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The Deep Underground Neutrino Experiment (DUNE) is a leading experiment in neutrino physics
which is presently under construction. DUNE aims to measure the yet unknown parameters in the three
flavor oscillation scenario which includes discovery of leptonic CP violation, determination of the mass
hierarchy and determination of the octant of θ23. Additionally, the ancillary goals of DUNE include probing
the subdominant effects induced by new physics. A widely studied new physics scenario is that of
nonstandard neutrino interactions (NSI) in propagation which impacts the oscillations of neutrinos. We
consider some of the essential NSI parameters impacting the oscillation signals at DUNE and explore the
space of NSI parameters as well as study their correlations among themselves and with the yet unknownCP
violating phase, δ appearing in the standard paradigm. The experiment utilizes a wide band beam and
provides us with a unique opportunity to utilize different beam tunes at DUNE. We demonstrate that
combining information from different beam tunes (low energy and medium energy) available at DUNE
impacts the ability to probe some of these parameters and leads to altering the allowed regions in two-
dimensional space of parameters considered.
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I. INTRODUCTION

In a seminal paper in 1978, Wolfenstein first proposed
the possibility that nonstandard neutrino interactions (NSI)
could be responsible for conversion of a given neutrino
flavor to another even if neutrinos were massless [1].
However, thanks to the wealth of data accumulated by a
variety of oscillation experiments covering different ener-
gies and baselines, we now have a fairly clear picture that
neutrino oscillations occur due to nonzero neutrino masses.
The data from most of the oscillation experiments can be
nicely explained by invoking three flavors of neutrinos

(νe, νμ, ντ) which are superpositions of the mass states ν1,
ν2, ν3 with masses m1, m2, m3 respectively. The 3 × 3
mixing matrix appearing in the weak charged current
interactions is given by

U ¼

0
B@

1 0 0

0 c23 s23
0 −s23 c23

1
CA
0
B@

c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

1
CA

×

0
B@

c12 s12 0

−s12 c12 0

0 0 1

1
CA; ð1Þ

where sij ¼ sin θij; cij ¼ cos θij and δ is the Dirac-type CP
phase. The form of U given in Eq. (1) is referred to as the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) parametriza-
tion [2]. If neutrinos areMajorana particles, there can be two
additional Majorana-type phases in the three flavor case.
However, those Majorana phases play no role in neutrino
oscillation studies. We have measured the parameters
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entering the neutrino oscillation framework to a fairly good
precision (see the global fit analyses [3–7]). The best-fit
values and 3σ range of neutrino mass and mixings deci-
phered from oscillation data are given in Table I. Yet, there
are some unknowns in the standardmass-induced oscillation
framework. These include the question of neutrino mass
hierarchy (sign ofΔm2

31), the value of theCPviolating phase
(δ) and determining the correct octant of θ23.
On the theoretical side, neutrino oscillations require

nonzero masses while neutrinos are massless in the
standard model (SM). This implies that one needs to go
beyond the SM in order to explain the results of oscillation
experiments. The minimal way is to have a new physics
model which can give rise to nonzero neutrino masses but
the interactions are still described by SM. Once we invoke
new physics to accommodate neutrino masses, it is only
natural to consider the possibility that the neutrino inter-
actions are described by NSI (as was proposed by
Wolfenstein [1]). Clearly, a dominant contribution from
such interactions is ruled out by the present data [4–7].
However a subdominant contribution cannot be ruled out
given the present accuracy of the neutrino oscillation experi-
ments. Therefore, the idea proposed byWolfenstein does not
hold true in totality in the current times yet his insight
remains in the form of subdominant effects due to NSI on
neutrino oscillations.
The fact that parameter degeneracies crop up in the

presence of standard interactions (SI) has been well
recognized since the past two decades or so [8–13].
Identification and resolution of parameter degeneracies is
crucial for a clean determination of the oscillation param-
eters. Besides, any new physics sector (such as NSI
considered in the present work) introduces a multitude
of parameter degeneracies apart from those in the standard
case and the structure of parameter degeneracies is far more
complex. There has been a vast body of work done on NSI
and neutrino oscillations. For a comprehensive recent
review on the topic of NSI in the context of neutrino
oscillations, we refer the reader to [14]. The idea of
subdominant NSI in neutrino propagation affecting the
CP violation studies, neutrino mass hierarchy and octant of
θ23 at upcoming long baseline neutrino experiments has
received tremendous attention in neutrino physics in the

recent years [14–54] mainly because our ability to search
for subdominant effects has increased substantially due to
the precisely designed experiments.
Some of the important long baseline experiments con-

sidered are Tokai to Kamioka (T2K) [55], Tokai to Hyper
Kamiokande (T2HK) [56], Tokai to Hyper Kamiokande
with a second detector in Korea (T2HKK) [57], NuMI Off-
axis νe appearance (NOνA) [58], Deep Underground
Neutrino Experiment (DUNE) [59,60], long baseline neu-
trino oscillation (LBNO) [61].
In order to set the stage for the present work, we

summarize the most relevant references dealing with the
issue of propagation NSI at long baselines and constraining
NSI parameters. By carrying out detailed simulations of the
DUNE experiment in the presence of new physics, the
authors of [16] focus on whether DUNE would be able to
distinguish between different kinds of new physics such as
propagation NSI and sterile neutrino. In [17], it was shown
that DUNE will improve the constraints over some of the
propagation NSI parameters by carrying out sensitivity
studies and suggested that a combination of DUNE and
T2HK would help in resolving degeneracies among stan-
dard and NSI parameters. Reference [20] focuses on LBNO
and addresses prospects of probing strength of propagation
NSI parameters at long baseline experiments as a function
of the oscillation channel, baseline length and detector
mass. Correlations between propagation NSI and source as
well as detector NSI have been studied in [29].
Reference [35] deals with yet another long baseline experi-
ment, T2HKK, and discusses how different configurations
of T2HKK would be helpful in constraining the propaga-
tion NSI. Reference [37] discusses the issue of parameter
degeneracies in the presence of propagation NSI and the
authors perform a comparison of the potential of DUNE,
T2HK and T2HKK in probing some of the NSI parameters.
In [41], the author considers a combination of information
from atmospheric neutrinos and long baseline experiment
T2HK and its impact on constraining the NSI parameters. It
should be noted that the studies carried out so far on
constraining NSI terms on DUNE has invariably utilized
the standard low energy (LE) flux that peaks around the
first oscillation maximum for Pμe i.e., around 2–3 GeV. We
advance in this direction by incorporating different beam
tunes at DUNE and understand the role of beam tunes in
constraining the NSI parameters. In a recent work, high
energy beams have been shown to be helpful in distinguish-
ing the NSI scenario from the standard three neutrino
scenario [62]. While the new physics context of the present
study is that of propagation NSI, our approach is valid for a
variety of new physics models.
The article is organized as follows. In Sec. II, we give the

theoretical introduction to neutral current (NC) NSI which
is the new physics scenario considered in the present
article. We also mention the present constraints on the
NSI terms. In Sec. III, we describe the numerical simulation

TABLE I. Neutrino mass and mixing parameters obtained from
the global fit to neutrino oscillation data [4,5].

