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We discuss the electroproduction of a pseudoscalar (0−þ) meson or a scalar (0þþ) meson off the scalar
target. The most general formulation of the differential cross section for the 0−þ or 0þþ meson process
involves only one or two hadronic form factors, respectively, on a scalar target. The Rosenbluth-type
separation of the differential cross section provides the explicit relation between the hadronic form factors
and the different parts of the differential cross section in a completely model-independent manner. The
absence of the beam spin asymmetry for the pseudoscalar meson production provides a benchmark for the
experimental data analysis. The measurement of the beam spin asymmetry for the scalar meson production
may also provide a unique opportunity not only to explore the imaginary part of the hadronic amplitude
in the general formulation but also to examine the significance of the chiral-odd generalized parton
distribution (GPD) contribution in the leading-twist GPD formulation.

DOI: 10.1103/PhysRevD.99.116008

I. INTRODUCTION

While the virtual Compton scattering process is coherent
with the Bethe-Heitler process, the meson electroproduc-
tion process offers a unique experimental determination
of the hadronic structures for the study of QCD and strong
interactions. In particular, coherent electroproduction of a
pseudoscalar (0−þ) meson or a scalar (0þþ) meson off a
scalar target (e.g., the 4He nucleus) provides an excellent
experimental terrain to discuss the fundamental nature of
the hadron physics without involving much complication
from the spin degrees of freedom.
We discuss in this work two benchmark examples

(0−þ vs 0þþ) that provide a unique interface between
the theoretical framework and the experimental measure-
ments of physical observables.
The paper is organized as follows. In Sec. II, we

summarize the formalism for the electroproduction of a
pseudoscalar (0−þ) meson or a scalar (0þþ) meson off the
scalar target. In Sec. III, we present the Rosenbluth-type
separation of the differential cross section for the electro-
production of the 0−þ and 0þþ mesons, from which the
corresponding meson form factors can be directly extracted
from the experimental data. In particular, we discuss the
beam spin asymmetry (BSA) of the coherent meson
(0−þ vs 0þþ) electroproduction off the scalar target as
well as the chiral-even vs chiral-odd generalized parton
distribution (GPD) contribution in the leading-twist GPD
formulation. Summary and conclusion follow in Sec. IV. In
the Appendix, the evaluation of the scaling behaviors of

chiral-even and chiral-odd amplitudes discussed in Sec. III
is briefly summarized.

II. GENERAL FORMALISM OF MESON
ELECTROPRODUCTION OFF

THE SCALAR TARGET

A. Cross section and invariant amplitude squared

To establish the notation for the electroproduction of
meson m off the scalar target h, we write

eðkÞ þ hðPÞ → e0ðk0Þ þ h0ðP0Þ þmðq0Þ; ð1Þ

and the virtual photon momentum is defined to be
q ¼ k − k0, see Fig. 1.
In the target rest frame (TRF) presented in Ref. [1],

the 5-fold differential electroproduction cross section is
given by

dσ ≡ d5σ
dydxdtdϕk0dϕq0

¼ κhjMj2i; ð2Þ

where

κ ≡ 1

ð2πÞ5
yx

32Q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2Mx

Q Þ2
q : ð3Þ

Here, y ¼ P · q=P · k, t ¼ ðP − P0Þ2 and x¼Q2=ð2P ·qÞ¼
Q2=ð2MνÞ with Q2 ¼ −q2, the target mass M and the
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virtual photon energy ν in TRF. For the one-photon-
exchange process, the transition amplitude M can be
expressed as the invariant product of the leptonic current
eLμ ¼ eūe0 ðk0; s0Þγμueðk; sÞ and the hadronic current eJμ

mediated by the photon propagator, i.e., M ¼ e2L · J=q2.
As discussed in Ref. [1], by using the reduced three
momenta product obtained from the q · J ¼ 0 relation,
we get the following invariant amplitude squared

hjMj2i ¼ e4

q4
LμνHμν

¼ e4

q4

�
2q2

ϵ − 1
hjτfiji2 þ 2iλϵμναβkαk0βJ

†
μJν

�
; ð4Þ

where the hadronic tensor is given by

Hμν ¼ J†μJν; ð5Þ

and the leptonic tensor including the electron beam
polarization λ is given by

Lμν ¼ q2Λμν þ 2iλϵμναβkαk0β; ð6Þ

with Λμν ¼ gμν þ 2
q2 ðkμk0ν þ k0μkνÞ. Here, Lμν and Hμν are

contracted to yield Eq. (4) with

hjτfiji2 ¼
1

2
ðjHxj2 þ jHyj2Þ þ

ϵ

2
ðjHxj2 − jHyj2Þ

þ ϵLjHzj2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ϵLð1þ ϵÞ

r
ðH�

xHz þH�
zHxÞ;

