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We study the regularization dependence of the Nambu-Jona–Lasinio model (NJL) predictions for some
properties of magnetized quark matter at zero temperature (and baryonic density) in the mean field
approximation. The model parameter dependence for each regularization procedure is also analyzed in
detail. We calculate the average and difference of the quark condensates using different regularization
methods and compare with recent lattice results. In this context, the reliability of the different regularization
procedures is discussed.
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I. INTRODUCTION

Many efforts have been dedicated to studying quantum
chromodynamics (QCD) under extreme conditions such
as very high temperatures and densities [1]. One of the
greatest challenges at the present time is to understand the
physics that describe quark gluon plasma (QGP), a new
state of matter found experimentally, that corresponds to a
thermalized color deconfined state of nuclear matter. Many
heavy-ion-collisions (HIC) experiments are under way,
e.g., RHIC @ BNL, LHC @ CERN and others are
upcoming NICA @ JINR and FAIR @ GSI, to study this
novel state of QCD matter and try to obtain some
information that can help us to build a description of the
unknown QCD phase diagram. Although, from the theo-
retical point of view, a considerable amount of work has
been devoted to studying the phase diagram of QCD, it still
remains poorly understood. One of the main reasons is that
the energy range involved demands the calculation of QCD
in the nonperturbative regime, which is to date impracti-
cable and the ab initio lattice QCD approach has difficulties

in dealing with the region of moderately high densities due
the “sign problem” [2,3]. In this situation most of our
present knowledge about the QCD phase diagram arises
from the study of effective models, that offer the possibility
of obtaining predictions for regions that are no accessible
through lattice techniques.
A topic that has attracted considerable attention in recent

years is related to the fact that in noncentral heavy-ion
collision strong magnetic fields can be generated. In fact,
they may reach strengths of the order of 1020 G [4,5]. These
strong magnetic fields, produced during the first instants
after the collision, can affect the QCD phases because they
are of the order or higher than the QCD scale Λ2

QCD. More
details of the recent advances in the understanding of the
phase structure and the phase transitions of hadronic matter
in strong magnetic fields can be found in recent reviews
[6–8]. In recent years the number of articles dedicated to the
study of the quark matter under strong magnetic fields is
immense and growing. The Nambu-Jona–Lasinio (NJL)
model [9] and its variations has a prominent role in this
context. Since these models are nonrenormalizable the
calculation of observables within these models demands
always an appropriate regularization procedure to treat the
divergent integrals. The way that the divergencies are
treated is of fundamental importance for the results that
are obtained in the calculations to be reliable. In the
literature several different procedures have been used
and many of them have serious problems which, in many
situations, ruin completely the conclusions of the calcu-
lations. The scope of the present work is to discuss an issue
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related to the application of the NJL model to the study of
the properties of the strongly interacting matter in the
presence of intense magnetic fields. We are particularly
interested in the impact of the use of different regularization
procedures proposed in the literature within the SU(2)
version of the model. Namely, we discuss how the results
for the behavior of the quark (u and d) condensates as
functions of the magnetic field depends on the way in
which the NJL is regularized. We pay special attention to
the magnetic field independent regularization (MFIR)
proposed in Refs. [10,11]. Such a scheme has been recently
applied in several works [12–18] and, in particular, it
has been shown to avoid nonphysical oscillations in the
context of magnetized quark matter in the presence of color
superconductivity [19–22]. The procedure follows the steps
of the dimensional regularization prescription of QCD,
performing a sum over all Landau levels in the vacuum
term. In this procedure we can isolate the divergence into a
term that has the form of the zero magnetic field vacuum
energy and that can be regularized by different regularization
schemes. As a criteria to determine which regularization
procedure is more appropriate to describe magnetized quark
matter, we confront our NJL results with recent simulations
of QCD on the lattice (implemented at zero baryonic
densities) [23–25]. One of the main objectives of this work
is to clarify these issues showing the appropriate way to be
followed in order to obtain reliable results in the calculations
of physical quantities using nonrenormalizable models.
The paper has been organized as follows: in Sec. II we

evaluate the quark condensates within the NJL model in the
presence of a constant magnetic field. In Sec. III we discuss
the MFIR regularization scheme, in Sec. IV in the context
of the MFIR and non-MFIR (nMFIR) schemes the non-
covariant and covariant regularization schemes have been
applied in the calculation of the quarks condensates using
NJL model in presence of strong magnetic fields and
confronted with lattice results. Finally, we conclude in
Sec. V. We include two Appendices (A and B) containing
some details about the magnetic field independent regu-
larization procedure and the model parametrization for each
regularization scheme.