Oscillation parameter Best-fit value 3σ range

θ12 [°] 34.5 31.5–38.0
θ13 [°] 8.45 8.0–8.9
θ23 [°] 47.7 41.8–50.7
δ=π −0.68 ½−1;−0.06� and [0.87, 1]
Δm2

21 [10−5 eV2] 7.55 7.05–8.14
Δm2

31 [10−3 eV2] þ2.50 2.41–2.60
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procedure as well as introduce the beam tunes used.
In Sec. IVA, we first discuss the impact of individual
NSI terms on the behavior of probabilities (Pμe and Pμμ) as
functions of δ. In Secs. IV B and IV C, we analyze the
behavior of the probability difference between NSI and SI
as a function of energy as well as δ. In Sec. V, we do a
comparative Δχ2 analysis to discuss in detail how the
higher energy beams in conjunction with the standard low
energy beam impact the sensitivities of parameters. Finally,
we summarize our conclusions in Sec. VI. In Appendices A
and B, we have given the relevant probability expressions
that aid in understanding our results. Appendix C contains
the SI-NSI event difference plot for some representative
choice of parameters.

II. MODEL: NONSTANDARD INTERACTION
DURING PROPAGATION

The new physics scenario considered in the present work
is that of propagation NSI which impacts the propagation of
neutrinos. Such a scenario can be described by a dimen-
sion-six operator involving four fermions,

LNSI ¼ −2
ffiffiffi
2

p
GFε

fC
αβ ðν̄αγμPLνβÞðf̄γμPCfÞ; ð2Þ

where α; β ¼ e, μ, τ indicate the neutrino flavor, f denotes
the matter fermions, e, u, d. The new NC interaction terms
can impact the neutrino oscillation physics via flavor
changing interaction or flavor preserving interaction.
From a phenomenological point of view, only the sum
(incoherent) of all the individual contributions (from differ-
ent scatterers such as e, u or d) contributes to the coherent
forward scattering of neutrinos on matter. Normalizing to
ne, the effective NSI parameter for neutral Earth matter1 is
given by

εαβ ¼
X

f¼e;u;d

nf
ne

εfαβ ¼ εeαβ þ 2εuαβ þ εdαβ þ
nn
ne

ð2εdαβ þ εuαβÞ

¼ εeαβ þ 3εuαβ þ 3εdαβ; ð3Þ

where nf is the density of fermion f in medium crossed by

the neutrino and n refers to neutrons. Also, εfαβ ¼ εfLαβ þ εfRαβ
which encodes the fact that NC type NSI matter effects are
sensitive to the vector sum of NSI couplings.
In the presence of NSI, the Hamiltonian in the effective

Schrödinger-like equation governing neutrino evolution
can be expressed as

H ¼ 1

2E

8<
:U

0
B@

0

Δm2
21

Δm2
31

1
CAU†

þ aðxÞ

0
B@

1þ εee εeμ εeτ

εeμ
⋆ εμμ εμτ

εeτ
⋆ εμτ

⋆ εττ

1
CA
9=
;; ð4Þ

where Δm2
ij are the mass-squared differences. Here aðxÞ ¼

2
ffiffiffi
2

p
EGFneðxÞ is the standard charged current (CC) poten-

tial due to the coherent forward scattering of neutrinos, ne
is the electron number density and εαβð≡jεαβjeiφαβÞ are
complex NSI parameters. U is the PMNS three flavor
neutrino mixing matrix [see Eq. (1)].
We now mention the constraints on the NC NSI

parameters. The combination that enters oscillation physics
is given by Eq. (3). Assuming that the errors on individual
NSI terms are uncorrelated, model-independent bounds on
NC NSI terms εαβ were given in Ref. [63]. In particular, one
obtains the following:

εαβ ≲
� X

C¼L;R

½ðεeCαβ Þ2 þ ð3εuCαβ Þ2 þ ð3εdCαβ Þ2�
�

1=2
; ð5Þ

which leads to

jεαβj <

0
B@

4.2 0.33 3.0

0.33 0.068 0.33

3.0 0.33 21

1
CA ð6Þ

for neutral Earth matter. Direct experimental constraints
from neutrino experiments on NSI parameters are more
restrictive. The Super-Kamiokande NSI search in atmos-
pheric neutrinos crossing the Earth found no evidence in
favor of NSI and the study led to upper bounds on NSI
parameters [64] given by jεμτj < 0.033; jεττ − εμμj < 0.147
(at 90% C.L.) in a two flavor hybrid model [65]. The off-
diagonal NSI parameter εμτ is constrained −0.20 < εμτ <
0.07 (at 90% C.L.) from MINOS data in the framework of
two flavor neutrino oscillations [66,67].
In what follows, we shall adopt a numerical approach to

discuss the impact of various NSI parameters. For the sake
of simplicity and clarity, we consider one NSI parameter at
a time. Wherever analytic description is feasible, we give
approximate analytic expressions which are valid in the
present context and additional plots which help in under-
standing the results obtained numerically (for more details,
see Appendices A and B).

III. SIMULATION PROCEDURE
AND BEAM TUNES

The proposed Deep Underground Neutrino Experiment
(DUNE) has a baseline of 1300 km and a 40 kt liquid argon

1For neutral Earth matter, there are two nucleons (one proton
and one neutron) per electron.
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far detector is placed at an on-axis location. The primary
scientific goals of DUNE include the measurement of
leptonic CP violation, the determination of the neutrino
mass ordering and the precision measurement of the
neutrino mixing parameters [59,60,68,69].
In order to simulate DUNE, we use the GLOBES

package [70,71] with the most recent DUNE configuration
file provided by the collaboration [72] and implement the
density profile given by Preliminary Reference Earth
Model (PREM) [73]. We assume a total run-time of seven
years with 3.5 years in the neutrino mode and another
3.5 years in the antineutrino mode.
We consider two beam tunes obtained from a G4LBNF

simulation [74,75] of the LBNF beam line using NuMI-
style focusing.

LE beam: The standard νμ beam which peaks around a
relatively lower energy of ∼2.5 GeV (corresponding
to the first oscillation maximum for the νμ → νe
appearance channel) is referred to as an LE beam
in our analyses. It is generated by an 80 GeV proton
beam delivered at 1.07 MW with protons on target
(pot) of 1.47 × 1021.

ME beam: The second beam has the characteristic that it
is larger at higher energies (≳4 GeV onwards) and we
refer to this beam as medium energy (ME) beam. The
ME beam is generated by a 120 GeV proton beam
delivered at 1.2 MW with a pot of 1.1 × 1021.