ð7Þ

where ϵ ¼ Λxx−Λyy

ΛxxþΛyy ¼ − 2M2x2y2þ2Q2ðy−1Þ
2M2x2y2þQ2ðy2−2yþ2Þ and ϵL ¼ Q2

ν2
ϵ

and Hi ¼ Jiði ¼ x; y; zÞ. Typically in the laboratory, the
kinematics of TRF depicted in Fig. 2 is used. The angle ψ

in Fig. 2 is related toQ2 and ν as well as the beam energy E,
i.e., Q2 ¼ −2EðE − νÞð1 − cosψÞ. In terms of the angle ψ ,
the polarization parameter ϵ is given by

ϵ ¼ 1

1þ 2ðν2þQ2Þ
Q2 tan2 ψ

2

; ð8Þ

where one may note its consistency with Eq. (16) of

Ref. [1] as well as tan2 ψ
2
¼ ϵLð1−ϵÞ

2ϵðϵþϵLÞ using ϵL=ϵ ¼ Q2=ν2.

Also, neglecting the electron mass, one may note that the
angle α between the beam (i.e., incident electron) direction
and the virtual photon direction is related to Q2, ν and E as

cos α ¼ Q2þ2Eν

2E
ffiffiffiffiffiffiffiffiffiffi
ν2þQ2

p . The last terms in Eqs. (4) and (6) for the

case of a polarized electron beam with λ ¼ �1 depending
on the electron spin are related with the BSA. Due to
the absence of the interference with the Bethe-Heitler
process, the BSA of the meson electroproduction is a
direct measure of any asymmetry within the hadronic
tensor, i.e., Hμν ≠ Hνμ.

B. DNA method for hadronic currents

In parallel to the Levi-Civita symbol ϵμναβ, we have
recently introduced in Ref. [2] the backbone of the
Compton tensor defined by

dμναβ ¼ gμνgαβ − gμαgνβ; ð9Þ

which may be used to construct pieces of “DNA” for the
virtual Compton scattering as well as the meson electro-
production by contracting with the three basis four vectors
such as q, P̄ ¼ Pþ P0 andΔ ¼ P − P0 ¼ q0 − q. The most
general hadronic tensor structures obtained by our “DNA”
method in virtual Compton scattering off the scalar target
are in complete agreement with the previous results by
Metz [3] and further comparisons with other methods [4]
and results of general hadronic tensors for the nucleon
target [5] are underway.
In the present work of the meson electroproduction off

the scalar target, we note that the hadronic current for the
pseudoscalar (0−þ) meson production is governed by a
single hadronic form factor defined by

FIG. 2. Target rest frame kinematics for the meson electro-
production.

FIG. 1. Momentum assignments in the meson electroproduc-
tion process with one-photon-exchange.
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JμPS ¼ FPSϵ
μναβqνP̄αΔβ; ð10Þ

while the hadronic current for the scalar (0þþ) meson
production involves two hadronic form factors defined by

JμS ¼ ðSqqα þ SP̄P̄αÞdμναβqβΔν; ð11Þ

where the hadronic form factors FPS, Sq and SP̄ are
dependent on the Lorentz invariant variables Q2, x and
t ¼ Δ2. Defining the scalar hadronic form factors F1 and
F2 for later convenience as

F1 ¼ Sq − SP̄;

F2 ¼ SP̄; ð12Þ

we get the hadronic current for the scalar (0þþ) meson
production as

JμS ¼ F1ðq2Δμ − q · ΔqμÞ
þ F2½ðP̄ · qþ q2ÞΔμ − q · ΔðP̄μ þ qμÞ�; ð13Þ

which reduces to the usual electromagnetic current Jμ ∝
ðPþ P0Þμ for the case of no meson production, i.e., q0 ¼ 0.
The electromagnetic current conservation is assured of
course both for the electroproduction of pseudoscalar
(0−þ) and scalar (0þþ) mesons owing to qμJ

μ
PS ¼ 0 and

qμJ
μ
S ¼ 0, respectively.

