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Nonvanishing boundary localized terms significantly modify the mass spectrum and various interactions
among the Kaluza-Klein excited states of the five-dimensional universal extra dimensional scenario. In this
scenario, we compute the contributions of Kaluza-Klein excitations of gauge bosons and third-generation
quarks for the decay process B → Xslþl−, incorporating next-to-leading-order QCD corrections. We
estimate the branching ratio as well as the forward-backward asymmetry associated with this decay
process. Considering the constraints from some other b → s observables and electroweak precision data,
we show that a significant amount of the parameter space of this scenario has been able to explain the
observed experimental data for this decay process. From our analysis, we put a lower limit on the size of the
extra dimension by comparing our theoretical prediction for the branching ratio with the corresponding
experimental data. Depending on the values of free parameters of the present scenario, the lower limit on
the inverse of the radius of compactification (R−1) can be as high as ≥ 760 GeV. Even this value could be
slightly higher if we project the upcoming measurement by the Belle II experiment. Unfortunately, the
forward-backward asymmetry of this decay process would not provide any significant limit on R−1 in the
present model.
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I. INTRODUCTION

Confirmation of the Standard Model (SM) of particle
physics has almost been completed by the discovery of the
Higgs boson at the Large Hadron Collider (LHC) [1,2].
However, the SM scenario is not the ultimate one, because
there exist experimental data in various directions, such as
massive neutrinos, the dark matter (DM) enigma, observed
baryon asymmetry, etc., that cannot be addressed within the
SM. This, in turn, ensures that new physics (NP) is indeed a
reality of nature. Moreover, experimental data for several
flavor physics observables (especially B physics) show
significant deviation from the corresponding SM expect-
ations. For example, B-physics experiments at LHCb,
Belle, and BABAR have pointed at intriguing lepton-
flavor-universality-violating (LFUV) effects for both the
charge current (RDð�Þ [3] and RJ=ψ [4]) and the flavor-
changing neutral current (FCNC) (RK [5] and RK� [6])
processes. In the latter case, the involved processes are
described at the quark level by the transition b → slþl−

(where l≡ e, the electron, or μ, the muon), which is highly

suppressed in the SM. Therefore, even for small deviations
between the SM prediction and experimental data, these
types of observables have always been instrumental in
probing the favorability of the various NP models that
exist in the literature. Apart from these, there exist several
B-physics observables which could also be used for the
detection of NP scenarios.
Following the above argument in the current article,

we will calculate an inclusive decay mode B → Xslþl− in
a NP scenario: namely, the nonminimal universal extra
dimensional (nmUED) model.1 This inclusive decay mode
B → Xslþl− has been considered as one of the harbingers
for the detection of NP scenarios. The reason is that this
decay mode is one of the most significant and relatively
clean decay modes. B → Xslþl− decay is significant in the
sense that this decay mode not only helps in the detection of
NP scenarios but also presents a more complex test of the
SM. For example, in comparison with the B → Xsγ decay,
different contributions add to the inclusive B → Xslþl−

decay. Moreover, it is particularly attractive because, as a
three-body decay process it also offers more kinematic
observables such as the invariant dilepton mass spectrum
and the forward-backward asymmetry [10,11]. At the quark
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1In this model, we have already calculated several B-physics
observables—for example, the branching fractions of some rare
decay processes, e.g., Bs → μþμ− [7], B → Xsγ [8], and RDð�Þ
anomalies [9].
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level, this process is also governed by the b → slþl−

transition. The effective Hamiltonian of this decay process
is characterized by three different Wilson coefficients
(WCs): C7, C9, and C10. Among these WCs, C10 and C7

for the nmUED model have already been calculated in our
previous studies [7] and [8], respectively. Consequently,
calculation of the WC C9 using relevant one-loop Feynman
diagrams in the context of the nmUED model is one of the
primary tasks of this article. The full calculational details of
the WC C9 have been given in Sec. III. To the best of our
knowledge, this is to be the first article where we will show
the calculation of the WC C9 in the context of the nmUED
model in detail. Finally, with these different WCs (C7, C9,
andC10), we compute the coefficients of electroweak dipole
operators for the photon and gluon for the first time in
the nmUED scenario. Eventually, we can readily calculate
the decay amplitude for this process, B → Xslþl−, in the
nmUED scenario.
In most cases, the experimental data for several observ-

ables for the decay mode B → Xslþl− have been more
explored for two regions2 of the dilepton invariant mass-
squared q2 ð≡ðplþ þ pl−Þ2 spectrum. In these two regions,
the experimental data of the branching ratio (Br) are given
by the BABAR Collaboration3 [14]:

BrðB → Xslþl−Þexpq2∈½1;6� GeV2

¼ ð1.60þ0.41þ0.17
−0.39−0.13 � 0.18Þ × 10−6;

BrðB → Xslþl−Þexp
q2∈½14.4;25� GeV2

¼ ð0.57þ0.16þ0.03
−0.15−0.02 � 0.00Þ × 10−6; ðl ¼ e; μÞ: ð1Þ

The SM predictions for the above quantities are [15]

BrðB → Xslþl−ÞSM
q2∈½1;6� GeV2 ¼ ð1.62� 0.09Þ × 10−6;

BrðB → Xslþl−ÞSM
q2∈½14.4;25� GeV2

¼ ð2.53� 0.70Þ × 10−7; ðl ¼ e; μÞ: ð2Þ

Moreover, apart from the branching ratio, forward-back-
ward asymmetry (AFB) could also help in the detection of
NP scenarios. For this decay process B → Xslþl−ðl ¼
e; μÞ for the two distinct regions of q2, the experimental
values of this observable are given by the Belle
Collaboration [16]:

AFBðB→Xslþl−Þ
���exp
q2∈½1;6�GeV2

¼ 0.30�0.24�0.04;

AFBðB→Xslþl−Þ
���exp
q2∈½14.4;25�GeV2

¼ 0.28�0.15�0.02;

ð3Þ

while the corresponding SM expectations are [16–18]

AFBðB → Xslþl−Þ
���SM
q2∈½1;6� GeV2

¼ −0.07� 0.04;

AFBðB → Xslþl−Þ
���SM
q2∈½14.4;25� GeV2

¼ 0.40� 0.04: ð4Þ

Therefore, from the above data, it is clearly evident that the
SM predictions for the respective observables coincide with
the experimental data within a few standard deviations.
Hence, by investigating these observables, one can search
any favorable NP scenario and also tightly constrain the
parameter space of that scenario. With this in mind, in
this article we evaluate the decay amplitude for the process
B → Xslþl− in the nmUED scenario. In literature, one can
find several articles, e.g., Refs. [12,19] which have been
dedicated to the exploration of the same decay process in
the context of several beyond-SM (BSM) scenarios.
In the present article, in order to serve our purposes,

we are particularly focused on an extension of SM with
one flat spacelike dimension (y) compactified on a circle S1

of radius R. All the SM fields are allowed to propagate
along the extra dimension y. This model is called the five-
dimensional (5D) universal extra dimensional (UED) [20]
scenario. The fields manifested on this manifold are usually
defined in terms of towers of four-dimensional (4D)
Kaluza-Klein (KK) states, while the zero mode of the
KK towers is designated as the corresponding 4D SM field.
A discrete symmetry Z2 (y ↔ −y) has been needed to
generate chiral SM fermions in this scenario. Consequently,
the extra dimension is defined as an S1=Z2 orbifold, and
eventually the physical domain extends from y ¼ 0 to
y ¼ πR. As a result, the y ↔ −y symmetry has been
translated as a conserved parity, which is known as KK
parity ¼ ð−1Þn, where n is called the KK number. This KK
number (n) is identified as discretized momentum along the
y direction. From the conservation of KK parity, the lightest
Kaluza-Klein particle (LKP) with KK number one (n ¼ 1)
cannot decay to a pair of SM particles and becomes
absolutely stable. Hence, the LKP has been considered
as a potential DM candidate in this scenario [21–28].
Furthermore, a few variants of this model can address some
other shortcomings of the SM: for example, gauge coupling
unifications [29–31], neutrino mass [32,33], and fermion
mass hierarchy [34], etc.
At the nth KK level, all the KK-state particles have

the mass
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ ðnR−1Þ2Þ

p
. Here, m is considered as the

zero-mode mass (SM particle mass), which is very small
with respect to R−1. Therefore, this UED scenario con-
tains an almost degenerate mass spectrum at each KK
level. Consequently, this scenario has lost its phenomeno-
logical relevance, specifically, at the colliders. However,
this degeneracy in the mass spectrum can be lifted by
radiative corrections [35,36]. There are two different types
of radiative corrections. The first are considered bulk

2The reason for choosing these two regions is given in Sec. III.
3These experimental data have also been used in two recent

articles [12,13] in the context of the same decay process.
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corrections (which are finite and only nonzero for KK
excitations of gauge bosons), and the second are regarded
as boundary localized corrections that are proportional to
logarithmically cutoff-scale-dependent4 (Λ) terms. The
boundary correction terms can be embedded as 4D kinetic,
mass, and other possible interaction terms for the KK states
at the two fixed boundary points (y ¼ 0 and y ¼ πR) of this
orbifold. As a matter of fact, it is very obvious to include
such terms in an extra dimensional theory like UED, since
these boundary terms have played the role of counterterms
for cutoff-dependent loop-induced contributions. In the
minimal version of UED (mUED) models, there is an
assumption that these boundary terms are tuned in such a
way that the 5D radiative corrections exactly vanish at the
cutoff scale Λ. However, in general this assumption can be
avoided, and without calculating the actual radiative cor-
rections, one might consider the kinetic, mass, and other
interaction terms localized at the two fixed boundary points
to parametrize these unknown corrections. Therefore,
this specific scenario is called nmUED [37–45]. In this
scenario, not only the radius of compactification (R), but
also the coefficients of different boundary localized terms
(BLTs) have been considered as free parameters which
can be constrained by various experimental data of
different physical observables. In the literature, one can
find different such exercises regarding various phenom-
enological aspects. For example, limits on the values of
the strengths of the BLTs have been achieved from the
estimation of electroweak observables [43,45]; S, T and U
parameters [41,46]; DM relic density [47,48]; production
as well as decay of the SM Higgs boson [49]; collider
studies of LHC experiments [50–55]; Rb [56]; branching
ratios of some rare decay processes, e.g., Bs → μþμ− [7]
and B → Xsγ [8]; RDð�Þ anomalies [9,57], flavor-changing
rare top decay [58,59]; and unitarity of scattering ampli-
tudes involving KK excitations [60].
In this article, we estimate the contributions of KK-