Both the LE and ME fluxes are shown in Fig. 1. The LE
flux peaks around 1.5 to 3.5 GeV but after that it falls off
rapidly. In contrast, the ME flux is almost flat from 2–
6 GeV and after that it falls off but at a much slower rate
compared to the LE flux and it remains substantially higher

than the LE flux even beyond 6 GeV. At ∼2.5 GeV, the ME
flux is ∼25%–35% smaller than the LE flux. Hence, in our
analyses of probing the NSI parameters, we use a combi-
nation of LE and ME flux together, so as to extract
information on new physics from both the lower energy
(1–3 GeV) and the higher energy (≳4 GeV) regime as
much as possible. We compare the results with those
obtained using the LE beam only for the same total run-
time of the experiment. The beam line parameters assumed
for the different design fluxes used in our sensitivity
calculations are given in Table II.
Our analysis includes both appearance (νμ → νe) and

disappearance (νμ → νμ) channels, simulating both signal
as well as background. The simulated background includes
contamination of antineutrinos (neutrinos) in the neutrino
(antineutrino) mode, and also misinterpretation of flavors,
as discussed in detail in [72]. To analyze the NSI scenario,
we utilize the GLOBES extension called snu.c which is
described in [77,78].
To calculate the sensitivity with which the NSI param-

eters can be probed, one can define the (statistical) Δχ2 as
follows2:

Δχ2 ≃
X
i

X
j

½Nij
trueðSIÞ − Nij

testðNSIÞ�2
Nij

trueðSIÞ
: ð7Þ

Here, the SI case is treated as truewhile the NSI parameters
are allowed to vary in the test dataset. The sum over the
number of channels runs over the νμ → νe and νμ → νμ
channels and the corresponding antineutrino channels,
ν̄μ → ν̄e and ν̄μ → ν̄μ. The index j indicates the sum over
all the energy bins ranging from E ¼ 0–20 GeV.We have a
total of 71 bins of nonuniform widths (64 bins with uniform

FIG. 1. The neutrino fluxes (LE and ME) used in the present
work. LE beam refers to the standard flux generated by an
80 GeV proton beam as used in [72]. ME beam refers to the flux
peaking at a higher energy. See Table II for more details.

TABLE II. Beam line parameters assumed for the different
design fluxes used in our sensitivity calculations [72,76]. The
target is a thin Be cylinder two interaction lengths long. The
target location is given with respect to the upstream face of Horn
1. The LBNF neutrino beam line decay pipe length has been
chosen to be 194 m. Decay pipe lengths of up to 250 m could be
accommodated on the Fermilab site and were an option in
previous designs of the beam line.

Parameter LE ME

Proton beam Epþ ¼ 80 GeV Epþ ¼ 120 GeV
1.07 MW 1.2 MW

Focusing 2 NuMI horns, 230 kA, 6.6 m apart
Target location −25 cm −1.0 m
Decay pipe length 204 m 250 m
Decay pipe diameter 4 m 4 m

2The definition of the Δχ2 in Eq. (7) includes only statistical
effects for the purpose of understanding. The systematic effects
have of course been taken into account in our numerical results
obtained using GLOBES.
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bin width of 125 MeV in the energy range E ¼ 0–8 GeV
and seven bins with variable width beyond 8 GeV) [72].
The detector configuration, efficiencies, resolutions and
systematic uncertainties for DUNE are listed in Table III.
We have used the standard oscillation parameters in

Table I, taken from Refs. [4,5]. For the neutrino mass
hierarchy, we assume a spectrum corresponding to normal
hierarchy in the true dataset. Since DUNE has no sensitivity
to the solar parameters and since θ13 is rather well measured
by current reactor and long baseline experiments, we keep
these values fixed to their current best-fit values, while
marginalizing over θ23 (in the present 3σ range) and δ
(½−π; π�), if not plotting them. In addition, we marginalize
over the atmospheric mass-squared splitting, Δm2

31,
allowing for the two possible mass hierarchies. When
studying a nondiagonal NSI parameter, εαβ, we also
marginalize over its corresponding phase, φαβ in the range
½−π; π�. Therefore, if we study two nondiagonal complex
parameters simultaneously, we marginalize over a total of
five parameters.
In our analysis, we consider two diagonal NSI

parameters and three off-diagonal NSI parameters with
both their moduli and phases. If we also include the yet
unknown CP phase, δ, we have a total of nine parameters.
We depict Δχ2 correlations among these nine parameters
(δ; εee; jεeμj;φeμ; jεeτj;φeτ; jεμτj;φμτ; εττ) considering them
pairwise at a time and the number of such combinations
is 36.

IV. A SCAN OF PARAMETER SPACE AT THE
LEVEL OF PROBABILITY

In order to obtain insight into the correlations and
degeneracies among the various NSI and SI parameters
that may impact the signals at DUNE, the first step is,
naturally, to look at the relevant oscillation probabilities.
We consider the following oscillation channels that are
accessible3 at DUNE:
(1) Appearance channel: νμ → νe
(2) Disappearance channel: νμ → νμ.
In what follows, we consider the relevant parameters that

include two of the diagonal NSI parameters (εee, εττ) and

the moduli and phases of the three off-diagonal NSI
parameters (εeμ, εeτ, εμτ). A detailed assessment of the
role of individual NSI terms on the different oscillation
channels has been carried out in [79,80]. Based on the
analyses in [79,80], we can conclude that among all NSI
parameters, εeμ and εeτ mainly impact the appearance
channel (νμ → νe) while εee has a milder impact. It is
clear that εeμ enters the νμ → νe channel. The almost
maximal mixing in the 2–3 sector ensures that εeτ also
impacts this channel with similar strength as εeμ (see
Appendix A and the discussion in Sec. IV of [79]).
Similarly, the disappearance channel (νμ → νμ) is more
sensitive to the presence of NSI parameter εμτ (see
Appendix B and the discussion in Sec. IV of [79]).
In the following subsections, we perform a scan of the

parameter space at the probability level. We first discuss the
fixed energy and fixed baseline snapshots of probabilities
(Sec. IVA). We then discuss SI-NSI degeneracies in the
context of DUNE as a function of energy keeping δ fixed at
the best-fit value (Sec. IV B). Further, we go on to the
discussion of SI-NSI degeneracies as a function of δ
(keeping the energy fixed) in Sec. IV C.

A. Snapshots of Pμe and Pμμ at fixed energy
and fixed baseline

In Fig. 2, we fix the baseline at 1300 km and show the
impact of NSI parameters4 on snapshots of Pμe and Pμμ as a
function of δ at certain (appropriately chosen) fixed energy
values. This aids in identification of parameters that may
have the largest impact at the level of probabilities, though
at specific energy values. For the νμ → νe channel (top row
in Fig. 2), we choose the fixed value of energy to be
E ¼ 2.5 GeV. This value corresponds to the first oscil-
lation maximum for Pμe. On the other hand, Pμμ is very
close to zero at 2.5 GeV while it is substantial at higher
values of energy. Hence we depict curves for Pμμ (bottom
row in Fig. 2) at 5 GeV. The grey bands show the variation
of the probability when the relevant phases (δ, φαβ) are

TABLE III. Detector configuration, efficiencies, resolutions and systematic uncertainties for DUNE.

Normalization error Energy calibration error

Detector details Signal Background Signal Background

DUNE
Run-time (yr) ¼ 3.5νþ 3.5ν̄ 40 kton,
LArTPC

νe∶5% νe∶10% νe∶2% νe∶10%

νμ∶5% νμ∶10% νμ∶5% νμ∶10%

3νμ → ντ is also in principle there, but the signal is extremely
tiny.

