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Higgs vacuum stability with vectorlike fermions
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We present the effects of vectorlike fermions (VLFs) on the stability of the Higgs electroweak vacuum,
using the renormalization group improved Higgs effective potential. We review the calculation of the
one-loop beta-functions of the standard model couplings, paying particular attention to the fermion
contributions. From this, we derive the VLF contributions to the beta-functions. Using these beta-functions,
we determine the scale at which the effective Higgs quartic coupling becomes zero and goes negative,
signaling vacuum instability. We find that for certain VLF masses and Yukawa couplings, the Higgs quartic
stays positive for field values all the way up to the Planck scale, implying that the metastable vacuum of the
standard model can be rendered absolutely stable if VLFs are present with certain parameters. For other
values of VLF parameters, the Higgs vacuum is metastable as in the standard model. For cases where the
vacuum is metastable, we compute the probability of quantum tunneling from the false electroweak
vacuum into a deeper true vacuum in our Hubble volume by numerically solving for the bounce
configuration in Euclidean space-time and computing the bounce action for it. We compare our numerical
solution with the analytical approximation for the bounce action commonly used in the literature and

comment on when the latter may be used.
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I. INTRODUCTION

The stability of the electroweak (EW) vacuum can be
studied using the Higgs effective potential (for a review,
see Ref. [1]). Recent investigations (see, for example,
Refs. [2-5]) at the next-to-next-to-leading order (NNLO)
level have revealed that the Higgs vacuum is metastable in
the standard model (SM), with the lifetime in the false
(EW) vacuum being much larger than the age of
the Universe. This situation arises because the Higgs
quantum effective potential V. (h) has a smaller value
for h ~10'° GeV when compared to its value at the EW
vacuum expectation value (VEV) v =246 GeV, i.e.,
Veff(l’l ~ 1010 GCV) < Veff(v) for the SM.

There are many compelling reasons to expect physics
beyond the standard model (BSM). These include theoretical
reasons such as the gauge hierarchy problem and observa-
tional reasons such as neutrino mass generation, dark matter,
and generation of the baryon asymmetry of the Universe. A
plethora of BSM extensions has been proposed to address
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these shortcomings of the SM. These inevitably add new
particles to the SM particle content. In particular, resolution of
the gauge hierarchy problem necessarily has new states
coupled to the Higgs. In such cases, the above conclusions
on Higgs EW vacuum stability must be revisited by including
the effects of such new particles. Many such BSM extensions
include vectorlike fermions (VLFs) that couple to the Higgs
and are often the lightest BSM states. They therefore have a
significant effect on EW vacuum stability. Some examples of
such models that include vectorlike fermions are in the
following contexts: the gauge hierarchy problem such as
anti-de Sitter—space/composite-Higgs models in Refs. [6-9],
Higgs-portal dark matter models in Refs. [10-14], gauge-
coupling unification in Refs. [15-19], neutrino mass gen-
eration and vacuum stability in Refs. [20-25], the universal
extra dimension model in Ref. [26], SM extensions with an
additional U(1) gauge symmetry in Refs. [27-30], models
with an extended scalar sector in Refs. [31,32], a combination
of these in Ref. [33-35], models of inflation in Refs. [36,37],
and effective models in Refs. [38—40]. Motivated by these
considerations, we study the effect of VLFs that are coupled to
the Higgs on EW vacuum stability.1 Many of these models

'New chiral (fourth generation) fermions that get their mass
from the Higgs are severely disfavored with a single Higgs
doublet from the recent LHC Higgs cross section and couplings
measurements. In contrast, VLFs tend to have milder constraints
on them, owing to their nice decoupling property.
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may also contain new bosonic states apart from VLFs. In such
a case, a full conclusion about the stability of the EW vacuum
in that model can be reached only after including the
contributions of these bosonic states also. However, fermions
usually have the biggest role in destabilizing the EW vacuum,
and so our analysis here addresses the most crucial ingredient
in this problem. Hence, our goal here is to analyze model
independently the generic effects of VLFs on EW vacuum
stability.

We set the stage for our analysis by writing the classical
Higgs potential as

m2 A
V="t 4+ ht 1
2 + 4 (m)
Including quantum effects, we can write the quantum Higgs
effective potential as

2 e (R
V() = " F )y @

where A has a dependence on £ of the form In (2/M) with
M being a subtraction scale. For h > m, (the physical
Higgs mass m;, ~ 125 GeV), the mass term has a negligible
effect, and thus, to an excellent approximation, we can
write

j'eff (h)

T (3)

Veff(h) =

Denoting the field value as A =u and denoting A.(u)
as just A(u), it can be shown (see, for example, Ref. [41])
that A(4) obeys a renormalization group equation (RGE) of
the form

di(u)
dinyu

= B (Aw), yi (1), 95(1), g2 (u), g1 (w), --.)- - (4)

The RGE is interpreted now as an evolution with field
value & = pu, and the p-function S, is the usual S-function
for the coupling 4, governed by the RGE. The A(p) obtained
by integrating the RGE has the leading logs of the form
log" (u/M) resummed. f3, is shown as a function of A
itself and also of the other couplings that contribute
significantly, which, in the SM, are the top Yukawa
coupling y, and the SU(3), SU(2), and U(1) gauge
couplings g, = {93, 9», g1 }- All these couplings also evolve
with p via analogous RGE equations with their correspond-
ing p-functions f, , 8, . We neglect the contributions of the
other SM couplings to the p-functions as they contribute
insignificantly. From Eq. (3), we see that for 4 > m,,, the
instability is signalled by the Higgs quartic effective
coupling A(y) becoming negative.

As we show explicitly later, f; obtains a negative
contribution from y,, while it obtains a positive contribution
from A(p) itself and from gauge couplings. Thus, the top

quark has the important effect of decreasing A(u), and for y,
as large as in the SM, for the observed my,, it drives A(u)
negative at higher energies, signaling vacuum instability.
The effect of fermions coupled to the Higgs is generally to
destabilize the electroweak vacuum, although in this work,
we show that this statement is not so definite. Many
extensions beyond the SM include new fermions, and
the question we address in this work is what the effects
of new fermions might be on Higgs vacuum stability in
light of the observation made above.

The subject of this work is to include VLF contributions
to the p-functions and find the consequences for EW
vacuum stability and how it is changed from the SM.
We ask if A(u) still becomes zero with VLF present, and if
so at what y, and compare it with the SM case. If the
vacuum is unstable, we compute the tunneling probability
to ascertain if it decays within the age of the Universe, in
which case it is unacceptable. On the contrary, if the
lifetime in the EW vacuum is comparatively much larger
than the age of the Universe, it is metastable and phenom-
enologically acceptable. To this end, we study some simple
VLF extensions of the SM, where the VLFs are either in the
trivial or fundamental representations of SU(3), SU(2),
and U(1), and demonstrate their effects on Higgs vacuum
stability. In particular, the VLFs we add are of two kinds,
namely, SU(3) triplet vectorlike quarks (VLQ) and SU(3)
singlet vectorlike leptons (VLLSs).

The paper is organized as follows. In Sec. II, we list
the one-loop RGE in the SM and include some significant
two-loop corrections from the literature. We present a
derivation of the fermionic contributions to the RGE in
Appendix A. We then derive the one-loop VLF contribu-
tions to the RGE and add these to the SM RGE. We present
the calculational details of the VLF contributions in
Appendix B. We integrate the RGE numerically and show
the evolution of the couplings as a function of the field
value & = pu. In Sec. III, we compute the probability that our
electroweak vacuum would have tunneled into a deeper
true vacuum in our Hubble volume in the case where
the EW vacuum is metastable. We do so by solving for the
bounce configuration numerically and computing the
Euclidean action for this. In Sec. IV, we make some
remarks for the case when the VLFs render the EW
vacuum absolutely stable. In Sec. V, we compare our
numerical evaluation of the bounce action to an approxi-
mation commonly used in the literature and provide a
cautionary note on when the approximation can be applied.
We offer our conclusions in Sec. VI.

