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We show that the conformal standard model supplemented with asymptotically safe gravity can be valid
up to arbitrarily high energies and give a complete description of particle physics phenomena. We restrict
the mass of the second scalar particle to ∼300 GeV and the masses of heavy neutrinos to ∼340 GeV. These
predictions can be explicitly tested in the nearby future.
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I. INTRODUCTION

In recent years there were many extensions of the
standard model (SM) proposed to deal with the SM
drawbacks like triviality, too weak CP violation for baryo-
genesis, the hierarchy problem and also the lack of dark
matter candidates. Examples of these extensions include
grand unification theories [1,2], supersymmetric models
[3–5], Higgs portal models [6,7] or the conformal standard
model [8–10]. Usually free parameters of these models, like
masses of new proposed particles, are known neither
theoretically nor experimentally. The possibility of narrow-
ing them down, using some theoretical reasoning, to a small
interval would be a huge advantage in the search for new
particles and interactions.
One way to restrict the low-energy values of couplings is

to include the gravitational corrections to the β functions
and demand the asymptotic safety condition (AS) on the
running of renormalization group equations (RGE) for
given initial conditions [11]. These conditions impose
bounds on the model free parameters values, which are
initial conditions for RGE. Then the model which satisfies
them is UV fundamental. However this reasoning is valid
only if gravity indeed has a nonperturbative asymptotically
safe fixed point. This hypothesis [12] is currently under
investigation; however, there are strong indications that it is
really so—see for example [13–15]. Much of the work is
done using the nonperturbative functional renormalization
group methods [16–18]. While the Wetterich equation for
flowing action Γk is exact (from which one gets the

effective action Γ ¼ limk→0Γk), it is very difficult to deal
with. To solve it and hence find the effective action, one has
to restrict himself to the finite array of couplings. This,
nonperturbative, approach gave the promising results on
the mass difference of charged quarks [19] or on the
explanation of the top mass [20]. On the other hand, the
perturbative approach was used to predict the Higgs mass
[11] with astonishing accuracy.
In this article we analyze the conformal standard model

(CSM) [8–10], which is of Higgs portal type but has
additional structure. This model extends the SM by adding
one new complex scalar field with its phase as a dark matter
candidate and right-chiral neutrinos. The fundamental
assumption which underlies this model and other similar
models is that there is no new physics between the weak
scale and the Planck scale. This means that for example the
masses of heavy neutrinos or vacuum expectation value of
new scalars should be of the order of 1 TeV. Indeed the
observational abbreviations from the standard model such
as neutrino masses and oscillations, dark matter and dark
energy, baryon asymmetry of the Universe and inflation can
be understood without introducing an intermediate new
scale; see for example [21,22]. The introduction of the
gravitational contributions to the matter beta functions
makes all the matter couplings go to a noninteracting fixed
point at roughly the Planck scale; hence, at least theoreti-
cally it is unnecessary to introduce the new degrees of
freedom at some intermediate scale (see [23]) in order to
make the standard model a conformal field theory at high
energies. Moreover the Large Hadron Collider (LHC) has
not detected any discrepancies from the standard model,
with no signs of supersymmetry. This is why the Higgs
portal models and conformal standard model attract a
lot of attention as they can deal, in principle, with the
drawbacks of the standard model without changing its
structure deeply and adding only a few particles and
interactions to the SM. Such models do not possess any
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higher-dimension operators in the Lagrangian, since they
are the negative dimensional operators. In the functional
renormalization group they should be taken into account.
Moreover they can affect the Higgs sector; however, none
of these effects have been confirmed yet (see for example
[24–26]). Hence in our article we deal (we truncate only to
the renormalizable operators) only with those matter
operators which are in the Lagrangian of the conformal
standard model.
By taking into account the gravitational corrections to

the beta functions and using the AS conditions (and
assuming that the Weinberg hypothesis holds) we are able
to calculate the allowed range of Higgs and the second
scalar coupling parameters such that the CSM can be a UV
complete theory. By taking into account the experimental
LHC data and the model restrictions for the values of free
parameters we are able to predict the allowed second
scalar mass. We can also narrow down masses of right-
chiral neutrinos. One should also mention that there
are some studies on models with asymptotically safe
behavior without taking into account gravitational correc-
tions [27–30].