II. QUARK CONDENSATES WITHIN THE NJL
MODEL IN THE PRESENCE OF A
CONSTANT MAGNETIC FIELD

Our starting point is the Euclidean effective action of the
NJL model in the presence of an external electromagnetic
field. It reads:

SE ¼
Z

d4xfψ̄ð−iγμDμ þm0Þψ −G½ðψ̄ψÞ2

þ ðψ̄iτγ5ψÞ2�g; ð2:1Þ

where the Euclidean γ matrices satisfy fγμ; γνg ¼ −2δμν
[26], m0 is the current quark mass and G is a coupling
constant. The coupling of the quarks to the electromagnetic
field Aμ is implemented by the covariant derivative Dμ ¼
∂μ − iqfAμ where qf represents the quark electric charge
(qu=2 ¼ −qd ¼ e=3). We consider a static and constant
magnetic field in the 3-direction, Aμ ¼ δμ2x1B. Since the
model under consideration is not renormalizable, a regu-
larization scheme needs to be specified. As it will be
discussed below this introduces an additional parameter Λ.
Together m0, G and Λ form a set of three parameters that
completely determine the model. These parameters are
usually fixed in order to reproduce the empirical values in
the vacuum of the pion massmπ, the pion decay constant fπ ,
and the average quark condensate Φ̄0 ¼ ðhūui0 þ hd̄di0Þ=2.
Whereas the physical values mπ ¼ 138.0 MeV and
fπ ¼ 92.4 MeV, are known quite accurately, the uncertain-
ties for the quark condensate are rather large. Limits extracted
from sum rules are 190 MeV < −Φ̄1=3

0 < 260 MeV at a
renormalization scale of 1 GeV [27], while typically lattice
calculations yield Φ̄1=3

0 ¼ −231� 8� 6 MeV[28] (see e.g.,
Ref. [29] for some other lattice results). In order to test the
stability of our results we will consider parametrizations
leading to quark condensates in the range 220 MeV <
−Φ̄1=3

0 < 260 MeV.
As it is well known the presence of a constant magnetic

field in the 3-direction leads to a quantization of the
momentum in the 1–2 plane. Thus, the free energy in
the mean field approximation can be obtained from the
one in the absence of magnetic field

F ¼ ðM −m0Þ2
4G

− Nc

X
f;s

Z
d4p
ð2πÞ4 ln½p

2 þM2�; ð2:2Þ

by using the replacement

p⃗2 → p2
3 þ 2kjqfjB

X
s

Z
d4p
ð2πÞ4 →

jqfjB
2π

Z
∞

−∞

dp3

2π

Z
∞

−∞

dp4

2π

X∞
k¼0

αk; ð2:3Þ

whereNc ¼ 3 is the number of colors, f ¼ u, d runs over the
quark flavors and s stands for the spin label. In addition,
M ¼ m0 − 2Ghψ̄ψi, is the dressed quarkmass, k is the index
associated with Landau levels (LL’s) and αk ¼ 2 − δk0 is
the degeneracy factor. The resulting expression is

F ¼ ðM −m0Þ2
4G

− Nc

X
f

jqfjB
2π

X∞
k¼0

αk

×
Z

∞

−∞

dp3

2π

Z
∞

−∞

dp4

2π
ln ½p2

4 þ p2
3 þ 2kjqfjBþM2�

ð2:4Þ
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fromwhich the associated gap equation can be obtained from
the condition∂F=∂M ¼ 0.As expected expressionEq. (2.4)
is divergent and, thus, some regularization scheme is required
in order to proceed. At this point we introduce another
approachwhich is commonly used in the literature. Insteadof
using directly Eq. (2.2) we first perform the integration in p4

obtaining for the free energy:

F ¼ ðM −m0Þ2
4G

− Nc

X
f;s

Z
d3p
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
: ð2:5Þ

Now, the replacement for obtaining the magnetized free
energy, Eq. (2.3), is modified to:

X
s

Z
d3p
ð2πÞ3 →

jqfjB
2π

Z
∞

−∞

dp3

2π

X∞
k¼0

αk: ð2:6Þ

Therefore, one obtains:

F ¼ ðM −m0Þ2
4G

− Nc

X
f

jqfjB
2π

X∞
k¼0

αk

Z
∞

−∞

dp3

2π
Ep3;k;

ð2:7Þ

where Ep3;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2kjqfjBþM2

q
, this expressions is

also ultraviolet divergent and some regularization procedure
has to be specified. The regularization procedure will be
discussed in detail in the forthcoming sections.
As mentioned in the Introduction, our aim here is to

compare the dependence of the quark condensates on the
magnetic field with the existing lattice results, where the
condensates are calculated within the NJL model using
different regularizations. In particular, in Table 1 of
Ref. [25] lattice data for the quantities Σ̄ ¼ ðΣu þ ΣdÞ=2
and Σ− ¼ Σu − Σd, where

ΣfðB; TÞ ¼
2m0

D4
½Φf

B;T −Φf
0;0� þ 1; ð2:8Þ

are listed. Since here we are only interested in the case
T ¼ 0, we will drop the second index in what follows.
In Eq. (2.8), Φf ≡ hf̄fi is the quark condensate associated
to the flavor f and the constant D, taken to be D ¼
ð135 × 86Þ1=2 MeV as in Ref. [25], is introduced just for
dimensional reasons. In addition, as in the latter reference,
we are working in the isospin limit mu ¼ md ¼ m0. We are
mainly interested in the behavior of the change of the
condensate due to the magnetic field. Thus, following
Ref. [25] we define

ΔΣfðBÞ ¼ ΣfðBÞ − Σfð0Þ ð2:9Þ

in terms of which the change in the average of the flavor
condensates is

ΔΣ̄≡ ΔΣuðBÞ þ ΔΣdðBÞ
2

¼ −
2m0

D4
ðΦ̄B − Φ̄0Þ; ð2:10Þ

where Φ̄B ¼ ðΦu
B þΦd

BÞ=2 indicates the average quark
condensate for arbitrary magnetic field B. In order to
compare with lattice results we calculate this quantity
using the condensates as evaluated in the NJL. Since in
this model the average quark condensate is related to the
dressed quark mass as

