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We develop a new approach for calculating the spin-independent two-neutrino exchange potential
(2NEP) between nonrelativistic fermions which places emphasis on the neutrino vacuum state, an area of
theoretical interest in recent years. The 2NEP is a natural probe of fundamental issues of neutrino physics
such as neutrino masses, flavor mixing, the number of neutrino flavors, neutrino nature (Dirac or
Majorana), CP violation, and the neutrino vacuum state. We explore the dependence of the 2NEP on the
mixing of neutrino mass states assuming normal and inverted mass ordering for nucleon-nucleon, nucleon-
lepton, and lepton-lepton interactions, and the CP-violation phase in the neutrino mixing matrix.
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I. INTRODUCTION

Of all the parts of the Standard Model, the neutrino
sector arguably holds the greatest promise for revealing
new physics beyond the Standard Model. Since the dis-
covery of the electron-neutrino over sixty years ago [1],
neutrinos have proven to be a constant source of surprise,
from the discovery of three different flavors to the phe-
nomenon of neutrino oscillations [2]. Yet, many basic
properties of neutrinos remain unknown, including their
masses and whether neutrinos and antineutrinos are distinct
particles (i.e., whether they are Dirac or Majorana fer-
mions). The recent paper by Stadnik [3] has drawn renewed
attention to a lesser known aspect of neutrinos: the virtual
exchange of neutrino-antineutrino pairs leads to weak long-
range forces. While the magnitudes of these forces are quite
small, making their observation difficult, they remain of
theoretical interest because of their unique nature: the
virtual exchange requires that all neutrino properties and
energies must contribute in some way to these forces. The
purpose of this paper is to open a new avenue of exploration
of neutrino properties using neutrino exchange forces by
incorporating mixing of mass states which includes CP
violation.
The observation of neutrino oscillations [4] not only

demonstrates that neutrinos have mass, but also that the
three different mass states mix, a phenomenon previously

observed in neutral mesons [5]. In addition, the possibilities
of neutron-antineutron oscillations [6] and oscillations of
neutral atoms [7] have been investigated in theories which
violate baryon number and total lepton number conserva-
tion, respectively. The quantum field theory description of
particle mixing has been an area of intensive study [8,9].
A number of different approaches have been applied to
neutrino mixing [8–18]. The most straightforward method
[10,11] only assumes the neutrino flavor fields appearing in
the weak interaction vertices are linear combinations of
neutrino mass fields, while other field-theoretic approaches
seek to define neutrino flavor fields explicitly in terms of
the different flavors’ creation and annihilation operators,
ultimately suggesting new nontrivial structures of neutrino
vacua [19–22]. However, one finds that all of these
approaches lead to similar results when applied to experi-
ments involving ultrarelativistic neutrinos which are
encountered in actual experiments [20,23]. (When cosmo-
logical arguments are combined with measurements from
neutrino oscillation experiments, one finds that neutrino
masses are ≲0.1 eV, which is much smaller than observed
neutrino energies.) To find differences between various
theories one needs to find phenomena involving coherent
nonrelativistic neutrinos. In this paper, we will discuss a
situation which clearly requires a quantum field theory
approach for neutrinos and which must include all possible
neutrino flavors and energies: the two-neutrino exchange
potential (2NEP) with mixing.
To accomplish this, we will first quickly review previous

derivations of the 2NEP. Then we will introduce an
alternative method for calculating the single flavor 2NEP
based on expressing the neutrino fields in the Schrödinger
picture and using time-independent perturbation theory to
evaluate the shift in neutrino field vacuum energy due to the
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presence of two fermions. This approach has been used
previously to calculate the Yukawa interaction between
fermions exchanging scalar bosons [24–27], the spin-
dependent interaction due to pseudoscalar exchange
[25,28], and the electrostatic Coulomb interaction between
two charged particles arising from photon exchange [29].We
take this more noncovariant approach because it places an
explicit emphasis on the neutrinovacuum, and it separates out
the effects of neutrino mixing in the weak interaction
Hamiltonian from those due to the nontrivial neutrino vacua.
Hence, we believe that this method allows our results to arise
more transparently than other modern approaches for calcu-
lating potentials. After presenting our approach, we proceed
to generalize the single flavor result by including the charged
current interaction and incorporating three neutrino flavors
through the mixing of neutrino fields using the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix, and investigate the
resulting potential for various combinations of fermions. We
consider how the potentials depend on: (1) the use of normal
and inverted ordering of neutrino masses, including the case
when one of the neutrino mass states is massless, and (2) CP
violation in the PMNS matrix. We conclude the paper with a
summary of our results and a discussion of how this work can
be extended.

II. PREVIOUS 2NEP DERIVATIONS

The possibility that a long-range force could arise from
the exchange of virtual neutrinos has been known since the
1930s [30], but it may have gained more widespread
attention through Feynman’s attempt to use virtual neutrino
exchange to explain the force of gravity [31]. The first
modern derivation of the 2NEP was done by Feinberg and
Sucher [30] who applied dispersion-theoretic techniques to
the low-energy four-fermion weak interaction. For two
electrons separated by a distance r exchanging a massless
virtual neutrino-antineutrino pair (Fig. 1), they found

Vν;ν̄ðrÞ ¼
G2

F

4π3r5
; ð1Þ

whereGF is the Fermi constant. (Throughout this paper, we
assume units where ℏ ¼ c ¼ 1.) They later recalculated the

result using the Standard Model neutral current interaction,
obtaining [32]

Vν;ν̄ðrÞ ¼
�
2sin2θW þ 1

2

�
2 G2

F

4π3r5
; ð2Þ

where θW is the Weinberg angle. Hsu and Sikivie [33]
obtained Eq. (1) using a more standard approach based on
Feynman diagrammatic methods and Fourier transforms.
More recently, Segerra has also written on the 2NEP using
the dispersion theory approach [34].
Shortly after Feinberg and Sucher’s publication [30],

Hartle [35] investigated the effects of multibody neutrino
exchange forces in cosmology using a new technique based
on a formula obtained by Schwinger [36]. Later Fischbach
et al. used the Hartle-Schwinger formalism to derive
Eq. (2) and calculate its contribution to nuclear binding
energies for tests of violations of the weak equivalence
principle for the weak interaction [37]. Fischbach then
applied the multibody formalism to neutron stars,
arguing that neutrino interactions lead to a catastrophic
contribution to the star’s self-energy unless neutrinos have a
finite mass ≳0.4 eV [38]. In the process of this work, he
extended Eq. (1) to the case where a neutrino has mass mν.
Shortly thereafter, Grifols et al. [39] applied dispersion
methods to the massive neutrino calculation to obtain
(after adjusting notation) Fischbach’s result in a more
compact form,

Vν;ν̄ðrÞ ¼
G2

Fm
3
ν

4π3r2
K3ð2mνrÞ: ð3Þ

They also calculated the 2NEP for Majorana neutrinos; all
previous work assumed Dirac neutrinos.
Before continuing, a comment should be made on

referring to the 2NEP as being “long-ranged.” For light
neutrinos, Vν;ν̄ðrÞ ∼ ð1=rÞð1=MZrÞ4, whereMZ is the mass
of the Z0 boson. Clearly Vν;ν̄ðrÞ falls off rapidly with
separation due to the factor ðMZrÞ−4, but this falloff is less
rapid than one would expect for a weak interaction potential
arising from the exchange of Z0, which has a Yukawa
potential form with rangeM−1

Z ∼ 10−18 m. Also, as empha-
sized recently by Asaka et al. [40], the 2NEP is based upon
the low-energy Fermi approximation of the electroweak
interaction and becomes invalid at short ranges where
additional Standard Model contributions not accounted
for in the low-energy approximation become important.
One expects deviations from Eq. (3) when r ∼M−1

Z .
Furthermore, one should remember that a potential descrip-
tion of an interaction is a nonrelativistic concept and
becomes of limited validity when the particle separation
is less than their Compton wavelengths.
All of the above derivations of the 2NEP assume a single

flavor of neutrinos, but mixing of neutrino flavors has now
been observed experimentally [4] and its effects should be

FIG. 1. Feynman diagram of neutrino-antineutrino exchange
between fermions which leads to Eq. (1). The thicker (thinner)
lines denote fermion (neutrino) propagators.
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included. Lusignoli and Petrarca [41] obtained an integral
expression for the 2NEP including neutrino mixing using
the Feinberg-Sucher method, but did not obtain a closed
form result or include the interference of neutral current and
charged current weak interactions. Here we obtain a more
detailed solution of the spin-independent 2NEP between
fermions with flavor mixing of Dirac neutrinos and explore
some of the consequences.