II. MODEL AND METHOD

A. Higgs portal models and conformal
standard model

In this paragraph we briefly introduce the conformal
standard model. The CSM Lagrangian [10] is given by

L ¼ Lkin þ LY − V; ð1Þ

with the following kinetic terms:

Lkin ¼ LSM
kin þ ðDμHÞ†ðDμHÞ þ ð∂μϕ

�∂μϕÞ
þ iN̄j

_ασ̄
μ _αβ∂μN

j
β; ð2Þ

where H is the SM scalar SUð2Þ doublet. The ϕðxÞ is a
gauge sterile complex scalar field carrying the lepton
number and couples only to gauge singlet neutrinos Ni

α.
The LSM

kin contains all the nonscalar standard model
degrees of freedom and can be found in any quantum
field theory textbooks; see for example [31,32]. The
potential reads as

VðH;ϕÞ ¼ −m2
1H

†H −m2
2ϕ

⋆ϕþ λ1ðH†HÞ2
þ λ2ðϕ⋆ϕÞ2 þ 2λ3ðH†HÞϕ⋆ϕ: ð3Þ

For the potential (3), if the vacuum expectation values are

ffiffiffi
2

p
hHii ¼ vHδi2;

ffiffiffi
2

p
hϕi ¼ vϕ; ð4Þ

then the tree-level mass parameters are

m2
1 ¼ λ1v2H þ λ3v2ϕ; ð5Þ

m2
2 ¼ λ3v2H þ λ2v2ϕ: ð6Þ

Hence the model possesses two particles of masses:m1 and
m2, where m1 is identified with the Higgs particle mass.
The potential is bounded from below if

λ1 > 0; λ2 > 0; λ3 > −
ffiffiffiffiffiffiffiffiffi
λ2λ1

p
: ð7Þ

If, in addition to (7) the λ3 <
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
holds, then (4) is the

global minimum of V. For given λ1, λ2, λ3 one can calculate
vϕ and m2 at tree level using (5) and at loop level by
changing the renormalization schemes, because vH is
known experimentally and the Higgs mass resulting
from AS can be calculated, when we take λ3 ¼ 0. With

λ0 ¼ 1
2

m2
1

v2H
≈ 0.13, one can parametrize the deviation from

SM as

tan β ¼ λ0 − λ1
λ3

vH
vϕ

: ð8Þ

We assume that its value is restricted by jtan βj < 0.35
which is the limit allowed by the present LHC data [10].
This constraint will be used to narrow down the possible
values ofm2. In the conformal standard model the coupling
constants YM

ij and Y
ν
ij are introduced, which are responsible

for interactions of right-chiral neutrinos:

LY ¼ 1

2
YM
jiϕN

jαNi
α þ Yν

jiN
jαH⊤ϵLi

α þ LSM
Y þ H:c:; ð9Þ

where LSM
Y is Yukawa part of the standard model

Lagrangian part and ϵ is the antisymmetric SUð2ÞL metric.
Following [10] we assume the degeneracy of Yukawa
couplings YM

ij ¼ yMδij, which amplifies the CP violation
and makes the resonant leptogenesis scenario possible; see
[9,10,33] for details. The masses of right-chiral neutrinos
are given by

MN ¼ yMvϕ=
ffiffiffi
2

p
; ð10Þ

for leptogenesis to take place, one requires MN > m2, so
that the heavy neutrinos can decay. Moreover the conformal
standard model introduces a phase of the second scalar
particle, called minoron, which can be a potential dark
matter candidate, with mass v4=M2

P originating from
quantum gravity effects, where v is some new parameter
with v ∼ vϕ. The CSM beta functions in the MS scheme,
where β̂CSM ¼ 16π2βCSM, are given by [10]
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β̂g1 ¼
41

6
g31; β̂g2 ¼−

19

6
g32; β̂g3 ¼−7g33;

β̂yt ¼ yt

�
9

2
y2t −8g23−

9

4
g22−

17

12
g21

�
;

β̂λ1 ¼ 24λ21þ4λ23−3λ1ð3g22þg21−4y2t Þ

þ9

8
g42þ

3

4
g22g

2
1þ

3

8
g41−6y4t ;

β̂λ2 ¼ð20λ22þ8λ23þ6λ2y2M−3y4MÞ;

β̂λ3 ¼
1

2
λ3½24λ1þ16λ2þ16λ3− ð9g22þ3g21Þþ6y2Mþ12y2t �;

β̂yM ¼ 5

2
y3M; ð11Þ

where g1, g2, and g3 are Uð1Þ, SUð2Þ, and SUð3Þ standard
model gauge couplings, respectively, and yt is the top
Yukawa coupling. Following [10] we do not take into
account the running of Yν. If one takes yM ¼ 0, then after
the redefinitions of the couplings the CSM beta functions
reduce to the Higgs portal ones with [6,34–38].

B. Asymptotic safety and gravitational corrections

Weinbergs’ notion of AS [12] can be summarized by his
quote: “A theory is said to be asymptotically safe if the
essential coupling parameters approach a fixed point as the
momentum scale of their renormalization point goes to
infinity.” Let us assume that g is a set of all the couplings
of a theory and let gjμ0 be a given a set of initial conditions
at some momentum scale μ0. In our case we take
μ0 ¼ 173.34 GeV; see [39,40]. These initial conditions
together with the set of equations for running of couplings,