Φ̄ ¼ −
M −m0

4G
; ð2:11Þ

we get

ΔΣ̄ ¼ m0

D4

MB −M0

2G
; ð2:12Þ

where M0 if the constituent quark mass evaluated in the
absence of magnetic field.
Using the definition Eq. (2.8), we introduce the differ-

ence between the condensates

Σ− ¼ Σu − Σd ¼
2m0

D4
ðΦu

B −Φd
BÞ: ð2:13Þ

We recall here that the definition of Φf
B depends on the

regularization procedure adopted as will be explained in the
following sections.
The parameters used in our calculations for the different

regularization schemes to be discussed in detail in the
following sections are given in Table I. Theywere determined

TABLE I. Parametrizations of the NJL model for the different
regularization schemes.

−Φ̄1=3
0

M0 GΛ2 Λ m0

Regulation type MeV MeV MeV MeV

Lorenztian N ¼ 5 245.0 428.85 2.333 569.52 5.455
260.0 286.19 1.860 681.38 4.552

Woods-Saxon
α ¼ 0.1

245.0 399.48 2.316 588.07 5.452

260.0 285.44 1.923 693.77 4.552

Gaussian 250.0 394.52 2.236 598.53 4.456
260.0 311.47 1.994 675.26 3.956

Fermi-Dirac
α ¼ 0.01Λ

245.0 333.53 2.188 626.34 5.438

260.0 270.18 1.954 719.17 4.548

3D cutoff 241.0 390.32 2.404 591.6 5.723
260.0 270.14 1.954 719.23 4.548

Proper Time 220.0 224.17 4.001 886.62 7.383
260.0 191.70 3.608 1164.10 4.516

4D cutoff 220.0 305.58 4.568 807.83 7.449
260.0 222.72 3.719 1094.76 4.531

Pauli Villars 220.0 313.20 3.337 681.84 7.453
260.0 224.67 2.688 926.57 4.532
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by fitting the pion mass and its decay constant to their
empirical values mπ ¼ 138 MeV and fπ ¼ 92.4 MeV,
respectively, and the average quark condensate Φ̄0 to values
within the phenomenological range −Φ1=3

0 ¼220–260MeV.

III. MAGNETIC FIELD INDEPENDENT
REGULARIZATION—MFIR

The magnetic field independent regularization (MFIR)
was developed in Ref. [10] and there it was shown that it is
possible to separate a divergent vacuum contribution from a
finite magnetic field contribution. This was achieved in
Ref. [12] by using the dimensional regularization method.
In this section we will study this regularization method
both in the case where all components of the quark four-
momentum are treated on an equal footing and after an
integration in p4. For this purpose it is convenient to start
from the derivative with respect to dressed mass of the
(unregularized) free energy Eq. (2.4). Namely,

∂F
∂M ¼ M −m0

2G
− 2MNcĨ;

Ĩ ¼
X
f

jqfjB
2π

X∞
k¼0

αk

Z
∞

−∞

dp4

2π

×
Z

∞

−∞

dp3

2π

1

p2
4 þ p2

3 þ 2kjqfjBþM2
: ð3:1Þ

At this stage we add and subtract the contribution in the
absence of magnetic field. We get then,

Ĩ ¼
�
I1 þ

X
f

If

�
; ð3:2Þ

where

I1 ¼ 4

Z
d4p
ð2πÞ4

1

p2 þM2
ð3:3Þ

and

If ¼
Z

∞

−∞

dp4

2π

Z
∞

−∞

dp3

2π

�jqfjB
2π

X
k¼0

αk

×
1

p2
3 þ p2

4 þ 2kjqfjBþM2
− 2

Z
∞

−∞

dp1

2π

×
Z

∞

−∞

dp2

2π

1

p2
1 þ p2

2 þ p2
3 þ p2

4 þM2

�
: ð3:4Þ

Interestingly, while Ĩ in Eq. (3.1) is divergent and requires
some type of regularization procedure, If in Eq. (3.4) is
finite. In fact, as shown in the Appendix A, one has

If ¼ M2

8π2
ηðxfÞ; ð3:5Þ

where ηðxÞ is give by:

ηðxÞ ¼ lnΓðxÞ
x

−
ln 2π
2x

þ 1 −
�
1 −

1

2x

�
ln x; ð3:6Þ

where xf ¼ M2=ð2jqfjBÞ. Therefore, Eq. (3.1) can be
casted into the form

∂F
∂M ¼ M −m0

2G
− 2MNcI1 −

Nc
4π2

M3
X
f

ηðxfÞ; ð3:7Þ

from which the explicit form of the regularized free energy
can be obtained by integration. However, from the way it
has been derived here, we see that any covariant regulari-
zation method can be used to treat the vacuum term as well.
For example, in Ref. [10] a 4D sharp cutoff was used.
For the alternative form of the free energy, Eq. (2.7),

proceeding analogously as above, one obtains:

∂F
∂M ¼ M −m0

2G
− 2MNcĨ3D; ð3:8Þ

Ĩ3D ¼
X
f

jqfjB
4π

X
k¼0

αk

Z
∞

−∞

dp3

2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2kjqfjBþM2

q ;