excited modes to the decay of B → Xslþl− in a 5D UED
model with nonvanishing BLT parameters. Our calcula-
tion includes next-to-leading-order (NLO) QCD correc-
tions. To the best of our knowledge, this is to be the first
article where we will study the decay of B → Xslþl− in
the framework of nmUED. Considering the present
experimental data of the concerned FCNC process, we
will put constraints on the BLT parameters. Furthermore,
we would like to investigate how far the lower limit on R−1

to higher values can be extended using nonzero BLT
parameters. Consequently, it will be an interesting part
of this exercise to see whether this lower limit of R−1 is
comparable with the results obtained from our pre-
vious analysis [7,8] or not. Several years ago, the same
analysis [61] was performed in the context of a minimal

version of the UED model; however, the present exper-
imental data have changed since that time. Therefore,
it will be a relevant job to revisit the lower bound on
R−1 in the UED model by comparing the current exper-
imental result [14,16] with the theoretical estimation
using vanishing BLT parameters. Furthermore, we esti-
mate the probable bounds on the parameter space of the
nmUED scenario by considering the upcoming measure-
ment by the Belle II experiment for theB → Xslþl− decay
observables.
In Sec. II, we will give a brief description of the nmUED

model. Then in Sec. III, we will show the calculational
details of the branching ratio and forward-backward asym-
metry for the present process. In Sec. IV, we will present
our numerical results. Finally, we conclude the results
in Sec. V.

II. KK-PARITY-CONSERVING nmUED
SCENARIO: A BRIEF OVERVIEW

Herewe present the technicalities of the nmUED scenario
required for our analysis. For further discussion regarding
this scenario, one can look into Refs. [7–9,37–44,50–56]. In
the present scenario, we preserve Z2 symmetry by consid-
ering equal strength of boundary terms at both the boundary
points (y ¼ 0 and y ¼ πR). Consequently, KK-parity has
been restored in this scenario, which makes the LKP stable.
Hence, this present scenario can give a potential DM
candidate (such as the first excited KK state of the photon).
A comprehensive exercise on DM in nmUED can be found
in Ref. [48].
We begin with the action for 5D fermionic fields

associated with their boundary localized kinetic term
(BLKT) of strength rf [7–9,42,48]:

Sfermion ¼
Z

d5x½Ψ̄LiΓMDMΨL

þ rffδðyÞ þ δðy − πRÞgΨ̄LiγμDμPLΨL

þ Ψ̄RiΓMDMΨR

þ rffδðyÞ þ δðy − πRÞgΨ̄RiγμDμPRΨR�; ð5Þ

where ΨLðx; yÞ and ΨRðx; yÞ represent the 5D four com-
ponent Dirac spinors that can be expressed in terms of two
component spinors as [7–9,42,48]

ΨLðx; yÞ ¼
�
ϕLðx; yÞ
χLðx; yÞ

�
¼
X
n

 
ϕðnÞ
L ðxÞfnLðyÞ

χðnÞL ðxÞgnLðyÞ

!
; ð6Þ

ΨRðx; yÞ ¼
�
ϕRðx; yÞ
χRðx; yÞ

�
¼
X
n

 
ϕðnÞ
R ðxÞfnRðyÞ

χðnÞR ðxÞgnRðyÞ

!
: ð7Þ

fLðRÞ and gLðRÞ are the associated KK wave functions which
can be written as the following [7–9,38,43,48]:

4UED is considered as an effective theory, and it is charac-
terized by a cutoff scale Λ.
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fnL ¼ gnR ¼ Nf
n

8>>>>><
>>>>>:

cos ½mfðnÞ ðy − πR
2
Þ�

cos½mfðnÞπR
2

�
for n even;

− sin ½mfðnÞ ðy − πR
2
Þ�

sin½mfðnÞπR
2

�
for n odd;

ð8Þ

and

gnL ¼ −fnR ¼ Nf
n

8>>>>><
>>>>>:

sin ½mfðnÞ ðy − πR
2
Þ�

cos½mfðnÞπR
2

�
for n even;

cos ½mfðnÞ ðy − πR
2
Þ�

sin½mfðnÞπR
2

�
for n odd:

ð9Þ

The normalization constant (Nf
n) for the nth KK mode can

easily be obtained from the following orthonormality
conditions [7–9,48]:R

πR
0 dy½1þ rffδðyÞ þ δðy − πRÞg�fmLfnLR
πR
0 dy½1þ rffδðyÞ þ δðy − πRÞg�gmRgnR

)
¼ δnm;

R
πR
0 dyfmRf

n
RR

πR
0 dygmLg

n
L

)
¼ δnm; ð10Þ

and it takes the form

Nf
n ¼

ffiffiffiffiffiffi
2

πR

r 2
664 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
r2fm

2

fðnÞ
4

þ rf
πR

r
3
775: ð11Þ

Here, mfðnÞ is the KK mass of the nth KK excita-
tion, acquired from the given transcendental equations
[7–9,38,48]:

rfmfðnÞ

2
¼

8>>><
>>>:

− tan

�
mfðnÞπR

2

�
for n even;

cot

�
mfðnÞπR

2

�
for n odd:

ð12Þ

Let us discuss the Yukawa interactions in this scenario,
as the large top quark mass plays a significant role in
amplifying the quantum effects in the present study. The
action of Yukawa interaction with BLTs of strength ry is
written as [7–9]

SYukawa¼−
Z

d5x½λ5t Ψ̄LΦ̃ΨR

þ ryfδðyÞþδðy−πRÞgλ5t ϕ̄L Φ̃χRþH:c:�: ð13Þ

The 5D coupling strength ofYukawa interaction for the third
generation is represented by λ5t . Embedding the KK wave

functions for fermions [given in Eqs. (6) and (7)] in the
actions given in Eqs. (5) and (13), one finds the bilinear
terms containing the doublet and singlet states of the quarks.
For thenthKK level, themassmatrix can be expressed as the
following [7–9]:

−ð ϕ̄L
ðnÞ ϕ̄R

ðnÞ Þ
�mfðnÞδ

nm mtInm
1

mtImn
2 −mfðnÞδ

mn

� 
χðmÞ
L

χðmÞ
R

!
þ H:c:

ð14Þ

Here,mt is identified as the mass of the SM top quark, while
mfðnÞ is obtained from the solution of the transcendental
equations given in Eq. (12). Inm

1 and Inm
2 are the overlap

integrals which are given in the following [7–9]:

Inm
1 ¼

�
1þ rf

πR

1þ ry
πR

�Z
πR

0

dy½1þ ryfδðyÞ þ δðy − πRÞg�gmRfnL;

and

Inm
2 ¼

�
1þ rf

πR

1þ ry
πR

�
×
Z

πR

0

dygmLf
n
R:

The integral Inm
1 is nonvanishing for both the conditions

of n ¼ m and n ≠ m. However, for ry ¼ rf, this integral
becomes unity (when n ¼ m) or zero (n ≠ m). On the other
hand, the integral Inm

2 is nonvanishing only when n ¼ m
and becomes unity in the limit ry ¼ rf. At this stage, we
would like to point out that in our analysis we choose a
condition of equality (ry ¼ rf) to elude the complicacy of
mode mixing and develop a simpler form of fermion
mixing matrix [7–9,56]. Following this motivation, in
the rest of our analysis we will maintain the equality
condition5 ry ¼ rf.
Implying the alluded equality condition (ry ¼ rf), the

resulting mass matrix [given in Eq. (14)] can readily be
diagonalized by following biunitary transformations for the
left- and right-handed fields [7–9]:

UðnÞ
L ¼

�
cos αtn sin αtn
− sin αtn cos αtn

�
;

UðnÞ
R ¼

�
cos αtn sin αtn
sin αtn − cos αtn

�
; ð15Þ

with the mixing angle αtn ½¼ 1
2
tan−1ð mt

m
fðnÞ

Þ�. The gauge

eigenstates ΨLðx; yÞ and ΨRðx; yÞ are related with the
mass eigenstates T1

t and T2
t by the given relations [7–9]:

5However, in general, one can choose unequal strengths of
boundary terms for kinetic and Yukawa interaction for fermions.
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ϕðnÞ
L ¼ cos αtnT

1ðnÞ
tL − sin αtnT

2ðnÞ
tL ;

ϕðnÞ
R ¼ sin αtnT

1ðnÞ
tL þ cos αtnT

2ðnÞ
tL ;

χðnÞL ¼ cos αtnT
1ðnÞ
tR þ sin αtnT

2ðnÞ
tR ;

χðnÞR ¼ sin αtnT
1ðnÞ
tR − cos αtnT

2ðnÞ
tR : ð16Þ

Both the physical eigenstates, T1ðnÞ
t and T2ðnÞ

t , share the
same mass eigenvalue at each KK level. For the nth KK

level, it takes the form MtðnÞ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t þm2
fðnÞ

q
.