4The moduli of all the NSI parameters have been chosen to be
equal to 0.1 (allowed by present constraints [63,81]). For reasons
of clarity and simplicity, we take one NSI parameter nonzero at a
time.
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allowed to vary in the range ½−π; π�. As a reference, the SI
case is shown as a solid black line in all the plots.
As far as Pμe at 2.5 GeV (top row) is concerned, we note

that the effect of εeμ or εeτ is more pronounced when
compared to the other NSI terms. The presence of εeμ or εeτ
modifies the overall amplitude and the location of the peaks/
dips of the probabilities while the presence of a nonzero φeμ

orφeτ brings in additional phase shifts.We note that εμτ has a
much smaller effect onPμe. εee and εττ also have aminiscule
effect on the amplitude of Pμe. On the other hand, Pμμ at
5GeV (bottom row) gets affectedmost by the presence of the
εμτ term. εeτ; εee; εττ have practically no impact on Pμμ. εeμ
induces some phase dependence on Pμμ.
In what follows, we generalize the above discussion and

study the energy dependence of the SI-NSI degeneracies
for Pμe and Pμμ and also vary the NSI terms instead of
keeping their values fixed.

B. Energy dependence of the SI-NSI degeneracies

To quantify the impact of NSI terms, let us define a
quantity, jΔPαβj ¼ jPNSI

αβ − PSI
αβjðα; β ¼ e; μÞ, which is

absolute value of probability difference between the SI
and NSI scenarios.
Our results are given in Fig. 3 in the form of heatmaps as

functions of energy and the strength of the NSI parameter
for jΔPμej (top row) and jΔPμμj (bottom row). The NSI
phases are taken to be zero and the standard oscillation
parameters have been pinned to their best-fit values (see
Table I). If we carefully examine the top row of Fig. 3, we

note that jΔPμej is mostly affected by jεeμj and jεeτj. Note
that the impact of jεeμj or jεeτj is most prominent around
2–3 GeV. One can derive a useful conclusion here regard-
ing difference in impact of jεeμj and jεeτj on jΔPμej. As we
go beyond ∼4 GeV, jεeτj gradually makes jΔPμej smaller
(red region), while jεeμj makes jΔPμej stay at a high value
(blue region) which is almost independent of energy. This,
in turn, suggests that one may be able to probe εeμ more
effectively than εeτ by use of higher energy beam tune. The
other NSI terms εμτ, εee or εττ do not induce much change,
keeping jΔPμej≲ 0.005 for most of the energy range.
From the bottom row of Fig. 3 corresponding to jΔPμμj,

we note that εμτ plays an important role. jΔPμμj is large
(blue) in most of the energy range as long as jεμτj≳ 0.02.
This is to be contrasted with other NSI terms, as even a
small value of εμτ can induce a large impact on jΔPμμj. As
can be noted, a higher energy beam may be able to probe
εμτ via this channel effectively. If we look at the impact of
jεeμj and jεeτj, we note that jεeμj gradually makes jΔPμμj
larger at E≳ 5 GeV (indicated by blue region on the top
right side of the panel) while jεeτj does not seem to impact
jΔPμμj. Thus, for the disappearance channel as well, it
appears that the higher energy beam may prove more useful
in probing εeμ than εeτ. For an analytic understanding of the
energy dependence of ΔPαβ in the presence of NSI, see
Appendices A and B.
We next consider the case of nonzero phases φαβ. In

Fig. 4, heatmaps corresponding to jΔPμej (top row) and
jΔPμμj (bottom row) in the two-dimensional plane of

FIG. 2. Pμe (top row) and Pμμ (bottom row) at fixed baseline (L ¼ 1300 km) and fixed energy values (E ¼ 2.5 GeV for Pμe and
E ¼ 5 GeV for Pμμ) plotted as a function of the CP phase, δ. The strength of all NSI terms is taken to be the same (¼ 0.1).
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individual NSI phase (φαβ) and energy are shown. The
moduli of NSI terms (jεeμj, jεeτj or jεμτj) were kept fixed at
0.05. From Fig. 4, we note that jΔPμej (top row) is most
affected by φeμ or φeτ while φμτ has almost no effect.

Around 2–4 GeV, φeμ and φeτ produce similar qualitative
features indicating SI-NSI degeneracy (red band)
occurring at a pair of values given by φeμ ≈ 0;�π and
φeτ ≈ −0.6π; 0.4π. At energies beyond 4 GeV, jΔPμej is
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very small (∼0) almost uniformly in the presence of φeτ
while in the presence of φeμ, it still exhibits a relatively high
value (0.005–0.01) in the large region of the parameter
space. For a quantitative understanding of this feature, we
refer the reader to Appendix A.
For jΔPμμj, Fig. 4 (bottom row) shows that it is affected

most significantly byφμτ, showing sharp SI-NSI degeneracy
around φμτ ≈�π=2. This arises because of the fact that
jΔPμμj ∝ cosφμτ [see Eq. (B3) in Appendix B]. We also
note that jΔPμμj remains close to zero in the presence of φeτ

and shows moderate variation in the presence of φeμ.
Finally, we would like to mention that the qualitative

features of Fig. 4 remain unchanged even if the moduli of
the relevant off-diagonal NSI terms (jεeμj; jεeτj or jεμτj) are
increased.

C. δ-dependence of SI-NSI degeneracies

In Figs. 5 and 6 we depict the heatmaps for jΔPμej and
jΔPμμj in the δ − εαβ plane. In these plots, the first (second)
row corresponds to a fixed energy of 2.5 (5) GeV. We can
derive the following conclusions in connection with Pμe

(see also Appendix A):
(i) In the case of the νμ → νe channel (Fig. 5), the NSI

terms εeμ and εeτ have a relatively larger impact than
the other NSI parameters. For εeμ and εeτ, the
degenerate regions (jΔPμej≲ 0.05) are narrowly
concentrated around a pair of values of δ (seeTable IV
below). These sharp SI-NSI degenerate regions exist
even for 5 GeV but at somewhat different values of δ.
For εeτ, the degenerate region seems to be larger at
5 GeV in contrast to 2.5 GeV. This is not seen in the
case of εeμ (this observation is consistent with Fig. 3).
Note that the locations of SI-NSI degenerate regions
is roughly independent of the size of jεeμj and jεeτj.
For jεμτj, the degenerate region is broader and shows a
soft feature of peaking at δ ≈�π for 2.5 GeV. For εee
and εττ, the degenerate regions have similar structure
showing no CP phase dependence.

(ii) For the νμ → νμ channel (Fig. 6), as mentioned
earlier, it is more appropriate to look at 5 GeV (the
bottom row). As expected, εμτ has the largest impact
and its effect is independent of the CP phase, δ (see
also Appendix B). The impact of εeμ is also
important with two sharp peaks occurring around
δ ≈�π=2. The other terms such as εeτ; εee; εττ have
almost no effect at 5 GeV (here also the results are
consistent with Fig. 3).