II. RENORMALIZATION GROUP IMPROVED
HIGGS EFFECTIVE POTENTIAL

We have in the SM the Lagrangian density, showing only
the terms relevant to our analysis here,

Lot —AHH) - (y,q, - Htg + Hel),  (5)
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where the - represents the antisymmetric combination in
SU(2) space, q; = (1,b;)T is the SU(2) doublet, and
t = (tytg)T and b= (b bg)" are the top-quark and
bottom-quark Dirac fermions. It is sufficient for our
purposes to keep only the top Yukawa coupling y, in the
SM as the others are very suppressed. Next, we present the
SM p-functions and extend them to include the VLF
contributions.

A. SM RGE

We first discuss the SM RGE p-functions at the one-loop
level and include some significant two-loop effects. We use
the SM RGE to find the Higgs field value at which A(u)
becomes zero and compare our results with those in the
literature. Denoting the relevant SM couplings generically
as k; = {4, ¥, 93, 92, g1 }» the RGE are of the form

dKi(ﬂ) o
T = a5 1) (6)

We derive the fermion contributions to f, in Appendix A
since our goal in this work is to extend them to include VLF
contributions. We take the other terms from the literature
(see, for example, Ref. [4]). Putting these together, the one-

loop p-functions, ﬂ,(cl), are

1 9
pY = T [24&2+4N6y,2/1 A e
9 2003 s
, 7
W oy [B+2N) , o, 9, 17
y - 5 _8 1 8
g 16712[ y ViTdngam e @
ﬂga 1 2’ <9)
with b, = (=7,-19/6,41/10) for g, = (43,92, 91),

respectively, and N. = 3 for a fermion in the fundamental
representation of SU(3). For g;, we use the SU(5)
normalization; i.e., the SM hypercharge gauge-coupling
g is related to g, by g, = 1/5/3¢.

The precision of the full two-loop (or higher order)
calculations that are available in the literature are not
required for our purposes since our goal is to analyze
BSM physics contributions that involve as yet experimen-
tally undetermined parameters. However, to help compare
our numerical results to what has been obtained in the
literature for the SM, we will include two-loop SM
contributions to the fS-functions that depend on y, and g3
as they are numerically the most significant. They are
(see, for example, Ref. [4])

2
M
B = oy GO = 326007 + 80 +--). - (10)
i [(_404 40 o))
p ~ (1627 K 3 ToMh )9
+36yt2g§—12yf+-~}, (11)
3
9
P = ey (80 +10n™)g =22+ (12)

where n;SM> =6 is the number of SU(3)-triplets (i.e.,
quarks) in the SM.

We use these RGEs to determine the Higgs field value y
at which A(u) becomes zero, signalling vacuum instability.
This will be discussed in Sec. II C. We discuss next the
VLF contributions to the RGE.

B. VLF contributions to the RGE

We add an SU(2) doublet VLF y = (y1,)! and an
SU(2) singlet VLF £ and couple it to the Higgs as follows,
LD =My -MEE~ (37 -HE+He),  (13)

where the - represents the antisymmetric combination in

SU(2) space.” Extracting the Higgs interactions from this
yields

£2 =T hn+En). (14)

If y and £ have color N, =3, we call them vectorlike
quarks (VLQs), and if they are trivial under SU(3), i.e
N, =1, we call them vectorlike leptons. The SU(3),
SU(2), and U(1) gauge interactions are standard, and
we do not show them explicitly. We denote the hypercharge
of y as Y, that of £ as Y., and that of the Higgs doublet is
Yy = 1/2 as in the SM. If NI, = 3, the VLQs have gluon
interactions, while if N/. = 1, the VLLs do not have gluon
interactions.

For SM-like choices of Y, and Y, mixed Yukawa
couplings between the VLF and the standard model
fermions (SMFs) can be written down. However, collider,
flavor changing neutral current, and other precision con-
straints restrict how large such couplings can be (for details,
see, for example, Ref. [42]). For simplicity, in this work, we
do not turn on such mixed Yukawa couplings; an analysis

*If another SU(2) singlet VLE ¢ is added, we can add the terms
LD Mgéjéj (9. 0HC + H.c.). After adding the ¢, the one
doublet and two singlet VLF structure then mimics the SM
quark or lepton structure in a generation. For keeping the field
content minimal, we will omit the { in our work here and
therefore will not include the 3, term.
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including such mixed couplings will be the subject of
future work.

We derive the one-loop RGE contributions due to the
VLF (see Appendix B for the derivation) and add them to
the SM contributions given above. The VLF contributions
to the RGE in Egs. (7)-(9) and the SM and VLF
contributions to the RGE for the new coupling y are

3
1)VLE 9 2
P =125 (5m) "
ViF_ 9 (24,
BT =2 (SN ), (16)
ﬁ(l)VLF o g:l3 iN/ (2n Y2 + n Y2> (17)
" — 16n—2 3 ¢ 24y 15/
2n ~ 5
g = 167; (4N.522 — 2N.5%), (18)
1)VLF n ¥
A = T N, (19)
¥ [B5+2Nyi +4npNS?) oo
=2 AT giyteg
9, 9,50,
_192_591(YH+2Y%Y5) ’ 20

where n3 is the number of colored VLF SU(3) triplets, i.e.,
VLQs; n, is the number of SU(2) doublets; n; is the
number of SU(2) singlets; ny is the number of complete
VLF families coupled to the Higgs (a family is a doublet

A

and a singlet both present); and nXLQ =1if the VLFis a
VLQ family or zero otherwise. For example, np = 0 for
either VLF singlets or doublets added (but not both), and
nr = 1 for one SU(2) doublet and one singlet VLF added
together such that a Yukawa coupling ¥ can be written
down with the Higgs. Only VLQs contribute to f,,, and
VLLs do not. For instance, for one VLQ family of y and &,
we have N.=3, n;=3, no=1, ni=1, np=1,
and ﬁXLQ =1

To improve precision, we include the dominant two-loop
VLF contributions to the f-functions obtained from the
package SARAH [43,44], which are

3
2)VLF g N -
PAVLE (16;2)2 (10n3g3 =2 x 2y 952 +-.),  (21)
~2
2)VLF y'n ~ ~ -
pVE = (16”5)2 (2 x 10N.5* = 2 x 327 252
+2 % 807U + - ), (22)

y 40 9 9 -
ﬂf)VLF = (167;2)2 <9 71393t - b nFN/cy4 - ) nFNlcyzyzz
+ 40n) G352 + - > : (23)

@__ V| (o _3\ss
= ey |- (w35
2 x 485 40

AVLQ [ =Y

+ ng ( 9 + 9

(n™ 1 n3>)g§

o 27, , 27
+ 560y 0503 + 208y7 — Vi = ot + } :

(24)

where n\F/LQ is the number of colored families, and as noted

earlier, nFSM) = 6. We have explicitly checked that the
above dominant contributions closely reproduce numeri-
cally the full two-loop running from SARAH.

Our goal in this work is to analyze the stability of the EW
vacuum for which the behavior of Vg at large field values
is most important. We have therefore not kept the finite
mass effects in the RGE as they are small, being of the
form (m/u) for u > m where m collectively denotes the
particle masses. We include the VLF contributions only for
u> My, where My, is the vectorlike fermion mass.

C. RGE Numerical integration results

We take the input parameters as follows and as compiled
in Ref. [4], with the renormalization point taken as the top
mass scale 7,:

the EW VEV: v = 246.2 GeV,

the Higgs quartic: 1 = 0.12710 (NNLO),

the top Yukawa coupling: y, = 0.93558 (partial three-

loop),

the SU(3),. coupling constant: g3 = 1.1666 (partial four-

loop),

the SU(2), coupling constant: §, = 0.64755 (next-to-

leading order),

the U(1) coupling constant: §; = /5/3¢' = /5/3 x

0.35937 (next-to-leading order).

In terms of these inputs, we set the top mass to be
i, = y,v/v/2 and the Higgs mass 7, = V2Jv. In this
work, since our interest is in analyzing a new physics
(VLF) model with unknown parameters, the full precision
to which these are defined is not so important, and the
above specification is more than adequate for our purposes.