ð3:9Þ
where, after adding and subtracting the non-magnetic
vacuum term one obtains:

Ĩ3D ¼
�
I3D1 þ

X
f

I3Df

�
; ð3:10Þ

where

I3D1 ¼ 2

Z
d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p ð3:11Þ

and

I3Df ¼
Z

∞

−∞

dp3

2π

�jqfjB
4π

X
k¼0

αk
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þ 2kjqfjBþM2

q

−
Z

∞

−∞

dp1

2π

Z
∞

−∞

dp2

2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2 þ p2
3 þM2

p
�
:

ð3:12Þ
The finite magnetic contribution, I3Df , was obtained in [12],
and coincides with the expression given in Eq. (3.5):
The resulting derivative of the free energy, ∂F

∂M, can be
written as:

∂F
∂M ¼ M −m0

2G
− 2MNcI3D1 −

Nc

4π2
M3

X
f

ηðxfÞ; ð3:13Þ

where I3D1 is given in Eq. (B6) of the Appendix B.
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IV. REGULARIZATION PROCEDURES

From the discussion in the previous section, it is clear
that we have to specify a regularization procedure in order
to perform the calculation of any quantity within the NJL
model. In fact, this choice has to be considered a part of
the model. In principle, we have two possibilities for the
regularization scheme to be used in the calculation of the
condensate:
(a) nMFIR regularization: in this case the gap equation,

or equivalently, the condensate through Eq. (2.11) is
calculated regularizing directly the expressions Ĩ or
Ĩ3D given in Eq. (3.1) and Eq. (3.9). In this procedure
the magnetic and nonmagnetic vacuum contributions
are entangled and the consequences of this choice will
be addressed in this section.

(b) MFIR regularization: in this procedure the gap
equation is calculated regularizing only the non-
magnetic vacuum integrals I1 or I3D1 in Eq. (3.7)
and Eq. (3.13). This procedure separates exactly the
finite magnetic term from the divergent nonmagnetic
one. Next, we will discuss the advantages and
disadvantages of each regularization scheme. Here,
we emphasize that both procedures are largely utilized
in the literature.

A. Noncovariant regularizations

We start with the case where the integral over p4 was
performed in the expressions of interest.

1. Form factor regularizations

First, we discuss how form factor regularizations are
introduced within the nMFIR scheme. In this kind of
regularization a form factor UΛ is introduced such that
in Eq. (3.9)

X∞
k¼0

Z
∞

−∞

dp3

2π
→

X∞
k¼0

Z
∞

−∞

dp3

2π
UΛðp2

3 þ 2kjqfjBÞ: ð4:1Þ

This particular procedure was used in the comparison of
(P)NJL results to lattice results indicated in Fig. 3 of
Ref. [25], and which leads to the statement that a good
agreement is only obtained for magnetic fields smaller that
about 0.3 GeV2. In addition, it is interesting to note that
nonphysical oscillations might arise with this regularization
scheme, and these oscillations are more evident in studies
which include color pairing interactions based on this kind
of regularization. Interesting applications of MFIR in this
context can be found in Refs. [19–22]. From the application

FIG. 1. Results for the Lor5 form factor compared with lattice results. Upper panels: Average flavor condensate as a function of eB:
nMFIR (left panel) and MFIR (right panel). Lower panels: difference of the up and the down quark condensates as a function of eB:
nMFIR (left panel) and MFIR (right panel).
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of the replacement Eq. (4.1) in Eq. (3.9), the gap equation
∂F
∂M ¼ 0, can be casted into the form

M ¼ m0 þ
Nc

2π2
GM

X
f

jqfjB
X∞
k¼0

αk

×
Z

∞

−∞
dp3

UΛðp2
3 þ 2kjqfjBÞ
Ep3;k

: ð4:2Þ

To solve this equation the specific form of UΛ has to be
specified. In principle, one might be tempted to use a
simple step function θðx − Λ2Þ. However, this introduces
strong unphysical oscillations in the behavior of different
quantities as functions of the magnetic field. To avoid these
difficulties different smooth form factors have been used in
the literature. For example, in Refs. [30,31] the Lorenztian
function

UðLorNÞ
Λ ðxÞ ¼

�
1þ

�
x
Λ2

�
N
�
−1

ð4:3Þ

has been used. Alternatively, in Ref. [32] Woods-Saxon
(WS) type form factors

UðWSαÞ
Λ ðxÞ ¼

�
1þ exp

�
x=Λ − 1

α

��
−1

ð4:4Þ

have been used. It should be noted that all these form
factors include an additional parameter that controls
their smoothness. To choose the values of such parameter
one has to take into account that a too steep function
gives rise to the unphysical oscillations mentioned above
and that a too smooth function leads to values of the
average quark condensate Φ0 which are quite above
the phenomenological range. Thus, the value N ¼ 5 is
usually chosen in the case of the Lorenztian form factor
(Lor5) while α ¼ 0.1 is taken for the case of Woods-
Saxon one (WS).
In Refs. [33,34] the authors introduce a Gaussian

regulator (GR) with momentum cutoff Λ ¼ 1 GeV.

UðGRÞ
Λ ðxÞ ¼ exp

�
−
x2

Λ2

�
ð4:5Þ

In Ref. [35] the authors use the following Fermi-Dirac-
type smooth cutoff function

UFD
Λ ðxÞ ¼ 1

2

�
1 − tanh

�x
Λ − 1

α

��
ð4:6Þ

where α ¼ 0.01.

