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We present the effects of vectorlike fermions (VLFs) on the stability of the Higgs electroweak vacuum,
using the renormalization group improved Higgs effective potential. We review the calculation of the
one-loop beta-functions of the standard model couplings, paying particular attention to the fermion
contributions. From this, we derive the VLF contributions to the beta-functions. Using these beta-functions,
we determine the scale at which the effective Higgs quartic coupling becomes zero and goes negative,
signaling vacuum instability. We find that for certain VLF masses and Yukawa couplings, the Higgs quartic
stays positive for field values all the way up to the Planck scale, implying that the metastable vacuum of the
standard model can be rendered absolutely stable if VLFs are present with certain parameters. For other
values of VLF parameters, the Higgs vacuum is metastable as in the standard model. For cases where the
vacuum is metastable, we compute the probability of quantum tunneling from the false electroweak
vacuum into a deeper true vacuum in our Hubble volume by numerically solving for the bounce
configuration in Euclidean space-time and computing the bounce action for it. We compare our numerical
solution with the analytical approximation for the bounce action commonly used in the literature and
comment on when the latter may be used.
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I. INTRODUCTION

The stability of the electroweak (EW) vacuum can be
studied using the Higgs effective potential (for a review,
see Ref. [1]). Recent investigations (see, for example,
Refs. [2–5]) at the next-to-next-to-leading order (NNLO)
level have revealed that the Higgs vacuum is metastable in
the standard model (SM), with the lifetime in the false
(EW) vacuum being much larger than the age of
the Universe. This situation arises because the Higgs
quantum effective potential VeffðhÞ has a smaller value
for h ∼ 1010 GeV when compared to its value at the EW
vacuum expectation value (VEV) v ≈ 246 GeV, i.e.,
Veffðh ∼ 1010 GeVÞ < VeffðvÞ for the SM.
There are many compelling reasons to expect physics

beyond the standard model (BSM). These include theoretical
reasons such as the gauge hierarchy problem and observa-
tional reasons such as neutrino mass generation, dark matter,
and generation of the baryon asymmetry of the Universe. A
plethora of BSM extensions has been proposed to address

these shortcomings of the SM. These inevitably add new
particles to theSMparticle content. In particular, resolution of
the gauge hierarchy problem necessarily has new states
coupled to the Higgs. In such cases, the above conclusions
onHiggs EWvacuum stability must be revisited by including
the effects of such new particles. Many such BSM extensions
include vectorlike fermions (VLFs) that couple to the Higgs
and are often the lightest BSM states. They therefore have a
significant effect on EW vacuum stability. Some examples of
such models that include vectorlike fermions are in the
following contexts: the gauge hierarchy problem such as
anti-de Sitter–space/composite-Higgs models in Refs. [6–9],
Higgs-portal dark matter models in Refs. [10–14], gauge-
coupling unification in Refs. [15–19], neutrino mass gen-
eration and vacuum stability in Refs. [20–25], the universal
extra dimension model in Ref. [26], SM extensions with an
additional Uð1Þ gauge symmetry in Refs. [27–30], models
with an extended scalar sector in Refs. [31,32], a combination
of these in Ref. [33–35], models of inflation in Refs. [36,37],
and effective models in Refs. [38–40]. Motivated by these
considerations,we study the effect ofVLFs that are coupled to
the Higgs on EW vacuum stability.1 Many of these models*shri@imsc.res.in
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1New chiral (fourth generation) fermions that get their mass
from the Higgs are severely disfavored with a single Higgs
doublet from the recent LHC Higgs cross section and couplings
measurements. In contrast, VLFs tend to have milder constraints
on them, owing to their nice decoupling property.
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may also contain newbosonic states apart fromVLFs. In such
a case, a full conclusion about the stability of the EWvacuum
in that model can be reached only after including the
contributions of these bosonic states also. However, fermions
usually have the biggest role in destabilizing the EWvacuum,
and so our analysis here addresses themost crucial ingredient
in this problem. Hence, our goal here is to analyze model
independently the generic effects of VLFs on EW vacuum
stability.
We set the stage for our analysis by writing the classical

Higgs potential as

V ¼ m2
h

2
h2 þ λ

4
h4: ð1Þ

Including quantum effects, we can write the quantum Higgs
effective potential as

VeffðhÞ ¼
m2

heff

2
h2 þ λeffðhÞ

4
h4; ð2Þ

where λeff has a dependence on h of the form ln ðh=MÞwith
M being a subtraction scale. For h ≫ mh (the physical
Higgs massmh ≈ 125 GeV), the mass term has a negligible
effect, and thus, to an excellent approximation, we can
write

VeffðhÞ ¼
λeffðhÞ

4
h4: ð3Þ

Denoting the field value as h≡ μ and denoting λeffðμÞ
as just λðμÞ, it can be shown (see, for example, Ref. [41])
that λðμÞ obeys a renormalization group equation (RGE) of
the form

dλðμÞ
d ln μ

¼ βλðλðμÞ; ytðμÞ; g3ðμÞ; g2ðμÞ; g1ðμÞ;…Þ: ð4Þ

The RGE is interpreted now as an evolution with field
value h ¼ μ, and the β-function βλ is the usual β-function
for the coupling λ, governed by the RGE. The λðμÞ obtained
by integrating the RGE has the leading logs of the form
logn ðμ=MÞ resummed. βλ is shown as a function of λ
itself and also of the other couplings that contribute
significantly, which, in the SM, are the top Yukawa
coupling yt and the SUð3Þ, SUð2Þ, and Uð1Þ gauge
couplings ga ¼ fg3; g2; g1g. All these couplings also evolve
with μ via analogous RGE equations with their correspond-
ing β-functions βyt ; βga . We neglect the contributions of the
other SM couplings to the β-functions as they contribute
insignificantly. From Eq. (3), we see that for h ≫ mh, the
instability is signalled by the Higgs quartic effective
coupling λðμÞ becoming negative.
As we show explicitly later, βλ obtains a negative

contribution from yt, while it obtains a positive contribution
from λðμÞ itself and from gauge couplings. Thus, the top

quark has the important effect of decreasing λðμÞ, and for yt
as large as in the SM, for the observed mh, it drives λðμÞ
negative at higher energies, signaling vacuum instability.
The effect of fermions coupled to the Higgs is generally to
destabilize the electroweak vacuum, although in this work,
we show that this statement is not so definite. Many
extensions beyond the SM include new fermions, and
the question we address in this work is what the effects
of new fermions might be on Higgs vacuum stability in
light of the observation made above.
The subject of this work is to include VLF contributions

to the β-functions and find the consequences for EW
vacuum stability and how it is changed from the SM.
We ask if λðμÞ still becomes zero with VLF present, and if
so at what μ, and compare it with the SM case. If the
vacuum is unstable, we compute the tunneling probability
to ascertain if it decays within the age of the Universe, in
which case it is unacceptable. On the contrary, if the
lifetime in the EW vacuum is comparatively much larger
than the age of the Universe, it is metastable and phenom-
enologically acceptable. To this end, we study some simple
VLF extensions of the SM, where the VLFs are either in the
trivial or fundamental representations of SUð3Þ, SUð2Þ,
and Uð1Þ, and demonstrate their effects on Higgs vacuum
stability. In particular, the VLFs we add are of two kinds,
namely, SUð3Þ triplet vectorlike quarks (VLQ) and SUð3Þ
singlet vectorlike leptons (VLLs).
The paper is organized as follows. In Sec. II, we list

the one-loop RGE in the SM and include some significant
two-loop corrections from the literature. We present a
derivation of the fermionic contributions to the RGE in
Appendix A. We then derive the one-loop VLF contribu-
tions to the RGE and add these to the SM RGE. We present
the calculational details of the VLF contributions in
Appendix B. We integrate the RGE numerically and show
the evolution of the couplings as a function of the field
value h≡ μ. In Sec. III, we compute the probability that our
electroweak vacuum would have tunneled into a deeper
true vacuum in our Hubble volume in the case where
the EW vacuum is metastable. We do so by solving for the
bounce configuration numerically and computing the
Euclidean action for this. In Sec. IV, we make some
remarks for the case when the VLFs render the EW
vacuum absolutely stable. In Sec. V, we compare our
numerical evaluation of the bounce action to an approxi-
mation commonly used in the literature and provide a
cautionary note on when the approximation can be applied.
We offer our conclusions in Sec. VI.