The RGEs are a coupled set of first order differential
equations for the couplings A(u), v,(u), g3(u), 9>(p), and
g1 (u). We take the inputs given above at /7, and integrate
the RGE numerically, including both the SM contributions
in Sec. IT A and the VLF contributions in Sec. II B. As

already mentioned, we include the VLF contribution only
for H > M VL-
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In Figs. 1-4 we show the evolution of the different
couplings for the SM and also for some representative VLF
cases. In these figures, the dashed lines are for the SM with
only the SM particle content with no VLFs, while the solid
lines are for various VLF cases. As is evident, in the SM, all
the couplings decrease with field value 4 = pu. The Higgs
quartic coupling 4 becomes zero and goes negative at about
u~ 10193 GeV, while all the other couplings stay positive
all the way up to Mp,. It is interesting that 3, approaches
zero for large field values (cf. Fig. 9). In the following, we
discuss the evolution of the couplings in the presence
of VLFs.

In Fig. 1, we show the evolution of the couplings with
field value h = p for (n) degenerate SU(2) singlet VLQs
for various My, where the My, values are shown in the
notation (rEm) = r x 10™ GeV. When three or more
degenerate singlet VLQs of mass 3 TeV are added,
interestingly, 4 never goes negative, unlike in the SM.
When we add only singlet VLQs, SU(2) invariance forbids
a coupling of the Higgs to such VLQs, (we do not turn on
mixed Yukawa couplings between SM fermions and VLFs
as we noted earlier). However, these VLQs contribute to 3,
and also to f3, if the VLQ has hypercharge, and because of
the coupled nature of the RGEs, A(h) does see the effect
of the VLQ. In particular, even if y is very small, the
VLQ contribution to ,, given in Eq. (15) still remains and,
being positive, results in g3 (u) being larger for larger u as

MVLQ = 3TeV
0.04 ' ' '
0.03}
0.02¢
= 3
=z 0.01
0.00
-0.01f
-0.02}, ‘
6 8 10 12 14 16 18
logso 41 (GeV)
MVLQ = 3TeV

log1o p(GeV)

FIG. 1.

compared to the SM. A larger g3 means that the second
term in Eq. (8) is more negative, causing the y,(u) to be
smaller in comparison to the SM case. A smaller y, implies
a less negative contribution to f#, from the third term of
Eq. (7), which means that the A(u) is larger with VLQs
present. For large enough n3, this results even in a turn
around to a positive f3,, allowing for the possibility of 4
never going negative. We discuss the implications of this to
vacuum stability in Sec. IV.

In Fig. 2, we show the evolution of the couplings with
field value h = u for (n) degenerate SU(2) doublet VLQs
for various My,; . We observe that when we add one or more
doublet VLQs of mass 3 TeV, 4 never goes negative for the
same reasons as above. We also see that adding a doublet
VLQ with mass up to about 10° GeV will have this feature.
We discuss in Sec. IV the implications to vacuum stability
of A remaining positive. If we add five or more doublets
with 3 TeV mass, we find that, due to the large positive
VLF contribution to $, given in Eq. (16), g, grows and
becomes nonperturbative at  ~ 10'® GeV, invalidating this
perturbative analysis at around that scale. In Fig. 2, we have
restricted the five doublet curves to the region g, < 10 so
that our perturbative analysis is reliable. The negative
contribution proportional to g3 in py, given in Eq. (8)
becomes significant as g, becomes large and leads to a
smaller y,. Also, 3, gets a large positive VLF contribution
from Eq. (15) causing g3 to increase with u.

MVLQ = 3TeV

log1o 1 (GeV)
0.04f
0.03f
0.02}
2 oot}
< 3E3
oo e o —
_001 e TR ED— +
SM
-0.02}, ( ‘ )

log1o p(GeV)

The evolution of 4, y,, and g3 with Higgs field value u for (n) number of degenerate SU(2) singlet VLQs of mass 3 TeV

(first three plots) and A with three degenerate singlet VLQs of mass 3 x 10° GeV, 10° GeV, and 107 GeV shown, respectively, as 3E3,

1ES, and 1E7 (last plot).
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My q = 3TeV
MVLQ =3TeV 0.7 Fr T T VLQ‘ T T T 3
0.04F ‘ ‘ ‘ ‘ I ’
0.6
0.03}
0.5
0.02}
= 3 0.4
< 001} =03
0.00 0.2
-0.01} 0.1F k|
-0.02f, ‘ ‘ ‘ ‘ ‘ o 0.0f, ‘ ‘ ‘ ‘ ‘ 4
6 8 10 12 14 16 18 6 8 10 12 14 16 18
log1o 1 (GeV) logio p(GeV)
MVLQ = 3TeV
0.04F
0.03}
— 0.02
= 5
0.00 S 5, .
~§~~~ —t I_JW
-0.01F e . ]
(SM)
‘ ‘ ‘ -0.02f, ‘ ‘ ‘ ‘ ‘ ‘
5 10 15 6 8 10 12 14 16 18
log1o p(GeV) logo 1 (GeV)

FIG. 2. The evolution of 4, y,, and g3 with the Higgs field value p for (n) number of degenerate SU(2) doublet VLQs of mass 3 TeV
(first three plots) and A with a doublet VLQ of mass 3 x 103 GeV, 10° GeV, and 107 GeV shown, respectively, as 3E3, 1E5, and 1E7
(last plot).