To complete the discussion, we now discuss the effect of
nonzero phases. We keep the moduli of the respective NSI
terms fixed at jεαβj ¼ 0.05 and plot heatmaps correspond-
ing to jΔPμej and jΔPμμj in the φαβ − δ plane in Figs. 7 and
8 respectively. As before, we show our results for two
different values energy, 2.5 GeV (top row) and 5 GeV

(bottom row). We make the following observations from
these plots:

(i) In the case of the νμ → νe channel (Fig. 7), we see
degenerate regions in the case of φeμ and φeτ (where
jΔPμej≲ 0.005) slanted at an angle of 135°. In the
case of φμτ, jΔPμej remains close to zero and stays
within ≲0.005 in the entire φμτ − δ space.5 For
5 GeV, the pattern remains very similar for φeμ,
but the extent of degeneracy increases for φeτ, as
expected from our previous analyses.

From the analytic expressions given in Appen-
dix A [Eqs. (A1) and (A2)], we can note that the SI-
NSI degeneracy in the presence of φeμ or φeτ for a
fixed nonzero moduli of the corresponding NSI term
arises from the following:

sinðδþ φeμ − γeμ1 Þ ≈ 0 ðfor φeμÞ and

sinðδþ φeτ þ γeτ1 Þ ≈ 0 ðfor φeτÞ
⇒ δþ φeμ ≈ nπ þ γeμ1 and δþ φeτ ≈ nπ − γeτ1 ;

with n ¼ 0;�1;�2;…: ð8Þ

Here γeμ1 ¼ tan−1ðtan2θ23Δ þ cotΔÞ and γeτ1 ¼
tan−1ð1Δ − cotΔÞ. We note that Eq. (8) shows equa-
tions of straight lines with a slope of 135° and equal
intercepts on the δ and φαβ axes.6 Furthermore, the
various intercepts (corresponding to different n) on
the φαβ or δ axes are separated by π which is also
seen in Fig. 7.

(ii) In the case of the νμ → νμ channel (Fig. 8), we focus
on the bottom row. Here φeμ shows the SI-NSI
degenerate regions roughly mimicking straight lines
at 135° slope, whereas φeτ shows no effect. φμτ

manifests itself by rendering jΔPμμj to a much larger
value (≳0.02) for most of the parameter space, but
there exist two sharp degenerate regions occurring at
φμτ ≈�π=2 with no δ dependence.

TABLE IV. The values of δwhere jΔPμej almost vanishes in the
presence of εeμ or εeτ (red spikes) in Fig. 5.

E ΔPμeðjεeμjÞ ≈ 0 ΔPμeðjεeτjÞ ≈ 0

2.5 GeV 0.25π, −0.8π 0.8π, −0.2π
5 GeV 0.4π, −0.6π 0.95π, −0.15π

5In general, εμτ has milder impact on the Pμe. The effect
of the associated NSI phase φμτ is, thus, small. If we take
somewhat larger value of jεμτj, jΔPμej would increase slightly
but the qualitative feature of jΔPμeðφμτÞj would still remain
similar.

6x=aþ y=b ¼ 1 is a general equation of a straight line with
intercepts a and b on the x and y axes respectively.
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V. PROBING THE NSI PARAMETER
SPACE AT THE LEVEL OF χ 2

In the present section, we numerically explore the NSI
parameter space at the level of χ2 using the standard LE as
well as ME beam tunes. Our main results are summarized
in Fig. 9 where we depict contours at a confidence level
(C.L.) of 99%. The solid cyan (black hatched) contours
correspond to LE (LEþME) beams. More specifically, the

region enclosed by these contours depicts the regions where
there is SI-NSI degeneracy for those pair of parameters.
Below, we discuss some noteworthy features as can be
observed from Fig. 9:
(1) Let us first consider the panels with εeμ (either jεeμj

or φeμ or both) which are shown in light yellow
color. We note that use of different beam tunes
(ME in conjunction with the LE beam) offers visible
improvement of results (shrinking of contours) in
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these pairs of parameters. This is one of the key
results of the present article. In order to explain the
observed pattern, let us recollect from Figs. 3 and 4
that the presence of jεeμj or φeμ leads to a large
difference between SI and NSI scenarios even at
larger values of energies i.e., E≳ 4 GeV. Thus, with
the LEþME option we are able to place tighter
constraints on the parameter space corresponding to
parameters jεeμj and φeμ.
From Eq. (7), the Δχ2 in the presence of two NSI

parameters, say a and b, can be written as7

Δχ2ða; bÞ ∼ Δχ2μeða; bÞ þ Δχ2μμða; bÞ
∼Min

X
energy

½jΔPμeðaÞj þ jΔPμeðbÞj

þ jΔPμμðaÞj þ jΔPμμðbÞj�: ð9Þ
For example, if we focus on the jεeμj − jεeτj plane,
we have

Δχ2ðjεeμj; jεeτjÞ ∼Min
X
energy

½jΔPμeðjεeμjÞj

þ jΔPμeðjεeτjÞj þ jΔPμμðjεeμjÞj
þ jΔPμμðjεeτjÞj�; ð10Þ

where the sum is over all the energy bins (0–
20 GeV) and the minimization is performed over

FIG. 9. A comparison of the sensitivity of DUNE to probe the NSI parameters at 99% confidence level when a standard low energy
(LE) beam tune is used (cyan region) and when a combination of low and medium energy (LEþME) beam tune is used (black hatched
region), keeping the total run-time the same (3.5 years of νþ 3.5 years of ν̄ run) for both scenarios. In the latter case, the total run-time is
distributed between the LE beam (2 years of νþ 2 years of ν̄) and the medium energy beam (1.5 years of νþ 1.5 years of ν̄). The panels
with a light yellow (white) background indicate significant improvement (no improvement) by using LEþME beam over using LE
only. The numbers in the light yellow shaded panels correspond to the area lying outside the contour for the two cases (cyan for LE and
black for LEþME) expressed as a percentage of the total parameter space plotted. These numbers quantify the improvement over the
LE only option when the ME beam tune is used in conjunction with the LE beam tune in these panels.

7For the ease of understanding, we write neutrino contribution
only. The dependence on flux and cross section has been omitted
for clarity in understanding the dependence on probabilities.
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δ, θ23, Δm2
31, φeμ, φeτ. From the probability level

discussion (Fig. 3), we can assess the impact of the
NSI terms jεeμj and jεeτj onPμe andPμμ. In the case of
jΔPμej, at low values of energy, the impact of the two
NSI parameters is quite similar. But, at higher
energies, the effects due to jεeμj tend to be larger
than effects due to jεeτj. This means that ME beam is
expected to alter the degenerate region more in the
case of jεeμj and less in the case of jεeτj. That the
smaller contribution from the disappearance channel
is in the same direction as the larger contribution from
the appearance channel (with jεeμj and jεeτj acting in
opposite directions) can also be seen from the plot.