II. RENORMALIZATION GROUP IMPROVED
HIGGS EFFECTIVE POTENTIAL

We have in the SM the Lagrangian density, showing only
the terms relevant to our analysis here,

L ⊃ t̄i=∂t − λðH†HÞ2 − ðytq̄L ·H�tR þ H:c:Þ; ð5Þ
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where the · represents the antisymmetric combination in
SUð2Þ space, qL ¼ ðtLbLÞT is the SUð2Þ doublet, and
t ¼ ðtLtRÞT and b ¼ ðbLbRÞT are the top-quark and
bottom-quark Dirac fermions. It is sufficient for our
purposes to keep only the top Yukawa coupling yt in the
SM as the others are very suppressed. Next, we present the
SM β-functions and extend them to include the VLF
contributions.

A. SM RGE

We first discuss the SM RGE β-functions at the one-loop
level and include some significant two-loop effects. We use
the SM RGE to find the Higgs field value at which λðμÞ
becomes zero and compare our results with those in the
literature. Denoting the relevant SM couplings generically
as κi ¼ fλ; yt; g3; g2; g1g, the RGE are of the form

dκiðμÞ
d ln μ

¼ βκiðκjðμÞÞ: ð6Þ

We derive the fermion contributions to βκ in Appendix A
since our goal in this work is to extend them to include VLF
contributions. We take the other terms from the literature
(see, for example, Ref. [4]). Putting these together, the one-

loop β-functions, βð1Þκ , are

βð1Þλ ¼ 1

16π2

�
24λ2 þ 4Ncy2t λ − 2Ncy4t − 9g22λ −

9

5
g21λ

þ 9

8

�
g42 þ

2

5
g22g

2
1 þ

3

25
g41

��
; ð7Þ

βð1Þyt ¼ yt
16π2

�ð3þ 2NcÞ
2

y2t − 8g23 −
9

4
g22 −

17

20
g21

�
; ð8Þ

βð1Þga ¼ g3aba
16π2

; ð9Þ

with ba ¼ ð−7;−19=6; 41=10Þ for ga ¼ ðg3; g2; g1Þ,
respectively, and Nc ¼ 3 for a fermion in the fundamental
representation of SUð3Þ. For g1, we use the SUð5Þ
normalization; i.e., the SM hypercharge gauge-coupling
g0 is related to g1 by g1 ¼

ffiffiffiffiffiffiffiffi
5=3

p
g0.

The precision of the full two-loop (or higher order)
calculations that are available in the literature are not
required for our purposes since our goal is to analyze
BSM physics contributions that involve as yet experimen-
tally undetermined parameters. However, to help compare
our numerical results to what has been obtained in the
literature for the SM, we will include two-loop SM
contributions to the β-functions that depend on yt and g3
as they are numerically the most significant. They are
(see, for example, Ref. [4])

βð2Þλ ¼ y2t
ð16π2Þ2 ð30y

4
t − 32g23y

2
t þ 80λg23 þ � � �Þ; ð10Þ

βð2Þyt ¼ yt
ð16π2Þ2

��
−
404

3
þ 40

9
nðSMÞ
3

�
g43

þ 36y2t g23 − 12y4t þ � � �
�
; ð11Þ

βð2Þg3 ¼ g33
ð16π2Þ2

h
ð−86þ 10nðSMÞ

3 Þg23 − 2y2t þ � � �
i
; ð12Þ

where nðSMÞ
3 ¼ 6 is the number of SUð3Þ-triplets (i.e.,

quarks) in the SM.
We use these RGEs to determine the Higgs field value μ

at which λðμÞ becomes zero, signalling vacuum instability.
This will be discussed in Sec. II C. We discuss next the
VLF contributions to the RGE.

B. VLF contributions to the RGE

We add an SUð2Þ doublet VLF χ ¼ ðχ1χ2ÞT and an
SUð2Þ singlet VLF ξ and couple it to the Higgs as follows,

L ⊃ −Mχ χ̄χ −Mξξ̄ξ − ðỹ χ̄ ·H�ξþ H:c:Þ; ð13Þ

where the · represents the antisymmetric combination in
SUð2Þ space.2 Extracting the Higgs interactions from this
yields

L ⊃ −
ỹffiffiffi
2

p hðχ̄1ξþ ξ̄χ1Þ: ð14Þ

If χ and ξ have color N0
c ¼ 3, we call them vectorlike

quarks (VLQs), and if they are trivial under SUð3Þ, i.e.,
N0

c ¼ 1, we call them vectorlike leptons. The SUð3Þ,
SUð2Þ, and Uð1Þ gauge interactions are standard, and
we do not show them explicitly. We denote the hypercharge
of χ as Yχ , that of ξ as Yξ, and that of the Higgs doublet is
YH ¼ 1=2 as in the SM. If N0

c ¼ 3, the VLQs have gluon
interactions, while if N0

c ¼ 1, the VLLs do not have gluon
interactions.
For SM-like choices of Yχ and Yξ, mixed Yukawa

couplings between the VLF and the standard model
fermions (SMFs) can be written down. However, collider,
flavor changing neutral current, and other precision con-
straints restrict how large such couplings can be (for details,
see, for example, Ref. [42]). For simplicity, in this work, we
do not turn on such mixed Yukawa couplings; an analysis

2If another SUð2Þ singlet VLF ζ is added, we can add the terms
L ⊃ −Mζζ̄ζ − ðỹ2χ̄Hζ þ H:c:Þ: After adding the ζ, the one
doublet and two singlet VLF structure then mimics the SM
quark or lepton structure in a generation. For keeping the field
content minimal, we will omit the ζ in our work here and
therefore will not include the ỹ2 term.
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including such mixed couplings will be the subject of
future work.
We derive the one-loop RGE contributions due to the

VLF (see Appendix B for the derivation) and add them to
the SM contributions given above. The VLF contributions
to the RGE in Eqs. (7)–(9) and the SM and VLF
contributions to the RGE for the new coupling ỹ are

βð1ÞVLFg3 ¼ g33
16π2

�
2

3
n3

�
; ð15Þ

βð1ÞVLFg2 ¼ g32
16π2

�
2

3
N0

cn2

�
; ð16Þ

βð1ÞVLFg1 ¼ g31
16π2

�
4

5
N0

cð2n2Y2
χ þ n1Y2

ξÞ
�
; ð17Þ

βð1ÞVLFλ ¼ 2nF
16π2

ð4N0
cỹ2λ − 2N0

cỹ4Þ; ð18Þ

βð1ÞVLFyt ¼ nF
16π2

ytð2N0
cỹ2Þ; ð19Þ

βð1Þỹ ¼ ỹ
16π2

�ð3ỹ2 þ 2Ncy2t þ 4nFN0
cỹ2Þ

2
− 8n̂VLQF g23

−
9

4
g22 −

9

5
g21ðY2

H þ 2YχYξÞ
�
; ð20Þ

where n3 is the number of colored VLF SUð3Þ triplets, i.e.,
VLQs; n2 is the number of SUð2Þ doublets; n1 is the
number of SUð2Þ singlets; nF is the number of complete
VLF families coupled to the Higgs (a family is a doublet
and a singlet both present); and n̂VLQF ¼ 1 if the VLF is a
VLQ family or zero otherwise. For example, nF ¼ 0 for
either VLF singlets or doublets added (but not both), and
nF ¼ 1 for one SUð2Þ doublet and one singlet VLF added
together such that a Yukawa coupling ỹ can be written
down with the Higgs. Only VLQs contribute to βg3 , and
VLLs do not. For instance, for one VLQ family of χ and ξ,
we have N0

c ¼ 3, n3 ¼ 3, n2 ¼ 1, n1 ¼ 1, nF ¼ 1,
and n̂VLQF ¼ 1.
To improve precision, we include the dominant two-loop

VLF contributions to the β-functions obtained from the
package SARAH [43,44], which are

βð2ÞVLFg3 ¼ g33
ð16π2Þ2 ð10n3g

2
3 − 2 × 2n̂VLQF ỹ2 þ � � �Þ; ð21Þ

βð2ÞVLFλ ¼ ỹ2nF
ð16π2Þ2 ð2 × 10N0

cỹ4 − 2 × 32n̂VLQF g23ỹ
2

þ 2 × 80n̂VLQF λg23 þ � � �Þ; ð22Þ

βð2ÞVLFyt ¼ yt
ð16π2Þ2

�
40

9
n3g43 −

9

2
nFN0

cỹ4 −
9

2
nFN0

cỹ2y2t

þ 40nVLQF g23ỹ
2 þ � � �

�
; ð23Þ

βð2Þỹ ¼ ỹ
ð16π2Þ2

�
−
�
9N0

c −
3

2

�
ỹ4

þ n̂VLQF

�
−
2 × 485

9
þ 40

9
ðnðSMÞ

3 þ n3Þ
�
g43

þ 56n̂VLQF ỹ2g23 þ 20g23y
2
t −

27

4
ỹ2y2t −

27

4
y4t þ � � �

�
;

ð24Þ

where nVLQF is the number of colored families, and as noted

earlier, nðSMÞ
3 ¼ 6. We have explicitly checked that the

above dominant contributions closely reproduce numeri-
cally the full two-loop running from SARAH.
Our goal in this work is to analyze the stability of the EW

vacuum for which the behavior of Veff at large field values
is most important. We have therefore not kept the finite
mass effects in the RGE as they are small, being of the
form (m=μ) for μ ≫ m where m collectively denotes the
particle masses. We include the VLF contributions only for
μ ≥ MVL, where MVL is the vectorlike fermion mass.