In the following, we present the kinetic action [governed
by theSUð2ÞL×Uð1ÞY gauge group] of 5Dgauge and scalar
fields with their respective BLKTs [7–9,43,56,58,62]:

Sgauge¼−
1

4

Z
d5x½Wa

MNW
aMN

þ rWfδðyÞþδðy−πRÞgWa
μνWaμν

þBMNBMN þ rBfδðyÞþδðy−πRÞgBμνBμν�; ð17Þ

Sscalar ¼
Z

d5x½ðDMΦÞ†ðDMΦÞ

þ rϕfδðyÞ þ δðy − πRÞgðDμΦÞ†ðDμΦÞ�; ð18Þ

where rW , rB, and rϕ are identified as the strengths of the
BLKTs for the respective fields. The 5D field strength
tensors are written as

Wa
MN ≡ ð∂MWa

N − ∂NWa
M − g̃2ϵabcWb

MW
c
NÞ;

BMN ≡ ð∂MBN − ∂NBMÞ: ð19Þ

Wa
Mð≡Wa

μ;Wa
4Þ and BMð≡Bμ; B4Þ (M ¼ 0; 1…4) are rep-

resented as the 5D gauge fields corresponding to the gauge
groups SUð2ÞL and Uð1ÞY , respectively. The 5D covariant
derivative is given as DM ≡ ∂M þ ig̃2

σa

2
Wa

M þ ig̃1
Y
2
BM,

where g̃2 and g̃1 represent the 5D gauge coupling constants.
Here, σ

a

2
ða≡ 1…3Þ and Y

2
are the generators of the SUð2ÞL

and Uð1ÞY gauge groups, respectively. The 5D Higgs
doublet is represented by Φ ¼ ðϕþ

ϕ0Þ. Each of the gauge
and scalar fields which are involved in the above actions
[Eqs. (17) and (18)] can be expressed in terms of appropriate
KK wave functions as [7–9,56,58,62]

Vμðx; yÞ ¼
X
n

VðnÞ
μ ðxÞanðyÞ;

V4ðx; yÞ ¼
X
n

VðnÞ
4 ðxÞbnðyÞ; ð20Þ

and

Φðx; yÞ ¼
X
n

ΦðnÞðxÞhnðyÞ; ð21Þ

where ðVμ; V4Þ generically represents both the 5D SUð2ÞL
and Uð1ÞY gauge bosons.
Before proceeding further, we would like to make a few

important remarks which could help the reader to under-
stand the following gauge and scalar field structure as well
as the corresponding KK wave function. We know that
physical neutral gauge bosons generate due to the mixing
of B and W3 fields, and hence the KK decomposition of
neutral gauge bosons becomes very intricate in the present
extra dimensional scenario because of the existence of two
types of mixings both at the bulk as well as on the
boundary. Therefore, in this situation without the condition
rW ¼ rB, it would be very difficult to diagonalize the bulk
and boundary actions simultaneously by the same 5D field
redefinition.6 Hence, in the following we will sustain the
equality condition rW ¼ rB [7–9,56,58,62]. Consequently,
similar to the mUED scenario, one obtains the same
structure of mixing between KK excitations of the neutral
component of the gauge fields (i.e., the mixing between
W3ðnÞ and BðnÞ) in the nmUED scenario. Therefore, the
mixing between W3ð1Þ and Bð1Þ (i.e., the mixing at the first
KK level) gives Zð1Þ and γð1Þ. This γð1Þ (the first excited
KK-state of photon) is absolutely stable by the conservation
of KK parity, and it possesses the lowest mass among the
first excited KK states in the nmUED particle spectrum.
Moreover, it cannot decay to a pair of SM particles.
Therefore, this γð1Þ has played the role of a viable DM
candidate in this scenario [48].
In the following, we have given the gauge-fixing action

(contains a generic BLKT parameter rV for gauge bosons)
appropriate for the nmUED model [7–9,56,58,62]:

Sgauge fixing ¼ −
1

ξy

Z
d5xj∂μWμþ þ ξyð∂yW4þ

þ iMWϕ
þf1þ rVðδðyÞ þ δðy − πRÞÞgÞj2

−
1

2ξy

Z
d5x½∂μZμ þ ξyð∂yZ4

−MZχf1þ rVðδðyÞ þ δðy − πRÞÞgÞ�2

−
1

2ξy

Z
d5x½∂μAμ þ ξy∂yA4�2; ð22Þ

where MWðMZÞ is the mass of a SM W�ðZÞ boson. For a
detailed study on the gauge-fixing action/mechanism in
nmUED, we refer the reader to Ref. [62]. The above action
[given in Eq. (22)] is somewhat intricate and at the same
time very crucial for this nmUED scenario, where we will
calculate one-loop diagrams (required for the present
calculation) in the Feynman gauge. In the presence of

6However, in general, one can proceed with rW ≠ rB, but in
this situation the mixing between B andW3 in the bulk and on the
boundary points produces off-diagonal terms in the neutral gauge
boson mass matrix.
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the BLKTs, the Lagrangian leads to a nonhomogeneous
weight function for the fields with respect to the extra
dimension. This inhomogeneity compels us to define a
y-dependent gauge-fixing parameter ξy as [7–9,56,58,62]

ξ ¼ ξyð1þ rVfδðyÞ þ δðy − πRÞgÞ; ð23Þ

where ξ is not dependent on y. This relation can be treated
as renormalization of the gauge-fixing parameter, since the
BLKTs in some sense play the role of counterterms, taking
into account the unknown ultraviolet contribution in loop
calculations. In this sense, ξy is the bare gauge-fixing
parameter, while ξ can be seen as the renormalized gauge-
fixing parameter, taking the values 0 (Landau gauge), 1
(Feynman gauge), or ∞ (unitary gauge) [62].
In the present scenario, appropriate gauge-fixing pro-

cedure enforces the condition rV ¼ rϕ [7–9,56,58,62].
Consequently, KK masses for the gauge and the scalar field
are equal [mVðnÞ ð¼ mϕðnÞ Þ] and satisfy the same transcen-
dental equation [Eq. (12)]. At the nth KK level, the physical
gauge fields (WμðnÞ�) and charged Higgs (HðnÞ�) share the
same7 mass eigenvalue, which is given by [7–9,56,58,62]

MWðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

W þm2
VðnÞ

q
: ð24Þ

Moreover, in the ’t Hooft Feynman gauge, the mass of
Goldstone bosons (GðnÞ�) corresponding to the gauge fields
WμðnÞ� has the same value MWðnÞ [7–9,56,58,62].
Additionally, we would like to mention that as in the

present article we are dealing with a process that involves
off-shell amplitude, we need to use the method of back-
ground fields [61,63]. We have already mentioned that the
same decay process has already been calculated in Ref. [61]
in the context of 5D UED, and further, the authors have also
used the same background fields. For this reason, in
Appendix A of Ref. [61], the authors have discussed the
background field method and also given the corresponding
prescription for the 5D UED scenario. We can readily adopt
this prescription in the present nmUED scenario because
the basic structures of both these models are similar. We
hence refrain from providing the details of this method in
the present scenario. However, using that prescription
(given in Ref. [61]), we can easily evaluate the Feynman
rules necessary for our present calculation. In Appendix B
of the present article, we give the necessary Feynman rules
derived for the 5D background field method in the 5D
nmUED scenario in the Feynman gauge.

We now provide the relevant information of the present
scenario up to this point. At this stage, it is important to
mention that the interactions for our calculation can be
evaluated by integrating out the 5D action over the extra
spacelike dimension (y) after plugging in the appropriate
y-dependent KK wave function for the respective fields in
5D action. As a consequence, some of the interactions are
modified by so-called overlap integrals with respect to their
mUED counterparts. The expressions of the overlap inte-
grals have been given in Appendix B. For further infor-
mation on these overlap integrals we refer the reader
to Ref. [7].

III. B → Xsl+l− IN nmUED

The semileptonic inclusive decay B → Xslþl− is quite
suppressed in the SM; however, it is very compelling for
finding a NP signature. Therefore, several B physics
experimental collaborations (Belle, BABAR) have been
involved to measure several observables (mainly decay
branching ratio and forward-backward asymmetry) asso-
ciated with this decay process. In the context of SM,
the dominant perturbative contribution has been evaluated
in Ref. [64], and later two-loop QCD corrections8 have
been described in Refs. [68,69]. Since in this particular
decay mode, a lepton-antilepton pair is present, more
structures contribute to the decay rate and some subtleties
arise in the theoretical description for this process. For
the decay to be dominated by perturbative contributions,
one has to eliminate cc̄ resonances that show up as large
peaks in the dilepton invariant mass spectrum by the
judicious choice of kinematic cuts. Consequently, this
leads to “perturbative dilepton invariant mass windows,”
namely, the low dilepton mass region 1 GeV2 < q2 <
6 GeV2, and also the high dilepton mass region with
q2 > 14.4 GeV2.
In this section, we will describe the details of the

calculation of the branching ratio and the forward-
backward asymmetry of B → Xslþl− in the nmUED
model. Since the basic gauge structure of the present
nmUED model is similar to that of the SM, leading-order
(LO) contributions to electroweak dipole operators are one-
loop suppressed as in the SM. However, in the present
model, due to the presence of a large number ofKKparticles,
we encounter more one-loop diagrams in comparison to the
SM. Hence, we will evaluate the total contributions of
these KK particles to the electroweak dipole operators

7Similarly, one can find the mass eigenvalues for the KK-
excited Z boson and pseudoscalar A. Moreover, their mass
eigenvalues are also identical to each other at any KK level.
For example, at the nth KK level, they take the formffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Z þm2

VðnÞ

q
.

8Research regarding higher-order perturbative contributions
has been studied extensively and has already reached a high level
of accuracy. For example, one can find NNLO QCD corrections
in Ref. [65], and Refs. [66,67] include QED corrections. More-
over, updated analysis of all angular observables in the B →
Xslþl− decay has been given in Ref. [15]. It also contains all
available perturbative NNLO QCD and NLO QED corrections
and includes subleading power corrections.
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and simply add them to the SMcontribution.With this spirit,
following the same technique as in Ref. [61], we will
evaluate the relevant WCs of the electroweak dipole oper-
ators at the LO level. Then, following the prescription given
in Refs. [68,69], wewill include theNLOQCDcorrection in
the concerned decay process.

A. Effective Hamiltonian for B → Xsl+l−

The effective Hamiltonian for the decay B → Xslþl− at
hadronic scales μ ¼ OðmbÞ can be written as [61]

Heffðb → slþl−Þ ¼ Heffðb → sγÞ − GFffiffiffi
2

p V�
tsVtb

× ½C9VðμÞQ9V þ C10AðMWÞQ10A�;
ð25Þ

where GF represents the Fermi constant and Vij are the
elements of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix. In the above expression [Eq. (25)], apart from
the relevant operators9 for B → Xsγ, there are two new
operators [61]:

Q9V ¼ ðs̄bÞV−Aðl̄lÞV; Q10A ¼ ðs̄bÞV−Aðl̄lÞA; ð26Þ

where V and A refer to the vector and axial-vector current,
respectively. They are produced via the electroweak pen-
guin diagrams shown in Fig. 1, and the other relevant
Feynman diagrams needed to maintain gauge invariance
(for the nmUED scenario) have been given in Ref. [7].
For the purpose of convenience, the aboveWCs [given in

Eq. (25)] can be defined in terms of two new coefficients,
C̃9 and C̃10, as [61,69]

C9VðμÞ ¼
α

2π
C̃9ðμÞ; ð27Þ

C10AðμÞ ¼
α

2π
C̃10ðμÞ; ð28Þ

where

C̃10ðμÞ ¼ −
Yðxt; rf; rV; R−1Þ

sin2 θw
: ð29Þ

The function Yðxt; rf; rV; R−1Þ in the context of the
nmUED scenario has been calculated in Ref. [7]. θw is
the Weinberg angle, and α represents the fine structure
constant. The operator Q10A does not evolve under QCD
renormalization, and its coefficient is independent of μ.