(2) We next consider the remaining panels in which we
see that there is very little or no improvement of
results after using the ME beam along with the
LE beam. If we look at the pair of parameters,
jεeτj − εee, φeτ − εee, εττ − εee, φeτ − jεeτj and εττ −
jεeτj in particular, we note that the degenerate
regions get enlarged slightly. This is because of
the fact that the presence of εeτ, unlike εeμ, actually
adds to the SI-NSI degeneracy at higher energies
(see Figs. 3 and 4 and the discussions in Sec. IV B).

(3) For the panels with jεμτj and φμτ as one of the
parameters, there is very marginal improvement
(except when jεeμj or φeμ is present) in the degen-
erate contours using the LEþME beam. To see how
theΔχ2 arises in panels showing the parameter space
associated with jεμτj, let us take for example, the pair
of parameters, jεμτj and jεeτj, and express the Δχ2
[Eq. (9)] as

Δχ2ðjεμτj; jεeτjÞ ∼Min
X
energy

½jΔPμeðjεμτjÞj

þ jΔPμeðjεeτjÞj þ jΔPμμðjεμτjÞj
þ jΔPμμðjεeτjÞj�; ð11Þ

where the sum is over all the energy bins
(0–20 GeV) and the minimization is carried over
δ; θ23;Δm2

31;φμτ;φeτ. Now, from Eq. (B3), we know
that in leading order, jΔPμμðεμτÞj is independent of δ
and is directly proportional to cosφμτ. Minimization
over φμτ ∈ ½−π; π� will always then find the
constant, energy-independent value of φμτ ≈�π=2
which makes the Δχ2 contribution due to Pμμ

vanishingly small.8 Thus, even when jεμτj is present,

the Δχ2 receives a dominant contribution from the
νμ → νe channel. This is more clear from the panels
showing the parameter space associated to φμτ (i.e.,
where φμτ is not marginalized). The magnitude of
Δχ2 in such panels is dominantly contributed by the
νμ → νμ channel for all values of φμτ ≉ �π=2. But
around φμτ ≈�π=2, the contribution from the νμ →
νμ becomes very small and the νμ → νe channel
dominates, as we have also verified numerically.
This explains the appearance of degenerate contours
at φμτ ≈�π=2 as well.

(4) All the parameter spaces showing εee (entire
second column and the top panel of the first
column) have an additional degeneracy around
εee ≈ −2, in addition to the true solution at
εee ≈ 0. This extra solution comes due to the
marginalization over the opposite mass hierarchy.
Similar degeneracy has also been observed in
previous studies: in [25,36,82] (in the context of
NSI) and also in [83] in the context of Lorentz
violating parameters.

VI. CONCLUDING REMARKS

In [62], the authors combined the experimentally feasible
option of using a combination of beam tunes and demon-
strated that it was possible to extricate any two physics
scenarios more efficiently using experimental handles.
In the present article, we address the question of con-
straining the parameter space of NSI parameters at DUNE
by exploiting a wide band nature of the beam. We
systematically study correlations among various parame-
ters using two beam tunes (LE and ME) and illustrated that
to probe a subset of NSI parameter space more effectively,
it is advantageous to use a combination of LE and ME
tuned beams as opposed to using only the standard LE
beam tune.
We provide a systematic and comprehensive description

of the overall impact of the NSI parameters on the relevant
probabilities (for νμ → νe and for νμ → νμ) as a function of
energy as well as the CP phase. In the Appendices, we
provide analytic expressions of all the relevant expressions
for the SI-NSI probability differences in the presence of
individual NSI parameters (taken one at a time). These aid
in our understanding of the dependencies of oscillation
probabilities. We then quantify the differences in terms of a
Δχ2 quantity and connected the features obtained to the
probability level description. In Fig. 9, we have illustrated
the Δχ2 correlations among the various parameters in the
new parameter space appearing in the presence of NSI at a
confidence level of 99%. Our key findings can be sum-
marized as follows. The degenerate contours in the space
associated with parameters jεeμj and φeμ (shown as panels
shaded in light yellow color in Fig. 9) shrink significantly
when we use the LEþME beam as opposed to LE beam

8On the other hand this does not happen for εeμ and εeτ for the
following reason. Equations (A1) and (A2) tell us that in leading
order, jΔPμeðεeμÞj ∝ sinðδþ φeμ − γeμ1 Þ and jΔPμeðεeτÞj ∝
sinðδþ φeτ þ γeτ1 Þ, where γeμ1 and γeτ1 are energy-dependent
quantities. Thus, unlike in the case of jΔPμμðεμτÞj, there does
not exist a unique energy-independent phase value which would
make its contribution to Δχ2 to ∼0.
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alone. For a quantitative estimate of the improvement, one
can compute the area of the parameter space outside each
contour (i.e., above the confidence level of 99%) and
express the area as the percentage of the total parameter
space plotted. It is evident from the pair of numbers (cyan
for LE and black for LEþME) indicated in the light
yellow panels that the LEþME beam leads to improve-
ment over the LE beam. For the remaining NSI parameters,
we see marginal or no improvement in terms of con-
straining the parameters using LEþME beam in compari-
son with LE beam. Our detailed analysis also provides an
explanation for distinguishing features of the Δχ2 contours
for different parameters.
A few remarks on connection with the existing work that

deal with constraining NSI parameters at DUNE [16,17]
are in order. It should be noted that the standard beam
(available in 2015) was used for these analyses. It can be
observed that the contours in our analyses indicate better
resolution capability of DUNE and they roughly resemble
the contours of [16,17] in shape. The slight differences in
the contours may arise from the difference in the exper-
imental inputs such as beam configuration, detector details,
exposure and the best-fit values used.
Although the entire analysis has been carried out in the

context of NSI and DUNE, we would like to mention that
the approach is fairly general and can be easily translated to
other new physics contexts such as nonunitarity, charge,
parity and time reversal symmetry (CPT) violation, Lorentz
violation etc. We point out that if we utilize the full
potential of a given long baseline experiment such as
DUNE which has a wide band beam and allows for
tunability of beam, we can reduce the degeneracy (using
the same experiment with multiple beam tune options)
among some relevant choice of parameters in the parameter
space as is suggested by the probability level discussion
in Sec. IV.
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APPENDIX A: ANALYTIC UNDERSTANDING
OF THE BEHAVIOR OF ΔPμe

Here we look at the expressions for probability differ-
ence between SI and NSI and make an attempt in under-
standing how the individual NSI parameters affect the
SI-NSI degeneracy. We calculate these expressions by
making use of the probability expressions from [79] up
to first order in εαβ’s. Using the expressions for Pμe in the
presence of a single NSI parameter (jεeμj, jεeτj or εee) we
arrive at the following three equations:

ΔPμeðεeμÞ ¼PNSI
μe ðεeμÞ−PSI

μe

≈− 4AΔsinΔjεeμjs13s2ð23Þc23Deμ
1 sinðδþφeμ− γeμ1 Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

þ 2AΔ sinΔjεeμjαs2ð12Þs2ð23Þs23Deμ
2 sinðφeμþ γeμ2 Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

