane wave
expansion to obtain

Sð1Þfi ¼ ie

ffiffiffiffiffiffi
4π

2ω

r
1

2
ffiffiffiffiffiffiffiffi
εfεi

p ð2πÞ3δðpx;i − kx − px;fÞ

× δðpz;i − kz − pz;fÞδðεf þ ω − εiÞ

×
X
j;l

Z
∞

−∞
c�l;fcj;iS̄l;f=ϵ

�Sj;ieiðkB;i−ky−kB;fÞyeiðj−lÞk0ydy:

ðD2Þ
The quantity F ¼ R∞

−∞ eiðkB;i−ky−kB;fÞyeiðj−lÞk0ydy can be
rewritten by exploiting that eiðj−lÞk0y is periodic, and so
we see that

F ¼
X∞
n¼−∞

Z dp
2
þndp

−dp
2
þndp

eiðkB;i−ky−kB;fÞyeiðj−lÞk0ydy ðD3Þ

and change the variable such that y0 ¼ y − ndp,

F ¼
X∞
n¼−∞

Z dp
2

−dp
2

eiðkB;i−ky−kB;fÞðy0þndpÞeiðj−lÞk0y0dy0

¼
X∞
n¼−∞

eindpðkB;i−ky−kB;fÞ

×
Z dp

2

−dp
2

eiðkB;i−ky−kB;fþðj−lÞk0Þy0dy0: ðD4Þ

Now, the sum
P∞

n¼−∞ eindpðkB;i−ky−kB;fÞ can be recognized as
the Dirichlet kernel, which can be replaced with the Dirac
comb

P∞
n¼−∞ 2πδð½kB;i − ky − kB;f�dp − 2πnÞ. Only the

delta function which has kB;f in the first Brillouin zone
will contribute, due to the fact that integration limit on kB;f
is from 0 to k0, and therefore we must set n ¼ nB such that
0 ≤ kB;f < k0. Therefore, we may use that

F ¼ 2πδð½kB;i − ky − kB;f� − nBk0Þ
× sincð½πnB þ ðj − lÞπ�Þ: ðD5Þ

This simplifies the summation over l as the sinc function
means that only the term obeying nB þ ðj − lÞ ¼ 0 con-
tributes. Therefore, the S-matrix element becomes

Sð1Þfi ¼ ie

ffiffiffiffiffiffi
4π

2ω

r
1

2
ffiffiffiffiffiffiffiffi
εfεi

p ð2πÞ4δðpx;i − kx − px;fÞδ

× ðpz;i − kz − pz;fÞδðεf þ ω − εiÞ
× δð½kB;i − ky − kB;f� − nBk0Þ
×
X
j

c�nBþj;fcj;iS̄nBþj;f=ϵ�Sj;i: ðD6Þ

Now, a useful expression for the quantity S̄nBþj;f=ϵ�Sj;i
may be derived. We will momentarily suppress the j index,
and so

−S̄f=ϵ�Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεf þmÞðεi þmÞ

q �
s†f s†f

σ·pf
εfþm

�
ðα · ϵ�Þ

� si
σ·pi
εiþm si

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεf þmÞðεi þmÞ

q �
s†f s†f

σ·pf
εfþm

��
0 σ · ϵ�

σ · ϵ� 0

�� si
σ·pi
εiþm si

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεf þmÞðεi þmÞ

q �
s†f s†f

σ·pf
εfþm

��
σ · ϵ� σ·pi

εiþm si

σ · ϵ�si

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεf þmÞðεi þmÞ

q
s†f

�
σ · ϵ�

σ · pi
εi þm

þ σ · pf
εf þm

σ · ϵ�
�
si

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεf þmÞðεi þmÞ

q
s†f

�
1

εi þm
½ϵ� · pi þ iσ · ðϵ� × piÞ� þ

1

εf þm
½pf · ϵ� þ iσ · ðpf × ϵ�Þ�

�
si

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεf þmÞðεi þmÞ

q
s†f½ϵ� · Aþ iσ · B�si; ðD7Þ
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where we have defined

A ¼ 1

εi þm
pi þ

1

εf þm
pf; ðD8Þ

B ¼ ϵ� ×
�

pi
εi þm

−
pf

εf þm

�
: ðD9Þ
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