III. DERIVATION OF THE SINGLE FLAVOR
TWO-NEUTRINO EXCHANGE POTENTIAL

A. Overview

In order to establish our notation and approach for the
mixing case, in this section we derive the 2NEP by
calculating the change in the single neutrino field vacuum
energy due to the presence of two fermions which couple to
the field. The potential energy of these two particles is
defined as the shift in the vacuum energy that depends on
the separation of the particles. In general, the field
interaction will also lead to self-energy corrections which
are independent of the particle separation.
In our calculation, we will assume the two fermions are

located at positions r⃗1 and r⃗2 and are moving with
negligible velocities and interacting with a neutrino field
νðr⃗Þ. Since the system is nonrelativistic and a static
potential is independent of time, we adopt the noncovariant
Schrödinger picture for the fields, which is natural for this
problem. The neutrino fields then have no time dependence
which permits the use of ordinary time-independent
Rayleigh-Schrödinger perturbation theory to derive the
potential. We have not adopted more modern approaches
based on calculating scattering amplitudes using Feynman
diagrams (e.g., Refs. [42,43]) for several reasons. First, we
wish to explicitly examine the dependence of the potential
on the vacuum state since alternative vacuum states have
been proposed for mixed neutrinos. Second, since one is
working directly in position space rather than momentum
space, it is easier to isolate finite quantities, that depend on
the separation distance between fermions which contribute
to the interaction potential, from infinite self-energy terms,
which do not. Finally, it is straightforward to generalize our
derivation of the single neutrino flavor 2NEP to the case of
three neutrino flavors with mixing.

B. Hamiltonian

We begin by writing the total Hamiltonian describing the
two fermions interacting with the neutrino field as

H ¼ H0 þHint; ð4Þ

where H0 is the free Hamiltonian describing the free
neutrino field, and Hint describes the interaction between
the fermions and neutrino field. For the derivation of the
static potential, the fermions have no dynamical properties

themselves so the free Hamiltonian involves only the
neutrino field,

H0 ¼
X
k⃗;s

ωk⃗ðb†k⃗;sbk⃗;s þ d†
k⃗;s
dk⃗;sÞ; ð5Þ

where b†
k⃗;s

and bk⃗;s are the creation and annihilation

operators for neutrinos with momentum k⃗ and spin state
s, and d†

k⃗;s
and dk⃗;s are the corresponding antineutrino

creation and annihilation operators (i.e., we are assuming
the neutrinos are Dirac neutrinos). For neutrinos of mass
mν, ω2

k⃗
¼ m2

ν þ k⃗2; for a single neutrino, there is no

distinction between the mass and flavor fields. In
Eq. (5), the infinite free field vacuum energy has been
subtracted away, so the free field vacuum energy to be used

in subsequent calculations vanishes: Eð0Þ
vac ¼ 0.

To facilitate a comparison of our results with previous
derivations of the 2NEP, in this section we will assume the
interaction Hamiltonian Hint is due entirely to the neutral
current weak interaction, which, for a single neutrino
flavor, is given by

Hint ¼ HNC
int ¼ GFffiffiffi

2
p

Z
d3rJfμðr⃗Þ½ν̄ðr⃗Þγμð1 − γ5Þνðr⃗Þ�: ð6Þ

Here Jfμðr⃗Þ is the fermion current

Jfμðr⃗Þ ¼ f̄ðr⃗ÞγμðgfV − gfAγ
5Þfðr⃗Þ; ð7Þ

where fðr⃗Þ and f̄ðr⃗Þ are the fermion and antifermion fields,
and gfV and gfA are the vector and axial couplings, respec-
tively. In Eq. (7), νðr⃗Þ and ν̄ðr⃗Þ are the neutrino and
antineutrino fields, which in the Schrödinger picture are
given by

νðr⃗Þ ¼
X
k⃗;s

�
mν

Vωk⃗

�
1=2

½bk⃗;susðk⃗Þeik⃗·r⃗ þ d†
k⃗;s
vsðk⃗Þe−ik⃗·r⃗Þ�;

ð8aÞ

ν†ðr⃗Þ ¼
X
k⃗;s

�
mν

Vωk⃗

�
1=2

½b†
k⃗;s
u†sðk⃗Þe−ik⃗·r⃗ þ dk⃗;sv

†
sðk⃗Þeik⃗·r⃗�;

ð8bÞ

where V is the normalization volume and ν†ðr⃗Þ ¼ ν̄ðr⃗Þγ0.
For our two static fermions which are essentially classical
particles, the spin-independent fermion current comes from
the vector portion of the fermion current,

Jfμðr⃗Þ ¼ Jf0ðr⃗Þδμ;0 ¼ ½gfV;1δ3ðr⃗ − r⃗1Þ þ gfV;2δ
3ðr⃗ − r⃗2Þ�δμ;0;

ð9Þ
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where r⃗i is the position of the ith fermion. (The axial
portion of the fermion current would lead to a spin-
dependent 2NEP which is beyond the scope of this paper.)
The values for the vector couplings gfV for leptons and
nucleons are given in Table I. For antifermions, the

corresponding current would have opposite sign: Jf̄μðr⃗Þ ¼
−Jfμðr⃗Þ. The total interaction Hamiltonian with the two
fermions then becomes

Hint ¼
X2
i¼1

Hint;i; ð10Þ

where Hint;i is the interaction Hamiltonian involving the ith
fermion, which is given by

Hint;i ¼
GFg

f
V;iffiffiffi
2

p ν†ðr⃗iÞð1 − γ5Þνðr⃗iÞ: ð11Þ

C. Perturbation theory calculation

We will now use ordinary time-independent perturbation
theory to calculate the energy of the system due to the
interaction. The first-order energy correction of the ground
state does not lead to a potential energy between the
particles because it is the sum of two terms, each of which
only depends on the position of one particle:

Eð1Þ
vac ¼ h0jHintj0i ¼ h0jHint;1j0i þ h0jHint;2j0i

¼ Eð1Þ
vacðr⃗1Þ þ Eð1Þ

vacðr⃗2Þ; ð12Þ

where j0i is the unperturbed vacuum state of the neutrino

field, and Eð1Þ
vacðr⃗iÞ is the first-order self-energy of the ith

particle.
The 2NEP must come from the second-order ground

state energy correction which can be written as

Eð2Þ
vac ¼

X
Eð0Þ
n ≠Eð0Þ

vac

h0jHintjEð0Þ
n ihEð0Þ

n jHintj0i
Eð0Þ
vac − Eð0Þ

n

¼
X
Eð0Þ
n ≠0

h0jHintjEð0Þ
n ihEð0Þ

n jHintj0i
−Eð0Þ

n

; ð13Þ

where jEð0Þ
n i is a nonvacuum state with energy Eð0Þ

n , and we
have set the zero-point constant energy of the free field

vacuum Eð0Þ
vac ¼ 0. When Eq. (10) is substituted into

Eq. (13), we find three types of terms:

Eð2Þ
vac ¼ Eð2Þ

vacðr⃗1Þ þ Eð2Þ
vacðr⃗2Þ þ Eð2Þ

vacðr⃗1 − r⃗2Þ; ð14Þ

where the first two terms represent the second-order self-
energy corrections of each particle,

Eð2Þ
vacðr⃗iÞ ¼ −

X
Eð0Þ
n ≠0

h0jHint;ijEð0Þ
n ihEð0Þ

n jHint;ij0i
Eð0Þ
n

; ð15Þ

while the third term depends on the relative separation of
the particles and is the potential energy we are seeking:

Eð2Þ
vacðr⃗1 − r⃗2Þ

¼ −
X
Eð0Þ
n ≠0

�h0jHint;1jEð0Þ
n ihEð0Þ

n jHint;2j0i
Eð0Þ
n

þ c:c:

�
; ð16Þ

where “c.c.” means complex conjugate, which in this case
simply interchanges particles #1 and #2.
To evaluate Eq. (16), we need to calculate the matrix

element hEð0Þ
n jHint;ij0i. Since jEð0Þ

n i ≠ j0i, the only nonzero
matrix elements of hEð0Þ

n jHint;ij0i arise for the intermediate

state jEð0Þ
n i ¼ jk⃗0; s0iνjk⃗; siν̄ which consists of a neutrino

with momentum k⃗0 and spin s0 and an antineutrino with

momentum k⃗ and spin s with total energy Eð0Þ
n ¼ ω

k⃗0 þ ωk⃗.
Using these results, we can rewrite Eq. (16) as

Eð2Þ
vacðr⃗1− r⃗2Þ

¼−
X
k⃗0;k⃗

X
s;s0

�½h0jHint;1jk⃗0;s0iνjk⃗;siν̄�½ν̄hk⃗;sjνhk⃗0;s0jHint;2j0i�
ω
k⃗0 þωk⃗

þc:c:

�
: ð17Þ

The subsequent calculations of Eq. (17) are straightforward
and described in the Appendix, giving the two-neutrino
exchange potential

Vν;ν̄ðrÞ ¼
G2

Fg
f
V;1g

f
V;2m

3
ν

4π3r2
K3ð2mνrÞ: ð18Þ

To obtain the limit for massless neutrinos, we use K3ð2xÞ ≃
1=x3 if x ≪ 1, which gives

lim
mν→0

Vν;ν̄ðrÞ ¼
G2

Fg
f
V;1g

f
V;2

4π3r5
: ð19Þ

TABLE I. Values for the vector coupling gfV for neutral current
(NC) lepton-neutrino and nucleon-neutrino interactions, where
θW is the Weinberg angle and sin2 θW ¼ 0.2223 [44].

Fermion gfV

e, μ, τ 1
2
þ 2 sin2 θW

Proton 1
2
− 2 sin2 θW

Neutron − 1
2
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All of these results are in agreement with previous work
[30,33,34,37–39,41]. Now that we have demonstrated the
efficacy of our approach for deriving the 2NEP for a single
neutrino, wewill next include the effects of neutrino mixing
with three neutrino flavors.

IV. INTERACTION HAMILTONIANS
WITH MIXING

A. Free Hamiltonian with three neutrino flavors

Observations reveal there are three flavors of neutrinos,
νe, νμ, and ντ, while the phenomena of neutrino oscillations
indicate that these flavors do not have definite masses [4].

Let νaðr⃗Þ represent the quantum field of a neutrino with
mass ma, where a ¼ 1, 2, 3. The Standard Model fermions
interact with neutrinos through flavor fields which are
linear combinations of the mass fields [10,11,15],

ναðr⃗Þ≡
X3
a¼1

Uαaνaðr⃗Þ;

ν†αðr⃗Þ≡
X3
a¼1

U�
αaν

†
aðr⃗Þ; ð20Þ

where α ¼ e, μ, τ, and Uαa is the PMNS matrix given by

UPMNS ¼

0
B@

Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

1
CA

¼

0
B@

c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13
s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13;

1
CA; ð21Þ

where sab ¼ sin θab, cab ¼ cos θab, and δCP is the CP-
violation phase. The mass fields in the Schrödinger picture
may be written as the generalizations of Eqs. (8a) and (8b),

νaðr⃗Þ ¼
X
k⃗;s

�
ma

Vωk⃗;a

�
1=2

× ½bk⃗;s;aus;aðk⃗Þeik⃗·r⃗ þ d†
k⃗;s;a

vs;aðk⃗Þe−ik⃗·r⃗�; ð22aÞ

ν†aðr⃗Þ ¼
X
k⃗;s

�
ma

Vωk⃗;a

�
1=2

× ½b†
k⃗;s;a

u†s;aðk⃗Þe−ik⃗·r⃗ þ dk⃗;s;av
†
s;aðk⃗Þeik⃗·r⃗�; ð22bÞ

where ω2

k⃗;a
¼ m2

a þ k⃗2, and the creation and annihilation
operators satisfy the usual anticommutation relations where
operators associated with different masses commute. The
Hamiltonian can then be written as

H0 ¼
X3
a¼1

X
k⃗;s

ωk⃗;aðb†k⃗;s;abk⃗;s;a þ d†
k⃗;s;a

dk⃗;s;aÞ; ð23Þ

where the infinite vacuum energy has been dropped as
before.
It is important to note that the vacuum that we will use

subsequently in perturbation theory calculations is the eigen-
state of the Hamiltonian in Eq. (23), which is simply given by
the product of the vacuum states of each neutrino mass field,

j0i →
Y3
a¼1

j0ia: ð24Þ

For simplicity, we will write this vacuum state as j0i in our
calculations. It has been noted that there are a variety of
theoretical difficulties associated with using this vacuum
[20,45], and that other constructions of the neutrino vacuum
provideways to circumvent these issues [19,20]. Meanwhile,
there are other proposals that resolve these theoretical
difficulties without resorting to these alternative neutrino
vacua [15,46]. Furthermore, it can be shown that the results in
Sec. V will persist as a contribution in these models, though
the detailed discussion is beyond the scope of this paper.
Generally, it is clear that the effects of neutrino mixing are a
direct consequence of the bilinear formof the neutrino field in
the weak interaction Hamiltonian.

B. Interaction Hamiltonians with three
neutrino flavors

1. Flavor fields

According to the Standard Model, the interaction of
neutrinos with other fermions is through the flavor fields
ναðr⃗Þ, not the mass fields νaðr⃗Þ. In this section, we will
describe the low-energy effective Hamiltonians describing
the interaction of the three flavors of neutrinos interacting
with protons, neutrons, and charged leptons. We will not
explore the interactions involving individual quarks which
are bound in baryons and mesons. In our low-energy
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theory, the nucleons will be treated effectively as funda-
mental particles.
In general, the low-energy effective Hamiltonian density

describing the interaction of neutrinos with fermions is the
sum of two contributions [47],

Hintðr⃗Þ ¼ HNC
int ðr⃗Þ þHCC

int ðr⃗Þ; ð25Þ
where the NC Hamiltonian density describing weak inter-
actions between neutrinos and fermions is

HNC
int ðr⃗Þ ¼

GFffiffiffi
2

p
�X

f

f̄ðr⃗ÞγσðgfV − gfAγ
5Þfðr⃗Þ

�

×

� X
α¼e;μ;τ

ν̄αðr⃗Þγσð1 − γ5Þναðr⃗Þ
�
: ð26Þ

The charged current (CC) interaction Hamiltonian density
HCC

int ðr⃗Þ only involves charged leptons interacting with their
corresponding flavors of neutrinos:

HCC
int ðr⃗Þ¼

GFffiffiffi
2

p ½l̄αðr⃗Þγσð1− γ5Þlαðr⃗Þ�½ν̄αðr⃗Þγσð1− γ5Þναðr⃗Þ�;

ð27Þ
where lαðr⃗Þ is the charged lepton field with flavor α.
Figure 2 shows the Feynman diagrams which illustrate how
the more fundamental Standard Model NC and CC proc-
esses involving the vector bosons Z0 and W� with masses
MZ and MW reduce to the lower energy interactions
involving just fermions and neutrino propagators when
the energies satisfy E ≪ MZ;MW.
Since we are interested in only neutrino interactions with

nonrelativistic fermions, we focus on only the spin-

independent interaction Hamiltonians involving nucleons
and charged leptons. Nucleons only experience the NC
interaction so their interaction Hamiltonian is the generali-
zation of Eq. (11),

Hint;Nðr⃗iÞ ¼
GFgNVffiffiffi

2
p

� X
α¼e;μ;τ

ν†αðr⃗iÞð1 − γ5Þναðr⃗iÞ
�
; ð28Þ

where N ¼ p; n (protons, neutrons). On the other hand, the
charged lepton interaction Hamiltonian includes NC and CC
contributions, and is given by

Hint;αðr⃗iÞ ¼
GFffiffiffi
2

p
�
gαV

� X
β¼e;μ;τ

ν†βðr⃗iÞð1 − γ5Þνβðr⃗iÞ
�

þ ν†αðr⃗iÞð1 − γ5Þναðr⃗iÞ
�
: ð29Þ

2. Mass fields

Nucleons.—While the interaction between neutrinos and
other fermions is most naturally expressed in terms of the
flavor fields ναðr⃗Þ, we need to express the interaction in
terms of the mass fields νaðr⃗Þ to calculate the two-neutrino
exchange potential in our formalism. Using Eq. (21), it is
straightforward to show that the neutral current interaction
is independent of flavor so

X
α¼e;μ;τ

ν†αðr⃗Þð1 − γ5Þναðr⃗Þ ¼
X3
a¼1

ν†aðr⃗Þð1 − γ5Þνaðr⃗Þ: ð30Þ

Thus, nucleons couple equally to the three types of neutrino
fields so Eq. (28) is easily rewritten in terms of the neutrino
mass fields:

Hint;Nðr⃗iÞ ¼
GFgNVffiffiffi

2
p

�X3
a¼1

ν†aðr⃗iÞð1 − γ5Þνaðr⃗iÞ
�
: ð31Þ

Charged leptons.—The interaction of the neutrino fields
with the charged lepton is a bit more complicated due to the
additional contribution from the charged current interac-
tion. Transforming the flavor neutrino field in the neutrino
current into mass fields gives

ν†αðr⃗Þð1 − γ5Þναðr⃗Þ ¼
X3
a;b¼1

U�
αaUαb½ν†aðr⃗Þð1 − γ5Þνbðr⃗Þ�

¼
X3
a¼1

jUαaj2½ν†aðr⃗Þð1 − γ5Þνaðr⃗Þ�

þ
X
a≠b

U�
αaUαb½ν†aðr⃗Þð1 − γ5Þνbðr⃗Þ�:

ð32Þ
If we now substitute Eqs. (30) and (32) into Eq. (29), we
obtain the interaction Hamiltonian for a charged lepton
located at position r⃗i,

FIG. 2. Feynman diagrams showing how the NC (top) and CC
(bottom) processes involving vector bosons Z0 and W� and
neutrinos lead to the effective process described by Eqs. (26) and
(27) when the energies involved satisfy E ≪ MZ;MW. Note that
nucleons and charged leptons interact via NC processes while
only leptons participate in the CC processes.
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Hint;αðr⃗iÞ ¼
GFffiffiffi
2

p
��X3

a¼1

ðgαV þ jUαaj2Þν†aðr⃗iÞð1 − γ5Þνaðr⃗iÞ
�

þ
X
a≠b

U�
αaUαb½ν†aðr⃗iÞð1 − γ5Þνbðr⃗iÞ�

�
: ð33Þ

We see that Hint;αðr⃗iÞ naturally divides into the sum of
terms of neutrino currents involving the same and different
mass neutrino fields:

Hint;αðr⃗iÞ ¼
X3
a¼1

HðaaÞ
int;αðr⃗iÞ þ

X
a≠b

HðabÞ
int;αðr⃗iÞ; ð34Þ

where

HðaaÞ
int;αðr⃗iÞ≡ GFffiffiffi

2
p ½ðgαV þ jUαaj2Þν†aðr⃗iÞð1 − γ5Þνaðr⃗iÞ� ð35Þ

and

HðabÞ
int;αðr⃗iÞ≡ GFffiffiffi

2
p fU�

αaUαb½ν†aðr⃗iÞð1 − γ5Þνbðr⃗iÞ�g: ð36Þ

This division will result in two distinct ways in which
neutrino mixing will affect the 2NEP. In Eq. (35), we see

that the mixing in HðaaÞ
int;αðr⃗iÞ results only in a change of the

coefficient gαV → ðgαV þ jUαaj2Þ from the single neutrino
result and will not substantively affect the spatial depend-

ence of the 2NEP. On the other hand, HðabÞ
int;αðr⃗iÞ given by

Eq. (36) will result in a modified spatial dependence of the
2NEP between leptons due to the interference of different
mass neutrino contributions.

V. INTERACTION POTENTIALS WITH MIXING

A. Overview

In this section, we will use the Hamiltonians describing
the interactions of fermions with the neutrino fields given in

the previous section to derive the 2NEPs for nucleon-
nucleon, nucleon-lepton, and lepton-lepton interactions
including neutrino mixing. As in the single neutrino case,
the derivation of the 2NEP with mixing will start with the
second-order energy shift of the vacuum due to two
fermions #1 and #2 which depends on the fermions
separation, Eq. (16),

Eð2Þ
vacðr⃗1 − r⃗2Þ

¼ −
X
Eð0Þ
n ≠0

�h0jHint;1jEð0Þ
n ihEð0Þ

n jHint;2j0i
Eð0Þ
n

þ c:c:

�
; ð37Þ

where Hint;i now will become Hint;Nðr⃗iÞ, given by Eq. (31)
or Hint;αðr⃗iÞ given by Eqs. (34)–(36), depending upon the
identities of the interacting fermions.

B. Potentials for two nucleons

Since the interaction of neutrinos with nucleons is flavor
independent, the derivation of the 2NEP is a straightfor-
ward extension of the single neutrino case. For two
nucleons, the second-order vacuum energy shift is obtained
from Eq. (16) with the replacement Hint;i → Hint;Ni;i, Ni ¼
p; n given by Eq. (31):

Eð2Þ
vac;NNðr⃗1 − r⃗2Þ

¼ −
X
Eð0Þ
n ≠0

�h0jHint;N1;1jEð0Þ
n ihEð0Þ

n jHint;N2;2j0i
Eð0Þ
n

þ c:c:

�
:

ð38Þ

The only intermediate states that will give a nonzero
contribution are neutrino-antineutrino pairs of the same
mass state a, jk⃗0; s0iνa jk⃗; siν̄a , which gives

Eð2Þ
vac;NNðr⃗1 − r⃗2Þ ¼ −

X3
a¼1

X
k⃗0;k⃗

X
s;s0

�½h0jHint;N1;1jk⃗0; s0iνa jk⃗; siν̄a �½ν̄ahk⃗; sjνahk⃗
0; s0jHint;N2;2j0i�

ω
k⃗0 þ ωk⃗

þ c:c:

�
: ð39Þ

Graphically, the process leading to the nucleon-nucleon 2NEP is shown in Fig. 3(a). The interaction energy between any
two nucleons is then the sum of single neutrino potentials of each of the three mass states:

VN1;N2
ðrÞ ¼ G2

Fg
N1

V;1g
N2

V;2

4π3r2
X3
a¼1

m3
aK3ð2marÞ: ð40Þ

In the limit r ≪ m−1
a for all a, this reduces to
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VN1;N2
ðrÞ ≃ 3G2

Fg
N1

V;1g
N2

V;2

4π3r5
; ð41Þ

which is 3 times the single neutrino result. The nucleon-
nucleon 2NEP in this separation regime is proportional to
the total number of neutrinos since all contribute equally in
the virtual exchange.