þOðε2eμÞ

≈ 2AΔsinΔjεeμjs2ð23Þ½−2s13c23Deμ
1 sinðδþφeμ− γeμ1 Þþαs2ð12Þs23D

eμ
2 sinðφeμþ γeμ2 Þ�; ðA1Þ

and

ΔPμeðεeτÞ ¼ PNSI
μe ðεeτÞ−PSI

μe

≈4AΔ sinΔjεeτjs13s2ð23Þs23Deτ
1 sinðδþφeτ þ γeτ1 Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

þð−2AΔ sinΔjεeτjαs2ð12Þs2ð23Þc23Deτ
2 sinðγeτ2 −φeτÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

þOðε2eτÞ

≈ 2AΔ sinΔjεeτjs2ð23Þ½2s13s23Deτ
1 sinðδþφeτ þ γeτ1 Þ− αs2ð12Þc23Deτ

2 sinðγeτ2 −φeτÞ�; ðA2Þ

where
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Deμ
1 ¼

�
sin2Δþ

�
tan2θ23

sinΔ
Δ

þ cosΔ
�

2
	
1=2

γeμ1 ¼ tan−1
�
tan2θ23

Δ
þ cotΔ

�

Deμ
2 ¼

�
sin2Δþ

�
cot2θ23

Δ
sinΔ

þ cosΔ
�

2
	
1=2

γeμ2 ¼ tan−1
�
cot2θ23Δ
sin2Δ

þ cotΔ
�

Deτ
1 ¼

�
sin2Δþ

�
sinΔ
Δ

− cosΔ
�

2
	
1=2

; γeτ1 ¼ tan−1
�
1

Δ
− cotΔ

�

Deτ
2 ¼

�
sin2Δþ

�
Δ

sinΔ
− cosΔ

�
2
	
1=2

γeτ2 ¼ tan−1
�

Δ
sin2Δ

− cotΔ
�
:

Here A ¼ a=Δm2
31 ¼ 2

ffiffiffi
2

p
EGFne=Δm2

31. By making the substitution A → Að1þ εeeÞ [18] we also have

ΔPμeðεeeÞ ¼ PNSI
μe ðεeeÞ − PSI

μe

≈ s2
2ð13Þs

2
23

�
sin2½f1 − Að1þ εeeÞgΔ�

f1 − Að1þ εeeÞg2
−
sin2fð1 − AÞΔg

ð1 − AÞ2
	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

þ
�
α2s2

2ð12Þc
2
23

�
sin2fAð1þ εeeÞΔg
fAð1þ εeeÞg2

−
sin2ðAΔÞ

A2

	

þ αs2ð13Þs2ð12Þs2ð23Þ

�
sin½f1 − Að1þ εeeÞgΔ�

1 − Að1þ εeeÞ
:
sinfAð1þ εeeÞΔg

Að1þ εeeÞ
−
sinfð1 − AÞΔg

1 − A
:
sinðAΔÞ

A

	
cosðδþ ΔÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

; ðA3Þ

where Δ ¼ Δm2
31
L

4E .

FIG. 10. The terms (denoted by green, blue and cyan curves) in the right-hand side (rhs) of Eq. (A1) (first column), (A2) (second
column) and (A3) (third column) are plotted as functions of δ for two fixed energies 2.5 GeV (top row) and 5 GeV (bottom row). The
overall ΔPμe is represented by the red curve and the small red circles denote where it becomes zero.

MEHEDI MASUD, SAMIRAN ROY, and POONAM MEHTA PHYS. REV. D 99, 115032 (2019)

115032-14



When ΔPμe becomes close to zero, it becomes difficult
to separate NSI from SI and we have a SI-NSI degeneracy.
We plot the terms in Eqs. (A1)–(A3) as functions of δ for an
energy of 2.5 GeV and also at a higher energy of 5 GeV in
Fig. 10 with fixed values of the NSI amplitude and zero NSI
phase as indicated in the figure. For εeμ or εeτ, the second
term (blue) is very small (scaled down by the additional
factor α ∼ 10−2 compared to the first term) and also
independent of the CP phase δ. It is the first term (green)
which mainly dictates the behavior of ΔPμe in the presence
of εeμ or εeτ. We note the locations (see Table V) where
the overall value of ΔPμe (red) becomes zero in Fig. 10.
These locations are indeed consistent with the locations of
the red spikes in Fig. 5 as listed in Table IV. The origin
of these special values of δ can easily be understood as
follows.
On a closer inspection of the first term in Eqs. (A1) and

(A2), we observe that it is proportional toDeμ
1 for εeμ and to

Deτ
1 for εeτ. From Fig. 11 (left panel), we observe that

around 2.5 GeV bothDeμ
1 andDeτ

1 have similar magnitude,9

But as the energy increases furtherDeμ
1 keeps on increasing

while Deτ
1 decreases. This indicates that at higher energies,

jΔPμeðjεeμjÞj increases while jΔPμeðjεeτjÞj becomes
smaller. This explains why the degeneracy increases for
higher energy in the presence of εeτ compared to εeμ in the
νe appearance channel, as observed from our simulation
earlier (see Fig. 3).
On a related note, let us also try to understand the role of

φαβ in Fig. 4 with variation in energy. In Fig. 11 (right
panel) we show the variation of the phase arguments γeμ1
and γeτ1 [appearing in the first terms of Eqs. (A1) and (A2)]
with energy. Around 2.5 GeV, γeμ1 ≈ γeτ1 . At higher energies,
γeμ1 > γeτ1 , but both remains positive. Both of them tends to
get plateaued at E≳ 4 GeV or so, with γeμ1 =π ∼ 0.3 and
γeτ1 =π ∼ 0.1 on an average to a crude approximation. Since
jΔPμeðεeμÞj ∝ sinðδþ φeμ − γeμ1 Þ approximately, we can
guess that with a given b.f. value of δ ≈ −0.7π we will
have a degeneracy around φeμ=π ≈ 0;�π at energies
≳4 GeV. Similarly, since jΔPμeðεeτÞj ∝ sinðδþ φeτ þ
γeτ1 Þ approximately, we will have a degeneracy around
φeμ=π ≈ 0.6;−0.4 at energies ≳4 GeV. A look at Fig. 4
(top row, first and second columns) indeed shows that the
heatmaps for jΔPμej look similar around 2.5 GeV and at
energies ≳4 GeV, the degenerate regions (red bands)
become independent of energy and are located at the φeμ

(or φeτ) values just predicted above.

APPENDIX B: PROBABILITY ANALYSIS FOR Pμμ

Proceeding along similar lines as Appendix A, we derive the expressions for PNSI
μμ − PSI

μμ:

ΔPμμðjεeμjÞ ¼ PNSI
μμ ðjεeμjÞ − PSI

μμ

≈ −4s323
A

1 − A
jεeμj½As23jεeμj þ 2s13 cos δ�X|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

þ4s2ð23Þ
Y

Að1 − AÞ ½αs13s2ð12Þ cos δ − ðαs2ð12Þ þ Ac23jεeμjÞDðjεeμjÞ cosðδ − θðjεeμjÞÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

ðB1Þ

ΔPμμðjεeτjÞ ¼ PNSI
μμ ðjεeτjÞ − PSI

μμ

≈ −4s223c23
A

1 − A
jεeτj½Ac23jεeτj þ 2s13 cos δ�X|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

þ4s2ð23Þ
Y

Að1 − AÞ ½αs13s2ð12Þ cos δ − ðαs2ð12Þ − As23jεeτjÞDðjεeτjÞ cosðδ − θðjεeτjÞÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

; ðB2Þ

TABLE V. The values of δ (obtained from Fig. 10) where
ΔPμeðjεeμjÞ and ΔPμeðjεeτjÞ (the red curves in Fig. 10) become
zero, giving rise to SI-NSI degeneracy.