βiðgðμÞÞ ¼ μ
∂
∂μ giðμÞ; ð12Þ

describe completely and uniquely the behavior of a
physical theory. If for some gi we have βiðg�Þ ¼ 0, then
we call this g� a fixed point of the ith equation. The stable
fixed points are called attractors, and the unstable one are
called repellers. If limμ→þ∞g� ≡ 0 for all the couplings gi,
we call such a point a Gaussian fixed point. Theories where
the couplings possess a Gaussian fixed at UV scales are
called asymptotically free. Otherwise, when g� ≠ 0 we call
such a fixed point non-Gaussian and interacting, and such
theories are called asymptotically safe. If the equation for
running of the coupling gi possesses an unstable fixed
points at UV scale, then there is only one low-energy initial
condition gijμ0 per repeller such that the theory is funda-
mental up to the UV scale.
On the other hand, gravity cannot be perturbatively

quantized. Nevertheless one can utilize the effective field
theory approach for energies below the Planck scale to
determine predictions of quantum gravity. In particular
the standard model (and its extensions) β functions are

modified with the gravitational corrections at high energies
[11,13,39,41–45]:

βiðgÞ ¼ βmatter
i ðgÞ þ βgravi ðg; μÞ: ð13Þ

The gravitational contributions to the beta functions
acquire the general form for all the matter couplings
[11,13,39,41,45]:

βgravi ðg; μÞ ¼ ai
8π

μ2

M2
P þ ξ0μ

2
gi; ð14Þ

due to the universal character of gravitational interactions.
MP ¼ ð8πGNÞ−1=2 ¼ 2.4 × 1018 GeV is the low-energy
Planck mass. ξ0 is some dimensionless constant. Based
on the results of a functional renormalization group
investigation of pure gravity [11,44,46,47] its value is
taken as ξ0 ¼ 0.024. The ai are dimensionless constants
and can be calculated for a given coupling gi. According to
[39,41,42] one have ag1 ¼ ag2 ¼ ag3 ¼ −1 and ayt ¼ −0.5
at the one-loop level. Since yM is a gauge coupling we
assume that also ayM ¼ −1. The value aλ1 ¼ þ3 is based on
[11,39,47,48]. For simplicity we assume that all of the aλi
have the same absolute value, which can be supported by
the calculations of the aλ parameters done for the Higgs
portal models [49]. However this calculation does not take
into account fermions or higher-order operators for gravity.
For example the theory with the R2 term in the gravity
Lagrangian can be identified with the scalar tensor theory
of gravity [50,51] which is used to describe inflation, and
this term has negative aR2 [52] and so does the scalar. So we
investigate all the possibilities in our article. To show that
the absolute value of aλ2 , aλ3 is not an important factor
when concerning the possible masses we have scanned over
several values lying in the interval jaλ2 j, jaλ3 j ∈ ½1; 3�. Its
change affects the allowed mass very weakly, of the order
of�2 GeV; this is because the gravitational corrections are
heavily suppressed below the Planck scale. Indeed, the sign
of ai is much more important than its exact value because
the positive sign corresponds to the unstable Gaussian fixed
point while the negative to the stable one. In result we
investigate the four possibilities: aλ2 , aλ3 ¼ �3.
The asymptotic safety assumption for quantum gravity

allows us to treat (extensions of) the standard model as
fundamental (UV complete) only under the condition that
the running of coupling constants does not possess any
pathological behavior up to the Planck scale. It imposes
two conditions [10,11]. We will call them AS conditions.
Firstly, there should be no Landau poles up to the Planck
scale. Secondly, the electroweak vacuum should be stable
for all scales:

λ1ðμÞ> 0; λ2ðμÞ> 0; λ3ðμÞ>−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2ðμÞλ1ðμÞ

p
: ð15Þ
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The second condition comes from the assumption that there
is essentially no new physics between the electroweak scale
and Planck scale, despite the one described by the con-
formal standard model. Obviously at the Planck scale all
the matter couplings go to zero, and hence all the beta
functions go to zero. The next paragraph is dedicated to the
calculation of the lambda couplings (λ1, λ2, λ3, yM)
satisfying these conditions.