III. ROSENBLUTH-TYPE SEPARATION OF
THE DIFFERENTIAL CROSS SECTION

AND BEAM SPIN ASYMMETRY

A. Pseudoscalar (0− + ) meson production case

For the pseudoscalar meson production case, we should
note that the BSA term is zero because, owing to the fact
that only a single hadronic form factor occurs, the hadronic
tensor is symmetric:

Hμν ¼ jFPSj2ϵμαβγϵνα0β0γ0qαP̄βΔγqα
0
P̄β0Δγ0

¼ Hνμ; ð14Þ

and contracts with the antisymmetric leptonic tensor
2iλϵμναβkαk0β for the BSA given by Eq. (4), i.e.,

ϵμναβkαk0βHμν ¼ 0: ð15Þ

The situation here is very different from π0 electroproduc-
tion off a proton target in which several hadronic form
factors are involved. The status of the data and phenom-
enology in the GPD approach of deeply virtual meson
production (DVMP) on the nucleon has been reviewed in
Ref. [6]. The GPD formulation has been applied to the
deeply virtual Compton scattering (DVCS) process off the

pion [7], on spinless nuclear targets in the impulse
approximation [8] as well as off nuclei up to spin-1 [9],
and further refined for a spinless target [10]. The coherent
vs incoherent DVCS processes off spin-0 nuclei have also
been discussed with respect to the nuclear medium modi-
fication of hadrons in terms of the GPD formulation [11].
In clear distinction from the recent BSA measurement of
DVCS off 4He [12], however, the meson electroproduction
process discussed here does not have any interference with
the Bethe-Heitler process.
As far as a single hadronic form factor governs the

hadronic current, the BSA of the meson electroproduction
should vanish in general regardless of the complexity in the
hadronic form factor. We thus note that the BSA of the
coherent pseudoscalar (e.g., π0) meson electroproduction
off a scalar target (e.g., the 4He nucleus) vanishes due to the
symmetry given by Eq. (15): i.e.,

dσPSλ¼þ1 − dσPSλ¼−1

dσPSλ¼þ1 þ dσPSλ¼−1
¼ 0: ð16Þ

Moreover, in the TRF kinematics [1] defining the
azimuthal angle ϕ between the leptonic plane and the
hadronic plane taking the virtual photon direction as
the ẑ-direction, the hadronic current for the pseudoscalar
(0−þ) meson production given by Eq. (10) yieldsHz ¼ 0 in
Eq. (7). Regardless of the electron beam polarization λ,
the differential cross section for the pseudoscalar meson
(e.g., π0) production is thus given by

dσPS ¼ dσPST þ dσPSTTϵ cos 2ϕ ¼ dσPST ð1 − ϵ cos 2ϕÞ;
ð17Þ

where

dσPST ¼ −dσPSTT

¼ κ
e4jFPSðQ2; t; xÞj2 sin2 θ

4M2x4ð1 − ϵÞ ð4M2x2 þQ2Þ

× ½x2ðt2 − 4m2M2Þ þQ4 þ 2Q2tx�; ð18Þ
with the meson mass m and the lab angle θ for the
meson production in the hadronic plane. Here, we use
the Mainz analysis interactive database (MAID) notation
[13] of the 5-fold differential cross section. This provides
the Rosenbluth-type separation of the differential cross
section for the electroproduction of the pseudoscalar
meson, allowing the pseudoscalar meson form factor
FPSðQ2; t; xÞ to be extracted directly from the experimental
data of the differential cross section if available.