C. Potentials for nucleon-lepton interaction

Now let us consider the interaction energy for a nucleon
(particle #1) and a charged lepton (particle #2). Then the
second-order vacuum shift is

Eð2Þ
vac;Nαðr⃗1 − r⃗2Þ

¼ −
X
Eð0Þ
n ≠0

�h0jHint;N;1jEð0Þ
n ihEð0Þ

n jHint;α;2j0i
Eð0Þ
n

þ c:c:

�
;

ð42Þ
where N ¼ p, n. Here Hint;N;1 is given by Eq. (31) while
Hint;α;2 is given by Eq. (33). Like the nucleon-nucleon case,
the only nonzero contributions will arise when the inter-
mediate states are neutrino-antineutrino pairs of the same
mass state a, jk⃗0; s0iνa jk⃗; siν̄a ,

Eð2Þ
vac;Nαðr⃗1 − r⃗2Þ ¼ −

X3
a¼1

X
k⃗0;k⃗

X
s;s0

�½h0jHint;N;1jk⃗0; s0iνa jk⃗; siν̄a �½ν̄ahk⃗; sjνahk⃗
0; s0jHðaaÞ

int;α;2j0i�
ω
k⃗0 þ ωk⃗

þ c:c:

�
: ð43Þ

Graphically, the two processes contributing to the nucleon-
lepton 2NEP are shown in Fig. 3. Like the nucleon-nucleon
potential, the interaction energy between a nucleon and an
electron is the sum of single neutrino potentials of each of
the three mass states, but now incorporates an additional
factor which depends on mixing which arises from the NC-
CC diagram (b) in Fig. 3:

VNαðrÞ ¼
G2

Fg
N
V

4π3r2
X3
a¼1

m3
aðgαV þ jUαaj2ÞK3ð2marÞ: ð44Þ

When r ≪ m−1
a for all a, the nucleon-lepton 2NEP reduces

VNαðrÞ ≃
G2

Fg
N
V

4π3r5

�
3geV þ

X3
a¼1

jUαaj2
�

¼ G2
Fg

N
V

4π3r5
ð3geV þ 1Þ;

ð45Þ
where in the last step we used the universal neutral current
coupling to leptons (gαV ¼ geV) and the fact that the rows of a
unitary matrix form an orthonormal basis [48]. Unlike the
nucleon-nucleon case, we see that potential between a
nucleon and a lepton depends on mixing, even in this limit,
but the mixing does not qualitatively alter the spatial
dependence. In the massless limit, the NC and CC current

interactions effectively make three and one contributions,
respectively, to the nucleon-electron 2NEP. Graphs of the
nucleon-electron 2NEP assuming normal ordering of neu-
trino masses are shown in Fig. 4.

(c)(b)(a)

FIG. 3. Feynman diagrams contributing to the 2NEP. Here (a) represents the NC-NC interaction, (b) one of the two NC-CC diagrams
contributing to the lepton weak form factor, and (c) the CC-CC diagram. For the nucleon-nucleon 2NEP, only the diagram
(a) contributes, while diagrams (a) and (b) contribute to the nucleon-lepton 2NEP. Finally, (a), (b), and (c) contribute to the lepton-lepton
2NEP.

FIG. 4. Plots of the total 2NEP between nucleons and electrons
with NO of neutrino masses: the black lines represent the
neutron-electron 2NEP, while the gray lines represent the proton-
electron 2NEP. We assumed the smallest neutrino mass state
mmin ¼ 0 eV (short-dashed), mmin ¼ 0.05 eV (long-dashed) and
mmin ¼ 0.25 eV (solid). Values for all other parameters used
were obtained from the Particle Data Group [44] given in Table II.
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D. Potentials for two electrons

Now let us consider the interaction energy between two
electrons. The three diagrams contributing to the general
lepton-lepton 2NEP are shown in Fig. 3. The second-order
vacuum shift is

Eð2Þ
vac;eeðr⃗1− r⃗2Þ

¼−
X
Eð0Þ
n ≠0

�h0jHint;e;1jEð0Þ
n ihEð0Þ

n jHint;e;2j0i
Eð0Þ
n

þc:c:

�
; ð46Þ

where Hint;e;i is given by Eq. (34) with α ¼ e. From
Eq. (34), we see that Eq. (46) can be grouped into 2
separate contributions,

Eð2Þ
vac;eeðr⃗1 − r⃗2Þ ¼ Eð2Þða¼bÞ

vac;ee ðr⃗1 − r⃗2Þ þ Eð2Þða≠bÞ
vac;ee ðr⃗1 − r⃗2Þ:

ð47Þ

The first term Eð2Þða¼bÞ
vac;ee ðr⃗1 − r⃗2Þ arises from Eq. (35),

which corresponds to the case of exchanging a neutrino-
antineutrino pair of the same mass state similar to the
nucleon-nucleon and nucleon-lepton case. The second

contribution in Eq. (47), Eð2Þða≠bÞ
vac;ee ðr⃗1 − r⃗2Þ comes from

Eq. (36), which corresponds to the case of exchanging a
neutrino from one mass state with an antineutrino from
another mass state. [Because of the difference in the virtual
neutrinos exchanged, there is no interference term involv-
ing both Eqs. (35) and (36).] Writing out explicitly this new
contribution due to mixing, we find

Eð2ÞðmixÞ
vac;ee ðr⃗1 − r⃗2Þ≡ Eð2Þða≠bÞ

vac;ee ðr⃗1 − r⃗2Þ ¼ −
X
Eð0Þ
n ≠0

1

Eð0Þ
n

��
h0j

X
a≠b

GFU�
eaUebffiffiffi
2

p ν†aðr⃗1Þð1 − γ5Þνbðr⃗1ÞjEð0Þ
n i

�

×

�
hEð0Þ

n j
X
a0≠b0

GFU�
ea0Ueb0ffiffiffi
2

p ν†a0 ðr⃗2Þð1 − γ5Þνb0 ðr⃗2Þj0i
�
þ ð1 ↔ 2Þ

�
: ð48Þ

The nonzero terms in this quadruple sum occur only when a0 ¼ b and b0 ¼ a due to the matching of exchanged particles, so
the final contribution from mixing is given by

Eð2ÞðmixÞ
vac;ee ðr⃗1 − r⃗2Þ ¼ −

X
a>b

G2
FjUeaj2jUebj2

X
Eð0Þ
n ≠0

�h0jν†aðr⃗1Þð1 − γ5Þνbðr⃗1ÞjEð0Þ
n ihEð0Þ

n jν†bðr⃗2Þð1 − γ5Þνaðr⃗2Þj0i
Eð0Þ
n

þ ð1 ↔ 2Þ
�
:

ð49Þ

While the contribution Eð2Þða¼bÞ
vac;ee ðr⃗1 − r⃗2Þ from Eq. (35) can

be evaluated exactly as in the nucleon-nucleon and nu-
cleon-lepton cases, we have not found a closed form

expression for Eð2ÞðmixÞ
vac;ee ðr⃗1 − r⃗2Þ given by Eq. (49). Instead,

one can make an expansion in powers of ðmab
− =mabþ Þ2n,

where

mab
� ≡ma �mb; ð50Þ

which can be evaluated. To O½ðmab
− =mabþ Þ2�, the resulting

2NEP between two electrons is given by

VeeðrÞ ¼
G2

F

4π3r2

�X3
a¼1

m3
aðgeV þ jUeaj2Þ2K3ð2marÞ

�

þ Vee;mixðrÞ; ð51Þ

where the new contribution due to mixing is

Vee;mixðrÞ ¼
G2

F

4π3r2
X3
a>b

jUeaj2jUebj2
4

�
mabþ ½ðmabþ Þ2

þ ðmab
− Þ2�K3ðmabþ rÞ − 4ðmab

− Þ2
r

K2ðmabþ rÞ

þO
��

mab
−

mabþ

�
2
��

: ð52Þ

Using the parameters given in Table II, one finds that the
lowest order contribution given by Eq. (52) is remarkably
accurate, with higher order terms contributing significantly
less than 1%. The mixing potential Eq. (52) is always
repulsive even though it contains attractive and repulsive
terms. This result follows because ðmabþ Þ2 þ ðmab

− Þ2 ≥
2ðmab

− Þ2 and K3ðxÞ > 2K2ðxÞ=x. When r ≪ m−1
a for all

a, we find

VeeðrÞ ≃
G2

F

4π3r5

�X3
a¼1

ðgeV þ jUeaj2Þ2 þ 2
X3
a>b

jUeaj2jUebj2
�
:

ð53Þ

SPIN-INDEPENDENT TWO-NEUTRINO EXCHANGE POTENTIAL … PHYS. REV. D 99, 116006 (2019)

116006-9



Using the properties of the PMNS matrix and the universal
neutral current coupling to charged leptons, Eq. (53)
simplifies to

VeeðrÞ ¼ VμμðrÞ ¼ VττðrÞ ≃
G2

F

4π3r5
½3ðgeVÞ2 þ 2geV þ 1�:

ð54Þ

This follows because of the flavor independence of the
interaction in the high momentum (small r) limit, so there
are three contributions from the NC diagram, Fig. 3(a), two
contributions from the NC-CC diagram, Fig. 3(b), and one
contribution from the CC diagram, Fig. 3(c).
It is important to note that the asymptotic expansion used

to obtain Eq. (52) is only valid for the cases of mixing
between 2 massive neutrinos or 2 massless neutrinos. It
fails for the case of mixing between a massless neutrino and
a massive neutrino. Unlike the case when all three neutrino
flavors are massive, the contribution to the electron-
electron 2NEP from mixing when a single neutrino is
massless (here the ath neutrino) is obtained exactly as

Vma¼0
ee;mixðrÞ ¼

G2
F

4π3r5
X3
b¼1
b≠a

jUeaj2jUebj2
12

½e−mbrð24þ 24mbrþ 6m2
br

2 − 2m3
br

3 þm4
br

4 −m5
br

5Þ

−ð6m4
br

4 þm6
br

6ÞEið−mbrÞ − 6m4
br

4Γð0; mbrÞ�; ð55Þ

where EiðxÞ is the exponential integral Ei and Γðs; xÞ is the upper incomplete gamma function.
Let us now compare our results for the 2NEP between two electrons with mixing with the integral expression derived by

Lusignoli and Petrarca [41],

VLP
ee ðrÞ ¼

G2
F

24π3r5
X3
a;b¼1

jUeaj2jUebj2
Z

∞

mab
þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 − ½ðmabþ Þ2 þ ðmab

− Þ2�r2y2 þ ðmabþ Þ2ðmab
− Þ2r4

q

×

�
y2 −

½ðmabþ Þ2 þ ðmab
− Þ2�r2

4
þ ðmabþ Þ2ðmab

− Þ2r4
2y2

�
e−y

y
dy; ð56Þ

which we have adapted to our notation. One can verify that
this result indeed agrees with our mixing contribution
Vee;mixðrÞ given by Eq. (52) by applying the substitution
y ¼ ar, where here a is given by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a þm2
b þ 2mamb cosh t

q
: ð57Þ

However, the Lusignoli and Petrarca result, Eq. (56), does
not include the weak NC interaction and its interference
with the CC interaction which arises from the diagram in

Fig. 3(b). This additional contribution and interference
from the NC results in a modification of the coupling of the
electron when a ¼ b from jUeaj2jUeaj2 in Eq. (56) to
ðgeV þ jUeaj2ÞðgeV þ jUeaj2Þ in our result.

E. Potentials for two leptons

A straightforward generalization of the calculation car-
ried out in Eq. (46) yields the analogous potential to
Eqs. (51) and (52) between two charged leptons with
massive neutrinos,

VαβðrÞ ¼
G2

F

4π3r2
X3
a¼1

½m3
aðgαV þ jUαaj2ÞðgβV þ jUβaj2ÞK3ð2marÞ� þ Vαβ;mixðrÞ; ð58Þ

where

TABLE II. Neutrino mass and PMNSmatrix parameters used in
numerical calculations (Table 14.1, Ref. [44]). Here normal
ordering assumes m1 < m2 < m3, while inverted ordering as-
sumesm3 < m1 < m2. For the graphs, we assumed three possible
values for the smallest neutrino mass state: mmin ¼
0 eV; 0.05 eV, and 0.25 eV.

Parameter NO IO

Δm2
21 [10−5 eV2] 7.37

Δm2
31ð23Þ [10

−3 eV2] 2.56 2.54

sin2 θ12 0.297
sin2 θ13 0.0215 0.0216
sin2 θ23 0.425 0.589
δCP 1.38π 1.31π
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Vαβ;mixðrÞ¼
G2

F

4π3r2
X3
a>b

ReðU�
αaUαbU�

βbUβaÞ
4

�
mabþ ½ðmabþ Þ2þðmab

− Þ2�K3ðmabþ rÞ−4ðmab
− Þ2
r

K2ðmabþ rÞþO
��

mab
−

mabþ

�
2
��

: ð59Þ

Similarly, if the lightest neutrino is massless, the mixing term analogous to Eq. (55) is given by

Vma¼0
αβ;mixðrÞ ¼

X3
b¼1
b≠a

G2
F Re ðU�

αaUαbU�
βbUβaÞ

48π3r5
½e−mbrð24þ 24mbrþ 6m2

br
2 − 2m3

br
3 þm4

br
4 −m5

br
5Þ

−ð6m4
br

4 þm6
br

6ÞEið−mbrÞ − 6m4
br

4Γð0; mbrÞ�: ð60Þ

VI. DISCUSSION OF LEPTON-LEPTON RESULTS

A. Lepton-lepton 2NEPs

While the mixing of neutrino mass states does modify
the 2NEPs involving leptons and nucleons, the most
important effects are seen in interactions involving two
leptons. The consequences of the 2NEPs involving two
leptons derived in the previous section are explored in
Figs. 5–7 using current neutrino parameter values from the
Particle Data Group (Table II). We consider normal

ordering (NO) of neutrino mass states (m1 < m2 < m3)
and inverted ordering (IO) (m3 < m1 < m2). Overall
results for the lepton-lepton 2NEP with mixing obtained
from Eqs. (51), (55), (58) and (60) are plotted in Fig. 5 for
three different values of the lightest neutrino mass with
both NO and IO: mmin ¼ 0 eV; 0.05 eV, and 0.25 eV. [The
cases where the minimum neutrino mass statemmin ¼ 0 eV
(short-dashed lines) with NO (black lines) and IO (gray
lines) are usually referred to in the literature [49] as the
normal and inverted mass hierarchy, respectively, while the
cases where mmin ¼ 0.25 eV (black and gray solid lines)
are examples of the quasi-degenerate scenarios.] We see
that the general behavior of the 2NEP with neutrino mixing
does not differ significantly from the case without mixing.
In particular, we see that they remain purely repulsive over
all distances and fall off drastically at large distances with
the heaviest neutrino mass state determining the effective
range of the interaction. At short separations (r ≪ 1=ma for
all a), the 2NEP behaves as if neutrinos are massless
without mixing. The difference between NO and IO
increases with separation, but as the mass of the lightest
neutrino increases, this difference quickly vanishes. It is
also interesting to note that across all masses of the lightest
neutrino and all distances, IO produces smaller 2NEPs than
with NO.