III. CALCULATION OF LAMBDA COUPLINGS

In this paragraph we calculate the set of allowed lambda
couplings satisfying the asymptotic safety conditions. If not
specified otherwise, the value of a coupling (for example on
the plots below) means its value at μ0 ¼ 173.34. In the low-
energy regime the graviton loops can be neglected
[11,53,54] and they become important near the Planck
scale and manifest in the form of the gravitational correc-
tions to the β functions. The gauge and Yukawa couplings
renormalization group equations dynamics is not affected
by the running of λi and yM. The low-energy values at
μ0 ¼ 173.34 are taken as [39] g1ðμ0Þ ¼ 0.35940,
g2ðμ0Þ ¼ 0.64754, g3ðμ0Þ¼1.1888 and ytðμ0Þ¼0.95113.
Then the evolution of these couplings with energy is
obtained. The running of yM is also independent from
all other couplings. So far the experimental value for yM is
unknown, so to obtain the allowed λiðyMÞ one has to scan
over all possible values of yM. Using the AS conditions we
have calculated the allowed interval of yM for ayM ¼ −1 as
yM ∈ ½0.0; 0.925�, and for ayM ¼ þ1 we have yM ¼ 0.0.
We plug the evolution of the gauge and Yukawa couplings
and each allowed yM into coupled equations for λ1, λ2, λ3.
Moreover, the magnitudes of ai coefficients are such that
the theory becomes asymptotically free near the Planck
scale; see [11] for further details, which justifies the use of
perturbation approach. Furthermore we expect that if the
cosmological constant runs, then it does not affect the
matter couplings below the Planck scale. This reasoning is
supported by the fact that both the Higgs mass [11] and the
mass difference between the top and bottom quark were
accurately predicted [55] without taking into account the
running of the cosmological constant. Furthermore in the
case of the unimodular gravity [56], which is equivalent to
the Einstein theory at the classical level, the cosmological
constant is not a dynamical degree of freedom; hence, it
does not run at all. These arguments suggest that we do not
take the cosmological constant running into account. As a
result we are looking for the sets of initial values yM, λi
such that they will all drop to zero near the Planck scale.

A. Coefficients: aλ3 = − 3, aλ2 = − 3
We start with the most general case, when

aλ2 ¼ aλ3 ¼ −3. Since for each possible combination of
λ2, λ3, yM only one λ1 is allowed, then we consider a setM
of allowed λ2, λ3, yM (λ2 and λ3 depend mutually on each

other and on yM), and there is a λ1ðλ2; λ3; yMÞ assigned to
each of the points of this set. This set looks roughly like a
sea wave, where yM is the height. In Fig. 1 we show the
surfaces of maximal and minimal possible yM all the points
in between are also in the set M.
In the right figure there is a special line λ†2 ¼ 0.2.

Namely, for the region where λ2 < λ†2 the minimal yM is
0.0, while when λ2 > λ†2 the minimal and maximal values
are very close to each other: yMðmaxÞ − yMðminÞ ∼ 0.01.
This behavior can be explained by the observation that λ2 >
λ†2 requires yM > 0.70 to keep β̂λ2 small enough throughout
the evolution. As we have checked in all other cases the sets
of allowed couplings form a 1D or 2D subsets of M.
The λ1 renormalization group equation is affected

directly only by λ3; however, the running of λ3 depends
on λ2 and yM. In Fig. 2 we show the λ1 dependence on other
couplings for three chosen yM as an example.

B. Coefficients: aλ3 = − 3, aλ2 = + 3

In this case there is one allowed λ1 and λ2 per set of λ3
and yM satisfying the AS conditions. In Fig. 3 we present
this dependence. As we can see there is much less spread in
possible values of λ1 than λ2. This is because all the gauge
coupling initial values are fixed for λ1, which is not the case
for λ2.

FIG. 1. Maximal (left) and minimal (right) yMðλ3; λ2Þ,
aλ2 ¼ −3, aλ3 ¼ −3.

FIG. 2. Values of λ1 for yM ¼ 0.0 (left), yM ¼ 0.5 (mid), and
yM ¼ 0.77 (right).
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For this case the domain of allowed λ3 and yM is
smaller than for M. However for this domain we have
λ2ðaλ3 ¼ þ3; λ3; yMÞ ¼ minλ2ðλ2ðaλ2 ¼ −3; λ3; yMÞg.

C. Coefficients: aλ3 = + 3, aλ2 = � 3

In this case, we found that only λ3ðμ0Þ ¼ 0 satisfies the
AS conditions; hence, λ3 is zero at all energy scales. Then
the ϕ sector is decoupled from the rest of standard model,
which makes it a scalar dark matter candidate, like in [49].
The numerical solution for λ1 gives λ1 ¼ 0.1537, which
agrees the standard model predictions from asymptotic
safety; see [11,39]. The allowed region for λ2 is determined
by the AS conditions for this coupling and depends heavily
on yM.
We checked that the allowed value for λ2 shown in Fig. 4

is the subset of M with the condition λ3 ¼ 0.0. We have
also calculated that λ2ðaλ2 ¼ þ3; yMÞ mimics the lower
bound for λ2ðaλ2 ¼ −3; yMÞ. Moreover this bound is the
same as for the running of λ2 without gravitational
corrections.