FIG. 2. Results for the WS form factor with α ¼ 0.1 compared with lattice results. Upper panels: Average flavor condensate as a
function of eB: nMFIR (left panel) and MFIR (right panel). Lower panels: difference of the up and the down quark condensates as a
function of eB: nMFIR (left panel) and MFIR (right panel).
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To evaluate the difference between the condensates in
this scheme we use the definition of the condensates Φf

B
using form factors:

Φf
B ¼ −2NcM

jqfjB
4π

X∞
k¼0

αk

Z
∞

−∞

dp3

2π

UΛðp2
3 þ 2kjqfjBÞ
Ep3;k

ð4:7Þ

We turn now to the form factor regularizations within the
MFIR scheme. In this case we consider the gap equation,
Eq. (3.13), where only the divergent integral I3d1 defined in
Eq. (3.11) is regularized through the use of the several form
factors just discussed.
In the Figs. 1–5 we present our numerical results for

the behavior of the condensates as a function of eB in bands
for each parametrization given in Table I. Left panels
correspond to the nMFIR scheme while those on the right
to the MFIR one. The dashed lines (solid lines) correspond
to the higher(lower) value of −Φ1=3

0 at B ¼ 0 as given in
Table I for a particular parametrization.
Our numerical results for the average quark condensate

as a function of the magnetic field in the case of the Lor5
regulator are shown in the upper panels of Fig. 1 together
with the lattice results of Ref. [25]. To test the stability of

our results we have used different parametrizations com-
patible with phenomenological bounds for Φ0.
In fact, they all fall within the quite narrow band

indicated in the figure. In addition, we have performed
the same calculations using the WS regulator with α ¼ 0.1,
and we can see in Fig. 2 that again the corresponding
results fall basically in the same band as those of the Lor5
regulator. Therefore, we confirm the results reported in
Fig. 3 of Ref. [25] noting, in addition, that they are quite
insensitive to the model parametrization. One can then
conclude that the use of LorN and WS form factor
regulators within the nMFIR scheme leads to a behavior
of the average condensate which is in reasonable agreement
with lattice results only up to eB ∼ 0.3 GeV2.
In the Fig. 3 we show the condensate as a function of eB

in the case of the GR regulator.1 One interesting aspect of
using the GR form factor is that for this regulator the
oscillations that appear (in nMFIR scheme) in the behavior
of the condensates using the LorN and the WS form factors
are not present. It should be noted, however, that the

FIG. 3. Results for the GR form factor compared with lattice results. Upper panels: Average flavor condensate as a function of eB:
nMFIR (left panel) and MFIR (right panel). Lower panels: difference of the up and the down quark condensates as a function of eB:
nMFIR (left panel) and MFIR (right panel).

1For GR form factor is not possible to find a model para-
metrization that satisfies the same empirical constrains that the
other regularization procedures. Thus, in this case we use fπ ¼
0.086 GeV. Similar issue was previously noted in [22].
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corresponding results for the condensates compare quite
poorly with the lattice ones.
We can see the condensate as a function of eB in the case

of the FD regulator from the results of Fig. 4. Nonphysical
oscillations arise with the FD form factor and for this
regulator they are stronger than the oscillations that appear
in the case of the LorN and WS form factors. We can

understand these discrepancies between different form
factors analyzing the behavior of the form factors as a
function of the momentum. In Fig. 5 we can see that FD is
the sharpest function and GR in the smoothest one and the
smoothness is one factor that contributes to the magnitude
of the non-physical oscillations that appear when we use
form factors. This is the reason why the Gaussian form
factor GR do not present oscillations for the quark con-
densates, as shown in the left panel of Fig. 3.
In the case of the MFIR procedure our numerical results

show that for all the different shapes of the form factors
we obtain a good agreement with available lattice QCD
calculations. This clearly shows the importance of imple-
menting the separation of the purely magnetic part from the
vacuum part, avoiding in this way the nonphysical oscil-
lations that are present in nMFIR scheme.

2. MFIR—3D sharp cutoff regularization

In this regularization scheme the gap equation, ∂F
∂M ¼ 0,

follows from Eq. (3.13). The only divergent integral I3D1 ,
Eq. (3.11), is regularized introducing a noncovariant cutoff
Λ as shown in Eq. (B6) of the Appendix B. In Fig. 6 we can
see that this regularization procedure leads to a behavior of
the average condensate which is compatible with lattice
results and very similar with that ones obtained using form

FIG. 4. Results for the FD form factor with α ¼ 0.01 compared with lattice results. Upper panels: Average flavor condensate as a
function of eB: nMFIR (left panel) and MFIR (right panel). Lower panels: difference of the up and the down quark condensates as a
function of eB: nMFIR (left panel) and MFIR (right panel).

FIG. 5. Behavior of the form factors FD, WS, Lor5, and
GR as a functions of the momentum. In this comparison we use
Λ ¼ 0.5 GeV.
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factors (Figs. 1–4). There the upper bound of the band
corresponds to ðΦ̄0Þ1=3 ¼ −260 MeV while the lower to
ðΦ̄0Þ1=3 ¼ −241 MeV. We see that this band covers the
lattice points.
The difference between the condensates in this regu-

larization method can be calculated with Eq. (2.13),
using the following definition for the condensate (mag-
netic part)

Φf
B ¼ −2Nc

M3

8π2
ηðxfÞ ð4:8Þ

where ηðxfÞ is given by Eq. (3.6).
Notice that for every regularization based in the MFIR

scheme the pure magnetic part (finite) of the condensate is
given by Eq. (4.8).