B. Mixing between different neutrinos

The relative ratios of the mixing portion VðmixÞ
αβ ðrÞ of the

2NEP, arising from exchanging different neutrinos, to the
total 2NEP between leptons VαβðrÞ exhibited in Fig. 6
shows a rich and interesting variety of behavior. Generally,
the reason is that Eqs. (58) and (60) involve sums over
different decaying terms with different characteristic length
scales, coming from the sum of any two neutrino mass
states, and the various combinations of mixing matrix
parameters and the coupling constants. Using Standard
Model parameters from the Particle Data Group [44], we
show that the new additional effect from neutrino mixing
can get as large as nearly 12% of the overall 2NEP. In
general, the relative strength of the mixing portion falls off
at large distances, but there is no universal cutoff length
scale to characterize this damping behavior. Most promi-
nently, the effect of mixing seems to persist at much larger

FIG. 5. Plots of the total 2NEP between (a) 2 electrons and
(b) electron and muon. Black lines represent NO of neutrino
masses while the gray lines represent IO. It is assumed respec-
tively that mmin ¼ 0 eV (short-dashed), mmin ¼ 0.05 eV (long-
dashed), mmin ¼ 0.25 eV (solid), and that neutrinos are massless
without mixing (black, dot-dashed). Values for all other param-
eters were obtained from the Particle Data Group [44] given in
Table II.
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distances in NO than in IO. Within the StandardModel, due
to the unitarity of the mixing matrix, one can see from
Eqs. (58) and (60) that the contribution from neutrino
mixing is always positive for two leptons in the same
generation, as seen in Figs. 6(a)–6(c) However, the mixing
contribution in the 2NEP between leptons in different
generations, Figs. 6(d)–6(f), shows a much richer behavior.
In contrast to the 2NEP between leptons in the same
generation, the mixing portion can alternate between
positive and negative contribution at different length scales,
and when the exchange of different mass states is involved,
the mixing contribution can be negative for a wide range of
separations.

C. Effect of the Dirac CP-violating phase

There is growing evidence that CP is violated in neutrino
oscillations which is reflected in a nonzero phase δCP in the
PNMS matrix [50]. If this result is confirmed, the CP
violation will contribute to the 2NEP involving leptons,

FIG. 6. The ratios of the contribution from neutrino mixing to the overall 2NEP between: (a) Two electrons, (b) two muons, (c) two
taus, (d) electron and muon, (e) electron and tau and (f) muon and tau. Black lines represent NO of neutrino masses while the gray lines
represent IO. It is assumed respectively that mmin ¼ 0 eV (short-dashed), mmin ¼ 0.05 eV (long-dashed), mmin ¼ 0.25 eV (solid).
Values for all other relevant parameters were obtained from the Particle Data Group [44] given in Table II.

FIG. 7. The absolute value of the ratio VðCPÞ
eμ ðrÞ=Vð0Þ

eμ ðrÞ from
Eq. (61) for several possibilities of minimum neutrino masses.
Black lines represent NO of neutrino masses while the gray lines
represent IO. It is assumed respectively that mmin ¼ 0 eV (short-
dashed), mmin ¼ 0.05 eV (long-dashed), mmin ¼ 0.25 eV (solid).
Values of all other parameters were obtained from the Particle
Data Group [44] given in Table II. Note: For r > 0, each cusp in
the IO curves corresponds to where the contribution of the CP-
violating term changes its sign.

QUAN LE THIEN and DENNIS E. KRAUSE PHYS. REV. D 99, 116006 (2019)

116006-12



except the electron-electron 2NEP. In the latter case, the
matrix element Uea involves an overall phase, which is not
the case for the other lepton interactions. To isolate the
effects of the CP-violating phase δCP, one can rewrite
Eqs. (58) and (60) into the simple form

VαβðrÞ ¼ Vð0Þ
αβ ðrÞ þ VðCPÞ

αβ ðrÞ sin2
�
δCP
2

�
; ð61Þ

where Vð0Þ
αβ ðrÞ and VðCPÞ

αβ ðrÞ are complicated functions that

are independent of δCP and VðCPÞ
ee ðrÞ ¼ 0. As an example,

the ratios of jVðCPÞ
eμ ðrÞ=Vð0Þ

eμ ðrÞj for various values of the
lightest neutrino mass are plotted in Fig. 7. For both NO

and IO, the VðCPÞ
αβ ðrÞ vanishes at short-range, but their

behaviors at long-range are completely opposite. While the
contribution of the CP-violating term with NO is always
positive, increases monotonically with distance and can get
as large as 10% of the 2NEP, for IO, the CP-violating term
changes its sign and falls off quickly at large distances.

VII. SUMMARY AND FUTURE DIRECTIONS

To summarize, we have developed an alternative
approach to derive the 2NEP between two fermions based
on expressing the neutrino fields in terms of the Schrödinger
picture and finding the change in vacuum energy using time-
independent perturbation theory.We incorporatedmixing of
three neutrino flavors using the PMNS matrixUαa, where α
denotes the neutrino flavor and a denotes the neutrino mass
state, and assumed the vacuum state was the tensor product
of the individual mass vacuum states. We were able to find
analytical expressions for the 2NEP for the nucleon-nucleon
potential [Eq. (40)], the nucleon-lepton potential [Eq. (44)],
and the lepton-lepton potential when the lightest neutrino is
massless [Eq. (60)]. While we were unable to find an
analytical expression for the general lepton-lepton 2NEP,
we obtained an exact result that can be evaluated numeri-
cally, and an approximate analytic formula which is quite
precise for the range of neutrino masses consistent with
current observations. We were also able to isolate and
evaluate the contribution of the CP-violating phase to the
lepton-lepton 2NEP. Where comparison is possible, our
results agree with previous work.
While there was recent work which suggested the

observation of the effects of the 2NEP might be within
reach of spectroscopy experiments [3], followup calcula-
tions indicate this is unlikely [40]. Fischbach et al., showed

that the 2NEP contribution to nuclear binding energy is of
interest to precise tests of the weak interaction with respect
to the equivalence principle [37] and to lower limits on the
neutrino masses from neutron star self-energies [38], these
problems involve the nucleon-nucleon 2NEP which is
unaffected by neutrino mixing within the Standard
Model. Experiments involving two leptons could observe
the most interesting aspects of mixing with the 2NEP, but
the observation of CP violation in the 2NEP would require
using lepton-lepton systems other those involving only
electrons (e.g., muonium).
In this paper we have focused our attention on the spin-

independent 2NEP, but the work by Stadnik [3] highlights
the importance of the spin-dependent 2NEP in realistic
problems. While we have assumed the Standard Model in
our work, the mixing of neutrino mass states has raised the
possibility of alternative vacuum states which would likely
modify the 2NEP [19,20]. Recently, Blasone et al. have
studied the Casimir force between two plates assuming
mixing of scalar fields for different vacua [51]. We also
assumed the neutrinos were Dirac neutrinos rather than
Majorana neutrinos. In addition, recent experiments and
cosmological observations hint at the possibility of sterile
neutrinos which would also impact the 2NEP [52]. The
2NEP is interesting because it probes fundamental issues of
neutrino physics such as the neutrino mass and mixing, the
number of neutrinos, the type of neutrino (Dirac or
Majorana), CP violation, the neutrino vacuum state, while
producing a result, an interaction potential, that is familiar
to an introductory physics student. One can only hope that
someday direct evidence of the 2NEP will be observed in
nature.
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APPENDIX: CALCULATION OF SINGLE
FLAVOR TWO-NEUTRINO POTENTIAL