IV. THE SECOND SCALAR MASS

In this paragraph we calculate the vϕ, m2 and MN .
For the decoupled (standard model) case one obtains λ1 ¼
0.1537; hence, the Higgs mass is given by

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2λ1v2H

q
≈ 136 GeV; ð16Þ

where the λ1 is calculated from the AS requirements and is
in the MS scheme. So one can see that the effects regarding
the renormalization of mass and the ones concerning the
changing of the renormalization scheme (from MS to the
physical one) have the contribution of the order of 10 GeV
to the masses calculated at the tree-level relations (without
renormalization of mass), which was demonstrated in
[11,39]. Hence due to other much bigger sources of
uncertainties like the value of yM, we assume that the
CSM tree-level relations (5), (6) hold. This assumption
restricts λ3 to be non-negative; otherwise, one would obtain
negative values for v2ϕ sufficient for the calculations of the
allowed λ couplings. By comparing the one-loop [39] and
two-loop calculation [11] of λ1, where the outcome is
almost identical, we conclude that higher than the first
nontrivial order is sufficient for our purpose. In order to
calculate vϕ and m2 at tree level we take vH ¼ 246 GeV,
and then we solve Eqs. (5) and (6) with m1 ¼ 136 GeV.
Obviously we are able to predict the m2 and vϕ only in the
case when the second scalar sector is coupled to the SM
sector. Hence, we restrict only to the case when λ3 ≠ 0. For
small λ3 tiny changes in λ1 result in enormous changes in
vϕ, so we treat λ3 < 0.01 as a decoupled case. Our claim
that λ3 should be large enough can also be justified with the
LHC condition jtan βj < 0.35, because small λ3 results in
large β. In our analysis we have excluded all the sets of
parameters not satisfying the LHC and the global stability
conditions [at μ0:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1ðμ0Þλ2ðμ0Þ

p
> λ3ðμ0Þ]. After doing

that we have two separate cases: aλ2 ¼ þ3 and aλ2 ¼ −3.
Moreover if the second scalar particle is unstable (follow-
ing the CSM [10]), then at the tree level we have
2m1 < m2. Also the yM ¼ 0.0 situation is an interesting
situation, when the CSM reduces to the Higgs portal case.
The masses of right-handed neutrinos can also be calcu-
lated,MN ¼ yMvϕ=

ffiffiffi
2

p
in the case when yM ≠ 0. Below we

illustrate these combinations of possible conditions.
In Table I, in the second row “yes” means that we have

taken into account this condition, while “no” means the
opposite. As we can see for yM ¼ 0.0 the second scalar
mass is m2 is smaller than 2m1 making this particle stable.
In the conformal standard model case the right-chiral
neutrinos turns out to be unstable (m2 < yMvϕ=

ffiffiffi
2

p
holds

for each of the sets of parameters) making the leptogenesis
scenario possible. Furthermore if we assume that v ¼ vϕ,

FIG. 3. λ1 dependence on λ3 and yM, aλ2 ¼ þ3, aλ3 ¼ −3.

FIG. 4. Allowed range of λ2 coupling, aλ2 ¼ −3, aλ3 ¼ þ3.

TABLE I. Arrays of allowed masses.

aλ2 2m1 < m2 yM m2 [GeV] vϕ [GeV] MN [GeV]

þ3 Yes 0.84 275 538 319
þ3 Yes 0.85 296 574 345
−3 Yes 0.77þ0.07

−0.06 300þ28
−28 586þ60

−46 342þ41
−41

−3 No 0.00 160þ103
−100 300þ275

−15 NA
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then the mass of the minoron is given by
v2ϕ=MP ≈ 10−4 eV, which is of the same order as estimated
in [10].
We have also analyzed the running of the β functions for

m2 and m1, where we took ami
¼ −1. It gives no new

bounds on m2 and lambda couplings. This result is in close
relation with scenario B analyzed in [49]; however in
our case the ϕ particle is not decoupled from the SM.
We have also taken into account the restrictions from
quadratic divergence cancellation, which can be achieved if
softly broken conformal symmetry (SBCS) [53] require-
ments are satisfied (these requirements in the CSM are not
essentially changed even after adding gravitational correc-
tions [54]). Apparently it gives no new restrictions for the
parameters additional to the asymptotic safety conditions.
Moreover the SBCS requirements are satisfied at E ¼ MP
with all the couplings becoming asymptotically free, which
was suggested in [53].

V. CONCLUSIONS

Our investigation shows that the conformal standard
model has a set of parameters compatible with the asymp-
totic safety conditions, so supplemented with gravitational
corrections it can be a UV fundamental theory and [10]
“allows for a comprehensive treatment of all outstanding
problems of particle physics.” Moreover, the CSM can be
slightly modified to incorporate an inflation scenario
[38,57], which agrees with 2013 Planck data analysis
[58–60]. Inflation can also take place due to the asymp-
totically safe scenario [61].
The restrictions on the couplings and masses derived in

this article allow us to make theoretical predictions for free
parameters of the models extending the standard model.
The lambda couplings can be directly measured (or
explicitly calculated from masses of the new scalar

particles) in the LHC or indirectly measured in cosmo-
logical observations. In particular our investigation sup-
ports the claim [62] that the excess of events with four
charged leptons at E ∼ 325 GeV seen by the CDF [63] and
CMS [64] Collaborations can be identified with a detection
of a new “sterile” scalar particle proposed by the conformal
standard model. On the other hand, the compatibility of
the LHC run 1 data with the heavy scalar hypothesis was
investigated in [65,66]. The hypothetical heavy boson mass
is measured to be around 272 GeV (in the 270–320 GeV
range). Hence we would like to emphasize that this
experimental analysis agrees with the theoretical range
provided by our calculations and with the claim discussed
in [62] at least up to the order of several GeV. The fact that
m2 > 2m1 implies the yM ≠ 0.0 underlies the role of right-
handed neutrinos not only in context of smallness of
neutrino masses, but also in the case of asymptotically
safe beyond-SM physics, which makes the conformal
standard model unique among the Two-Higgs-doublet
model and Higgs portal models.
We hope that our analysis will be helpful in search for

new particles at LHC and future colliders and the new
scalar particle predicted by this model can be detected in
the nearby future.