My, = 1TeV
MVLL= 1TeV \‘/LL T
o.10f ‘ ‘ ‘ I 14
0.08} ] 12
0.06} 1 10
S 004} i Zos8
0.02} . ] 0.6
~~~~~~ (SM) .
000 +—F——\—— e 0.4
(115) (1.0) \(0.75) 0.5)
-0.02f | . ‘ ‘ ‘ ] 02f ‘ ‘ ‘ ‘ ]
4 6 8 10 12 4 6 8 10 12 14
logio H (GeV)
J(My)= 1.0
0.10f
0.08}
0.06}
= b
S 004
0.02f
- (SM)
0.00 S
(183)  (A\E5) (1E7) (AE9)
-0.02f ‘ ‘ R ‘ ‘ ‘ ‘ ‘ ‘
4 6 8 10 12 4 6 8 10 12 14
logio 1 (GeV) log1o H(GeV)

FIG. 3. The evolution of 4, y,, and § with Higgs field value p for a degenerate family of one SU(2) doublet VLL and one singlet VLL,
for My; =1 TeV and various ¥ (first two plots) and for y(My;) = 1 and various My, (in GeV) (last two plots).
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In Fig. 3, we show the evolution of the couplings with
field value h = u for a degenerate family of one SU(2)
doublet VLL and one singlet VLL for various My; and ¥.
The VLL Yukawa coupling values are shown as (¥),
and the My, values are shown in the notation (rEm)=
r x 10™ GeV.For y(My;) = 1, we see that y increases as u
increases. y, eventually starts increasing at large u, which is
a behavior unlike in the SM. We notice that the scale at
which 4 becomes negative decreases as y increases, or as
My, decreases.

In Fig. 4, we show the evolution of the couplings with
field value h = p for a degenerate family of one SU(2)
doublet VLQ and one singlet VLQ, for various My; and 3.
We see that for y(My; ) = 0.5, § decreases as u increases.
For My; =3 TeV, if y > 0.35, the scale at which A
becomes negative decreases as ¥ increases or as My
decreases and is lesser than in the SM, while if ¥ < 0.35,

MVLO = 3TeV

log1o p(GeV)
' __JMw)= 01 i
0.02} ]
1E3)
001} ]
= (1E4)
=~ 0.0 — CFES)
e—(dEn—
-0.01F  TTeeee .
(SM)
-0.02 , :
8 10 12 14 16 18
logo 1 (GeV)
7 (M) = 05

logio H(GeV)

the scale at which 4 becomes negative is larger than in the
SM. In fact, for y < 0.3, 1 stays positive all the way up to
Mp,. We see that when ¥ = 0.1 for example, 4 stays positive
all the way up to My, for My, up to about 103 GeV.
These examples illustrate a range of effects on the
evolution of the couplings due to VLFs. For the cases
when A does go negative, the EW vacuum is not the
absolute minimum but is metastable. There is then a
nonzero probability that the EW vacuum will tunnel
quantum mechanically away to those (large) field values
where V. < 0. We turn next to an analysis of this
possibility and a computation of the tunneling probability.

ITII. TUNNELING AWAY FROM EW VACUUM

In this section, we compute the tunneling probability
from the metastable electroweak Higgs vacuum into a

MVLQ = 3TeV
1.4F
1.2¢
1.0f
2
< 0.8f
0.6}
0.4}
0.2f )
5 10 15
log1o 1 (GeV)
J(Mw) = 05
0.10f
0.08}
0.06}
) L
= 0.04
0.02}
0.00
-0.02}
log1o u(GeV)
J(My ) =05
0.6
0.5F (1E7)
5
041
=)
= (1E3)
> 03t
0.2
0.1 ) ) )
5 10 15
log1o t (GeV)

FIG. 4. The evolution of 4, y,, g3, and § with Higgs field value u for a family of one SU(2) doublet VLQ and one singlet VLQ for
various My, and 3. The top row is for My; o = 3 TeV, while the bottom row is for different My, (in GeV) for y(My,) = {0.1,0.5}.
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deeper true vacuum via quantum mechanical barrier pen-
etration. We do this by computing the Euclidean action for
the bounce configuration of the Higgs field (for a review,
see, for example, Ref. [45]). We compute the bounce
configuration using the running couplings that we pre-
sented in Sec. II. From the bounce action S, we compute
the tunneling probability P,,,;.

A. Method of computing the tunneling probability

We briefly review here how to compute the bounce
configuration and the tunneling probability (for details, see,
for example, Refs. [1,45] and references therein). In Sec. V,
we discuss in detail why we do not use the approximation
commonly used in the literature but resort to actually
solving the bounce equation of motion (EOM) numerically
as described in this section.

Let us recall that the Lagrangian density £ and the action
S for the Higgs field in Minkowski coordinates are

1
L= SN~ Vealh); S = / dxL, (25)

with the effective potential defined in Eq. (2). We define
the Euclidean time 7 = it, the Euclidean coordinates
pl={r,x',x*,x*} with i = {1,2,3,4}, and the invariant
p? =7+ (x')? + (x*)> + (x*)> and write the Euclidean
action as

o= [ o[y @2+ vam]. o)

where 9; is with respect to the Euclidean coordinates p'.

As mentioned earlier, taking V. (v) =0 at the EW
minimum, the central question of interest in our work here
is whether the EW vacuum is absolutely stable or if there
is a possible transition to other field values, which would
be possible only if V. (k) < 0 for some & typically much
larger than w. If there exists field values for which
Vet (h) < 0, the EW vacuum at & = v is typically separated
from this by a (large) barrier and a vacuum transition can
only occur via quantum tunneling. In such a situation, we
would like to know the timescale of the tunneling in
comparison to the age of the Universe and see if we can
gain an understanding of why the Universe has not tunneled
away to the true vacuum with . > v but is in the EW
vacuum today. If for some large field value, & = o say,
suppose V(o) =0, and suppose Vi is negative for
h 2 0. [V may turn around and have a second minimum
(or not) for & > ¢ depending on other BSM contributions in
the RGE]. Equivalently, from our definition of the field
dependent coupling in Eq. (3), suppose 4(¢) = 0 and that
A(h) is negative for h = o. The vacuum configuration
defined to have total energy £ = 0 at 1 = v can quantum
mechanically tunnel to h > o with Vg(h) <0. If the
vacuum were to tunnel so, the field then runs down the

potential classically toward large field values # > o. The
tunneling probability is given in terms of the bounce
configuration [45], which satisfies 0§ = 0, starting with
h(t = —o0) = v, attaining a value h(t = 0) = hy > o, and
returning to /(¢ = oo) = v. This configuration is a solution
of the EOM. In Euclidean coordinates, the EOM reads

8Veff

27
oih =",

(27)
We look for an O(4) symmetric solution [46], which

implies that it depends on p, i.e., h(p') = h(p). The
EOM then reads

Bh 3dh OV

a2 pdp” Tan

(28)

with the boundary conditions (BCs) (dh/dp)(p =0) =0
and h(p — o0) = v. We must also have h(p = 0) = hg > o
for this to represent tunneling. This EOM is identical to that
of a classical particle moving in a potential —V g with a
“friction” term present [second term in Eq. (28)] that dies
off as 1/p as p increases.

In Euclidean space-time, the bounce configuration Az (p)
will have the feature of a fairly sharp transition in p from A,
to v. In Minkowski space-time, this configuration looks
like an expanding bubble with the bubble wall separating a
region of true vacuum inside and the false EW vacuum
outside. The bubble nucleation probability per unit
4-volume is given by [1] APyu/AV, = M*exp (—Sp),
where we have included a prefactor of M* on dimensional
grounds with M an appropriate mass scale, AV, is a unit
4-space-time volume, and Sz is the Euclidean action for
the bounce configuration hz(p) given by

Sy 22752/00 dpp? L(dhs 2+fo(h3) . (29)
0 2\ dp ¢

We make the choice M* = V4 (hy) since hy is typically the
largest scale in the problem and gives the largest tunneling
rate and hence the most conservative bound on the allowed
VLF parameter space from vacuum tunneling.

If a bubble bigger than the critical size had nucleated
anywhere in our past light cone, it would have engulfed us
by now, and we would not find ourselves in the EW vacuum
now. The (dimensionless) volume of our past light cone is
about V, ~ (1/m})exp(404), which is nothing but our
Hubble 4-volume in 1/ m‘,‘ units, and we choose this unit
since our starting point for the running is at the m, scale.
Thus, the total probability that we would have nucleated a
bubble in our Hubble volume and tunneled into the true
vacuum by now is Py ~ (dPyn/dV4) V4, which gives [1]

Ptunl = (hO/mt)4e(404_SB)‘ (30)
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If Py <1 for the given V., we deem this as an
acceptable situation. In other words, if Py, 2 1, we take
this to mean that the probability that we would have
tunneled into the true vacuum due to a bubble nucleating
in our past light cone is essentially unity, and therefore the
model that generated that V 4 we consider is disfavored.
Evidently, the larger Sy is, the smaller P, is, and the latter
is exponentially suppressed by Sp. In the following section,