In this Appendix, we calculate the second-order energy
shift of the single neutrino vacuum by two fermions which
depends on the fermion separation, Eq. (17),

Eð2Þ
vacðr⃗1 − r⃗2Þ ¼ −

X
k⃗0;k⃗

X
s;s0

�½h0jHint;1jk⃗0; s0iνjk⃗; siν̄�½ν̄hk⃗; sjνhk⃗0; s0jHint;2j0i�
ω
k⃗0 þ ωk⃗

þ c:c:

�
: ðA1Þ

Using Eq. (11), the required matrix element is
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ν̄hk⃗; sjνhk⃗0; s0jHint;ij0i ¼
GFg

f
V;iffiffiffi
2

p mν

V
1ffiffiffiffiffiffiffiffiffiffiffiffi
ωk⃗ωk⃗0

p u†s0 ðk⃗0Þð1 − γ5Þvsðk⃗Þe−iðk⃗
0þk⃗Þ·r⃗i : ðA2Þ

Substituting Eq. (A2) and its complex conjugate into Eq. (17) then gives

Eð2Þ
vacðr⃗1 − r⃗2Þ ¼ −gfV;1g

f
V;2

�
GFffiffiffi
2

p mν

V

�
2X
k⃗0;k⃗

X
s;s0

�½v†s0 ðk⃗Þð1 − γ5Þus0 ðk⃗0Þ�½u†s0 ðk⃗0Þð1 − γ5Þvsðk⃗Þ�e−iðk⃗
0þk⃗Þ·ðr⃗1−r⃗2Þ

ωk⃗ωk⃗0 ðωk⃗0 þ ωk⃗Þ
þ c:c:

�
: ðA3Þ

Using

X
s;s0

½v†s0 ðk⃗Þð1 − γ5Þus0 ðk⃗0Þ�½u†s0 ðk⃗0Þð1 − γ5Þvsðk⃗Þ� ¼
2

m2
ν
ðωk⃗ωk⃗0 þ k⃗ · k⃗0Þ; ðA4Þ

one can show that Eq. (A3) can be written as

Eð2Þ
vacðr⃗1 − r⃗2Þ ¼ −2gfV;1g

f
V;2G

2
F

�
1

V

�
2X
k⃗0;k⃗

�
ωk⃗ωk⃗0 þ k⃗ · k⃗0

ωk⃗ωk⃗0 ðωk⃗0 þ ωk⃗Þ
�
eiðk⃗

0þk⃗Þ·ðr⃗1−r⃗2Þ: ðA5Þ

To evaluate the sums in Eq. (A5), we go to the continuum limit, which gives

Eð2Þ
vacðr⃗Þ ¼ −

2gfV;1g
f
V;2G

2
F

ð2πÞ6
Z

d3k
Z

d3k0
��

ωk⃗ωk⃗0 þ k⃗ · k⃗0

ωk⃗ωk⃗0 ðωk⃗0 þ ωk⃗Þ
�
eiðk⃗

0þk⃗Þ·r⃗
�
; ðA6Þ

where r⃗≡ r⃗1 − r⃗2. Rather than directly evaluating the integrand in Eq. (A6), we will first replace the term involving ωk⃗ωk⃗0

in the numerator with

ωk⃗ωk⃗0e
iðk⃗0þk⃗Þ·r⃗ ¼

�
1

2
ðωk⃗ þ ωk⃗0 Þ2 −m2

ν þ k⃗ · k⃗0 þ 1

2
∇⃗2

�
eiðk⃗

0þk⃗Þ·r⃗: ðA7Þ

Then

Eð2Þ
vacðr⃗Þ ¼ −

2gfV;1g
f
V;2G

2
F

ð2πÞ6
Z

d3k
Z

d3k0
��1

2
ðωk⃗ þ ωk⃗0 Þ2 −m2

ν þ 2k⃗ · k⃗0 þ 1
2
∇⃗2

ωk⃗ωk⃗0 ðωk⃗0 þ ωk⃗Þ
�
eiðk⃗

0þk⃗Þ·r⃗
�
; ðA8Þ

which can be rewritten in terms of four separate integrals,

Eð2Þ
vacðr⃗Þ ¼ −gfV;1g

f
V;2G

2
F½I1ðr⃗Þ þ I2ðr⃗Þ þ 4I3ðr⃗Þ þ I4ðr⃗Þ�; ðA9Þ

given by

I1ðr⃗Þ ¼ −
2m2

ν

ð2πÞ6
Z

d3k
Z

d3k0
�

eiðk⃗
0þk⃗Þ·r⃗

ωk⃗ωk⃗0 ðωk⃗0 þ ωk⃗Þ
�
¼ −

2m3
ν

8π3r2
K1ð2mνrÞ; ðA10Þ

I2ðr⃗Þ ¼ ∇⃗2

�
1

ð2πÞ6
Z

d3k
Z

d3k0
�

eiðk⃗
0þk⃗Þ·r⃗

ωk⃗ωk⃗0 ðωk⃗0 þ ωk⃗Þ
��

¼ 2mν

8π3r4
½3mνrK0ð2mνrÞ þ ð3þ 2m2

νr2ÞK1ð2mνrÞ�; ðA11Þ

I3ðr⃗Þ ¼
1

ð2πÞ6
Z

d3k
Z

d3k0
� ðk⃗ · k⃗0Þeiðk⃗0þk⃗Þ·r⃗

ωk⃗ωk⃗0 ðωk⃗0 þ ωk⃗Þ
�

¼ −
mν

32π3r4
½4mνrK0ð2mνrÞ þ ð4þ 3m2

νr2ÞK1ð2mνrÞ þ 4mνrK2ð2mνrÞ þm2
νr2K3ð2mνrÞ�; ðA12Þ

QUAN LE THIEN and DENNIS E. KRAUSE PHYS. REV. D 99, 116006 (2019)

116006-14



I4ðr⃗Þ ¼
1

ð2πÞ6
Z

d3k
Z

d3k0
�ðωk⃗ þ ωk⃗0 Þeiðk⃗

0þk⃗Þ·r⃗

ωk⃗ωk⃗0

�
¼ mν

π2r
K1ðmνrÞδ3ðr⃗Þ: ðA13Þ

All four of these integrals depend only on the particle separation r which is required by spatial isotropy and translation
invariance. Since we assume r > 0, the divergent contact contribution arising from I4ðr⃗Þ will be dropped. (Our low-energy
theory certainly breaks down at small separations as discussed earlier.) Combining Eqs. (A9)–(A12) gives our final result
for the two-neutrino exchange potential,

Vν;ν̄ðrÞ ¼
G2

Fg
f
V;1g

f
V;2m

3
ν

4π3r2
K3ð2mνrÞ: ðA14Þ
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