ACKNOWLEDGMENTS

We thank Piotr Chankowski for valuable discussions.
J. H. K. would like to thank Yukawa Institute for
Theoretical Physics for hospitality and support during this
work. The PL-Grid Infrastructure is gratefully acknowl-
edged. K. A. M. was partially supported by the Polish
National Science Center Grant No. DEC-2017/25/B/ST2/
00165. J. H. K. was supported by the Polish National
Science Centre Grant No. 2018/29/N/ST2/01743.

[1] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438
(1974).

[2] A. Buras, J. Ellis, M. Gaillard, and D. Nanopoulos, Nucl.
Phys. B135, 66 (1978).

[3] S. Dimopoulos, S. Raby, and F. Wilczek, Phys. Rev. D 24,
1681 (1981).

[4] L. Ibáñez and G. Ross, Phys. Lett. 105B, 439 (1981).
[5] S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150

(1981).
[6] B. Patt and F. Wilczek, arXiv:hep-ph/0605188.
[7] M. Shaposhnikov and I. Tkachev, Phys. Lett. B 639, 414

(2006).
[8] K. A. Meissner and H. Nicolai, Phys. Lett. B 648, 312

(2007).

[9] A. Latosinski, A. Lewandowski, K. A. Meissner, and H.
Nicolai, J. High Energy Phys. 10 (2015) 170.

[10] A. Lewandowski, K. A. Meissner, and H. Nicolai, Phys.
Rev. D 97, 035024 (2018).

[11] M. Shaposhnikov and C. Wetterich, Phys. Lett. B 683, 196
(2010).

[12] S. Weinberg, in General Relativity: An Einstein Centenary
Survey, edited by S. W. Hawking and W. Israel (Cambridge
University Press, Cambridge, UK, 1979), pp. 790–831.

[13] A. Eichhorn, Found. Phys. 48, 1407 (2018).
[14] O. Lauscher and M. Reuter, in Quantum Gravity: Math-

ematical Models and Experimental Bounds, edited by B.
Fauser et al. (2005), pp. 293–313, https://inspirehep.net/
search?p=find+eprint+hep-th/0511260.

GRABOWSKI, KWAPISZ, and MEISSNER PHYS. REV. D 99, 115029 (2019)

115029-6

https://doi.org/10.1103/PhysRevLett.32.438
https://doi.org/10.1103/PhysRevLett.32.438
https://doi.org/10.1016/0550-3213(78)90214-6
https://doi.org/10.1016/0550-3213(78)90214-6
https://doi.org/10.1103/PhysRevD.24.1681
https://doi.org/10.1103/PhysRevD.24.1681
https://doi.org/10.1016/0370-2693(81)91200-4
https://doi.org/10.1016/0550-3213(81)90522-8
https://doi.org/10.1016/0550-3213(81)90522-8
http://arXiv.org/abs/hep-ph/0605188
https://doi.org/10.1016/j.physletb.2006.06.063
https://doi.org/10.1016/j.physletb.2006.06.063
https://doi.org/10.1016/j.physletb.2007.03.023
https://doi.org/10.1016/j.physletb.2007.03.023
https://doi.org/10.1007/JHEP10(2015)170
https://doi.org/10.1103/PhysRevD.97.035024
https://doi.org/10.1103/PhysRevD.97.035024
https://doi.org/10.1016/j.physletb.2009.12.022
https://doi.org/10.1016/j.physletb.2009.12.022
https://doi.org/10.1007/s10701-018-0196-6
https://inspirehep.net/search?p=find%2Beprint%2Bhep-th/0511260
https://inspirehep.net/search?p=find%2Beprint%2Bhep-th/0511260
https://inspirehep.net/search?p=find%2Beprint%2Bhep-th/0511260


[15] A. Salvio and A. Strumia, Eur. Phys. J. C 78, 124
(2018).

[16] C. Wetterich, Phys. Lett. B 301, 90 (1993).
[17] T. R. Morris, Int. J. Mod. Phys. A 9, 2411 (1994).
[18] T. R. Morris, Phys. Lett. B 329, 241 (1994).
[19] A. Eichhorn and A. Held, Phys. Rev. Lett. 121, 151302

(2018).
[20] A. Eichhorn and A. Held, Phys. Lett. B 777, 217 (2018).
[21] A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Annu.