B. Scalar (0+ + ) meson production case

For the scalar meson production case, however, the
BSA term does not vanish as there are two independent
hadronic form factors F1ðQ2; t; xÞ and F2ðQ2; t; xÞ defined
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by Eq. (13), which are complex in general. The differential
cross section for the scalar meson production is given by

dσSλ ¼ dσSTð1þ ϵ cosð2ϕÞÞ þ dσSLϵL

þ dσSLT cosϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ϵLð1þ ϵÞ

r
þ λdσSBSA; ð19Þ

where dσST ¼ dσSTT and can be written in terms of the form
factors:

2
666664

dσST
dσSL
dσSLT
dσSBSA

3
777775
¼

2
6664
T1 T2 T3 0

L1 L2 L3 0

I1 I2 I3 0

0 0 0 SA

3
7775

2
6664
jF1j2
jF2j2
Fþ
12

F−
12

3
7775 ð20Þ

with F�
12 ¼ F1F�

2 � F2F�
1. The matrix elements in Eq. (20)

are obtained as follows:

T1 ¼
κe4 sin2 θQ2

4M2x2ð1 − ϵÞ ½x
2ðt2 − 4m2M2Þ þQ4 þ 2Q2tx�;

T2 ¼
κe4 sin2 θQ2ðx − 1Þ2

4M2x4ð1 − ϵÞ ½x2ðt2 − 4m2M2Þ þQ4 þ 2Q2tx�;

T3 ¼
ffiffiffiffiffiffiffiffiffiffi
T1T2

p
;

L1 ¼
κe4Q4

8M2x2ð1 − ϵÞð4M2x2 þQ2Þ ½m
2 þQ2 þ tð2x − 1Þ�2;

L2 ¼
κe4½m2ð4M2xþQ2Þ þQ2ð4M2xþ 2tx − 3tÞ − 4M2txþQ4�2

8M2x2ð1 − ϵÞð4M2x2 þQ2Þ ;

L3 ¼
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
;

I1 ¼
κe4Ic tan θQ2½m2 þQ2 þ tð2x − 1Þ�

2M2x2ðϵ − 1Þð4M2x2 þQ2Þ ;

I2 ¼
κe4Ic tan θðx − 1Þ

2M2x3ðϵ − 1Þð4M2x2 þQ2Þ ½m
2ð4M2xþQ2Þ þQ2ð4M2xþ 2tx − 3tÞ − 4M2txþQ4�;

I3 ¼
κe4Ic tan θ

4M2x3ðϵ − 1Þð4M2x2 þQ2Þ ½m
2ð4M2x2 þQ2ð2x − 1ÞÞ þQ2ð4M2x2 þ 4tx2 − 6txþ tÞ − 4M2tx2 þQ4ð2x − 1Þ�;

SA ¼ −κe4
sin θ sinϕ
2Mx2y

ðm2 þQ2 − tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ðy − 1Þ þM2x2y2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðt2 − 4m2M2Þ þQ4 þ 2Q2tx

q
; ð21Þ

where Ic ¼ 2M2x2ðt −m2Þ þQ2xð2M2xþ tÞ þQ4 and cos θ ¼ Ic
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2x2þQ2Þ½x2ðt2−4m2M2ÞþQ4þ2Q2tx�

p .

Thus, the BSA of the coherent scalar meson electroproduction off the scalar target is given by

dσSλ¼þ1 − dσSλ¼−1

dσSλ¼þ1 þ dσSλ¼−1
¼ dσSBSA

dσSTð1þ ϵ cosð2ϕÞÞ þ dσSLϵL þ dσSLT cosϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ϵLð1þ ϵÞ

q ; ð22Þ

which is proportional to F1F�
2 − F2F�

1. As F1F�
2 −

F2F�
1 ≠ 0 in general, the BSA of the scalar meson

[e.g., f0ð980Þ] electroproduction is not expected to
vanish. For the kinematic region where at least one
of F1 or F2 develops an imaginary part, the BSA should
not vanish. The nonvanishing BSA measured in DVCS
off 4He [12] indicates that the imaginary part of the
hadronic amplitude is accessible in the current exper-
imental regime. Therefore, it will be very interesting to
compare the experimental data on the BSAs between the

π0 electroproduction and the f0ð980Þ electroproduction
off the 4He nucleus. We note that Eqs. (19)–(21) provide
the Rosenbluth-type separation of the differential cross
section for the electroproduction of the scalar meson,
allowing the scalar meson form factors F1ðQ2; t; xÞ and
F2ðQ2; t; xÞ to be directly extracted from the experi-
mental data. In principle, the experimental data can
reveal both the real part and the imaginary part of
F1ðQ2; t; xÞ and F2ðQ2; t; xÞ through Eqs. (19)–(21) and
the consistency with the BSA given by Eq. (22) can be
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checked for the kinematic region where any of these
form factors is found to develop an imaginary part.