we numerically solve the bounce EOM to get the bounce
configuration hg(p), compute Sy for this /iy, and compute
P We do this for the SM and some VLF extensions.

B. Tunneling probability numerical results

Here, we describe the method we use to solve the bounce
EOM numerically and obtain the bounce configuration
hg(p), the bounce action Sg, and the tunneling probability
Py for the SM and various VLF extensions.

The value of Sy largely depends on the behavior of V
at large field values i where the h* term dominates, which
is why we included only that term in V. Nevertheless, for
completeness, we insert an EW minimum at » by including
it in A(h) for h ~ v as follows. Keeping the A term, we
have for h~ v the potential V = —(u3/2)h* + (1/4)h*,
which we define to be Vo = ((h)/4)h* as in Eq. (3). This
definition implies that we have the effective quartic
coupling given by A(h) = A(v)(1 —2v%/h?) for h~ .
Slightly above the scale », we match this to the A(h)
obtained by solving the RGE. In this way, we effectively
obtain a minimum at & = v, while the larger field value
evolution is governed by the RGE. We add a constant term
to Ve and make Vi (v) = 0.

We obtain a solution of the EOM in Eq. (28) numerically,
subject to the BC h(p = 0) = hy, (dh/dp)(p = 0) = 0. hy
is unknown, and so we iteratively search for that A that will
lead to h(penq) = v and (dh/dp)(peng) = 0. Although in
theory p.,q — o0, in practice, it can be picked finite but
large enough that the bounce has completed the transition
from hy to v. In our numerical implementation, we work
with the dimensionless quantities p = ,p, h=h /i,
and ‘A/eff(m = Vg (h) /"

The friction term that goes like 1/p in Eq. (28) will be
problematic numerically near p — 0, and we therefore
obtain an analytical solution in this region, valid for p €
(0,¢€) for € < 1, and match this onto a numerical solution
of the EOM for p > e. We now give the solution valid in
p € (0,¢). For small p, we expand as (3/p)dh/dp =
s(p) = s+ s1p + (52/2)p* + O(p?) and require all the
s; to be finite so that the friction term is finite as p — 0.
Integrating this, we find 2(p) = hy + (s0/6)p* + O(p?).
Differentiating the earlier equation, we have d2h/dp* =
S0+ (451/3)p + (552/6)p* + O(p%). We find A(h(p)) =
Ao+ (ﬁlo/ho)(dzhﬁdﬁz)oﬁz/z +0(p), and By(h(p))=
Bio+(0P/Oh)o(d?h/dp?)op? /2+O(p*), where dg=A(hq),

Bro=PBilhe),  (h/dp?)y = (@h/dp*)(p=0),  and
(0B;/0h)o = (9B,/Oh)(h = hy). Also, OV i/ Oh=[A(h)+
B,(h)/4]h*. Substituting these into the EOM in Eq. (28),
we get, by matching powers of p, so = (Ao + B10/4) 3 /2,
s1=0, and s, = (3/8)(d*h/dp*)o[3(%0 + Bro/4)ho +
(Bro/ ho + (8B,/0h)y/4)k3). This is the solution valid
for p € (0,¢), and we get the solution at p =e¢ by
substituting p = € in this.

Taking the A(¢) and (dh/dp)|, obtained as above at the
point ¢ as a BC, we numerically integrate the EOM in
Eq. (28) for p € (€,peng) and obtain figz(p) over this
domain. The large values of the fields and the presence
of the friction term complicate the numerical implementa-
tion. A further challenge is that satisfying the required end
condition requires an extremely sensitive tuning of the
starting value fzo. By an iterative search algorithm, we are
able to obtain the bounce configuration hg(p) using
Mathematica.

Piecing together the analytical solution above and the
numerical solution, we obtain the bounce configuration
over the complete domain p € (0, pepq). Following this
procedure, we present below the bounce configuration, the
bounce action evaluated for this bounce, and the tunneling
probability for the SM and various VLF extensions.

For the SM, the V. (h = u) and the bounce configura-
tion hg(p) obtained numerically are shown in Fig. 5. The
Ver(p) is positive for smaller p, crosses zero at about
u~ 10975 GeV, and is negative for larger . The blue dot
shows the starting field value (%) of the bounce, and the
red dot shows the ending field value (v). For this bounce,
we find by numerical integration of Eq. (29) that the value
of the Euclidean bounce action is Sz = 2866 (in 7 =1
units). From this, we compute the tunneling probability into
the true vacuum in our Hubble volume from Eq. (30) to be
Py ~ 1071913 " which is an incredibly small probability.
This and many other comparisons we have done for the
SM are in excellent agreement with the results obtained
in Ref. [4].

Next, we solve the bounce EOM and compute the S and
Py, for various VLF representations. We start with a (color
singlet) VLL family with SM-like hypercharge assignment
present, i.e., an SU(2) singlet with hypercharge —1 and an
SU(2) doublet VLL with hypercharge —1/2 both present,
for various common mass My, and various y.

For a VLL family with M,; = 10® GeV and j = 0.6,
the Vg (h = ), and the bounce configuration are shown in
Fig. 6 (top row). The V() is positive for smaller p,
crosses zero at about u =~ 10%3 GeV, and is negative for
larger p. The blue dot shows the starting field value (k)
of the bounce, and the red dot shows the ending field value
(v). For this bounce configuration, we find Sz = 472 and
Py ~ 1076, This parameter-space point is thus acceptable
as the tunneling probability into the true vacuum is
sufficiently small for us to understand why the electroweak
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FIG. 5. For the SM, the effective potential as a function of the field value & = y and the bounce configuration 4z (p). The blue (red)
dot shows the starting (ending) value of the bounce.

vacuum has still not tunneled away into the true vacuum
within the age of the Universe. That is, for this model with
VLL present, the probability of a true vacuum bubble
having nucleated in our past light cone is sufficiently small,
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although this probability is much larger than in the SM. We
see that the presence of a VLL increases the tunneling
probability dramatically compared with the SM. For another
example, we consider a VLL family with M, = 10° GeV

3

FIG. 6. For a VLL family with M, = 10> GeV and ¥ = 0.6 (top row), My, = 10° GeV and § = 0.57 (middle row), and M, =
107 GeV and # = 0.6 (bottom row), the effective potential as a function of the field value & = u and the bounce configuration hg(p).
The blue (red) dot shows the starting (ending) value of the bounce.
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FIG. 7. With the addition of a VLQ family, the regions of
stability, metastability, and instability as a function of My, (in
GeV) and 3.

and j = 0.61, for which we find Sy = 422 and Py, ~ 10'7.
This large value implies that the EW vacuum could have
tunneled into the true vacuum in our Hubble volume
essentially with unit probability. Therefore, this param-
eter-space point can be considered severely disfavored.
These two examples also show that P, is extremely
sensitive to y, with a small change of 0.01 in y between
the two cases resulting in a change of Sy of 50, which in turn
results in a Py, 23 orders of magnitude different because of
its exponential dependence on Sg. As another example, for a
VLL family with M,; = 10° GeV and j = 0.57, the
bounce configuration is shown in Fig. 6 (middle row).
For this bounce configuration, we find Sp =498 and
P ~ 1077, which is acceptable. For a VLL family with
My, = 107 GeV and § = 0.6, the bounce configuration is
shown in Fig. 6 (bottom row). For this bounce configura-
tion, we find Sz =500 and Py, ~107* which is
acceptable.

The hidden-sector Higgs-portal dark matter model of
Ref. [11] essentially behaves like a VLL family considered
above, for the following reason. Although in the model of
Ref. [11] the VLF dark matter is a singlet and does not
couple directly to the Higgs, due to the Higgs mixing with a
hidden-sector scalar, a coupling with the Higgs is induced

1020
/
4 10
>
&
= 0
=
5
= _10'0}
T
25 30 35 40 45 50 55
log1o 1 (GeV)

FIG. 8.

with size y = ks;,, where the right-hand side is in the
notation of that paper and involves the parameters of that
model. As can be inferred from the analysis in Ref. [11], we
require y < 1 to keep the direct-detection rate small in
order to honor experimental constraints. Thus, from the
results above, we infer that EW vacuum stability con-
straints are not too severe in such models.

Next, we compute S and Py, with a color triplet VLQ
family with the SM-like hypercharge assignment present,
consisting of an SU(2) singlet VLQ with hypercharge 2/3
and an SU(2) doublet VLQ with hypercharge 1/6 both