B. Covariant regularizations

As examples of these covariant regularization methods
we consider the 4D sharp cutoff, proper time and Pauli-
Villars. The corresponding expressions for I4D0 , IPT0 and IPV0
as well as the associated parametrizations are given in

Appendix B. The corresponding results for ΔðΣu þ ΣdÞ=2
and Σ− using a 4D sharp cutoff as a function of the
magnetic field in comparison to those of the lattice are
shown in Fig. 7.
Comparing to the results in Fig. 6 we can see that the

result for the difference Σ− using 4D sharp cutoff is more
compatible with lattice results than the one obtained using
3D sharp cutoff. On the other hand we note that the
band associated to the average condensate in the region
220 MeV < −Φ̄1=3

0 < 260 MeV is somewhat above the
lattice values.
Alternatively, proper-time was also proposed [36] and in

the nMFIR scheme the integration If is given by:

If ¼
1

8π2

Z
∞

1

Λ2

ds
e−sM

2

s
jqfjB cothðjqfjBsÞ ð4:9Þ

and the condensate by:

ϕf
B ¼ −

MNc

4π2

Z
∞

1

Λ2

ds
e−sM

2

s
jqfjB cothðjqfjBsÞ: ð4:10Þ

FIG. 6. Average of the flavor condensate as a function of eB (left panel) and difference of the up and the down quark condensates as a
function of eB (right panel) evaluated with MFIR using 3D cutoff method compared with lattice results.

FIG. 7. Average of the flavor condensate as a function of eB (left panel) and difference of the up and the down quark condensates as a
function of eB (right panel) evaluated with MFIR using 4D cutoff method compared with lattice results.
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In this sense it is interesting to note that using the
relations given in Appendix A the quantity If to be used in
the MFIR scheme can be also casted into the form

If ¼
1

8π2

Z
∞

0

ds
s2

e−sM
2 ½jqfjBs coth ðjqfjBsÞ − 1� ð4:11Þ

which is the magnetic term obtained within the Schwinger
formalism. In Fig. 8 we show our results using proper-time
scheme, we can see that the results are similar to lattice
results only for small values of eB.
Other very interesting regularization scheme that is

used in the literature is the Pauli-Villars regularization (PV)
[37–40]. In the MFIR scheme, we have to modify the integral
I1 in Eq. (3.3) as given in Eq. (B14). Alternatively, recent
investigations focusing on the study of the effects produced by
a magnetic field in quark matter are using PV regularization
[41–43], but they do not implement the separation of the
magnetic effects from the vacuum, i.e., they use a nMFIR
procedure.
Following the prescriptions [41–43], Eq. (3.4) may

alternatively be written replacing the integrations as

X∞
k¼0

αk

Z
dp3

2π
FðEfÞ→

X2
i¼0

Ci

X∞
k¼0

αk

Z
dp3

2π
FðEf;iÞ;

ð4:12Þ

also, we must introduce the regularized massesM → M2
i ¼

M2 þ biΛ2 in the quark energy Ef. This procedure obvi-
ously rebuilds the results at eB ¼ 0, but does not separate
explicitly the cutoff from purely magnetic contribution. The
coefficients Ci and bi are determined by the constraintsP

2
i¼0 Ci ¼ 0 and

P
2
i¼0 CiM2

i ¼ 0 with b0 ¼ 0, C0 ¼ 1 as
indicated in [38].
The condensate in this scheme is given by

Φf
B ¼ −2NcM

X2
i¼0

Ci
jqfjB
2π

X∞
k¼0

αk

×
Z

∞

−∞

dp4

2π

Z
∞

−∞

dp3

2π

1

p2
4 þ p2

3 þ 2jqfjBþM2
i
;

ð4:13Þ

and the integral If in the nMFIR is given by

If ¼
X2
i¼0

Ci

Z
∞

−∞

dp4

2π

Z
∞

−∞

dp3

2π

�jqfjB
2π

X
k¼0

αk

×
1

p2
4 þ p2

3 þ 2kjqfjBþM2
i

�
: ð4:14Þ

FIG. 8. Results for the PT method compared with lattice results. Upper panels: Average flavor condensate as a function of eB: nMFIR
(left panel) and MFIR (right panel). Lower panels: difference of the up and the down quark condensates as a function of eB: nMFIR
(left panel) and MFIR (right panel).
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In Fig. 9 we compare the two procedures: PV including
MFIR and without MFIR. We clearly see that if we do not
separate the magnetic contributions from the vacuum we
obtain quantitative differences compared to the case where
we have used the MFIR. The results obtained using Pauli-
Villars regularization with MFIR are in agreement with
lattice results.