FIG. 1. Relevant electroweak penguin diagrams contributing to the decay of B → Xslþl−.

9The explicit form of the effective Hamiltonian for b → sγ is
given in Refs. [8,61].
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On the other hand, using the results of NLO QCD
corrections to C̃9ðμÞ in the SM given in Refs. [68,69],
we can readily obtain this coefficient in the present
nmUED model under the naive dimensional regularization
(NDR) renormalization scheme as

C̃eff
9 ðq2Þ ¼ C̃NDR

9 η̃

�
q2

m2
b

�
þ h

�
z;

q2

m2
b

�
ð3Cð0Þ

1 þ Cð0Þ
2

þ 3Cð0Þ
3 þ Cð0Þ

4 þ 3Cð0Þ
5 þ Cð0Þ

6 Þ

−
1

2
h

�
1;

q2

m2
b

�
ð4Cð0Þ

3 þ 4Cð0Þ
4 þ 3Cð0Þ

5 þ Cð0Þ
6 Þ

−
1

2
h

�
0;

q2

m2
b

�
ðCð0Þ

3 þ 4Cð0Þ
4 Þ

þ 2

9
ð3Cð0Þ

3 þ Cð0Þ
4 þ 3Cð0Þ

5 þ Cð0Þ
6 Þ; ð30Þ

where

C̃NDR
9 ðμÞ¼PNDR

0 þYðxt;rf;rV;R−1Þ
sin2 θw

−4Zðxt;rf;rV;R−1ÞþPEEðxt;rf;rV;R−1Þ:
ð31Þ

The value10 of PNDR
0 is 2.60� 0.25 [61], and PE isOð10−2Þ

[69]. Using the relation given in Refs. [61,69], we can
express the function Z in the nmUED scenario as

Zðxt; rf; rV; R−1Þ

¼ Cðxt; rf; rV; R−1Þ þ 1

4
Dðxt; rf; rV; R−1Þ; ð32Þ

while the function Cðxt; rf; rV; R−1Þ for the nmUED
scenario has been calculated in Ref. [7]. The function η̃
given in Eq. (30) represents single-gluon corrections to the
matrix element Q9, and it takes the form [69]

η̃

�
q2

m2
b

�
¼ 1þ αs

π
ω

�
q2

m2
b

�
; ð33Þ

where αs is the QCD fine structure constant. The explicit
forms of the functions ω, h, and other WCs [e.g., as given
in Eq. (30)] required for the present decay process have
been given in Appendix A. The functionsDðxt; rf; rV; R−1Þ
and Eðxt; rf; rV; R−1Þ, which we evaluate in this article, are
given in the following form:

Dðxt; rf; rV; R−1Þ ¼ D0ðxtÞ þ
X∞
n¼1

Dnðxt; xfðnÞ ; xVðnÞ Þ ð34Þ

and

Eðxt; rf; rV; R−1Þ ¼ E0ðxtÞ þ
X∞
n¼1

Enðxt; xfðnÞ ; xVðnÞ Þ; ð35Þ

with xt ¼ m2
t

M2
W
, xVðnÞ ¼ m2

VðnÞ
M2

W
, and xfðnÞ ¼

m2

fðnÞ
M2

W
.mVðnÞ and mfðnÞ

can be obtained from the transcendental equation given
in Eq. (12). The functions D0ðxtÞ and E0ðxtÞ are the
corresponding SM contributions at the electroweak scale
[61,68–71]:

D0ðxtÞ¼−
4

9
lnxtþ

−19x3t þ25x2t
36ðxt−1Þ3 þx2t ð5x2t −2xt−6Þ

18ðxt−1Þ4 lnxt;

ð36Þ

E0ðxtÞ ¼ −
2

3
ln xt þ

x2t ð15 − 16xt þ 4x2t Þ
6ð1 − xtÞ4

ln xt

þ xtð18 − 11xt − x2t Þ
12ð1 − xtÞ3

: ð37Þ

Now, we will depict the nmUED contribution to the
electroweak penguin diagrams. We have already mentioned
that the KKmasses and couplings involving KK excitations
are nontrivially modified with respect to their UED counter-
parts due to the presence of different BLTs in the nmUED
action. Therefore, it would not be possible to obtain the
expressions of the D and E functions in nmUED simply by
rescaling the results of the UED model [61]. Consequently,
we have evaluated the functions Dnðxt; xfðnÞ ; xVðnÞ Þ and
Enðxt; xfðnÞ ; xVðnÞ Þ independently for the nmUED scenario.
These functions (Dn andEn) represent the KK contributions
for the nth KK mode which are computed from the
electroweak penguin diagrams (given in Fig. 1) in the
nmUED model for photons and gluons, respectively.
Furthermore, it is quite evident from Eqs. (38) and (39)
that they are remarkably different from those of the UED
expression [given in Eqs. (3.31) and (3.32) of Ref. [61]].
However, fromour expressions [given in Eqs. (38) and (39)],
we can reconstruct the results of the UED version [given in
Eqs. (3.31) and (3.32) of theRef. [61]] if we set the boundary
terms to zero; i.e., rf, rV ¼ 0.
To this end, we would like to mention that in our

calculation of one-loop penguin diagrams (in order to
measure the contributions of KK excitation to the decay
ofB → Xslþl−), we consider only those interactionswhich
couple a zero-mode field to a pair of KKexcitations carrying
equal KK number. Even so, in the nmUED scenario due to
KK-parity conservation, one can also have nonzero inter-
actions involvingKKexcitationswithKKnumbersn;m and
p, where nþmþ p is an even integer. However, we have
explicitly checked that the final results would not change
remarkably even if one considers the contributions of all the
possible off-diagonal interactions [7,8,56].10The analytic formula for PNDR

0 has been given in Ref. [69].
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For the nth KK level, the electroweak photon penguin function (which is obtained from penguin diagrams given in Fig. 1)
takes the form

Dnðxt;xfðnÞ ;xVðnÞ Þ ¼ 2

3
Enðxt;xfðnÞ ;xVðnÞ Þ− 1

36ð−1þxfðnÞ −xVðnÞ Þ4
�
ð−1þxfðnÞ −xVðnÞ Þf−2ðIn1Þ2ð43x2fðnÞ −65xfðnÞ ð1þxVðnÞ Þ

þ16ð1þxVðnÞ Þ2ÞþðIn2Þ2ð11x2fðnÞ −7xfðnÞ ð1þxVðnÞ Þþ2ð1þxVðnÞ Þ2Þg

−6x2
fðnÞfðIn2Þ2xfðnÞ þ2ðIn1Þ2ð6−5xfðnÞ þ6xVðnÞ Þg ln

�
xfðnÞ

1þxVðnÞ

��

þ 1

36ð−1þxtþxfðnÞ −xVðnÞ Þ4
�
ð−1þxtþxfðnÞ −xVðnÞ ÞfðIn1Þ2ð11x3t þx2

fðnÞ ð−86þ11xtÞ−x2t ð93þ7xVðnÞ Þ

þ32ð1þxVðnÞ Þ2þ2xtð1þxVðnÞ Þð66þxVðnÞ ÞþxfðnÞ ðxtð−179þ22xt−7xVðnÞ Þ130ð1þxVðnÞ ÞÞÞ
þðIn2Þ2ð11x2fðnÞ þ11x2t −7xtð1þxVðnÞ Þþ2ð1þxVðnÞ Þ2þxfðnÞ ð22xt−7ð1þxVðnÞ ÞÞÞg

−6ðxtþxfðnÞ Þ2fðIn2Þ2ðxtþxfðnÞ ÞþðIn1Þ2ððxtþxfðnÞ Þð−10þxtÞþ12ð1þxVðnÞ ÞÞg ln
�
xtþxfðnÞ

1þxVðnÞ

��
; ð38Þ

while the function Enðxt; xfðnÞ ; xVðnÞ Þ is regarded as the corresponding contribution for gluon penguins given by the first two
diagrams of Fig. 1. The expression of the function Enðxt; xfðnÞ ; xVðnÞ Þ in nmUED is given as the following:

Enðxt;xfðnÞ ;xVðnÞ Þ ¼−
1

36ð−1þ xfðnÞ − xVðnÞ Þ4
�
ð−1þ xfðnÞ − xVðnÞ ÞfðIn1Þ2ð50x2fðnÞ − 58xfðnÞ ð1þ xVðnÞ Þ− 4ð1þ xVðnÞ Þ2Þ

þ ðIn2Þ2ð7x2fðnÞ − 29xfðnÞ ð1þ xVðnÞ Þ þ 16ð1þ xVðnÞ Þ2Þg− 6ð1þ xVðnÞ ÞfðIn2Þ2ð1þ xVðnÞ Þð2− 3xfðnÞ þ 2xVðnÞ Þ

þ 2ðIn1Þ2ð6x2fðnÞ − 9xfðnÞ ð1þ xVðnÞ Þ þ 2ð1þ xVðnÞ Þ2Þg ln
�

xfðnÞ

1þ xVðnÞ

��

þ 1

36ð−1þ xtþ xfðnÞ − xVðnÞ Þ4
�
ð−1þ xtþ xfðnÞ − xVðnÞ ÞfðIn1Þ2ð7x3t þ x2

fðnÞ ð50þ 7xtÞþ x2t ð21−29xVðnÞ Þ

−4ð1þ xVðnÞ Þ2þ 2xtð1þ xVðnÞ Þð−21þ 8xVðnÞ Þþ xfðnÞ ð−58þ 71xtþ 14x2t − 29ð2þ xtÞxVðnÞ ÞÞ
þ ðIn2Þ2ð7x2fðnÞ þ 7x2t − 29xtð1þ xVðnÞ Þþ 16ð1þ xVðnÞ Þ2þ xfðnÞ ð14xt− 29ð1þ xVðnÞ ÞÞÞg
−6ð1þ xVðnÞ ÞfðIn2Þ2ð1þ xVðnÞ Þð2−3xfðnÞ − 3xtþ 2xVðnÞ Þþ ðIn1Þ2ð12x2fðnÞ − 3x2t ð−3þ xVðnÞ Þ

þ 2xtð−8þ xVðnÞ Þð1þ xVðnÞ Þþ 4ð1þ xVðnÞ Þ2 − 3xfðnÞ ð6− 7xtþð6þ xtÞxVðnÞ ÞÞg ln
�
xtþ xfðnÞ

1þ xVðnÞ

��
: ð39Þ

In the above expressions, In1 and In2 represent overlap
integrals whose analytic forms have been given in Appen-
dix B [see Eqs. (B10) and (B11)].