C. Comparison with the GPD formulation

The leading-twist GPD formulation [14–16] provides
detailed information of the individual contribution from
each and every constituent of the target. The most well-
known example of GPD formulation may be found in
DVCS for the proton target which has four twist-2 GPDs
(H, E, H̃, Ẽ). Regardless of DVCS or DVMP, the GPD
formalism relies on the “handbag dominance” representing
the factorization of the hard and soft parts in the respective
scattering amplitudes. It is well known that the integrals of
the leading-twist GPDs in the s- and u-channel handbag
amplitudes of both DVCS and DVMP processes carry the
factorized denominator factors such as 1=ðx − ζÞ and 1=x,
respectively. Here, ζ ¼ Δþ=Pþ is the skewness variable in
the GPD formulation [14,15] and x ¼ kþ=Pþ is the light-
front longitudinal momentum fraction of the particle with
the four-momentum kμ struck by the probing virtual photon
with respect to Pþ. The kinematic region for the handbag
dominance is typically provided by jtj ≪ Q2 [17,18].
Our findings from the general formulation with two

independent hadronic form factors for the electroproduc-
tion of the scalar (0þþ) meson may be compared with the
GPD formulation discussed in the reviews [19,20] which
provided the number of leading-twist GPDs for the same
process. In particular, one should note that not only the
chiral-even operator γþ but also the chiral-odd operator
σþ⊥
μ can be effective for spin-zero hadrons, providing the

contribution from the two twist-2 GPDs, i.e., the chiral-
even GPD (H) and the chiral-odd GPD (HT), respectively,
to the DVMP process of the scalar (0þþ) meson production.
As pointed out in Ref. [19], the GPDs defined by the
aligned parton-helicity operators are allowed due to non-
zero orbital angular momentum between the initial and
final state hadrons. One may check explicitly the helicity
flip vs nonflip amplitudes in the quark level including not
only the identity coupling to the quark-scalar (0þþ) meson
vertex which singles out the chiral-odd GPD (HT) but also
the derivative coupling with γμ to the quark-scalar (0þþ)
meson vertex which provides the chiral-even GPD (H)
contribution. As the chirality and the helicity coincides in
the massless limit, it is rather straightforward to identify the
chiral-even vs chiral-odd contribution from the helicity flip
vs nonflip amplitudes, respectively. From the evaluation
of helicity flip vs nonflip amplitudes as discussed in the
Appendix, one may realize that the derivative coupling
with γμ can bring ∼

ffiffiffiffiffiffi
Q2

p
over the nonderivative identity

coupling. While this might naively suggest the
ffiffiffiffiffi
−t

p
=Q

suppression of the chiral-odd contribution with respect to
the chiral-even contribution, one should note that very little
is known on the scalar (0þþ) meson wave function in the
quark-scalar (0þþ) meson vertex. Overcoming the

ffiffiffiffiffi
−t

p
=Q

factor, if the chiral-odd GPD (HT) contributes as signifi-
cantly as the chiral-even GPD (H), then the GPD formu-
lation would provide the nonvanishing BSA in DVMP of
scalar (0þþ) meson production off the scalar target as we
have discussed with the two independent hadronic form
factors in Eqs. (19)–(22). By the same token, the exper-
imental observation of the nonvanishing BSA of a scalar
meson [e.g., f0ð980Þ] electroproduction off a scalar target
(e.g., the 4He nucleus) would reveal a remarkable chiral-
odd GPD (HT) contribution in the leading-twist GPD
formulation. Unless the chiral-odd GPD (HT) contributes
as significantly as the chiral-even GPD (H), a single GPD
contribution alone would provide a zero BSA, dσSBSA ¼ 0.
It is also important to note that the BSA requires a

nonzero t as it is defined in terms of the azimuthal angle ϕ.
As it has been shown in Ref. [12], the measurement of the
BSA in the kinematic region jtj ≪ Q2 can still be analyzed
without involving any higher-twist GPDs. While the BSA
measurement presented in Ref. [12] was restricted to the
kinematic region jtj ≪ Q2, the experimental data were
analyzed with the single leading-twist GPD, HA, only.