present, for various common mass My, and various y. With
the addition of a VL.Q family, in Fig. 7, we show the regions
of stability, metastability, and instability as a function of
My, (in giga-electron-volts) and ¥. In the region marked
“stable,” the Higgs electroweak minimum is the absolute
minimum and is discussed further in Sec. IV; in the region
marked “metastable,” there is a lower minimum at large
field values with Py, < O(1), and in the region marked
“unstable,” Py, = O(1). We find that for ¥ = 0.5, the
Pun 2 O(1) quite independently of My, . This parameter
space leads to an unstable vacuum, and we consider this
region disfavored from the vacuum stability point of view.

1. Second minimum in V .

Thus far, we have investigated the situation when only
the VLF is present and the effective potential has only a
minimum at v and no second minimum at large field values
but rather runs off in a bottomless manner. If the VLF is
accompanied by other states, presumably in a UV com-
pletion that it is a part of, one can contemplate the
possibility of the potential being turned around due to
the contributions of the extra states and the appearance of
a second minimum at large field values. We encode this
possibility by adding a second minimum in the effective
potential as shown in Fig. 8 for the case of a VLQ family
with My; =3 x 10° GeV and § = 0.75. The Vi (h = p)
and the bounce configuration for this modified potential
are shown in Fig. 8. The Vg (u) is positive for smaller

1x105F™
5x10%F

% 1x10%F
8 5000}

<

1000}
500}

0.01 0.05 0.10 0.50 1

)

For a VLQ family with M, =3 x 10> GeV and 3 = 0.75, with a second minimum in the effective potential, the effective

potential as a function of the field value & = y, and the bounce configuration /15 (p). The blue (red) dot shows the starting (ending) value

of the bounce.
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U, crosses zero at about u~ 10*% GeV and becomes
negative, obtains a minimum at about u ~ 10° GeV, and
crosses zero again and becomes positive for larger u.
The blue dot shows the starting field value (h,) of the
bounce, and the red dot shows the ending field value (v).
For this bounce configuration, we find Sz = 3071 and
Py ~ 107113% which is an incredibly tiny tunneling
probability and very comfortably acceptable.

The reason why this parameter-space point, which was
excluded if no second minimum was present as found
earlier, is now allowed if a second minimum present is as
follows. In the bounce configuration for this situation, the
field value starts close to the second minimum and stays
there for a substantial amount of time (i.e., p) near the
minimum since d¢p/dp is small there, and as a result, the
friction term starts reducing in significance due to its 1/p
behavior. Since the friction term becomes small, the field
value can overcome the barrier and reach ». (It can even
overshoot v, leading to an imaginary solution if the initial
value of the field is chosen too big.) Therefore, the starting
field value is much lower compared to the earlier case
without the second minimum, and we find that the resulting
Sp is much larger and P, is much smaller, now allowing a
parameter-space point that was excluded earlier.

IV. ABSOLUTE STABILITY OF THE EW VACUUM

We have seen that the EW vacuum is metastable in the
SM as there is a deeper minimum below the EW vacuum
albeit shielded by a potential barrier, and due to the
tunneling probability being incredibly small, the lifetime
of the metastable vacuum is extremely large compared to
the age of the Universe. In Sec. III, we added VLFs and
analyzed regions of y and My,; parameter space for which
there again is a deeper minimum making the EW vacuum
metastable. We computed the tunneling probability and
found that in some regions of parameter space, P, is
acceptably small while in others it is unacceptably large. In
this section, we highlight VLF cases where the addition of
VLFs makes the EW vacuum the global minimum, render-
ing it absolutely stable.

Consider first adding some number of either SU(3)
singlet VLQs or doublet VLQs, but not both. For instance,
we showed in Sec. II C, Fig. 1, that when three, four, or five
SU(2) singlet VLQs all with 3 TeV mass are added, A(h)
never goes negative, implying that the EW minimum is the
global minimum and absolutely stable, unlike the SM
situation. The reason for this behavior is explained in
detail in Sec. IIC. As we show in Fig. 2, the same
conclusion holds also when we add one to four SU(2)
doublet VLQs with a 3 TeV mass or one doublet with mass
less than about 10° GeV. When both singlet and doublet
VLFs are present, i.e., when a VLF family is added, the
situation changes since a Yukawa coupling (¥) with the
Higgs can be written down. Nevertheless, when ¥ is small,

the behavior is similar to the above two cases. For a VLQ
family with one singlet and one doublet VLQ added,
as can be seen in Fig. 4, for a small y = 0.1 and for
My, <10° GeV, the EW minimum becomes absolutely
stable. Thus, as we see in these examples, the presence of
SU(2) singlet VLQs, doublet VLQs, or a full family with a
small enough ¥ allows the intriguing possibility that the
EW vacuum is rendered absolutely stable.

For example, the hidden-sector dark matter model in
Ref. [47] contains a singlet VLQ mediating loop-level
couplings between the hidden-sector dark matter and the
SM. Such models can also be written down with a doublet
VLQ. For proper choices of the number of VLQs and
masses, it is interesting that the Higgs vacuum could be
absolutely stable in such models, unlike in the SM in which
it is metastable.

V. COMPARISON WITH THE ANALYTICAL
APPROXIMATION OF Sg

Here, we compare our numerical results for Sz obtained
in Sec. III B with an analytical approximation developed
in Refs. [48,49], which is

approx 8x?
G0} Y

where 1 is a typical scale at which the bounce makes the
transition from large field values to v. This approximation
can yield a reasonably good estimate of Sz when the
bounce transition happens at a fairly constant value of A(¢),
i.e., when hq is close to where f3,(hg) =~ 0. Furthermore,
when Sp is so large that errors due to the transition not
happening at a constant A(¢) are small compared to Sg, this
approximation yields a good enough estimate. When these
conditions are not realized, one has to be cautious in using
the expression in Eq. (31). We elaborate on this statement
below with many examples.

In Fig. 9, in the left column, we show f3, () vs u where
u=h(p). In the right column, we show the (absolute
value of the) integrand of Eq. (29), made dimensionless
by multiplying the integrand by 1/m? and denoted as
11(p)| vs A(h(p)), with p being the parameter (not shown).
As shown in the topmost row in Fig. 9, for the SM, it is
evident that most of the contribution to the integral comes
from when 4 takes a specific value. For the SM, we can
compare the Sz computed numerically in Sec. III B,
which is 2866, with the Sp from the approximation in
Eq. (31) with the 7 taken to be at the scale at which g, = 0
where 1 = —0.009, which gives S37** = 2848. This is in
excellent agreement with our numerical computation
of S, and as discussed earlier, this is because f;, =0
does get satisfied for the SM, presenting a natural choice
for . That this approximation works is also borne out
by the plot showing |1(p)| for the SM, where most of the
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FIG. 9. The f8,(u) as a function of the field value h(p) = u (left column) and the integrand of the bounce action integral Eq. (29) vs
A(h(p)) (right column), for the SM (cf. Fig. 5) (top row) and the remaining for the different cases with a VLF family as follows: a VLL
family with My, = 10> GeV and § = 0.6 (cf. Fig. 6) (top row), a VLQ family with M, = 3 x 10’ GeV and § = 0.57, and a VLQ
family with My; = 3 x 10°> GeV and ¥ = 0.75 with a second minimum (cf. Fig. 8). The blue dot shows the starting value /, for the

bounce configuration.

contribution to the Sp integral is indeed coming for
A = —0.009, where the bounce spends most of its time
(p). Indeed, Eq. (31) was put forth for the SM, where it
can be safely applied.

As we see from the last three rows in Fig. 9, with VLF
present, /3, is not close to zero anywhere, and thus there is
no clear choice of 7 that is suggested. In such a situation, we

cannot use Eq. (31) but have to compute Sz numerically.
Indeed, as the |7(p)| for these cases show, the integral gets