B. The differential decay rate

We are now in a stage where, on the basis of the effective
Hamiltonian given in Eq. (25), we can readily define the
differential decay rate in the NDR scheme [68,69]:

Rðq2Þ≡ 1

Γðb → ceν̄Þ
dΓðb → slþl−Þ

dq2

¼ α2

4π2

����V�
tsVtb

Vcb

����2 ð1 −
q2

m2
b
Þ2

fðzÞκðzÞ Uðq2Þ: ð40Þ

Here,

fðzÞ ¼ 1 − 8z2 þ 8z6 − z8 − 24z4 lnðzÞ ð41Þ

is the phase-space factor, and

κðzÞ ≃ 1 −
2αsðμÞ
3π

��
π2 −

31

4

�
ð1 − zÞ2 þ 3

2

�
ð42Þ

represents the single-gluon QCD correction to b → ceν̄
decay [72,73], with z ¼ mc

mb
. The function Uðq2Þ is

expressed as
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Uðq2Þ ¼
�
1þ 2q2

m2
b

�
ðjC̃eff

9 ðq2Þj2 þ jC̃10j2Þ

þ 4

�
1þ 2m2

b

q2

�
jCð0Þeff

7γ j2 þ 12Cð0Þeff
7γ ReC̃eff

9 ðq2Þ;

ð43Þ

where C̃eff
9 ðq2Þ is given in Eq. (30). The explicit formula for

Cð0Þeff
7γ is shown in Appendix A. Among the several terms

given in Eq. (43), jC̃eff
9 ðq2Þj2 is almost similar to that of the

SM, and jC̃10j2 is appreciably enhanced; however, the last
two terms are suppressed. Furthermore, the last term in
Eq. (43) is negative, and hence its suppression results are
responsible for an enhancement of Uðq2Þ in addition to the
one due to C̃10. Using Eq. (40), one can easily evaluate the
branching ratio for the present decay process for a given
range of q2. In the numerical calculations, we will use the
value 0.104 for BrðB → Xceν̄Þexp.

C. Forward-backward asymmetry

For the present decay process B → Xslþl−, another
observable, called forward-backward asymmetry, could be
instrumental for the detection of NP scenarios. It is nonzero
only at the NLO level. The un-normalized expression is
given as [74]

ĀFBðq2Þ≡ 1

Γðb → ceν̄Þ
Z

1

−1
d cos θl

d2Γðb → slþl−Þ
dq2d cos θl

× sgnðcos θlÞ; ð44Þ

¼−3
α2

4π2

����V�
tsVtb

Vcb

����2 ð1−
q2

m2
b
Þ2

fðzÞκðzÞ C̃10

�
q2

m2
b

ReC̃eff
9 ðq2Þþ2Cð0Þeff

7γ

�
:

ð45Þ
Here, θl represents the angle of the lþ with respect to b
quark direction in the center-of-mass system of the dilepton
pair. The normalized form can be expressed as

AFB ¼ ĀFBðq2Þ
Rðq2Þ ; ð46Þ

while the global forward-backward asymmetry in a region
q2 ∈ ½a; b� GeV2 can be defined as [12,19]

AFBjq2∈½a;b� GeV2 ¼
R
b
a dq2ĀFBðq2ÞR
b
a dq2Rðq2Þ : ð47Þ

In the following section, we will present the numerical
estimation of these observables for the allowed parameter
space in the nmUED scenario.

IV. ANALYSIS AND RESULTS

The effective Hamiltonian [given in Eq. (25)] required for
the decay B → Xslþl− contains different WCs, and in our

analysis we evaluate KK contributions to each of these
coefficients at each KK level. In this article, for the first time
we have calculated the KK contributions to the coefficients
of electroweak dipole operators in the nmUED scenario.
The functions Dnðxt; xfðnÞ ; xVðnÞ Þ [given in Eq. (38)] and
Enðxt; xfðnÞ ; xVðnÞ Þ [given in Eq. (39)] represent the nth-level
KK contributions to the coefficients for the dipole operators
for photons and gluons, respectively. These functions (Dn
and En) depend on gauge bosons as well as fermion KK
masses11 in the nmUED scenario. Furthermore, other
coefficients needed for the concerned decay process in
the nmUED scenario have been given in our previous
articles [7,8]. At this point, we would like to mention that,
considering the analysis of the effect of SM Higgs mass on
vacuum stability in the UED model [76], we sum the KK
contributions up to 5 KK levels,12 and finally we add up the
total KK contributions with the SM counterpart. In fact, we
have explicitly checked that the numerical values would not
differ remarkably, as the sum over the KK modes, in this
case, is converging13 in nature. More specifically, during the
calculation of loop diagrams, the summation of KK levels
becomes saturated after the consideration of a certain
number of KK levels. Consequently, the final results would
not change significantly whether we consider 5 KK levels or
20 KK levels during the evaluation of KK contributions for
the loop diagrams. In support of our assumption, at the end
of the following subsection, we will present two tables
(Tables II and III) which will ensure the insensitivity on the
number of KK levels in summation.

A. Constraints and choice of range of BLT parameters

Here we briefly discuss the following constraints that
have been imposed in our analysis:
(1) Several rare decay processes, for example Bs →

μþμ− and B → Xsγ, have always been very crucial
for searching any favorable kind of NP scenario. The
latest experimental values for branching ratios of
these processes are given in Table I. In the context
of the nmUED scenario, thorough analyses on the

TABLE I. Experimental values for branching ratios of Bs →
μþμ− and B → Xsγ.

Process Experimental value of branching ratio

Bs → μþμ− ð2.8þ0.8
−0.7 Þ × 10−9 [78]

B → Xsγ ð3.32� 0.16Þ × 10−4 [79]

11We useMW ¼ 80.38 GeV for the SMW� gauge boson mass
and mt ¼ 173.1 GeV for the SM top quark mass as given in
Ref. [75].

12Analysis in earlier articles used 20–30 KK levels while
adding up the contributions from KK modes.

13The summation of the KK contribution is convergent in
UED-type models with one extra spacelike dimension, as far as
one-loop calculation is concerned [77].
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two rare decay processes mentioned in Table I have
been performed in Refs. [7] and [8], respectively.
Using the expressions of BrðBs→μþμ−Þ and
BrðB → XsγÞ given in Refs. [7] and [8], we have
treated the branching ratios of these rare decay
processes as constraints in our present analysis.

(2) The electroweak precision test (EWPT) is an essential
and important tool for constraining any form of BSM
physics. In the nmUED model, corrections to the
Peskin-Takeuchi parameters S, T, and U appear via
the correction to the Fermi constant GF at tree level.

This is a remarkable contrast with respect to the
minimal version of the UED model, where these
corrections appear via one-loop processes. Detailed
study onEWPT for the present version of the nmUED
model has been provided inRefs. [7,9]. Following the
same approach given in Refs. [7,9], we have applied
EWPT as one of the constraints in our analysis.

To this end, we would like to mention the range of values of
BLT parameters used in our analysis. In general, BLT
parameters may be positive or negative. However, it is
readily evident from Eq. (11) that for rf=R ¼ −π the

FIG. 2. Variation of the branching ratio of B → Xslþl− with R−1 (TeV) for various values of Rfð¼ rf=RÞ. The five panels represent
different values of RVð¼ rV=RÞ. We sum the contributions up to five KK levels in different loop functions while calculating WCs. The
horizontal gray band depicts the 1σ allowed range of the experimental value of the branching ratio for q2 ∈ ½1; 6� GeV2.
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zero-mode solution becomes divergent, and beyond rf=R ¼
−π the zero-mode fields become ghostlike. Hence, any
values of BLT parameters less than −πR should be dis-
carded, although for the sake of completeness we have
shown numerical results for some negative BLT parameters.
However, analysis of electroweak precision data [7,9]
disfavors a large portion of negative BLT parameters.

B. Numerical results

We are in a position where we would like to present the
primary results of our analysis.