1

IV. SUMMARY AND CONCLUSION

In summary, either a single hadronic form factor or a
single leading-twist GPD would result in the symmetric
hadronic tensor Hμν ¼ Hνμ as we have discussed in the
case of pseudoscalar meson electroproduction. This would
then yield a vanishing BSA as the symmetric hadronic
tensorHμν contracts with the antisymmetric leptonic tensor
2iλϵμναβkαk0β. The absence of the beam spin asymmetry for
the pseudoscalar meson production provides a benchmark
for the experimental data analysis.
Not only the pseudoscalar meson production but also

the scalar meson production provides benchmark results for
the interface between the theoretical framework and the
experimental measurements of physical observables. The
coherent experimental measurement to judge whether
the BSA of a scalar meson [e.g., f0ð980Þ] electroproduc-
tion off a scalar target (e.g., the 4He nucleus) vanishes or not
would provide a unique opportunity to explore the imagi-
nary part of the hadronic amplitude accessible in the
general formulation with the two independent hadronic
form factors, F1 and F2. It would also examine the
significance of whether the chiral-odd GPD (HT) contri-
bution is on par with the chiral-even GPD (H) contribution
in the leading-twist GPD formulation.
In this respect, both pseudoscalar and scalar meson

electroproduction measurements off a scalar target are
highly desired to pin down the viable roadmap on the

1As discussed in Ref. [17], the number of Compton form
factors in virtual Compton scattering off a scalar target is three.
Our work including both Bethe-Heitler process and virtual
Compton scattering process off a scalar target is underway.
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analyses of precision experimental data, e.g., from the JLab
12 GeV upgrade. An exactly solvable hadronic model
calculation is currently underway to explore the kinematic
regions where the hadronic form factors develop imaginary
parts, and to explicitly demonstrate the extraction of the
hadronic form factors from our general formulation of the
hadronic currents. The recent report on the experimental
studies of DVMP and transversity GPDs [21] attracts our
attention to the nucleon target as well.
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APPENDIX: SCALING BEHAVIORS OF
CHIRAL-EVEN AND CHIRAL-ODD

AMPLITUDES

We use here the following kinematics [17] in electro-
production of a meson off the massless quark:

kμ ¼ ðxpþ; 0; 0; 0Þ;

k0μ ¼
�
ðx − ζÞpþ;−Δ⊥; 0;

Δ2⊥
2ðx − ζÞpþ

�
;

qμ ¼
�
ð−ζ þ ζ̃ðμs þ μtÞÞpþ; 0; 0;

Q2

2pþ

�
1

ζ̃
þ μt
x − ζ

��
;

q0μ ¼
�
ζ̃ðμs þ μtÞpþ;Δ⊥; 0;

Q2

2ζ̃pþ

�
; ðA1Þ

where kðk0Þ and qðq0Þ are the momenta of the incoming
(outgoing) quarks and photons, respectively and where
Δμ ¼ q0μ − qμ ¼ kμ − k0μ, μs ¼ m2=Q2, μt ¼ Δ2⊥=Q2 and

ζ̃ ¼ 2ζðx − ζÞ
ð1þ μs þ μtÞðx − ζÞ − μtζ þ

ffiffiffiffi
D

p ; ðA2Þ

with D¼4μtðμsþμtÞζðx−ζÞþðð1þμsþμtÞðx−ζÞ−μtζÞ2.
We note that ζ̃ ≈ ζ as μs → 0 and μt → 0.
The corresponding Mandelstam variables s ¼ ðkþ qÞ2,

t ¼ ðk − k0Þ2, and u ¼ ðk − q0Þ2 are given by

s¼ Q2

2ζðx− ζÞ ðð1þμsþμtÞx2 − ð3þμsÞxζþ 2ζ2þ x
ffiffiffiffi
D

p
Þ;

t¼Δ2 ¼−
x

x− ζ
Δ2⊥;