its contributions for a range of A. These show the inad-
equacy of the approximate formula and that a numerical
evaluation is necessary. We have therefore computed the
bounce EOM numerically and the bounce action for it,
from which we computed the tunneling probability.
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VI. CONCLUSIONS

We study the stability of the electroweak vacuum in the
presence of new vectorlike fermions. We work with the
one-loop renormalization group improved Higgs effective
potential, identifying the Higgs field value h = pu. We
first review the computation of the beta-functions in the
SM, paying particular attention to the SM fermion
contributions. We use dimensional regularization for
our computation. We then derive the VLF contributions
to the one-loop beta-functions, which can be applied to
various SU(3) and SU(2) representations, namely VLQs
and VLLs. We apply this to a few example cases with
singlet VLFs, doublet VLFs, and a family consisting of
one doublet VLF and one singlet VLF coupled to the
Higgs via the Yukawa coupling ¥. We numerically run the
RGE to determine the scale at which A(u) becomes zero
and goes negative.

The Higgs effective quartic coupling A(x) becoming
negative signals that the EW vacuum is a false vacuum and
is unstable and can tunnel away quantum mechanically
via barrier penetration to (large) field values that have a
lower effective potential. We compute the probability P,
that the EW vacuum would have tunneled away by a true-
vacuum bubble nucleating in our Hubble 4-volume.
Computing P, requires computing the bounce configu-
ration in Euclidean space-time and the value of the
Euclidean action Sy for the bounce configuration. We
solve the bounce configuration EOM numerically and
compute Sp for it.

We compare our numerical evaluation with the approxi-
mation commonly used for Sg, which is written in terms of
A at a single scale where f3,(p) is approximately zero. This
is because the bounce transition is mostly completed when
A(u) has this value. For the SM, there is such a scale which
is about 10'® GeV, and we verify by comparing with our
numerical evaluation that the approximation is perfectly
adequate. When VLFs are present, there is no scale at
which f,(u) is close to zero, and so the approximation
cannot be applied. A numerical evaluation is then required,
which we resort to.

We take example cases where a single VLL or VLQ
family is added and show the bounce transition, compute
Sp for it, and obtain Py,,. We find that P, is extremely
sensitive to J as it exponentially depends on Sp.
Interestingly, we find that for some VLF representations
and parameters, adding only singlet VLFs, a doublet VLFs,
or a full family with a small enough ¥, 1 stays positive to
arbitrarily large scales; i.e., the EW vacuum is rendered
absolutely stable, unlike in the SM in which it is meta-
stable. For other parameters, adding VLFs still keeps the
EW vacuum metastable, either with a larger P, than in the
SM or a smaller Py,

In summary, our work here helps us get an idea of
what the impact of VLFs is on the stability of the Higgs
electroweak vacuum.
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APPENDIX A: SM f-FUNCTIONS (FERMION
CONTRIBUTIONS)

Here, we review the calculation of the fermion contri-
butions to the one-loop f-functions in the SM so that we
can extend this to include VLF contributions in the next
section. Since we are interested in field values 4 much
larger than the particle masses, we neglect the particle
masses.

We expand the SM Lagrangian density shown in Eq. (5)
by writing the Higgs doublet as H = (1/v/2)((¢" + i¢?)
(v+h+ip*))T, where v = 246 GeV is the EW VEV, £ is
the physical Higgs boson, and ¢’ are the Goldstone bosons.
The Lagrangian density in terms of the bare fields {/, f,}
and bare coupling y, is

LD 7iDty + % [(D,h)? + (D,})*]

Yo 5 7, - - .
— [ 2% (Go(h + iy §3) 1o — To () + i3 PLbo) + Hee. |,

V2
(A1)
where for notational brevity we denote y, just as y and the
covariant derivatives are in the usual notation. In terms of

the renormalized fields and counterterms, we have for the
{t, h} sector

1
LD1ipr+ 5 (D,h)?* - <L hit + H.c.)

V2
1 o
‘|‘§ (Z, - 1)(Dyh)2 +(Z,,, — DL giPty g
y -
_ [\ﬁ (2237, 2, — 1 ) it + Hc] (A2)

where the renormalized fields h, ¢ are defined by h =
VZyh, topr = \/Z;, L. and the renormalized Yukawa
coupling y is defined by y, = Z,y. Expanding as a perturba-
tion series in y, we define a’s to leading order as (Z, —1)=
ay*/2, (Z,, ,—1)=a, y*/2, (Z,— 1) = a,y*/2, and we
also define (Z,-1)=(2,.\/Z,Z, Z, 1) =(a,+a;,/2+
a, /2+a,,/2)y*/2=a,y*/2. Similarly, the renormalized
Lagrangian density for the Goldstone fields can be written
down.

The Feynman vertices in momentum space are as
follows:
(i) propagator (t; zt; z)(p) is ipf/(p* + i) with the
counterterm ia,, , py*/2
(ii) propagator (hh)(p)is i/(p* + i€) with the counter-
term ia, p>y*/2
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(iii) Yukawa coupling hf7 is —iy/+/2 with the counter-
term —id,y3/(2v/2)

(iv) for the Goldstone bosons, the Yukawa coupling ¢° 17
is —yy®/v2 with the counterterm a,y%y°/(2v/2),
and ¢'2b7 is iyP;(1,i)/v/2 with the counter-
term —ia,y*P;(1,i)/(2V2).

We give next the one-loop corrections involving the 7,
which we compute using dimensional regularization.
We present only the SMF ¢ contributions, since our goal
is to use these to derive the VLF contributions to the f-
functions later.

The one-loop correction to the Higgs two-point function
(wave function renormalization of the /) due to the
fermion is iZ;,(p),) =i(N.y*/(87%)) pi(1/e—Inp), —in/2+
Inv/4z—y/2+O(€)), after including a factor of (—1) for
the fermion loop, where y=0.5772 1is the Euler-
Mascheroni constant. To cancel this divergence, we fix
the counterterm from the condition i%;(py) +ia,p3y*/2=
0 at the subtraction scale p,. As mentioned above, since
our goal is to derive the ¢ contributions to the f-functions,
we show only the y dependent terms in the counterterms,
and we omit other terms. This yields a, = —N,./(47?)
(/e =Inpy—in/2 +---), and we have

2 2
. LY, Ny 2 Ph
> + —ps=— In| — ). A3
iZ,(py) + iay, 5 Ph l 82 P n<p0) (A3)

The one-loop correction to the fermion two-point function
(wave function renormalization of the #; ) proportional to

y is i%, (p)) = iy*/(322%) pi(1/e = In p,/2 + In 4z~
y/2+ O(e)), and to cancel the divergence, we fix the
counterterm from the condition i%,(py) + ia,poy*/2 = 0,

which yields a,, , = —1/(1672)(1/e —In py/2 + In V/4z—
y/2), and we have ¥, (p,)+ia, py*/2=—iy*/
(327%) #, In p,/ po. The vertex one-loop correction propor-
tional to y is

iV(py) = iv’/(16v/27%)(1/e = In p, /2 4+ In 4z
—7/2+1/2+4 O(¢)).
where we take the Higgs momentum as p,, and the fermion

momenta as —p,,/2 and p,/2. To cancel the divergence,
we fix the vertex counterterm from the condition

iV(po)—ia,=0, which yields iV(p,)—ia,y’/(2v2)=
—iy?/(16v/22%)Inp;/ py, and we have

ay, = (2N, +3)/(167%)(1/e —In po/2 + In 4z — y/2
+1-1n2/(2N. + 3)).
We discuss next the Goldstone boson contributions

proportional to y. Starting with the self-energy corrections,
we have the ¢ contribution to %, . 1s equal to the h

contribution, the ¢! and ¢* contributions to ¥, are equal to
the & contribution, and, the ¢' and ¢ contributions to X,
are proportional to y, which we drop and take to be zero.
Turning next to the vertex corrections, we have the ¢’
contribution to the ht;f; vertex (V) is negative of the A
contribution to this vertex, the ¢> contribution to the htx7;
vertex (V) is again negative of the & contribution to this
vertex, and, the ¢!-> contribution to Vg1 1s proportional
to y, and hence we take it to be zero.

One way to extract the f-function is from the divergent
part of the bare coupling.3 From the contributions com-
puted above, we find the contributions proportional to y to
be yo Dy + (»*/(162%))((3 + 2N.)/2)(1/¢), from which
we obtain the fermionic contribution to j, as

3
y [(3+2N,)
SRR LS N (2 A4
P 167> { 2 (a4)
after including the ¢, h,¢'?? contributions. This is in
agreement with the results in Refs. [4,50], for example.
Interestingly, the ¢'>3 contribute zero after including all
their contributions.

The yg3 and yg3 contributions to 8, can be written as [4]

y 9
py 2 To2 <—89% —195>,

which are included in Eq. (8). To derive the yg? contribu-
tion, we start by extracting the relevant Feynman rules for
the hypercharge gauge boson B, interactions. With all