1. Branching ratio

In Figs. 2 and 3, we have depicted the variation of the
branching ratio of B → Xslþl− as a function of scaled
BLT parameters (RV≡rV=R andRf≡rf=R) and the inverse
of the radius of compactification (R−1) for two different
dilepton mass-squared regions q2 ∈ ½1; 6� GeV2 and
q2 ∈ ½14.4; 25� GeV2, respectively. We have mentioned
earlier that nonvanishing BLT parameters nontrivially
modify the KK masses and various couplings among the
KK excitations in the nmUED scenario. Therefore, in the
following we will discuss how these BLT parameters affect

FIG. 3. Variation of the branching ratio of B → Xslþl− with R−1 (TeV) for various values of Rfð¼ rf=RÞ. The five panels represent
different values of RVð¼ rV=RÞ. We sum the contributions up to five KK levels in different loop functions while calculating WCs. The
horizontal gray band depicts the 1σ allowed range of experimental value of the branching ratio for q2 ∈ ½14.4; 25� GeV2.
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the concerned decay process. For each of the q2 regions we
present five panels, corresponding to five different values of
the scaled gauge BLT parameterRV. In each panel, we show
the dependence of the branching ratio with R−1 for five
different values of the scaled fermion BLT parameter Rf.
If we focus on a particular curve specified by RV

and Rf, then we observe that the branching ratio mono-
tonically decreases with respect to increasing values of R−1.
It is quite expected in a scenario like nmUED, where the
masses of KK-excited states are basically characterized
by R−1; i.e., with increasing values of R−1, the masses of
KK-excited states are increased. Therefore, with increasing
values of KK masses, the one-loop functions involved in
this decay process are suppressed, which in turn decreases
the decay width (and branching ratio). Further, depending
on the BLT parameters, after a certain value of R−1, the
branching ratio asymptotically converges to its SM value as
R−1 → ∞. This behavior clearly indicates the decoupling
behavior of the KK-mode contribution.
Moreover, it is clearly evident from Figs. 2 and 3 that

branching ratio of B → Xslþl− increases with the incre-
ment of both of the BLT parameters. For example, if we
concentrate on a particular panel specified by a fixed value
of RV , then one can see that with increasing values of Rf,
the branching ratio is enhanced. The reason is that, with
increasing values of Rf, KK-fermion masses decrease, and
consequently the loop functions are enhanced. Therefore,
the branching ratio increases with higher values of Rf. At
the same time, if we look at all the panels of any particular
figure (either Fig. 2 or Fig. 3), then wewill readily conclude
that the other BLT parameter RV affects the branching ratio
in a similar manner to Rf. However, the branching ratio is a
bit extra sensitive to the variation of Rf rather than RV . This
can be explained by observing the interactions which are
involved in this calculation listed in Appendix B. As per
earlier discussion (see the paragraph before the beginning
of Sec. III), the interactions are modified by the overlap
integrals In1 and In2 . I

n
1 modify the interactions of third

generations of quarks with charged Higgs scalar (HðnÞ�)
and gauge bosons (WðnÞ�), while the interactions between
the fifth component of W bosons and third generations of
quarks are modified by In2. Therefore, due to the combined

effects of the top-Yukawa coupling and SUð2Þ gauge
interaction, In1 dominates over In2, which is controlled by
SUð2Þ gauge interaction only. Hence, Rf has a better
control on the B → Xslþl− amplitude (via In1) than RV .
At this point, we would like to comment on the values of

BLT parameters. It is clearly evident from Figs. 2 and 3 that
negative values of BLT parameters are not very encourag-
ing for the present purpose, because we cannot get any
strong lower limit on R−1. For negative BLT parameters,
the KK masses are larger with respect to positive BLT
parameters. Therefore, enhanced KK mass suppresses
the loop functions, and consequently decay amplitude
decreases. Apart from this, the constraint of EWPT would
prefer larger values of R−1 for negative BLT parameters
[7,9]. Hence, in the case of our present purpose, the
positive values of BLT parameters are more preferable.
For example, for q2 ∈ ½1; 6� GeV2, if we choose RV ¼ 2,
Rf ¼ 6, R−1 > 680 ð690Þ GeV (see Table II) when we
consider the sum up to 5 (20) KK levels. On the other hand,
the lower limit on R−1 changes to > 760 ð770Þ GeV for
Rf ¼ RV ¼ 6 (see Table II). In the case of the other region of
q2ð∈ ½14.4; 25� GeV2Þ, the lower limits onR−1 for the above
mentioned BLT parameters change to > 570 ð580Þ GeV
(see Table III) and> 720 ð730Þ GeV (see Table III), respec-
tively, for the KK sum up to 5 (20) levels. We have obtained
these limits on R−1 by comparing the branching ratio
evaluated from the present calculation to the experimental
data [given in Eq. (1)] with a 1σ upward error bar. From these
numbers, we find that the limits are slightly better than that of
the results obtained from the analysisB → Xsγ [8]; however,
they are in the same ballpark as those obtained from the
analysis ofBs → μþμ− [7]. Furthermore, ifwe look at Figs. 2
and 3 (or Tables II and III), then we find that the lower limits
on R−1 would not drastically change after certain positive
values of BLT parameters. For example, in the present
analysis we have restricted ourselves for the choice of
BLT parameters (both RV and Rf) to values up to 6. The
reason is that beyond this choice, we expect that the lower
limit onR−1 would not change significantly for larger values
of BLT parameters.
In Tables II and III (for two different regions of q2), we

have enlisted specific values of lower limits on R−1

TABLE II. Lower limits on R−1 (in GeV) evaluated from the branching ratio of B → Xslþl− for several values of BLT parameters for
q2 ∈ ½1; 6� GeV2, showing the insensitivity on the number of KK modes in summation.

RV ¼ −2 RV ¼ 0 RV ¼ 2 RV ¼ 4 RV ¼ 6

Rf

5 KK
level

20 KK
level

5 KK
level

20 KK
level

5 KK
level

20 KK
level

5 KK
level

20 KK
level

5 KK
level

20 KK
level

−2 215.73 224.19 283.62 289.23 377.06 381.14 437.53 443.33 487.00 489.26
0 382.15 388.95 451.27 464.93 472.55 482.32 478.76 485.35 530.98 549.54
2 385.45 392.72 498.00 508.18 510.01 518.05 536.48 548.76 588.70 598.28
4 390.26 394.83 525.48 529.81 676.65 688.72 717.88 726.93 745.36 750.21
6 421.04 430.52 528.23 533.45 684.89 694.54 761.85 768.14 764.60 770.42
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corresponding to different choices of BLT parameters. The
numbers in the tables also indicate that our results are not
very sensitive to the number of KK levels considered in the
sum while calculating loop diagrams corresponding to
different WCs.
In the left and right panels of Fig. 4, we present the

region of parameter space which has been excluded by the
currently measured experimental values of branching ratios
of B → Xslþl− for two different q2 regions, ½1; 6� GeV2

and ½14.4; 25� GeV2, respectively. In both of these panels,
we have depicted contours corresponding to five different
values of RV in the Rf − R−1 plane. The region under an
individual curve (specified by a fixed value of RV) has been
excluded by comparing the experimentally measured
branching ratio of B → Xslþl− to its theoretical prediction
in the nmUED scenario. The curves represent the contours
of constant branching ratios of B → Xslþl− correspond-
ing to the 1σ upper limit of its experimentally measured
value. One can understand the nature of these contour
curves with the help of Figs. 2 and 3. With larger values of
R−1, KK masses increase, which leads to suppression in the
decay width (and branching ratio). Hence, in order to
overcome this suppression, one requires larger values of Rf

and RV . The larger values of the BLT parameter enhance
the decay dynamics in two ways. First of all, these would
diminish the KK masses. Secondly, larger values of Rf
would increase the interaction strengths via the overlap
integral In1 , whereas increasing values of RV would increase
interaction strengths via In2 .
To this end,wewould like tomention that as far as theBLT

parameters are concerned, there is no sharp contrast in the
behavior of the decay branching ratio between two different
regions of q2. However, the lower limits of R−1 which we
have obtained from our present analysis are slightly different
for two different regions of q2. In the case of the low-q2

region (∈ ½1; 6� GeV2), the lower limit is higher than that of
the case in the high-q2 region (∈ ½14.4; 25� GeV2). For
example (considering only the five-KK-level sum), in the
low-q2 region if we set RV ¼ 4, Rf ¼ 2, the lower limit on
R−1 is 536.38GeV, while for the same set of BLT parameters
R−1 is 476.01GeV for the high-q2 region. This feature is true
for all combinations of BLT parameters. This feature
indicates that, in the second case, the masses of the KK
particles which are involved in the loop diagrams are
relatively lighter with respect to the first case. This behavior
is quite expected, because in the second case the phase space

TABLE III. Lower limits on R−1 (in GeV) evaluated from the branching ratio of B → Xslþl− for several values of BLT parameters for
q2 ∈ ½14.4; 25� GeV2, showing the insensitivity on the number of KK modes in summation.

RV ¼ −2 RV ¼ 0 RV ¼ 2 RV ¼ 4 RV ¼ 6

Rf

5 KK
level

20 KK
level

5 KK
level

20 KK
level

5 KK
level

20 KK
level

5 KK
level

20 KK
level

5 KK
level

20 KK
level

−2 93.98 102.71 135.20 143.26 173.18 186.51 201.16 208.14 214.90 219.42
0 275.38 287.70 294.61 306.26 321.36 335.18 385.31 402.21 451.28 462.56
2 278.12 289.12 335.84 346.81 404.55 415.20 476.01 487.36 528.23 538.32
4 283.62 294.45 357.83 365.52 569.46 566.05 632.68 640.82 687.64 698.48
6 324.84 334.60 451.28 465.75 572.20 586.54 676.65 697.35 726.12 737.88

FIG. 4. Left and right panels represent the exclusion contours obtained from the branching ratio of B → Xslþl− decay in the
Rf − R−1 plane for low and high dilepton mass-squared regions, respectively, for five different choices of RV . These exclusion curves
have been drawn with the values of the lower limit of R−1 while we sum the contributions up to five KK levels in different loop functions
required for the calculation of WCs. The area below a particular curve (fixed RV ) has been excluded by the experimental value of the
branching ratio with a 1σ error bar.
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suppression is larger with respect to the first one; hence, to
compensate for this suppression, one requires relatively
lighter mass particles which are involved in the loop
diagrams needed for the calculation of different WCs.

Revisiting the lower limit on R−1 obtained from B →
Xslþl− in the UED scenario.—Before we proceed any
further, we would like to revisit the lower limit on R−1

obtained from our analysis in the UED scenario consider-
ing the current experimental results of the branching ratio
of B → Xslþl−. We can obtain the UED results from
our analysis in the limit when both the BLT parameters
vanish, i.e., for RV ¼ Rf ¼ 0. In this limit, the KK mass for
the nth KK level simply becomes nR−1. Moreover,
the overlap integrals In1 and In2 become unity. Hence, under
this circumstance, the functions Dnðxt; xfðnÞ ; xVðnÞ Þ and
Enðxt; xfðnÞ ; xVðnÞ Þ given in Eqs. (38) and (39) would trans-
form themselves into their UED forms. We have explicitly
checked that in this vanishing BLT limit the expressions of
the functions Dnðxt; xfðnÞ ; xVðnÞ Þ and Enðxt; xfðnÞ ; xVðnÞ Þ are
identical with the forms given in Ref. [61].14 Under the
same vanishing BLT limit condition, similar transformation
is also applicable for other functions (e.g., Cn, Yn, D0

n, and
E0
n, which have been calculated in our previous articles

[7,8]) required for the present calculations. Now, from our
present analysis we can readily derive the lower limit on
R−1 from Tables II and III. That is, for RV ¼ Rf ¼ 0, the
value of the lower limit on R−1 for q2 ∈ ½1; 6� GeV2 is
451.27 GeV, whereas for q2 ∈ ½14.4; 25� GeV2, the value
changes to 294.61 GeV. It is needless to say that these
results are not very strong but almost consistent with those
values that are obtained from previous analyses in the UED
scenario. For example, ðg − 2Þμ [80], ρ parameters [81],
FCNC process [61,82–84], Zbb̄ [56,85], and electroweak
observables [86–88] put a lower bound of about 300–
600 GeV on R−1. On the other hand, from the projected
trilepton signal at the 8 TeV LHC, one can derive a lower
limit on R−1 up to 1.2 TeV [89–91]. At this point, it is worth
mentioning that the values of the lower limit on R−1

obtained from the above mentioned analyses (for a minimal
version of the UED scenario) have already been ruled out
by the LHC data. The reason is that the recent analyses
including LHC data exclude R−1 up to 1.4 TeV [92–95].