u¼ −Q2

2ζðx− ζÞ ðð1þμsþμtÞx2 − ð1þ 3μsþ 2μtÞxζ

þ 2μsζ
2þ x

ffiffiffiffi
D

p
Þ; ðA3Þ

and sþ tþ u ¼ −Q2 þm2.
The hadronic amplitudes of the S and U channels in the

quark level are respectively given by

JSh;h0;λ ¼ ūh0 ðk − ΔÞΓð=kþ =qþmqÞ=ϵλðqÞuhðkÞ;
JUh;h0;λ ¼ ūh0 ðk − ΔÞ=ϵλðqÞð=k − =q0 þmqÞΓuhðkÞ; ðA4Þ

where the scalar meson vertex is generally taken as Γ ¼
ES þ FS=q0 þGS=kþHSσ

μνq0μkν with the external momen-
tum q0 and the internal momentum k, and the quark mass
mq is taken to be zero after the calculation. In the limit
mq → 0, each hadronic amplitude can be expanded in the

orders of Δ⊥
Q and the results up to the second order ðΔ⊥

Q Þ2 are
summarized as follows:

JS↑;↑;þ1 ¼ 0;

JS↑;↑;−1 ¼ −
ffiffiffi
2

p
FSQ3

ffiffiffiffiffiffiffiffiffiffiffi
x

x − ζ

r
Δ⊥
Q

;

JS↑;↑;0 ¼ −iFSQ3

ffiffiffiffiffiffiffiffiffiffiffi
x

x − ζ

r
Δ2⊥

Q2 þm2
;

JS↑;↓;þ1 ¼ 0;

JS↑;↓;−1 ¼ −
ffiffiffi
2

p
ESQ2

ffiffiffiffiffiffiffiffiffiffiffi
x

x − ζ

r
Δ2⊥

Q2 þm2
;

JS↑;↓;0 ¼ −iESQ2

ffiffiffiffiffiffiffiffiffiffiffi
x

x − ζ

r
Δ⊥
Q

; ðA5Þ

for the S channel, and

JU↑;↑;þ1 ¼ 0;

JU↑;↑;−1 ¼ −
ffiffiffi
2

p
FSQ3

ffiffiffiffiffiffiffiffiffiffiffi
x

x − ζ

r �
m2

Q2

�
Δ⊥
Q

;

JU↑;↑;0 ¼ −iFSQ3

ffiffiffiffiffiffiffiffiffiffiffi
x

x − ζ

r �
m2

Q2

�
Δ2⊥

Q2 þm2
;

JU↑;↓;þ1 ¼ −
ffiffiffi
2

p
ESQ2

ffiffiffiffiffiffiffiffiffiffiffi
x

x − ζ

r
Δ2⊥
Q2

;

JU↑;↓;−1 ¼
ffiffiffi
2

p
ESQ2

ffiffiffiffiffiffiffiffiffiffiffi
x

x − ζ

r
Δ2⊥

Q2 þm2
;

JU↑;↓;0 ¼ iESQ2

ffiffiffiffiffiffiffiffiffiffiffi
x

x − ζ

r �
m2

Q2

�
Δ⊥
Q

; ðA6Þ
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for the U channel. We note here that GS and HS coming
with the internal momentum k do not appear in our leading
order calculation. These results show that the helicity flip
and nonflip amplitudes contribute with the ES and FS terms
in the scalar vertex Γ, respectively, where the ES term
carries the identity operator while the FS term carries the =q0

operator which is dominated by the γþ operator with a Q2

factor. In the large Q limit of DVMP, the helicity nonflip
(chiral even) amplitude dominates over the helicity flip

(chiral odd) amplitude by one higher order of Q as the
leading order contributions of helicity flip and nonflip

amplitudes are given by JS↑;↓;0 ¼ −iESQ2
ffiffiffiffiffiffi
x

x−ζ

q
Δ⊥
Q ∼QΔ⊥

and JS↑;↑;−1 ¼ −
ffiffiffi
2

p
FSQ3

ffiffiffiffiffiffi
x

x−ζ

q
Δ⊥
Q ∼Q2Δ⊥, respectively.

Consequently, in the GPD formulation, the chiral-odd
GPD contribution appears to be suppressed by an order
of 1=Q with respect to the chiral-even GPD contribution,
unless ES=FS ∼Q.
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