C. RGE Numerical integration results

We take the input parameters as follows and as compiled
in Ref. [4], with the renormalization point taken as the top
mass scale m̃t:

the EW VEV: v ¼ 246.2 GeV,
the Higgs quartic: λ̃ ¼ 0.12710 (NNLO),
the top Yukawa coupling: ỹt ¼ 0.93558 (partial three-
loop),

the SUð3Þc coupling constant: g̃3 ¼ 1.1666 (partial four-
loop),

the SUð2ÞL coupling constant: g̃2 ¼ 0.64755 (next-to-
leading order),

the Uð1Þ coupling constant: g̃1 ¼
ffiffiffiffiffiffiffiffi
5=3

p
g0 ¼ ffiffiffiffiffiffiffiffi

5=3
p

×
0.35937 (next-to-leading order).

In terms of these inputs, we set the top mass to be

m̃t ¼ ỹtv=
ffiffiffi
2

p
and the Higgs mass m̃h ¼

ffiffiffiffiffi
2λ̃

p
v. In this

work, since our interest is in analyzing a new physics
(VLF) model with unknown parameters, the full precision
to which these are defined is not so important, and the
above specification is more than adequate for our purposes.
The RGEs are a coupled set of first order differential

equations for the couplings λðμÞ, ytðμÞ, g3ðμÞ, g2ðμÞ, and
g1ðμÞ. We take the inputs given above at m̃t and integrate
the RGE numerically, including both the SM contributions
in Sec. II A and the VLF contributions in Sec. II B. As
already mentioned, we include the VLF contribution only
for μ ≥ MVL.
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In Figs. 1–4 we show the evolution of the different
couplings for the SM and also for some representative VLF
cases. In these figures, the dashed lines are for the SM with
only the SM particle content with no VLFs, while the solid
lines are for various VLF cases. As is evident, in the SM, all
the couplings decrease with field value h≡ μ. The Higgs
quartic coupling λ becomes zero and goes negative at about
μ ∼ 1010.5 GeV, while all the other couplings stay positive
all the way up to MPl. It is interesting that βλ approaches
zero for large field values (cf. Fig. 9). In the following, we
discuss the evolution of the couplings in the presence
of VLFs.
In Fig. 1, we show the evolution of the couplings with

field value h≡ μ for (n) degenerate SUð2Þ singlet VLQs
for various MVL, where the MVL values are shown in the
notation ðrEmÞ≡ r × 10m GeV. When three or more
degenerate singlet VLQs of mass 3 TeV are added,
interestingly, λ never goes negative, unlike in the SM.
When we add only singlet VLQs, SUð2Þ invariance forbids
a coupling of the Higgs to such VLQs, (we do not turn on
mixed Yukawa couplings between SM fermions and VLFs
as we noted earlier). However, these VLQs contribute to βg3
and also to βg1 if the VLQ has hypercharge, and because of
the coupled nature of the RGEs, λðhÞ does see the effect
of the VLQ. In particular, even if ỹ is very small, the
VLQ contribution to βg3 given in Eq. (15) still remains and,
being positive, results in g3ðμÞ being larger for larger μ as

compared to the SM. A larger g3 means that the second
term in Eq. (8) is more negative, causing the ytðμÞ to be
smaller in comparison to the SM case. A smaller yt implies
a less negative contribution to βλ from the third term of
Eq. (7), which means that the λðμÞ is larger with VLQs
present. For large enough n3, this results even in a turn
around to a positive βλ, allowing for the possibility of λ
never going negative. We discuss the implications of this to
vacuum stability in Sec. IV.
In Fig. 2, we show the evolution of the couplings with

field value h≡ μ for (n) degenerate SUð2Þ doublet VLQs
for variousMVL. We observe that when we add one or more
doublet VLQs of mass 3 TeV, λ never goes negative for the
same reasons as above. We also see that adding a doublet
VLQ with mass up to about 105 GeV will have this feature.
We discuss in Sec. IV the implications to vacuum stability
of λ remaining positive. If we add five or more doublets
with 3 TeV mass, we find that, due to the large positive
VLF contribution to βg2 given in Eq. (16), g2 grows and
becomes nonperturbative at μ ≈ 1016 GeV, invalidating this
perturbative analysis at around that scale. In Fig. 2, we have
restricted the five doublet curves to the region g2 < 10 so
that our perturbative analysis is reliable. The negative
contribution proportional to g22 in βyt given in Eq. (8)
becomes significant as g2 becomes large and leads to a
smaller yt. Also, βg3 gets a large positive VLF contribution
from Eq. (15) causing g3 to increase with μ.

FIG. 1. The evolution of λ, yt, and g3 with Higgs field value μ for (n) number of degenerate SUð2Þ singlet VLQs of mass 3 TeV
(first three plots) and λ with three degenerate singlet VLQs of mass 3 × 103 GeV, 105 GeV, and 107 GeV shown, respectively, as 3E3,
1E5, and 1E7 (last plot).
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FIG. 2. The evolution of λ, yt, and g3 with the Higgs field value μ for (n) number of degenerate SUð2Þ doublet VLQs of mass 3 TeV
(first three plots) and λ with a doublet VLQ of mass 3 × 103 GeV, 105 GeV, and 107 GeV shown, respectively, as 3E3, 1E5, and 1E7
(last plot).

FIG. 3. The evolution of λ, yt, and ỹ with Higgs field value μ for a degenerate family of one SUð2Þ doublet VLL and one singlet VLL,
for MVL ¼ 1 TeV and various ỹ (first two plots) and for ỹðMVLÞ ¼ 1 and various MVL (in GeV) (last two plots).
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In Fig. 3, we show the evolution of the couplings with
field value h≡ μ for a degenerate family of one SUð2Þ
doublet VLL and one singlet VLL for various MVL and ỹ.
The VLL Yukawa coupling values are shown as ðỹÞ,
and the MVL values are shown in the notation ðrEmÞ≡
r × 10m GeV. For ỹðMVLÞ ¼ 1, we see that ỹ increases as μ
increases. yt eventually starts increasing at large μ, which is
a behavior unlike in the SM. We notice that the scale at
which λ becomes negative decreases as ỹ increases, or as
MVL decreases.
In Fig. 4, we show the evolution of the couplings with

field value h≡ μ for a degenerate family of one SUð2Þ
doublet VLQ and one singlet VLQ, for variousMVL and ỹ.
We see that for ỹðMVLÞ ¼ 0.5, ỹ decreases as μ increases.
For MVL ¼ 3 TeV, if ỹ > 0.35, the scale at which λ
becomes negative decreases as ỹ increases or as MVL
decreases and is lesser than in the SM, while if ỹ < 0.35,

the scale at which λ becomes negative is larger than in the
SM. In fact, for ỹ < 0.3, λ stays positive all the way up to
MPl. We see that when ỹ ¼ 0.1 for example, λ stays positive
all the way up to MPl for MVL up to about 105 GeV.
These examples illustrate a range of effects on the

evolution of the couplings due to VLFs. For the cases
when λ does go negative, the EW vacuum is not the
absolute minimum but is metastable. There is then a
nonzero probability that the EW vacuum will tunnel
quantum mechanically away to those (large) field values
where Veff < 0. We turn next to an analysis of this
possibility and a computation of the tunneling probability.