Rev. Nucl. Part. Sci. 59, 191 (2009).
[22] M. Shaposhnikov, in Astroparticle Physics: Current Issues,

2007 (APCI07) Budapest, Hungary, 2007 (2007).
[23] G. Marques Tavares, M. Schmaltz, and W. Skiba, Phys. Rev.

D 89, 015009 (2014).
[24] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek,

J. High Energy Phys. 10 (2010) 085.
[25] J. Borchardt, H. Gies, and R. Sondenheimer, Eur. Phys. J. C

76, 472 (2016).
[26] R. Sondenheimer, Eur. Phys. J. C 79, 10 (2019).
[27] M. Badziak and K. Harigaya, Phys. Rev. Lett. 120, 211803

(2018).
[28] G. M. Pelaggi, A. D. Plascencia, A. Salvio, F. Sannino,

J. Smirnov, and A. Strumia, Phys. Rev. D 97, 095013
(2018).

[29] R. Mann, J. Meffe, F. Sannino, T. Steele, Z. Wang, and C.
Zhang, Phys. Rev. Lett. 119, 261802 (2017).

[30] D. Barducci, M. Fabbrichesi, C. M. Nieto, R. Percacci, and
V. Skrinjar, J. High Energy Phys. 11 (2018) 057.

[31] S. Weinberg, The Quantum Theory of Fields (Cambridge
University Press, Cambridge, England, 1995), Vol. 1.

[32] S. Pokorski, Gauge Field Theories, 2nd ed., Cambridge
Monographs on Mathematical Physics (Cambridge Univer-
sity Press, Cambridge, England, 2000).

[33] A. Pilaftsis and T. E. J. Underwood, Nucl. Phys. B692, 303
(2004).

[34] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M.
Sher, and J. P. Silva, Phys. Rep. 516, 1 (2012).

[35] J. F. Gunion and H. E. Haber, Phys. Rev. D 67, 075019
(2003).

[36] J. D. Wells, in 39th British Universities Summer School in
Theoretical Elementary Particle Physics (BUSSTEPP 2009)
Liverpool, United Kingdom, 2009 (2009).

[37] J. O. Gong, H. M. Lee, and S. K. Kang, J. High Energy
Phys. 04 (2012) 128.

[38] O. Lebedev and H. M. Lee, Eur. Phys. J. C 71, 1821 (2011),
[39] L. Laulumaa, Higgs mass predicted from the standard model

with asymptotically safe gravity, Master’s thesis, Jyvaskyla
University, 2016.

[40] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F.
Sala, A. Salvio, and A. Strumia, J. High Energy Phys. 12
(2013) 089.

[41] S. P. Robinson and F. Wilczek, Phys. Rev. Lett. 96, 231601
(2006).

[42] O. Zanusso, L. Zambelli, G. P. Vacca, and R. Percacci, Phys.
Lett. B 689, 90 (2010).

[43] L. Griguolo and R. Percacci, Phys. Rev. D 52, 5787 (1995).
[44] R. Percacci and D. Perini, Phys. Rev. D 68, 044018 (2003).
[45] A. Eichhorn, Y. Hamada, J. Lumma, and M. Yamada, Phys.

Rev. D 97, 086004 (2018).
[46] M. Reuter, Phys. Rev. D 57, 971 (1998).
[47] R. Percacci and D. Perini, Phys. Rev. D 68, 044018 (2003).
[48] G. Narain and R. Percacci, Classical Quantum Gravity 27,

075001 (2010).
[49] A. Eichhorn, Y. Hamada, J. Lumma, and M. Yamada, Phys.

Rev. D 97, 086004 (2018).
[50] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659,

703 (2008).
[51] A. A. Starobinsky, JETP Lett. 30, 682 (1979).
[52] A. Eichhorn, arXiv:1810.07615.
[53] P. H. Chankowski, A. Lewandowski, K. A. Meissner, and H.

Nicolai, Mod. Phys. Lett. A 30, 1550006 (2015).
[54] K. A. Meissner, H. Nicolai, and J. Plefka, Phys. Lett. B 791,

62 (2019).
[55] A. Eichhorn and A. Held, Phys. Rev. Lett. 121, 151302

(2018).
[56] A. Eichhorn, Classical Quantum Gravity 30, 115016 (2013).
[57] J. H. Kwapisz and K. A. Meissner, Acta Phys. Pol. B 49,

115 (2018).
[58] P. A. R. Ade et al. (BICEP2 and Planck Collaborations),

Phys. Rev. Lett. 114, 101301 (2015).
[59] A. H. Guth, D. I. Kaiser, and Y. Nomura, Phys. Lett. B 733,

112 (2014).
[60] D. I. Kaiser, Fundam. Theor. Phys. 183, 41 (2016).
[61] S. Weinberg, Phys. Rev. D 81, 083535 (2010).
[62] K. A. Meissner and H. Nicolai, Phys. Lett. B 718, 943

(2013).
[63] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 85,

012008 (2012).
[64] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett.