2. Forward-backward asymmetry

Finally, in Figs. 5 and 6, we have shown the forward-
backward asymmetry [actually the global forward-backward
asymmetry defined in Eq. (47)] for the decay B→Xslþl−

for two q2 regions, ½1; 6� GeV2 and ½14.4; 25� GeV2,
respectively. In each figure, there are five panels correspond-
ing to five different values of RV . In each panel, we have

depicted the variation of forward-backward asymmetry with
respect to R−1 for five different values of Rf. Unlike the
decay branching ratio, the behavior of forward-backward
asymmetry has been significantly affected by the two
different regions of q2. For example, in the high-q2 region,
this asymmetry is always positive for the entire range of
given R−1 for every combination of BLT parameters,
whereas for the low-q2 region, the sign (either positive or
negative) of this asymmetry is crucially dependent on the
BLT parameters for the lower values of R−1, although it is
always negative for higher values of R−1. We have already
mentioned that, in the present decay process among all the
WCs, only C̃10 is moderately enhanced by NP effects.
Furthermore, this coefficient is independent of q2 but
depends only on the parameters of the NP scenario. Now,
this coefficient has appeared with a factor proportional to q2

m2
b

both in the numerator as well as in the denominator of the
definition of global forward-backward asymmetry. Hence,
depending on the value of q2, the factor q2

m2
b
could play a

crucial role for the defined asymmetry.
In the case of the low-q2 region, apart from the factor of

q2

m2
b
, some of the WCs could control the behavior of forward-

backward asymmetry for the lower values of R−1. Since in
this situation the masses of KK modes are not very high,
forward-backward asymmetry has been hallmarked by the
characteristics of different WCs. Now, in every panel
specified by a fixed value of RV , we observe that the
asymmetry always shows monotonically decreasing behav-
ior for negative values of Rf. We have earlier mentioned
that for negative values of Rf, the KK mass is high;
therefore, the loop functions are suppressed, which in turn
decreases the asymmetry. On the other hand, when Rf

changes to the positive side, leading to relatively smaller
values of KK mass, then the loop functions are enhanced so
that the WCs are increased, and consequently the forward-
backward asymmetry shows increasing behavior. Then,
with the increasing values of R−1, this asymmetry
decreases. Moreover, the same argument is also applicable
for the RV , because, if we look at the all panels, then we can
readily infer that the above mentioned effects due to Rf are
slightly magnified by increasing values of RV . At this point,
we would like to point out that using this asymmetry, we
can maximally achieve the lower limit on R−1 up to
≃600 GeV. This limit can be obtained by comparing the
theoretically estimated value of forward-backward asym-
metry in the present nmUED model with the 1σ lower
bound of the corresponding experimental data. However,
this value is not in agreement with the one that we have
obtained from the branching ratio. On the other hand, for

the high-q2 region, the factor q2

m2
b
is highly dominating in

nature. Therefore, unlike very low values of R−1, the WCs
will not get any scope to control the characteristics of the
forward-backward asymmetry. As a result, after a certain

14The authors of Ref. [61] have not considered any radiative
corrections to the KK masses in their analysis. Consequently, the
KK mass at the nth KK-level is nR−1.
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value of R−1, both the numerator and the denominator of
forward-backward asymmetry are totally affected by the

same way by the factor q2

m2
b
. Hence, the asymmetry practi-

cally becomes independent of R−1. This is clearly evident
from the plots, where this asymmetry is almost parallel to
the R−1. Depending on the values of the BLT parameters,
the saturation behavior starts from different values of R−1.
However, it is also evident from the different panels of
Fig. 6 that even for different combinations of BLT

parameters, the threshold points (basically the value of
R−1) of this saturation behavior are not very distinct from
each other.

3. Possible bounds on the nmUED scenario
with upcoming measurements by the Belle II

for the B → Xsl+l− observables

In the near future, we will have newmeasurements by the
Belle II experiment for the B → Xslþl− observables.

FIG. 5. Variation of the forward-backward asymmetry of B → Xslþl− with R−1 (TeV) for various values of Rfð¼ rf=RÞ. The five
panels represent different values of RVð¼ rV=RÞ. We sum the contributions up to five KK levels in different loop functions while
calculating WCs. The horizontal gray band depicts the 1σ allowed range of experimental values of the forward-backward asymmetry for
q2 ∈ ½1; 6� GeV2.
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Therefore, at this stage it would be very relevant to
discuss the possible bounds on the parameter space of
the nmUED scenario in light of upcoming measurements
by the Belle II experiment for the B → Xslþl− observ-
ables. Belle II can significantly improve the present
situation with its 2-orders-of-magnitude larger data sample.
Consequently, we can expect the reduction of systematic
uncertainties for the various observables. In order to
check the possible bounds on the parameter space of the
nmUED scenario in the context of upcoming measurements

by Belle II for the B → Xslþl− decay observables, we
follow the prescription given in Refs. [15,96]. According to
this prescription, the bounds can be implemented via the
ratios R9 and R10 under the assumption of no NP con-
tributions to the electromagnetic and chromomagnetic
dipole operators (i.e., R7;8 ¼ 1), where the ratios are
defined as Ri ¼ Ci

CSM
i

(Cis are different WCs, with i ¼ 7,

8, 9, 10). In Fig. 4 of Ref. [15] (in all three panels), we can
find a tiny area in the R9 − R10 plane that could be reached
by upcoming results of the Belle II experiment. For all

FIG. 6. Variation of the forward-backward asymmetry of B → Xslþl− with R−1 (TeV) for various values of Rfð¼ rf=RÞ. The five
panels represent different values of RVð¼ rV=RÞ. We sum the contributions up to five KK levels in different loop functions while
calculating WCs. The horizontal gray band depicts the 1σ allowed range of experimental value of the forward-backward asymmetry for
q2 ∈ ½14.4; 25� GeV2.
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cases within this tiny area, the values of both R9 and R10

are very much close to unity. In other words, this
fact indicates that the deviation between NP and SM
predictions is very small. We translate this fact (using
the lower panel of Fig. 4 of Ref. [15]) in the nmUED
scenario in terms of the ratios R9 and R10 from which we
have obtained the bounds on the model parameters from
the perspective of upcoming measurements by Belle II for
the B → Xslþl− observables.
In the nmUED scenario, we have determined the values

of the model parameters for which the ratios R9 and R10

should be restricted within the tiny area in the R9 − R10

plane that could be reached by upcoming results of the
Belle II experiment. The values of the lower limit of R−1 for
different combinations of the BLT parameters Rf and RV

have been slightly shifted to higher values with respect to
those which we have obtained from our main analysis in
this article. For example, when RV ¼ 2 and Rf ¼ 4, the
lower limit on R−1 is 680.27 GeV, while this limit changes
to 772.81 GeV for RV ¼ 6 and Rf ¼ 6. This behavior is
true for all combinations of BLT parameters. Here, we
would like to mention that these values are obtained when
we consider the sum up to five KK levels. This kind of
result implies that the deviation between the SM expect-
ation and the upcoming measurement by Belle II for the
B → Xslþl− decay observables will be decreasing in
nature. Consequently, the role of NP is expected to be
more restricted for the B → Xslþl− decay observables.
Therefore, one can constrain any NP model more precisely
using the upcoming measurement by Belle II for the B →
Xslþl− decay observables. Moreover, the tendency of
increasing the lower limit of R−1 indicates that the NP
model (in our case, the nmUED scenario) approaches the
direction of the decoupling limit. As we have already
mentioned, in a scenario like nmUED, where the masses of
KK-excited states (NP particles in the present case) are
essentially characterized by R−1; therefore, with increasing
values of R−1, the masses of KK-excited states are
increased. Consequently, the effects of these KK-excited
states will be decreased.