III. TUNNELING AWAY FROM EW VACUUM

In this section, we compute the tunneling probability
from the metastable electroweak Higgs vacuum into a

FIG. 4. The evolution of λ, yt, g3, and ỹ with Higgs field value μ for a family of one SUð2Þ doublet VLQ and one singlet VLQ for
various MVL and ỹ. The top row is for MVLQ ¼ 3 TeV, while the bottom row is for different MVL (in GeV) for ỹðMVLÞ ¼ f0.1; 0.5g.
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deeper true vacuum via quantum mechanical barrier pen-
etration. We do this by computing the Euclidean action for
the bounce configuration of the Higgs field (for a review,
see, for example, Ref. [45]). We compute the bounce
configuration using the running couplings that we pre-
sented in Sec. II. From the bounce action SB, we compute
the tunneling probability Ptunl.

A. Method of computing the tunneling probability

We briefly review here how to compute the bounce
configuration and the tunneling probability (for details, see,
for example, Refs. [1,45] and references therein). In Sec. V,
we discuss in detail why we do not use the approximation
commonly used in the literature but resort to actually
solving the bounce equation of motion (EOM) numerically
as described in this section.
Let us recall that the Lagrangian density L and the action

S for the Higgs field in Minkowski coordinates are

L ¼ 1

2
∂μh∂μh − VeffðhÞ; S ¼

Z
d4xL; ð25Þ

with the effective potential defined in Eq. (2). We define
the Euclidean time τ ¼ it, the Euclidean coordinates
ρi ¼ fτ; x1; x2; x3g with i ¼ f1; 2; 3; 4g, and the invariant
ρ2 ¼ τ2 þ ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 and write the Euclidean
action as

SE ¼
Z

d4ρ

�
1

2
ð∂ihÞ2 þ VeffðhÞ

�
; ð26Þ

where ∂i is with respect to the Euclidean coordinates ρi.
As mentioned earlier, taking VeffðvÞ ¼ 0 at the EW

minimum, the central question of interest in our work here
is whether the EW vacuum is absolutely stable or if there
is a possible transition to other field values, which would
be possible only if VeffðhÞ < 0 for some h typically much
larger than v. If there exists field values for which
VeffðhÞ < 0, the EW vacuum at h ¼ v is typically separated
from this by a (large) barrier and a vacuum transition can
only occur via quantum tunneling. In such a situation, we
would like to know the timescale of the tunneling in
comparison to the age of the Universe and see if we can
gain an understanding of why the Universe has not tunneled
away to the true vacuum with h ≫ v but is in the EW
vacuum today. If for some large field value, h≡ σ say,
suppose VeffðσÞ ¼ 0, and suppose Veff is negative for
h≳ σ. [Veff may turn around and have a second minimum
(or not) for h > σ depending on other BSM contributions in
the RGE]. Equivalently, from our definition of the field
dependent coupling in Eq. (3), suppose λðσÞ ¼ 0 and that
λðhÞ is negative for h ≳ σ. The vacuum configuration
defined to have total energy E ¼ 0 at h ¼ v can quantum
mechanically tunnel to h ≥ σ with VeffðhÞ < 0. If the
vacuum were to tunnel so, the field then runs down the

potential classically toward large field values h > σ. The
tunneling probability is given in terms of the bounce
configuration [45], which satisfies δS ¼ 0, starting with
hðt ¼ −∞Þ ¼ v, attaining a value hðt ¼ 0Þ≡ h0 ≥ σ, and
returning to hðt ¼ ∞Þ ¼ v. This configuration is a solution
of the EOM. In Euclidean coordinates, the EOM reads

∂2
i h ¼ ∂Veff

∂h : ð27Þ

We look for an Oð4Þ symmetric solution [46], which
implies that it depends on ρ, i.e., hðρiÞ ¼ hðρÞ. The
EOM then reads

d2h
dρ2

þ 3

ρ

dh
dρ

¼ ∂Veff

∂h ; ð28Þ

with the boundary conditions (BCs) ðdh=dρÞðρ ¼ 0Þ ¼ 0
and hðρ → ∞Þ ¼ v. We must also have hðρ ¼ 0Þ ¼ h0 ≥ σ
for this to represent tunneling. This EOM is identical to that
of a classical particle moving in a potential −Veff with a
“friction” term present [second term in Eq. (28)] that dies
off as 1=ρ as ρ increases.
In Euclidean space-time, the bounce configuration hBðρÞ

will have the feature of a fairly sharp transition in ρ from h0
to v. In Minkowski space-time, this configuration looks
like an expanding bubble with the bubble wall separating a
region of true vacuum inside and the false EW vacuum
outside. The bubble nucleation probability per unit
4-volume is given by [1] ΔPtunl=ΔV4 ¼ M4 exp ð−SBÞ,
where we have included a prefactor of M4 on dimensional
grounds with M an appropriate mass scale, ΔV4 is a unit
4-space-time volume, and SB is the Euclidean action for
the bounce configuration hBðρÞ given by

SB ¼ 2π2
Z

∞

0

dρρ3
�
1

2

�
dhB
dρ

�
2

þ VeffðhBÞ
�
: ð29Þ

Wemake the choiceM4 ¼ Veffðh0Þ since h0 is typically the
largest scale in the problem and gives the largest tunneling
rate and hence the most conservative bound on the allowed
VLF parameter space from vacuum tunneling.
If a bubble bigger than the critical size had nucleated

anywhere in our past light cone, it would have engulfed us
by now, and wewould not find ourselves in the EW vacuum
now. The (dimensionless) volume of our past light cone is
about V4 ∼ ð1=m4

t Þ expð404Þ, which is nothing but our
Hubble 4-volume in 1=m4

t units, and we choose this unit
since our starting point for the running is at the mt scale.
Thus, the total probability that we would have nucleated a
bubble in our Hubble volume and tunneled into the true
vacuum by now is Ptunl ∼ ðdPtunl=dV4ÞV4, which gives [1]

Ptunl ¼ ðh0=mtÞ4eð404−SBÞ: ð30Þ
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If Ptunl ≪ 1 for the given Veff , we deem this as an
acceptable situation. In other words, if Ptunl ≳ 1, we take
this to mean that the probability that we would have
tunneled into the true vacuum due to a bubble nucleating
in our past light cone is essentially unity, and therefore the
model that generated that Veff we consider is disfavored.
Evidently, the larger SB is, the smaller Ptunl is, and the latter
is exponentially suppressed by SB. In the following section,
we numerically solve the bounce EOM to get the bounce
configuration hBðρÞ, compute SB for this hB, and compute
Ptunl. We do this for the SM and some VLF extensions.

B. Tunneling probability numerical results

Here, we describe the method we use to solve the bounce
EOM numerically and obtain the bounce configuration
hBðρÞ, the bounce action SB, and the tunneling probability
Ptunl for the SM and various VLF extensions.
The value of SB largely depends on the behavior of Veff

at large field values h where the h4 term dominates, which
is why we included only that term in Veff . Nevertheless, for
completeness, we insert an EW minimum at v by including
it in λðhÞ for h ∼ v as follows. Keeping the h2 term, we
have for h ∼ v the potential V ¼ −ðμ2h=2Þh2 þ ðλ=4Þh4,
which we define to be Veff ¼ ðλðhÞ=4Þh4 as in Eq. (3). This
definition implies that we have the effective quartic
coupling given by λðhÞ ¼ λðvÞð1 − 2v2=h2Þ for h ∼ v.
Slightly above the scale v, we match this to the λðhÞ
obtained by solving the RGE. In this way, we effectively
obtain a minimum at h ¼ v, while the larger field value
evolution is governed by the RGE. We add a constant term
to Veff and make VeffðvÞ ¼ 0.
We obtain a solution of the EOM in Eq. (28) numerically,

subject to the BC hðρ ¼ 0Þ ¼ h0, ðdh=dρÞðρ ¼ 0Þ ¼ 0. h0
is unknown, and so we iteratively search for that h0 that will
lead to hðρendÞ ¼ v and ðdh=dρÞðρendÞ ¼ 0. Although in
theory ρend → ∞, in practice, it can be picked finite but
large enough that the bounce has completed the transition
from h0 to v. In our numerical implementation, we work
with the dimensionless quantities ρ̂≡ m̃tρ, ĥ≡ h=m̃t,
and V̂effðhÞ ¼ VeffðhÞ=m̃t