108, 111804 (2012).
[65] S. von Buddenbrock, N. Chakrabarty, A. S. Cornell, D. Kar,

M. Kumar, T. Mandal, B. Mellado, B. Mukhopadhyaya, and
R. G. Reed, arXiv:1506.00612.

[66] S. von Buddenbrock, N. Chakrabarty, A. S. Cornell, D. Kar,
M. Kumar, T. Mandal, B. Mellado, B. Mukhopadhyaya,
R. G. Reed, and X. Ruan, Eur. Phys. J. C 76, 580 (2016).

ASYMPTOTIC SAFETY AND CONFORMAL STANDARD MODEL PHYS. REV. D 99, 115029 (2019)

115029-7

https://doi.org/10.1140/epjc/s10052-018-5588-4
https://doi.org/10.1140/epjc/s10052-018-5588-4
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1142/S0217751X94000972
https://doi.org/10.1016/0370-2693(94)90767-6
https://doi.org/10.1103/PhysRevLett.121.151302
https://doi.org/10.1103/PhysRevLett.121.151302
https://doi.org/10.1016/j.physletb.2017.12.040
https://doi.org/10.1146/annurev.nucl.010909.083654
https://doi.org/10.1146/annurev.nucl.010909.083654
https://doi.org/10.1103/PhysRevD.89.015009
https://doi.org/10.1103/PhysRevD.89.015009
https://doi.org/10.1007/JHEP10(2010)085
https://doi.org/10.1140/epjc/s10052-016-4300-9
https://doi.org/10.1140/epjc/s10052-016-4300-9
https://doi.org/10.1140/epjc/s10052-018-6507-4
https://doi.org/10.1103/PhysRevLett.120.211803
https://doi.org/10.1103/PhysRevLett.120.211803
https://doi.org/10.1103/PhysRevD.97.095013
https://doi.org/10.1103/PhysRevD.97.095013
https://doi.org/10.1103/PhysRevLett.119.261802
https://doi.org/10.1007/JHEP11(2018)057
https://doi.org/10.1016/j.nuclphysb.2004.05.029
https://doi.org/10.1016/j.nuclphysb.2004.05.029
https://doi.org/10.1016/j.physrep.2012.02.002
https://doi.org/10.1103/PhysRevD.67.075019
https://doi.org/10.1103/PhysRevD.67.075019
https://doi.org/10.1007/JHEP04(2012)128
https://doi.org/10.1007/JHEP04(2012)128
https://doi.org/10.1140/epjc/s10052-011-1821-0
https://doi.org/10.1007/JHEP12(2013)089
https://doi.org/10.1007/JHEP12(2013)089
https://doi.org/10.1103/PhysRevLett.96.231601
https://doi.org/10.1103/PhysRevLett.96.231601
https://doi.org/10.1016/j.physletb.2010.04.043
https://doi.org/10.1016/j.physletb.2010.04.043
https://doi.org/10.1103/PhysRevD.52.5787
https://doi.org/10.1103/PhysRevD.68.044018
https://doi.org/10.1103/PhysRevD.97.086004
https://doi.org/10.1103/PhysRevD.97.086004
https://doi.org/10.1103/PhysRevD.57.971
https://doi.org/10.1103/PhysRevD.68.044018
https://doi.org/10.1088/0264-9381/27/7/075001
https://doi.org/10.1088/0264-9381/27/7/075001
https://doi.org/10.1103/PhysRevD.97.086004
https://doi.org/10.1103/PhysRevD.97.086004
https://doi.org/10.1016/j.physletb.2007.11.072
https://doi.org/10.1016/j.physletb.2007.11.072
http://arXiv.org/abs/1810.07615
https://doi.org/10.1142/S0217732315500066
https://doi.org/10.1016/j.physletb.2019.01.066
https://doi.org/10.1016/j.physletb.2019.01.066
https://doi.org/10.1103/PhysRevLett.121.151302
https://doi.org/10.1103/PhysRevLett.121.151302
https://doi.org/10.1088/0264-9381/30/11/115016
https://doi.org/10.5506/APhysPolB.49.115
https://doi.org/10.5506/APhysPolB.49.115
https://doi.org/10.1103/PhysRevLett.114.101301
https://doi.org/10.1016/j.physletb.2014.03.020
https://doi.org/10.1016/j.physletb.2014.03.020
https://doi.org/10.1007/978-3-319-31299-6_2
https://doi.org/10.1103/PhysRevD.81.083535
https://doi.org/10.1016/j.physletb.2012.11.012
https://doi.org/10.1016/j.physletb.2012.11.012
https://doi.org/10.1103/PhysRevD.85.012008
https://doi.org/10.1103/PhysRevD.85.012008
https://doi.org/10.1103/PhysRevLett.108.111804
https://doi.org/10.1103/PhysRevLett.108.111804
http://arXiv.org/abs/1506.00612
https://doi.org/10.1140/epjc/s10052-016-4435-8