E ΔPμeðjεeμjÞ ≈ 0 ΔPμeðjεeτjÞ ≈ 0

2.5 GeV 0.22π, −0.82π 0.76π, −0.16π
5 GeV 0.4π, −0.63π 0.92π, −0.1π

9Recall that the best fit (b.f.) value of θ23 in our analysis is not maximal, rather 47.7°. Even then the octant does not appear to play a
significant role despite the presence of the extra tan2θ23 factor in the definition of Deμ

1 .
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where

X ¼ c223Δ sin 2Δþ sin2ð1 − AÞΔ
ð1 − AÞ − 2c223 cosAΔ sinΔ

sinð1 − AÞΔ
ð1 − AÞ

Y ¼ c223sin
2AΔþ s223sin

2ð1 − AÞΔ − s223sin
2Δ − c2ð23ÞAsin2Δ

DðjεeμjÞ ¼ fs213 þ A2s223jεeμj2 þ 2As13s23jεeμj cos δg1=2; θðjεeμjÞ ¼ arctan
As23jεeμj sin δ

s13 þ As23jεeμj cos δ

DðjεeτjÞ ¼ fs213 þ A2c223jεeτj2 þ 2As13c23jεeτj cos δg1=2; θðjεeτjÞ ¼ arctan
Ac23jεeτj sin δ

s13 þ Ac23jεeτj cos δ
:

ΔPμμðεμτÞ ≈ ð−2jεμτjAΔs32ð23Þ sin 2Δ cosφμτÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

þ ð−4Ajεμτjc22ð23Þs2ð23Þsin2Δ cosφμτÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

≈ −4jεμτjAs2ð23Þ sinΔ cosφμτ½Δs22ð23Þ cosΔþ c2
2ð23Þ sinΔ�: ðB3Þ

In Fig. 12, we plot the terms of Eqs. (B1)–(B3) for two
fixed energies 2.5 and 5 GeV as functions of δ. We have
already observed before that for the disappearance channel,
it is the higher energy range that contributes more. To
understand ΔPμμ, we will thus refer to the more relevant
bottom row of Fig. 12. It is clear from the figure (first and
second columns) that the two terms for ΔPμμ act in the
same direction for εeμ (thereby increasing the overall
jΔPμμj), but show opposite behavior for εeτ, leading to
an overall very smallΔPμμ through cancellation in the latter
case. Looking back at Eqs. (B1) and (B2), we note that both
terms I and II are roughly proportional to cos δ. But due to
the presence of a relative sign in the coefficient of Ajεeτj in
the second term, this behaves in almost the opposite

direction of the first.10 This has an interesting consequence
that ΔPμμðεeτÞ is significantly small at higher energies
unlike ΔPμμðεeμÞ. This is also manifestly evident from our
simulation (Fig. 3: bottom row, first and second columns).
Additionally, in Fig. 6 (bottom row, first and second
columns) we have also observed the appearance of two

FIG. 11. Deμ
1 andDeτ

1 are plotted as functions of energy (left panel). γeμ1 and γeτ1 are plotted as functions of energy in the right panel. The
standard oscillation parameters are at their b.f. value (Table I).

10Let us have an idea about the magnitude of the various terms
of Eqs. (B1) and (B2). s13∼0.15, As23jεeμj∼Ac23jεeτj∼0.03,
DðjεeμjÞ ∼DðjεeτjÞ≲ 0.15, αs13s2ð12Þ ∼ 0.004, αs2ð12Þ ∼ 0.027,
θðjεeμjÞ ∼ θðjεeτjÞ≲ 10°. Thus in the first term of Eqs. (B1)
and (B2), the cos δ part is dominating and in the second term,
θðεαβÞ is very small, making the overall ΔPμμ approximately
proportional to cos δ for ease of understanding.
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red peaks around �π=2 for εeμ and mostly reddish region
(implying very small ΔPμμ) in the presence of εeτ.
Finally, we see from Eq. (B3) and the corresponding

third column of Fig. 12 thatΔPμμðεμτÞ is independent of the
CP phase δ and its value is quite significant (except around
2.5 GeV) compared to that in the presence of εeμ or εeτ. This
corroborates the observations in Fig. 3 (bottom row, third
column) and Fig. 6 (third column).

APPENDIX C: SI-NSI DIFFERENCE
AT THE LEVEL OF EVENT RATES

IN THE CONTEXT OF DUNE

In order to illustrate the SI-NSI degeneracy at the level of
event rates, we can define the following quantity:

ΔNαβðEÞ ¼ NNSI
αβ ðEÞ − NSI

αβðEÞ; ðC1Þ

FIG. 12. The terms (denoted by green, blue and cyan curves) in the rhs of Eq. (B1) (first column), (B2) (second column) and (B3)
(third column) are plotted as functions of δ for two fixed energies 2.5 GeV (top row) and 5 GeV (bottom row). The overall ΔPμμ (sum of
the three terms) is represented by the red curve and the small red circles denote where it becomes zero.

FIG. 13. SI-NSI difference at the level of event rates for νμ → νe channel (top row) and νμ → νμ channel (bottom row) and for different
NSI parameters. The LE flux has been used.
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whereNαβ stands for the number of events for να → νβ. The
results are shown in Fig. 13. The top row depicts the event
difference in the case of the νμ → νe channel and the
bottom row shows the event difference in the case of
the νμ → νμ channel. We have picked four choices of
parameters as indicated in the figure. These choices are
guided by our observations in Sec. IV. The red curves
correspond to the almost degenerate case while blue
curves correspond to regions away from degeneracy. The
vertical grey line is showing the location of 2.5 GeV
(5 GeV) in the top panel (bottom panel). If we use a given
beam tune (say, the standard LE beam tune), the character-
istic shape of the event difference spectrum is similar to
the original event spectrum in the case of no degeneracy

(see the blue solid and dashed curves). When we choose
the parameters corresponding to degenerate solutions, the
spectrum shape of the event difference is completely
altered (see the red curves). In the latter case, one can
note that the SI-NSI degeneracy manifests itself in the
form of a dip near the energy value of 2.5 GeV at which
the first oscillation maximum occurs for the νμ → νe
channel.
Some of the crucial features that can be seen from

Fig. 13 are:
(i) εeμ and εeτ have the largest impact in the case of the

νμ → νe channel (top row of Fig. 13).
(ii) εμτ has the largest impact in the case of the νμ → νμ

channel (bottom row of Fig. 13).
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