4.
The friction term that goes like 1=ρ in Eq. (28) will be

problematic numerically near ρ → 0, and we therefore
obtain an analytical solution in this region, valid for ρ̂ ∈
ð0; ϵÞ for ϵ ≪ 1, and match this onto a numerical solution
of the EOM for ρ̂ ≥ ϵ. We now give the solution valid in
ρ̂ ∈ ð0; ϵÞ. For small ρ̂, we expand as ð3=ρ̂Þdĥ=dρ̂≡
sðρ̂Þ ¼ s0 þ s1ρ̂þ ðs2=2Þρ̂2 þOðρ̂3Þ and require all the
si to be finite so that the friction term is finite as ρ̂ → 0.
Integrating this, we find ĥðρ̂Þ ¼ ĥ0 þ ðs0=6Þρ̂2 þOðρ̂3Þ.
Differentiating the earlier equation, we have d2ĥ=dρ̂2 ¼
s0 þ ð4s1=3Þρ̂þ ð5s2=6Þρ̂2 þOðρ̂3Þ. We find λðĥðρ̂ÞÞ ¼
λ0 þ ðβλ0=ĥ0Þðd2ĥ=dρ̂2Þ0ρ̂2=2þOðρ̂3Þ, and βλðĥðρ̂ÞÞ¼
βλ0þð∂βλ=∂ĥÞ0ðd2ĥ=dρ̂2Þ0ρ̂2=2þOðρ̂3Þ, where λ0≡λðh0Þ,

βλ0 ≡ βλðh0Þ, ðd2ĥ=dρ̂2Þ0 ≡ ðd2ĥ=dρ̂2Þðρ̂ ¼ 0Þ, and
ð∂βλ=∂ĥÞ0 ≡ ð∂βλ=∂ĥÞðĥ ¼ ĥ0Þ. Also, ∂V̂eff=∂ĥ¼½λðĥÞþ
βλðĥÞ=4�ĥ3. Substituting these into the EOM in Eq. (28),
we get, by matching powers of ρ̂, s0 ¼ ðλ0 þ βλ0=4Þĥ30=2,
s1 ¼ 0, and s2 ¼ ð3=8Þðd2ĥ=dρ̂2Þ0½3ðλ0 þ βλ0=4Þĥ0 þ
ðβλ0=ĥ0 þ ð∂βλ=∂ĥÞ0=4Þĥ30�. This is the solution valid
for ρ̂ ∈ ð0; ϵÞ, and we get the solution at ρ̂ ¼ ϵ by
substituting ρ̂ ¼ ϵ in this.
Taking the ĥðϵÞ and ðdĥ=dρ̂Þjϵ obtained as above at the

point ε as a BC, we numerically integrate the EOM in
Eq. (28) for ρ̂ ∈ ðϵ; ρ̂endÞ and obtain ĥBðρ̂Þ over this
domain. The large values of the fields and the presence
of the friction term complicate the numerical implementa-
tion. A further challenge is that satisfying the required end
condition requires an extremely sensitive tuning of the
starting value ĥ0. By an iterative search algorithm, we are
able to obtain the bounce configuration hBðρ̂Þ using
Mathematica.
Piecing together the analytical solution above and the

numerical solution, we obtain the bounce configuration
over the complete domain ρ̂ ∈ ð0; ρ̂endÞ. Following this
procedure, we present below the bounce configuration, the
bounce action evaluated for this bounce, and the tunneling
probability for the SM and various VLF extensions.
For the SM, the Veffðh≡ μÞ and the bounce configura-

tion hBðρÞ obtained numerically are shown in Fig. 5. The
VeffðμÞ is positive for smaller μ, crosses zero at about
μ ≈ 1010.75 GeV, and is negative for larger μ. The blue dot
shows the starting field value (h0) of the bounce, and the
red dot shows the ending field value (v). For this bounce,
we find by numerical integration of Eq. (29) that the value
of the Euclidean bounce action is SB ¼ 2866 (in ℏ ¼ 1
units). From this, we compute the tunneling probability into
the true vacuum in our Hubble volume from Eq. (30) to be
Ptunl ∼ 10−1013, which is an incredibly small probability.
This and many other comparisons we have done for the
SM are in excellent agreement with the results obtained
in Ref. [4].
Next, we solve the bounce EOM and compute the SB and

Ptunl for various VLF representations. We start with a (color
singlet) VLL family with SM-like hypercharge assignment
present, i.e., an SUð2Þ singlet with hypercharge −1 and an
SUð2Þ doublet VLL with hypercharge −1=2 both present,
for various common mass MVL and various ỹ.
For a VLL family with MVL ¼ 103 GeV and ỹ ¼ 0.6,

the Veffðh≡ μÞ, and the bounce configuration are shown in
Fig. 6 (top row). The VeffðμÞ is positive for smaller μ,
crosses zero at about μ ≈ 106.5 GeV, and is negative for
larger μ. The blue dot shows the starting field value (h0)
of the bounce, and the red dot shows the ending field value
(v). For this bounce configuration, we find SB ¼ 472 and
Ptunl ∼ 10−6. This parameter-space point is thus acceptable
as the tunneling probability into the true vacuum is
sufficiently small for us to understand why the electroweak
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vacuum has still not tunneled away into the true vacuum
within the age of the Universe. That is, for this model with
VLL present, the probability of a true vacuum bubble
having nucleated in our past light cone is sufficiently small,

although this probability is much larger than in the SM. We
see that the presence of a VLL increases the tunneling
probability dramatically compared with the SM. For another
example, we consider a VLL family with MVL ¼ 103 GeV

FIG. 6. For a VLL family with MVL ¼ 103 GeV and ỹ ¼ 0.6 (top row), MVL ¼ 105 GeV and ỹ ¼ 0.57 (middle row), and MVL ¼
107 GeV and ỹ ¼ 0.6 (bottom row), the effective potential as a function of the field value h ¼ μ and the bounce configuration hBðρ̂Þ.
The blue (red) dot shows the starting (ending) value of the bounce.

FIG. 5. For the SM, the effective potential as a function of the field value h ¼ μ and the bounce configuration hBðρ̂Þ. The blue (red)
dot shows the starting (ending) value of the bounce.
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and ỹ ¼ 0.61, for which we find SB ¼ 422 and Ptunl ∼ 1017.
This large value implies that the EW vacuum could have
tunneled into the true vacuum in our Hubble volume
essentially with unit probability. Therefore, this param-
eter-space point can be considered severely disfavored.
These two examples also show that Ptunl is extremely
sensitive to ỹ, with a small change of 0.01 in ỹ between
the two cases resulting in a change of SB of 50, which in turn
results in a Ptunl 23 orders of magnitude different because of
its exponential dependence on SB. As another example, for a
VLL family with MVL ¼ 105 GeV and ỹ ¼ 0.57, the
bounce configuration is shown in Fig. 6 (middle row).
For this bounce configuration, we find SB ¼ 498 and
Ptunl ∼ 10−7, which is acceptable. For a VLL family with
MVL ¼ 107 GeV and ỹ ¼ 0.6, the bounce configuration is
shown in Fig. 6 (bottom row). For this bounce configura-
tion, we find SB ¼ 500 and Ptunl ∼ 10−4, which is
acceptable.
The hidden-sector Higgs-portal dark matter model of

Ref. [11] essentially behaves like a VLL family considered
above, for the following reason. Although in the model of
Ref. [11] the VLF dark matter is a singlet and does not
couple directly to the Higgs, due to the Higgs mixing with a
hidden-sector scalar, a coupling with the Higgs is induced

with size ỹ≡ κsh, where the right-hand side is in the
notation of that paper and involves the parameters of that
model. As can be inferred from the analysis in Ref. [11], we
require ỹ ≪ 1 to keep the direct-detection rate small in
order to honor experimental constraints. Thus, from the
results above, we infer that EW vacuum stability con-
straints are not too severe in such models.
Next, we compute SB and Ptunl with a color triplet VLQ

family with the SM-like hypercharge assignment present,
consisting of an SUð2Þ singlet VLQ with hypercharge 2=3
and an SUð2Þ doublet VLQ with hypercharge 1=6 both
present, for various common massMVL and various ỹ. With
the addition of a VLQ family, in Fig. 7, we show the regions
of stability, metastability, and instability as a function of
MVL (in giga-electron-volts) and ỹ. In the region marked
“stable,” the Higgs electroweak minimum is the absolute
minimum and is discussed further in Sec. IV; in the region
marked “metastable,” there is a lower minimum at large
field values with Ptunl ≲Oð1Þ, and in the region marked
“unstable,” Ptunl ≳Oð1Þ. We find that for ỹ≳ 0.5, the
Ptunl ≳Oð1Þ quite independently of MVL. This parameter
space leads to an unstable vacuum, and we consider this
region disfavored from the vacuum stability point of view.