V. CONCLUSIONS

In this work we use results from lattice simulations of
QCD in the presence of intense magnetic fields as a
benchmark platform for comparing different regulariza-
tion procedures used in the literature for the NJL type
models in the context of both the so-called “magnetic field
independent regularization” (MFIR) scheme, where
only the nonmagnetic vacuum term is regularized, and
“nonmagnetic field independent regularization” (nMFIR)
scheme, where also the magnetic terms are regularized.
We implement different regularization schemes in the
SUð2Þ NJL model: Form factors, Proper Time and Pauli-
Villars in both MFIR and nMFIR schemes and 3D=4D
cutoff only in the MFIR scheme. As exhaustively dis-
cussed in this work, in the MFIR scheme for the

calculation of the condensates an exact separation of
magnetic and nonmagnetic vacuum contributions is per-
formed before the adopted regularization prescription is
applied. It is important to stress that in such case only the
original vacuum term of the NJL model at B ¼ 0 has to be
regularized. In Figs. 1–4 the several noncovariant form
factor regularizations are compared using both nMFIR
and MFIR schemes. As is seen in Figs. 1 and 2 that in a
nMFIR scheme the Lorentzian and Woods-Saxon proce-
dures describe approximately the lattice data trend for
the average and the difference of the flavor condensates
at eB ≤ 0.3 GeV2. However, these figures already show
the presence of a nonphysical oscillatory behavior. The
Fermi-Dirac regularization shown in Fig. 4 present a huge
nonphysical oscillatory behavior. As discussed in Sec. IV,
the Gaussian regulator shown in Fig. 3 has a behavior
without oscillations but fails to satisfactorily reproduce
the lattice data. The form factor regularizations calculated
within the MFIR scheme, shown in the right panels of
Figs. 1–4 show a satisfactory trend as compared to lattice
results and, besides, no oscillatory behavior appears at all.
The comparison between nMFIR with MFIR results for
the form factor regularizations show clearly that the latter
present much more consistent results when compared with

FIG. 9. Results for the PV method compared with lattice results. Upper panels: Average flavor condensate as a function of eB: nMFIR
(left panel) and MFIR (right panel). Lower panels: difference of the up and the down quark condensates as a function of eB: nMFIR
(left panel) and MFIR (right panel).
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lattice results and should be always used for reliable
calculations of physical observables. In Fig. 6 the non-
covariant 3D-cutoff regularization is used for the calcu-
lation of the condensates in the MFIR scheme. It is also
seen in the latter figure that a good description of the
trend of the lattice results is achieved and no oscillatory
behavior is found.
In Figs. 7–9 we show results for the covariant regulariza-

tions, i.e., 4D cutoff, proper-time and Pauli-Villars. Againwe
calculate the condensates using the covariant regularizations
within theMFIR and nMFIR scheme for the proper-time and
Pauli-Villars and only MFIR for the 4D-cutoff. It is obvious
from these figures that the 4D-cutoff and the Pauli-Villars
in the MFIR scheme are the best regularizations of all the
covariant types. If one consider all the regularizations studied
in this work, the conclusion is that the noncovariant
3D-cutoff and the covariant 4D-cutoff and Pauli-Villars
are the ones that better describe the lattice results for the
condensates and should be chosen in any reliable calculation
of physical quantities within the NJL model under strong
magnetic fields. Although, in this work we focus only on
the comparison of the condensates calculated within the
NJL model with the corresponding lattice results, the MFIR
scheme should be applied in the calculation of any physical
quantity. The use of an inappropriate regularization is
magnified in the calculation of several observables, e.g.,
the pion mass has been calculated in the literature using
unreliable form factors in a nMFIR scheme and some authors
have found tachyonic pions, huge oscillations of the pion
masswhich are, in fact, only an artifact of a bad regularization
choice. Another example which highlights the importance
of a correct regularization procedure is the calculation of
thermodynamical quantities, since several thermodynamic
quantities involve derivatives of the thermodynamic poten-
tials, they are strongly dependent on the regularization and
the existence of unphysical oscillations would certainly
produce results completely unreliable. This is particularly
the case when studying the color superconducting phases in
the presence of a strong magnetic field where unphysical
oscillations can be easily confused with actual de Haas-van
Alfven oscillations.
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APPENDIX A: DERIVATION OF EQ. (3.5)

We start from the definition of If given in Eq. (3.4). After
substituting in this latter equation αk ¼ 2 − δ0k and using
the Riemann-Hurwitz zeta function

ζðz; xÞ ¼
X∞
n¼0

1

ðxþ nÞz ; ðA1Þ

it can be written as:

If ¼
Z

∞

−∞

dp4

2π

Z
∞

−∞

dp3

2π

�
1

2π
ζ

�
1;
p2
3 þ p2

4 þM2

2jqfjB
�

−
jqfjB
2π

1

p2
3 þ p2

4 þM2

− 2

Z
∞

−∞

dp1

2π

Z
∞

−∞

dp2

2π

1

p2
1 þ p2

2 þ p2
3 þ p2

4 þM2

�
:

ðA2Þ

Next, from the integral representations of the zeta function

Z
∞

0

yz−1e−βy cothðαyÞ ¼ ΓðzÞ
�
2z−1α−zζ

�
z;

β

2α

�
−β−z

�
;

ðA3Þ

and

1

A
¼

Z
∞

0

dse−sA; ðA4Þ

then Eq. (A2) can be written as:

If ¼
Z

∞

−∞

dp4

2π

Z
∞

−∞

dp3

2π

�jqfjB
2π

Z
∞

0

dye−ðp
2
3
þp2

4
þM2Þy

× cothðjqfjByÞ

− 2

Z
∞

−∞

dp1

2π

Z
∞

−∞

dp2

2π

Z
∞

0

dye−ðp2
1
þp2

2
þp2

3
þp2

4
þM2Þy

�
:

ðA5Þ

After performing trivial Gaussian momentum integrals, one
obtains the magnetic term in the Schwinger representation:

If ¼
1

8π2

Z
∞

0

ds
s2

e−sM
2 ½jqfjBs cothðjqfjBsÞ − 1�: ðA6Þ

This latter integral can be calculated analytically, first we
make a change of variables and write:

If ¼
jqfjB
8π2

lim
ϵ→0

�Z
∞

0

dse
−s M2

jqf jB½s−1þϵ cothðsÞ − s−2þϵ�
�
:

ðA7Þ
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Finally, using the expressions given in the appendix of
Ref. [44] for the integrals involved in Eq. (A7):

Z
∞

0

dse
−s M2

jqf jBs−1þϵ cothðsÞ ¼ −
2xf
ϵ

þ 2xfðCþ ln 2Þ

þ 2 lnΓðxfÞ − lnð2πÞ
þ ln xf; ðA8Þ

Z
∞

0

dse
−s M2

jqf jBs−2þϵ ¼ −
2xf
ϵ

þ 2xf lnð2xfÞ

þ 2xfðC − 1Þ; ðA9Þ

where C denotes the Euler constant, one easily obtains:

If ¼
M2

8π2
ηðxfÞ

¼ M2

8π2

�
lnΓðxfÞ

xf
−
ln 2π
2xf

þ 1 −
�
1 −

1

2xf

�
ln xf

�
:

ðA10Þ

APPENDIX B: MODEL PARAMETRIZATIONS

The expression required to determined these quantities
can be written in terms of two integrals, I1 and I2ðq2Þ,
whose explicit forms are regularization dependent. At the
mean field level the gap equation leads to

M ¼ m0 þ 4GMNcI1 ðB1Þ

where I1 is given by:

I1 ¼ 4

Z
d4p
ð2πÞ4

1

p2 þM2
ðB2Þ

and the average condensate is given by Eq. (2.11). At the
quadratic level the equation for the pion mass is

1 − 2GJð−m2
πÞ ¼ 0; ðB3Þ

where Jðq2Þ ¼ 2Nc½I1 þ q2I2ðq2Þ�, where I2ðq2Þ is
given by

I2ðq2Þ ¼ −2
Z

1

0

dz
Z

d4p
ð2πÞ4

1

ðp2 þM2 − zðz − 1Þq2Þ2 :

ðB4Þ

Finally, the pion decay constant is

fπ ¼ −2Z1=2
π MNcI2ð−m2

πÞ; ðB5Þ

where Z−1
π ¼ −dJðq2Þ=dq2jq2¼−m2

π
.

Introducing the dimensionless quantities MΛ ¼ M=Λ
and qΛ ¼ q=Λ the explicit expressions of I1 and I2ðq2Þ
are as follows. For the case of 3D sharp cutoff we have

I3D1 ¼ Λ2

2π2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

Λ

q
þM2

Λ ln
MΛ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

Λ

p
�

ðB6Þ

I3D2 ðq2Þ ¼ 1

4π2

Z
1

0

dz

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þM2
Λ − zðz − 1Þq2Λ

p

þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Λ − zðz − 1Þq2Λ
p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

Λ − zðz − 1Þq2Λ
p

�
; ðB7Þ

while the 3D form factor regularization read

IFF1 ¼ Λ2

π2

Z
∞

0

du
u2UΛðu2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þM2

Λ

p ðB8Þ

IFF2 ðq2Þ ¼ −
1

4π2

Z
∞

0

du
u2UΛðu2Þ

ðu2 þM2
Λ − zðz − 1Þq2ΛÞ3=2

:

ðB9Þ

For proper time regularization one gets

IPT1 ¼ Λ2

4π2
E2ðM2

ΛÞ ðB10Þ

IPT2 ðq2Þ ¼ −
1

8π2

Z
1

0

dzE1ðM2
Λ − zðz − 1Þq2ΛÞ; ðB11Þ

where EnðxÞ ¼
R∞
1 dtt−n exp ð−txÞ is the exponential inte-

gral function.
For 4D cutoff regularization one gets

I4D1 ¼ Λ2

4π2

�
1þM2

Λ ln
M2

Λ
1þM2

Λ

�
; ðB12Þ

I4D2 ðq2Þ ¼ 1

8π2

Z
1

0

dz

�
1

1þM2
Λ − zðz − 1Þq2Λ

þ ln

�
M2

Λ − zðz − 1Þq2Λ
1þM2

Λ − zðz − 1Þq2Λ

��
: ðB13Þ

Finally, for Pauli-Villars regularization one gets

IPV1 ¼ Λ2

4π2
½ð2þM2

ΛÞ log ð1þ 2M−2
Λ Þ − 2ð1þM2

ΛÞ
× log ð1þM−2

Λ Þ� ðB14Þ

IPV2 ðq2Þ ¼ −
1

8π2

Z
1

0

dz

�
2 log

�
1þ 1

M2
Λ − zðz − 1Þq2Λ

�

− log

�
1þ 2

M2
Λ − zðz − 1Þq2Λ

��
; ðB15Þ

where, here, MΛ ¼ M=Λ.
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