momenta going into the vertex, with Y, p being the
hypercharges of y; x and Y; = 1/2 being the hypercharge
of the Higgs doublet, we have the Feynman rules:

(AS)

$*(p3)h(py)B,: — g Yu(ps— ph):;
hhB,B,: 2ig?Y% 0,
hB,B,: 2ig’2Y§{ng;
WL RVLRB, g Y gY".

Computing the B, contribution at one-loop order in the
"tHooft-Feynman £ = 1 gauge, we obtain the following

We briefly summarize here the method to obtain the f-
function from the bare coupling, following "tHooft’s method as
described in Ref. [41]. With k, the bare coupling, we write in
d = 4 — ¢ dimensions, kou=2@ =k(u,d) —b(k(u,d))/e, A(d)=
A — pe, K being u independent, and x(u, d) is the renormalized
coupling. Then, we write dk(u,d)/dIny = f, — ae with S,
being the f-function, and by matching powers of €, we obtain
P = —Akx — pb + pkOb/Ok. We generalize this to a system
of many couplings k; by writing Kou~%@ = k;(u,d) —
> bij(xk(u,d))/e with A;(d) = A; — pje. Then, the p-functions
are i, = —=Ajx; — ) _lpibij — (Ob;j/ 9x;)pjx ;). For the couplings
encountered here, we have A, =0, p, = —1/2;A,=0,p, = —1;
and A, =0, p, =—1/2 (for a = {1,2,3}).
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divergent pieces: the ygy h vertex correction due to B,
exchange gives VB > —i8Y, Ypyg?/(v/2167%); the
Higgs two-point function correction due to ¢° — B,
exchange gives iZElB ) —i4g?Y% pi/(167%€); and the
fermion two-point function corrections due to B, exchange

gives iZé,li’fl),,R D i2¢%Y7 z ¢/ (167%€). We include in the

counterterms a piece to cancel these divergences at the
, (B

(2= 1)p3/2 > =i, (po).
i(Zy,p = DPo > =iZyl(po). and i(y/v/2)(2, = 1) >
iVB).  From these, we determine (Z,—1)=

—g*(8Y Y +4Y% — Y2 — Y%)/(1672%€¢). Thus, since the
bare coupling is yo = Z,y, we get the contribution

subtraction scale pg, i.e.,

-yg?

ByD—5 (8Y Yr+4Y} —Y] —Y3)

1672
y
s |-G 2n Yy (A6)

57
where we make use of Y = Y — Y required for U(1),
invariance of the Yukawa term in the Lagrangian, and
g = +/3/5g,. For the top, using Y; = 1/6, Y =2/3, we
obtain the contribution shown in the last term of Eq. (8).

We compute the fermion loop contribution to the Higgs
four-point vertex that is proportional to y, from which
we can write the bare coupling as Ay D A — N.y*/(87?)
(1/€ + finite). From this, we infer that this contribution
leads to

(2N .y*].

pi> (A7)

1
1672

Writing the Higgs four-point vertex as id.y, the con-
tribution to its evolution, i.e., 5;, due to the fermion loop in
the h-leg is just four times /%,. Thus, for this contribution,
we have ileg D (—id)(i/p?)(4 x iZ4/2), and from
Eq. (A3), we have A(u) = A(M) + N Ay*/(4x*) In(u/ M)+
..., where u is the renormalization scale and M is a
subtraction scale. From this, and since 3, =dA(u)/dInpy,
we have

[4N .y?2). (A8)

1
1672

We turn next to the fS-functions of the gauge couplings
9do = {93, 92, 91}, focusing on the SM fermion contribu-
tion. We recall the definition g, = g3b,/(16x?). For §,,,
we have the well-known result (see, for example, Ref. [41])

3
_ % 11 2
T <_?NC 3 )

B>

(A9)

where the second term is due to fermions, with n; as the
number of colored fermions in the fundamental represen-
tation of SU(3). Note that the top quark is vectorlike with

respect to the SU(3). In the SM, at large u, we have n3; = 6
for three generations of quarks, which implies b3 = —7.
Similarly, for g,,, we have

3
g/ 1,1 2 1
. 2 Al
Ps. 167r2< 3@ Hyxgmtg). (Al0)

where we have taken N = 2 for SU(2) in the first term, the
second term is the fermion SU(2) doublet contribution with
n, being the number of doublet fermions, and the last term
is the Higgs doublet contribution. Since the SM fermions
are chiral under SU(2) with only the L chirality contrib-
uting, we include an extra factor of 1/2 in the second term
(since we are neglecting the effects of masses). Thus, in the
SM, at large u, n, = (3N, + 3) for the three generations

of quark and lepton doublets, which yields b, = —19/6.
Lastly, for f, , we have
3
_ 91 (2 2 4
o (g ;Y ZY,,,) (A1)

where the sum in the first term is over all fermions f with
hypercharge Y, and the sum in the second term is over
all complex scalars ¢ with hypercharge Y ;. We recall that
we use SU(5) normalization for g, i.e., the SM hyper-
charge gauge coupling ¢ is related to g; by g, = 1/5/3¢.
Thus, in the SM, at large u, for three generations,
>°;Y7=3x(10/3) = 10, and for one Higgs doublet
containing two complex fields with Y, = 1/2, 3°,Y; =
2(1/2)?> = 1/2, we get b; = 41/10. This agrees with, for
example, Ref. [51].

We complete our derivation of the SM fermion contri-
butions to the one-loop f-functions. After adding the other
contributions, the complete one-loop p-functions are as
given in Eqs. (7)—(9).

APPENDIX B: VLF CONTRIBUTIONS
TO THE RGE

Here, we extend the pf-functions derived in Sec. 1T A
and Appendix A to include VLF contributions, which we
denote as pYLF.

We first derive the gyF. The gy is gotten easily from
Eq. (A9). Since the SM quark is vectorlike with respect to
SU(3), we have an identical contribution for a VLQ, and
we obtain the result shown in Eq. (15). For obtaining gy,
we note that this is similar to the SU(3) contribution, owing
to the fact that for a VLF, SU(2) is also vectorlike just
as the SMF was for SU(3). Thus, taking twice the second
term in Eq. (A10) will give us gy'F as given in Eq. (16).
Since for a VLF both L and R chiralities contribute, we
take twice the first term in Eq. (A11) to obtain - as given
in Eq. (17); the 2n, is just the number of fermions in n,
doublets having hypercharge Y.
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Next, we derive the contributions present only when a
full family is added, i.e., when the ¥ operator of Eq. (13)
can be written down.

Let us recall that the SM top (and bottom) sector has
the following Feynman rules for the couplings with the
Higgs-doublet fields {4, ¢'>3} [all vertices have an overall
(=iy,/+/2)] written in terms of the Dirac spinors r =
(tLtR)T and b = (bLbR)T:

{h,p*}et: {1,—iy’} and {¢',¢*}bi: {—P,,—iP,}.

Now, when a full VLF family is present, we have the
SU(2) doublet VLF y = (y1x»)" and a singlet £. We can
assemble the following Dirac spinors: y, = (y;.&r)7,

wo = (Epxir)’s €= (EL&R)T, and y, = (&1 &R)". Using
these, we can write the Feynman rules with the Higgs-

doublet fields {h,$'?3} as follows [all vertices have an
overall (=iy/v/2)]:

{h.¢* w: {1,—iy’} and
{6 *Yowy: {=Pp. —iPL},

{h, ¢ wopr: {1,iy’} and
{¢". & a2y {—Pg, —iPg}.

We write it this way to bring forth the analogy between the
SMF and VLEF, with the realization that for the VLF, we
have two Dirac sets that each have a similarity with the SM
couplings. The first Dirac fermion y; has identical cou-
plings, while the second Dirac fermion y, has couplings

that is similar but not identical, with a change i — —i in the
¢* couplings and P, — Py in the ¢'? couplings. We
observe that all the diagrams that contribute to the fj-
functions are immune to both of these changes, and therefore
each of them gives the same SM contribution as for the ¢
quark. Furthermore, the Goldstone bosons with each Dirac
fermion contributes zero to the f-function as in the SM.
Thus, to obtain the VLF contributions to S, we just
multiply the SM contribution after combining Egs. (A7)
and (A8) by a factor of 2 and obtain Eq. (18). Next, the VLF
contribution to f, is due to only the wave function
renormalization contribution to 4, i.e., X;, and this contri-
bution can be gotten from the second term in Eq. (A4) but
multiplied by 2 since there are two VLF Dirac sets as argued
above and changing the coupling to y,§ instead of y;, which
then gives us the Ay™F in Eq. (19). Next, consider the
evolution of either the hyy; coupling or the hy,yr,
coupling, either of which is y. The VLF contribution to
P5 is due to these three contributions: (i) the vertex
contribution proportional to 35 as in the first term in
Eq. (A4); (ii) the VLF contributions in %;, which yields
twice the second term in Eq. (A4) proportional to 2 x 2N".*
since each of the y; and y, contribute as in the SM; and
(iii) the top-quark contribution in ¥,, which yields 2N ,.y?¥
as in the second term in Eq. (A4). Adding these three
contributions then gives the first part of S5 in Eq. (20). We
write the $g2 contributions to p5 following Egs. (A5) and
(A6), which gives the last part in Eq. (20). We thus complete
the derivation of the VLF contributions to the f-functions
given in Egs. (15)—(20).
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