1. Second minimum in Veff

Thus far, we have investigated the situation when only
the VLF is present and the effective potential has only a
minimum at v and no second minimum at large field values
but rather runs off in a bottomless manner. If the VLF is
accompanied by other states, presumably in a UV com-
pletion that it is a part of, one can contemplate the
possibility of the potential being turned around due to
the contributions of the extra states and the appearance of
a second minimum at large field values. We encode this
possibility by adding a second minimum in the effective
potential as shown in Fig. 8 for the case of a VLQ family
with MVL ¼ 3 × 103 GeV and ỹ ¼ 0.75. The Veffðh≡ μÞ
and the bounce configuration for this modified potential
are shown in Fig. 8. The VeffðμÞ is positive for smaller

FIG. 7. With the addition of a VLQ family, the regions of
stability, metastability, and instability as a function of MVL (in
GeV) and ỹ.

FIG. 8. For a VLQ family with MVL ¼ 3 × 103 GeV and ỹ ¼ 0.75, with a second minimum in the effective potential, the effective
potential as a function of the field value h ¼ μ, and the bounce configuration hBðρ̂Þ. The blue (red) dot shows the starting (ending) value
of the bounce.
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μ, crosses zero at about μ ≈ 104.65 GeV and becomes
negative, obtains a minimum at about μ ≈ 105 GeV, and
crosses zero again and becomes positive for larger μ.
The blue dot shows the starting field value (h0) of the
bounce, and the red dot shows the ending field value (v).
For this bounce configuration, we find SB ¼ 3071 and
Ptunl ∼ 10−1150, which is an incredibly tiny tunneling
probability and very comfortably acceptable.
The reason why this parameter-space point, which was

excluded if no second minimum was present as found
earlier, is now allowed if a second minimum present is as
follows. In the bounce configuration for this situation, the
field value starts close to the second minimum and stays
there for a substantial amount of time (i.e., ρ) near the
minimum since dϕ=dρ is small there, and as a result, the
friction term starts reducing in significance due to its 1=ρ
behavior. Since the friction term becomes small, the field
value can overcome the barrier and reach v. (It can even
overshoot v, leading to an imaginary solution if the initial
value of the field is chosen too big.) Therefore, the starting
field value is much lower compared to the earlier case
without the second minimum, and we find that the resulting
SB is much larger and Ptunl is much smaller, now allowing a
parameter-space point that was excluded earlier.

IV. ABSOLUTE STABILITY OF THE EW VACUUM

We have seen that the EW vacuum is metastable in the
SM as there is a deeper minimum below the EW vacuum
albeit shielded by a potential barrier, and due to the
tunneling probability being incredibly small, the lifetime
of the metastable vacuum is extremely large compared to
the age of the Universe. In Sec. III, we added VLFs and
analyzed regions of ỹ and MVL parameter space for which
there again is a deeper minimum making the EW vacuum
metastable. We computed the tunneling probability and
found that in some regions of parameter space, Ptunl is
acceptably small while in others it is unacceptably large. In
this section, we highlight VLF cases where the addition of
VLFs makes the EW vacuum the global minimum, render-
ing it absolutely stable.
Consider first adding some number of either SUð3Þ

singlet VLQs or doublet VLQs, but not both. For instance,
we showed in Sec. II C, Fig. 1, that when three, four, or five
SUð2Þ singlet VLQs all with 3 TeV mass are added, λðhÞ
never goes negative, implying that the EW minimum is the
global minimum and absolutely stable, unlike the SM
situation. The reason for this behavior is explained in
detail in Sec. II C. As we show in Fig. 2, the same
conclusion holds also when we add one to four SUð2Þ
doublet VLQs with a 3 TeV mass or one doublet with mass
less than about 105 GeV. When both singlet and doublet
VLFs are present, i.e., when a VLF family is added, the
situation changes since a Yukawa coupling (ỹ) with the
Higgs can be written down. Nevertheless, when ỹ is small,

the behavior is similar to the above two cases. For a VLQ
family with one singlet and one doublet VLQ added,
as can be seen in Fig. 4, for a small ỹ ¼ 0.1 and for
MVL ≲ 105 GeV, the EW minimum becomes absolutely
stable. Thus, as we see in these examples, the presence of
SUð2Þ singlet VLQs, doublet VLQs, or a full family with a
small enough ỹ allows the intriguing possibility that the
EW vacuum is rendered absolutely stable.
For example, the hidden-sector dark matter model in

Ref. [47] contains a singlet VLQ mediating loop-level
couplings between the hidden-sector dark matter and the
SM. Such models can also be written down with a doublet
VLQ. For proper choices of the number of VLQs and
masses, it is interesting that the Higgs vacuum could be
absolutely stable in such models, unlike in the SM in which
it is metastable.

V. COMPARISON WITH THE ANALYTICAL
APPROXIMATION OF SB

Here, we compare our numerical results for SB obtained
in Sec. III B with an analytical approximation developed
in Refs. [48,49], which is

SapproxB ¼ 8π2

3ð−λðtÞÞ ; ð31Þ

where t is a typical scale at which the bounce makes the
transition from large field values to v. This approximation
can yield a reasonably good estimate of SB when the
bounce transition happens at a fairly constant value of λðtÞ,
i.e., when h0 is close to where βλðh0Þ ≈ 0. Furthermore,
when SB is so large that errors due to the transition not
happening at a constant λðtÞ are small compared to SB, this
approximation yields a good enough estimate. When these
conditions are not realized, one has to be cautious in using
the expression in Eq. (31). We elaborate on this statement
below with many examples.
In Fig. 9, in the left column, we show βλðμÞ vs μ where

μ≡ hðρÞ. In the right column, we show the (absolute
value of the) integrand of Eq. (29), made dimensionless
by multiplying the integrand by 1=m4

t and denoted as
jÎðρ̂Þj vs λðhðρÞÞ, with ρ being the parameter (not shown).
As shown in the topmost row in Fig. 9, for the SM, it is
evident that most of the contribution to the integral comes
from when λ takes a specific value. For the SM, we can
compare the SB computed numerically in Sec. III B,
which is 2866, with the SB from the approximation in
Eq. (31) with the t taken to be at the scale at which βλ ¼ 0

where λ ¼ −0.009, which gives SapproxB ¼ 2848. This is in
excellent agreement with our numerical computation
of SB, and as discussed earlier, this is because βλ ¼ 0
does get satisfied for the SM, presenting a natural choice
for t. That this approximation works is also borne out
by the plot showing jÎðρ̂Þj for the SM, where most of the
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contribution to the SB integral is indeed coming for
λ ¼ −0.009, where the bounce spends most of its time
(ρ̂). Indeed, Eq. (31) was put forth for the SM, where it
can be safely applied.
As we see from the last three rows in Fig. 9, with VLF

present, βλ is not close to zero anywhere, and thus there is
no clear choice of t that is suggested. In such a situation, we

cannot use Eq. (31) but have to compute SB numerically.
Indeed, as the jÎðρ̂Þj for these cases show, the integral gets
its contributions for a range of λ. These show the inad-
equacy of the approximate formula and that a numerical
evaluation is necessary. We have therefore computed the
bounce EOM numerically and the bounce action for it,
from which we computed the tunneling probability.

FIG. 9. The βλðμÞ as a function of the field value hðρÞ ¼ μ (left column) and the integrand of the bounce action integral Eq. (29) vs
λðhðρÞÞ (right column), for the SM (cf. Fig. 5) (top row) and the remaining for the different cases with a VLF family as follows: a VLL
family with MVL ¼ 103 GeV and ỹ ¼ 0.6 (cf. Fig. 6) (top row), a VLQ family with MVL ¼ 3 × 103 GeV and ỹ ¼ 0.57, and a VLQ
family with MVL ¼ 3 × 103 GeV and ỹ ¼ 0.75 with a second minimum (cf. Fig. 8). The blue dot shows the starting value h0 for the
bounce configuration.