V. SUMMARY AND CONCLUSION

In view of the findings of new physics effects, we have
estimated the contributions of KK excitations to the decay
of B → Xslþl− in a (4þ 1)-dimensional nonminimal
universal extra dimensional scenario which is allowed to
propagate all Standard Model particles. This specific
scenario is characterized by different boundary-localized
terms (kinetic, Yukawa, etc.). Actually, in the five-
dimensional universal extra dimensional scenario, the
unknown radiative corrections to the masses and couplings
are parametrized by the strength of these boundary-
localized terms. Hence, in the presence of these terms,
the KK mass spectra as well as the interaction strengths
among the various KK excitations are transformed in a

nontrivial manner in the four-dimensional effective theory
with respect to the minimal version of the universal extra
dimensional scenario. In the present article, we have used
two different categories of BLT parameters. For example,
strengths for the boundary terms of fermions and Yukawa
interactions are represented by rf, while rV represents the
strengths of boundary terms for the gauge as well as Higgs
sectors. We have examined the effects of these BLT
parameters on the B → Xslþl− decay process.
The effective Hamiltonian for the decay process B →

Xslþl− is characterized by several Wilson coefficients C7,
C9, and C10. In the nonminimal universal extra dimensional
scenario, the coefficients C7 and C10 have already been
calculated in our previous articles. However, for the first
time, we have calculated the coefficient C9 in the non-
minimal universal extra dimensional scenario using the
relevant Feynman (penguin) diagrams shown in Fig. 1.
With these several Wilson coefficients, we have computed
the coefficients of electroweak dipole operators for photons
and gluons for the first time in the nonminimal universal
extra dimensional scenario. Applying the advantage of the
Glashow Iliopoulos Maiani (GIM) mechanism, we have
included contributions from all three generations of
quarks in our analysis. We evaluated the total contribution
that is obtained from the penguin diagrams and then added it
with the corresponding Standard Model counterpart.
Considering a recent analysis relating the stability on the
Higgs bosonmass and cutoff of a universal extra dimensional
scenario [76], we have considered the summation up to five
KK levels in our calculation. Furthermore, we have incorpo-
rated next-to-leading QCD corrections in our analysis.
For the present decay process, in order to maintain

perturbativity, one has to impose an appropriate choice
of kinematic cuts to eliminate cc̄ resonances which show
large peaks in the dilepton invariant mass spectrum.
Consequently, this gives two distinct perturbative dilepton
invariant mass-squared regions, called the low dilepton
mass-squared region with 1 GeV2 < q2 < 6 GeV2, and
also the high dilepton mass-squared region with
q2 > 14.4 GeV2. In these two regions, experimental data
for the branching ratio as well as forward-backward
asymmetry are available for the decay B → Xslþl−.
However, there exists only a narrow window between
the Standard Model prediction and the experimental data
for both the regions and for both quantities (branching ratio
and forward-backward asymmetry). Comparing our theo-
retical predictions with the corresponding experimental
data (with a 1σ error bar), we have constrained the
parameter space of the present version of the nonminimal
universal extra dimensional scenario. During our analysis,
we have used the branching ratios of some rare decay
processes such as Bs → μþμ− and B → Xsγ, as well as
electroweak precision data, as constraints.
As we have already mentioned, from our analysis we can

also reproduce the results of the minimal version of the
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universal extra dimensional scenario by setting the BLT
parameters to zero (i.e., Rf ¼ RV ¼ 0). Hence, from our
analysis we have revisited the lower limit on R−1 in the
framework of the minimal universal extra dimensional
scenario. Using the experimental data of the branching
ratio, the lower limit becomes 451.27 (294.61) GeV for the
low (high) q2 region. Definitely, these results are compa-
rable with the values that are obtained from the earlier
analysis existing in the literature, although they are ruled
out by recent collider analysis at the LHC. However, by the
virtue of the presence of different nonzero BLT parameters,
we can improve the results of the lower limit on R−1 in the
present version of the nonminimal universal extra dimen-
sional scenario. For example, for RV ¼ 6 and Rf ¼ 6,
using the branching ratio, we obtain the lower limit of
R−1 ≥ 760 GeV for the low-q2 region, while the limit
changes to R−1 ≥ 720 GeV for the high-q2 region.
Obviously, these results in the context of the nonminimal
universal extra dimensional scenario are very promising,
because they exclude a large portion of the parameter space
of the present scenario. Also, the obtained lower limit on
R−1 is in the same ballpark as the limit obtained from
previous analysis on Bs → μþμ− [7] in the nonminimal

universal extra dimensional scenario. Furthermore, from
Fig. 4, it is clearly evident that the lower limits on R−1 are
relatively more competitive for positive values of the BLT
parameters rather than their negative values. Unfortunately,
the limits which we have obtained on the parameter space
(of the nonminimal universal extra dimensional scenario)
using the forward-backward asymmetry of the decay B →
Xslþl− are not so competitive.
Moreover, we have tried to determine the possible

bounds on the model parameters of the nonminimal
universal extra dimensional scenario with upcoming mea-
surements by Belle II for the B → Xslþl− observables. We
have found that, for all combinations of the BLT parameters
Rf and RV , the lower limit of R−1 has been slightly shifted
to higher values with respect to the values which we have
achieved from our main analysis in this article.
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APPENDIX A: SOME IMPORTANT FUNCTIONS AND WILSON COEFFICIENTS THAT ARE
REQUIRED FOR THE CALCULATION OF B → Xsl+l− IN nmUED

Functions [69]:
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Wilson coefficients:C1…C6 [71]:
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Cð0Þ
1 ðMWÞ ¼

11

2

αsðMWÞ
4π

; ðA4Þ

Cð0Þ
2 ðMWÞ ¼ 1 −

11

6

αsðMWÞ
4π

; ðA5Þ

Cð0Þ
3 ðMWÞ ¼ −

1

3
Cð0Þ
4 ðMWÞ ¼ −

αsðMWÞ
24π

¼ Ẽðxt; rf; rV; R−1Þ; ðA6Þ

Cð0Þ
5 ðMWÞ ¼ −

1

3
Cð0Þ
6 ðMWÞ ¼ −

αsðMWÞ
24π

¼ Ẽðxt; rf; rV; R−1Þ; ðA7Þ

where

Ẽðxt; rf; rV; R−1Þ ¼ Eðxt; rf; rV; R−1Þ − 2

3
: ðA8Þ

C7 [69]:
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αsðMZÞ

2π lnðMZ=mbÞ
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and

Cð0Þ
7γ ðMWÞ ¼ −

1

2
D0ðxt; rf; rV; R−1Þ; ðA11Þ

Cð0Þ
8GðMWÞ ¼ −

1

2
E0ðxt; rf; rV; R−1Þ: ðA12Þ

The values of ai, hi, and h̄i can be obtained from Ref. [61].
The functions D0ðxt; rf; rV; R−1Þ and E0ðxt; rf; rV; R−1Þ
are the total (SMþ nmUED) contributions at the LO as
given in Ref. [8].

APPENDIX B: FEYNMAN RULES
FOR B → Xsl+l− IN nmUED

In this appendix, we have given the relevant Feynman
rules for our calculations. All momenta and fields are
assumed to be incoming. Â represents the background
photon field.

(1) ÂμWν�S∓: g2swMWðnÞgμνC, where C is given in the
following:

ÂμWνðnÞþGðnÞ−∶ C ¼ 0;

ÂμWνðnÞ−GðnÞþ∶ C ¼ 0;

ÂμWνðnÞþHðnÞ−∶ C ¼ 0;

ÂμWνðnÞ−HðnÞþ∶ C ¼ 0; ðB1Þ

where g2 represents the SUð2Þ gauge coupling
constant, while sw denotes the sine of the Weinberg
angle (θw).

(2) ÂμS�1 S
∓
2 : −ig2swðk2 − k1ÞμC, where C is given in

the following:

ÂμGðnÞþGðnÞ−∶ C ¼ 1;

ÂμHðnÞþHðnÞ−∶ C ¼ 1;

ÂμGðnÞþHðnÞ−∶ C ¼ 0;

ÂμGðnÞ−HðnÞþ∶ C ¼ 0; ðB2Þ

where the scalar fields S≡H;G.
(3) Âμðk1ÞWνþðk2ÞWλ−ðk3Þ:

ig2sw½gμνðk2 − k1 þ k3Þλ þ gμλðk1 − k3 − k2Þν
þ gλνðk3 − k2Þμ�: ðB3Þ

(4) Âμf̄1f2: ig2swγμC, where C is given in the
following:

Âμūiui∶ C ¼ 2

3
;

ÂμT̄1ðnÞ
i T1ðnÞ

i ∶ C ¼ 2

3
;

ÂμT̄2ðnÞ
i T2ðnÞ

i ∶ C ¼ 2

3
;

ÂμT̄1ðnÞ
i T2ðnÞ

i ∶ C ¼ 0;

ÂμT̄2ðnÞ
i T2ðnÞ

i ∶ C ¼ 0: ðB4Þ

(5) Gμf̄1f2: igsTa
αβγμC, where C is given in the

following:

Gμūiui∶ C ¼ 1;

GμT̄1ðnÞ
i T1ðnÞ

i ∶ C ¼ 1;

GμT̄2ðnÞ
i T2ðnÞ

i ∶ C ¼ 1;

GμT̄1ðnÞ
i T2ðnÞ

i ∶ C ¼ 0;

GμT̄2ðnÞ
i T2ðnÞ

i ∶ C ¼ 0: ðB5Þ
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(6) S�f̄1f2 ¼ g2ffiffi
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(7) 7. Wμ�f̄1f2:
ig2ffiffi
2

p γμPLCL, where CL is given in the following:

Wμþūidj∶ CL ¼ Vij; Wμ−d̄jui∶ CL ¼ V�
ij;

WμðnÞþT̄1ðnÞ
i dj∶ CL ¼ In1cinVij; WμðnÞ−d̄jT

1ðnÞ
i ∶ CL ¼ In1cinV

�
ij;

WμðnÞþT̄2ðnÞ
i dj∶ CL ¼ −In1sinVij; WμðnÞ−d̄jT
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i ∶ CL ¼ −In1sinV�

ij; ðB7Þ

where the fermion fields f ≡ u; d; T1
t ; T2

t .
The mass parameters mðiÞ

x are given in the following [7]:

mðiÞ
1 ¼ In2mVðnÞcin þ In1misin;

mðiÞ
2 ¼ −In2mVðnÞsin þ In1micin;

mðiÞ
3 ¼ −In2iMWcin þ In1i

mVðnÞmi

MW
sin;

mðiÞ
4 ¼ In2iMWsin þ In1i

mVðnÞmi

MW
cin; ðB8Þ

where mi denotes the mass of the zero-mode up-type fermion and cin ¼ cosðαinÞ and sin ¼ sinðαinÞ, with αin as defined
earlier.
The mass parameters Mði;jÞ

x are given in the following [7]:

Mði;jÞ
1 ¼ In1mjcin;

Mði;jÞ
2 ¼ In1mjsin;

Mði;jÞ
3 ¼ In1i

mVðnÞmj

MW
cin;

Mði;jÞ
4 ¼ In1i

mVðnÞmj

MW
sin; ðB9Þ

where mj denotes the mass of the zero-mode down-type fermion.
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In all the Feynman vertices, the factors In1 and In2 are represented as the overlap integrals given in the following [7]:

In1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rV

πR

1þ rf
πR

s 2
6664 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
r2fm

2

fðnÞ
4

þ rf
πR

r
3
7775
2
6664 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2Vm
2

VðnÞ
4

þ rV
πR

r
3
7775 m2

VðnÞ

ðm2
VðnÞ −m2

fðnÞ Þ
ðrf − rVÞ

πR
; ðB10Þ
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