HIGGS VACUUM STABILITY WITH VECTORLIKE FERMIONS PHYS. REV. D 99, 115020 (2019)

115020-13



VI. CONCLUSIONS

We study the stability of the electroweak vacuum in the
presence of new vectorlike fermions. We work with the
one-loop renormalization group improved Higgs effective
potential, identifying the Higgs field value h≡ μ. We
first review the computation of the beta-functions in the
SM, paying particular attention to the SM fermion
contributions. We use dimensional regularization for
our computation. We then derive the VLF contributions
to the one-loop beta-functions, which can be applied to
various SUð3Þ and SUð2Þ representations, namely VLQs
and VLLs. We apply this to a few example cases with
singlet VLFs, doublet VLFs, and a family consisting of
one doublet VLF and one singlet VLF coupled to the
Higgs via the Yukawa coupling ỹ. We numerically run the
RGE to determine the scale at which λðμÞ becomes zero
and goes negative.
The Higgs effective quartic coupling λðμÞ becoming

negative signals that the EW vacuum is a false vacuum and
is unstable and can tunnel away quantum mechanically
via barrier penetration to (large) field values that have a
lower effective potential. We compute the probability Ptunl
that the EW vacuum would have tunneled away by a true-
vacuum bubble nucleating in our Hubble 4-volume.
Computing Ptunl requires computing the bounce configu-
ration in Euclidean space-time and the value of the
Euclidean action SB for the bounce configuration. We
solve the bounce configuration EOM numerically and
compute SB for it.
We compare our numerical evaluation with the approxi-

mation commonly used for SB, which is written in terms of
λ at a single scale where βλðμÞ is approximately zero. This
is because the bounce transition is mostly completed when
λðμÞ has this value. For the SM, there is such a scale which
is about 1016 GeV, and we verify by comparing with our
numerical evaluation that the approximation is perfectly
adequate. When VLFs are present, there is no scale at
which βλðμÞ is close to zero, and so the approximation
cannot be applied. A numerical evaluation is then required,
which we resort to.
We take example cases where a single VLL or VLQ

family is added and show the bounce transition, compute
SB for it, and obtain Ptunl. We find that Ptunl is extremely
sensitive to ỹ as it exponentially depends on SB.
Interestingly, we find that for some VLF representations
and parameters, adding only singlet VLFs, a doublet VLFs,
or a full family with a small enough ỹ, λ stays positive to
arbitrarily large scales; i.e., the EW vacuum is rendered
absolutely stable, unlike in the SM in which it is meta-
stable. For other parameters, adding VLFs still keeps the
EW vacuummetastable, either with a larger Ptunl than in the
SM or a smaller Ptunl.
In summary, our work here helps us get an idea of

what the impact of VLFs is on the stability of the Higgs
electroweak vacuum.
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APPENDIX A: SM β-FUNCTIONS (FERMION
CONTRIBUTIONS)

Here, we review the calculation of the fermion contri-
butions to the one-loop β-functions in the SM so that we
can extend this to include VLF contributions in the next
section. Since we are interested in field values h much
larger than the particle masses, we neglect the particle
masses.
We expand the SM Lagrangian density shown in Eq. (5)

by writing the Higgs doublet as H ¼ ð1= ffiffiffi
2

p Þððϕ1 þ iϕ2Þ
ðvþ hþ iϕ3ÞÞT , where v ≈ 246 GeV is the EW VEV, h is
the physical Higgs boson, and ϕi are the Goldstone bosons.
The Lagrangian density in terms of the bare fields fh̃; t0g
and bare coupling y0 is

L ⊃ t̄0i=Dt0 þ
1

2
½ðDμh̃Þ2 þ ðDμϕ

i
0Þ2�

−
�
y0ffiffiffi
2

p ðt̄0ðh̃þ iγ5ϕ3
0Þt0 − t̄0ðϕ1

0 þ iϕ2
0ÞPLb0Þ þH:c:

�
;

ðA1Þ

where for notational brevity we denote yt just as y and the
covariant derivatives are in the usual notation. In terms of
the renormalized fields and counterterms, we have for the
ft; hg sector

L ⊃ t̄i=Dtþ 1

2
ðDμhÞ2 −

�
yffiffiffi
2

p ht̄tþ H:c:

�

þ 1

2
ðZh − 1ÞðDμhÞ2 þ ðZtL;R − 1Þt̄L;Ri=DtL;R

−
�
yffiffiffi
2

p
�
Zy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZhZtLZtR

p
− 1

�
ht̄tþ H:c:

�
; ðA2Þ

where the renormalized fields h, t are defined by h̃ ¼ffiffiffiffiffiffi
Zh

p
h, t0L;R ¼ ffiffiffiffiffiffiffiffiffi

ZtL;R

p
tL;R and the renormalized Yukawa

coupling y is defined by y0 ¼ Zyy. Expanding as a perturba-
tion series in y, we define a’s to leading order as ðZh−1Þ≡
ahy2=2, ðZtL;R −1Þ≡atL;Ry

2=2, ðZy − 1Þ ≡ ayy2=2, and we

also define ðẐy−1Þ≡ðZy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZhZtLZtR

p
−1Þ¼ðayþah=2þ

atL=2þatR=2Þy2=2≡ âyy2=2. Similarly, the renormalized
Lagrangian density for the Goldstone fields can be written
down.
The Feynman vertices in momentum space are as

follows:
(i) propagator ðtL;RtL;RÞðpÞ is i=p=ðp2 þ iϵÞ with the

counterterm iatL;R=py
2=2

(ii) propagator ðhhÞðpÞ is i=ðp2 þ iϵÞ with the counter-
term iahp2y2=2
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(iii) Yukawa coupling htt̄ is −iy=
ffiffiffi
2

p
with the counter-

term −iâyy3=ð2
ffiffiffi
2

p Þ
(iv) for the Goldstone bosons, the Yukawa coupling ϕ3tt̄

is −yγ5=
ffiffiffi
2

p
with the counterterm âyy3γ5=ð2

ffiffiffi
2

p Þ,
and ϕ1;2bt̄ is iyPLð1; iÞ=

ffiffiffi
2

p
with the counter-

term −iâyy3PLð1; iÞ=ð2
ffiffiffi
2

p Þ.
We give next the one-loop corrections involving the t,

which we compute using dimensional regularization.
We present only the SMF t contributions, since our goal
is to use these to derive the VLF contributions to the β-
functions later.
The one-loop correction to the Higgs two-point function

(wave function renormalization of the h) due to the
fermion is iΣhðphÞ¼ iðNcy2=ð8π2ÞÞp2

hð1=ϵ− lnph−iπ=2þ
ln

ffiffiffiffiffiffi
4π

p
−γ=2þOðϵÞÞ, after including a factor of ð−1Þ for

the fermion loop, where γ ≈ 0.5772 is the Euler-
Mascheroni constant. To cancel this divergence, we fix
the counterterm from the condition iΣhðp0Þþ iahp2

0y
2=2¼

0 at the subtraction scale p0. As mentioned above, since
our goal is to derive the t contributions to the β-functions,
we show only the y dependent terms in the counterterms,
and we omit other terms. This yields ah ¼ −Nc=ð4π2Þ
ð1=ϵ − lnp0 − iπ=2þ � � �Þ, and we have

iΣhðphÞ þ iah
y2

2
p2
h ¼ −i

Ncy2

8π2
p2
h ln

�
ph

p0

�
: ðA3Þ

The one-loop correction to the fermion two-point function
(wave function renormalization of the tL;R) proportional to
y is iΣtL;RðptÞ ¼ iy2=ð32π2Þ=ptð1=ϵ − lnpt=2þ ln

ffiffiffiffiffiffi
4π

p
−

γ=2þOðϵÞÞ, and to cancel the divergence, we fix the
counterterm from the condition iΣtðp0Þ þ iat=p0y2=2 ¼ 0,
which yields atL;R ¼ −1=ð16π2Þð1=ϵ − lnp0=2þ ln

ffiffiffiffiffiffi
4π

p
−

γ=2Þ, and we have iΣtL;RðptÞ þ iatL;R =pty2=2 ¼ −iy2=
ð32π2Þ=pt lnpt=p0. The vertex one-loop correction propor-
tional to y is

iVðphÞ ¼ iy3=ð16
ffiffiffi
2

p
π2Þð1=ϵ − lnph=2þ ln

ffiffiffiffiffiffi
4π

p

− γ=2þ 1=2þOðϵÞÞ;

where we take the Higgs momentum as ph and the fermion
momenta as −ph=2 and ph=2. To cancel the divergence,
we fix the vertex counterterm from the condition
iVðp0Þ−iây¼0, which yields iVðphÞ−iâyy3=ð2

ffiffiffi
2

p Þ¼
−iy3=ð16 ffiffiffi

2
p

π2Þlnph=p0, and we have

ay ¼ ð2Nc þ 3Þ=ð16π2Þð1=ϵ − lnp0=2þ ln
ffiffiffiffiffiffi
4π

p
− γ=2

þ 1 − ln 2=ð2Nc þ 3ÞÞ:

We discuss next the Goldstone boson contributions
proportional to y. Starting with the self-energy corrections,
we have the ϕ3 contribution to ΣtL;R is equal to the h

contribution, the ϕ1 and ϕ2 contributions to ΣtR are equal to
the h contribution, and, the ϕ1 and ϕ2 contributions to ΣtL
are proportional to yb which we drop and take to be zero.
Turning next to the vertex corrections, we have the ϕ3

contribution to the htLt̄R vertex (VLR) is negative of the h
contribution to this vertex, the ϕ3 contribution to the htRt̄L
vertex (VRL) is again negative of the h contribution to this
vertex, and, the ϕ1;2 contribution to VLR;RL is proportional
to yb and hence we take it to be zero.
One way to extract the β-function is from the divergent

part of the bare coupling.3 From the contributions com-
puted above, we find the contributions proportional to y to
be y0 ⊃ yþ ðy3=ð16π2ÞÞðð3þ 2NcÞ=2Þð1=ϵÞ, from which
we obtain the fermionic contribution to βy as

βy ⊃
y3

16π2

�ð3þ 2NcÞ
2

�
; ðA4Þ

after including the t; h;ϕ1;2;3 contributions. This is in
agreement with the results in Refs. [4,50], for example.
Interestingly, the ϕ1;2;3 contribute zero after including all
their contributions.
The yg23 and yg

2
2 contributions to βy can be written as [4]

βy ⊃
y

16π2

�
−8g23 −

9

4
g22

�
; ðA5Þ

which are included in Eq. (8). To derive the yg21 contribu-
tion, we start by extracting the relevant Feynman rules for
the hypercharge gauge boson Bμ interactions. With all
momenta going into the vertex, with YL;R being the
hypercharges of ψL;R and YH ¼ 1=2 being the hypercharge
of the Higgs doublet, we have the Feynman rules:

ϕ3ðp3ÞhðphÞBμ∶ − g0YHðpμ
3 − pμ

hÞ;
hhBμBν∶ 2ig02Y2

Hgμν;

hBμBν∶ 2ig02Y2
Hvgμν;

ψL;Rψ̄L;RBμ∶ ig0YL;Rγ
μ:

Computing the Bμ contribution at one-loop order in the
’tHooft-Feynman ξ ¼ 1 gauge, we obtain the following

3We briefly summarize here the method to obtain the β-
function from the bare coupling, following ’tHooft’s method as
described in Ref. [41]. With κ0 the bare coupling, we write in
d ¼ 4 − ϵ dimensions, κ0μ−ΔðdÞ ¼ κðμ;dÞ−bðκðμ;dÞÞ=ϵ, ΔðdÞ≡
Δ − ρϵ, κ0 being μ independent, and κðμ; dÞ is the renormalized
coupling. Then, we write dκðμ; dÞ=d ln μ≡ βκ − ακϵ with βκ
being the β-function, and by matching powers of ϵ, we obtain
βκ ¼ −Δκ − ρbþ ρκ∂b=∂κ. We generalize this to a system
of many couplings κi by writing κ0iμ

−ΔiðdÞ ¼ κiðμ; dÞ −P
jbijðκðμ; dÞÞ=ϵ with ΔiðdÞ≡ Δi − ρiϵ. Then, the β-functions

are βκi ¼ −Δiκi −
P

j½ρibij − ð∂bij=∂κjÞρjκj�. For the couplings
encountered here, we have Δy¼0, ρy ¼ −1=2; Δλ ¼ 0, ρλ ¼ −1;
and Δga ¼ 0, ρga ¼ −1=2 (for a ¼ f1; 2; 3g).
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divergent pieces: the ψRψ̄Lh vertex correction due to Bμ

exchange gives iVðBμÞ ⊃ −i8YLYRyg02=ð
ffiffiffi
2

p
16π2ϵÞ; the

Higgs two-point function correction due to ϕ3 − Bμ

exchange gives iΣðBμÞ
h ⊃ −i4g02Y2

Hp
2
h=ð16π2ϵÞ; and the

fermion two-point function corrections due to Bμ exchange

gives iΣðBμÞ
ψL;ψR ⊃ i2g02Y2

L;R=p=ð16π2ϵÞ. We include in the
counterterms a piece to cancel these divergences at the

subtraction scale p0, i.e., iðZh − 1Þp2
0=2 ⊃ −iΣðBμÞ

h ðp0Þ,
iðZψL;ψR

− 1Þ=p0 ⊃ −iΣðBμÞ
ψL;ψRðp0Þ, and iðy= ffiffiffi

2
p ÞðẐy − 1Þ ⊃

iVðBμÞ. From these, we determine ðZy − 1Þ ¼
−g02ð8YLYR þ 4Y2

H − Y2
L − Y2

RÞ=ð16π2ϵÞ. Thus, since the
bare coupling is y0 ¼ Zyy, we get the contribution

βy ⊃
−yg02

16π2
ð8YLYR þ 4Y2

H − Y2
L − Y2

RÞ

¼ y
16π2

�
−
9

5
g21ðY2

H þ 2YLYRÞ
�
; ðA6Þ

where we make use of YH ¼ YR − YL required for Uð1ÞY
invariance of the Yukawa term in the Lagrangian, and
g0 ¼ ffiffiffiffiffiffiffiffi

3=5
p

g1. For the top, using YL ¼ 1=6, YR ¼ 2=3, we
obtain the contribution shown in the last term of Eq. (8).
We compute the fermion loop contribution to the Higgs

four-point vertex that is proportional to y, from which
we can write the bare coupling as λ0 ⊃ λ − Ncy4=ð8π2Þ
ð1=ϵþ finiteÞ. From this, we infer that this contribution
leads to

βλ ⊃
1

16π2
½−2Ncy4�: ðA7Þ

Writing the Higgs four-point vertex as iλeff , the con-
tribution to its evolution, i.e., βλ, due to the fermion loop in
the h-leg is just four times

ffiffiffiffiffi
Σh

p
. Thus, for this contribution,

we have iλeff ⊃ ð−iλÞði=p2Þð4 × iΣϕ=2Þ, and from
Eq. (A3), we have λðμÞ ¼ λðMÞ þ Ncλy2=ð4π2Þ lnðμ=MÞþ
…, where μ is the renormalization scale and M is a
subtraction scale. From this, and since βλ¼dλðμÞ=d lnμ,
we have

βλ ⊃
1

16π2
½4Ncy2λ�: ðA8Þ

We turn next to the β-functions of the gauge couplings
ga ¼ fg3; g2; g1g, focusing on the SM fermion contribu-
tion. We recall the definition βa ¼ g3aba=ð16π2Þ. For βg3,
we have the well-known result (see, for example, Ref. [41])

βg3 ¼
g33

16π2

�
−
11

3
Nc þ

2

3
n3

�
; ðA9Þ

where the second term is due to fermions, with n3 as the
number of colored fermions in the fundamental represen-
tation of SUð3Þ. Note that the top quark is vectorlike with

respect to the SUð3Þ. In the SM, at large μ, we have n3 ¼ 6
for three generations of quarks, which implies b3 ¼ −7.
Similarly, for βg2, we have

βg2 ¼
g32

16π2

�
−
11

3
ð2Þ þ 1

2
×
2

3
n2 þ

1

6

�
; ðA10Þ

where we have taken N ¼ 2 for SUð2Þ in the first term, the
second term is the fermion SUð2Þ doublet contribution with
n2 being the number of doublet fermions, and the last term
is the Higgs doublet contribution. Since the SM fermions
are chiral under SUð2Þ with only the L chirality contrib-
uting, we include an extra factor of 1=2 in the second term
(since we are neglecting the effects of masses). Thus, in the
SM, at large μ, n2 ¼ ð3Nc þ 3Þ for the three generations
of quark and lepton doublets, which yields b2 ¼ −19=6.
Lastly, for βg1, we have

βg1 ¼
g31

16π2

�
2

5

X
f

Y2
f þ

1

5

X
ϕ

Y2
ϕ

�
; ðA11Þ

where the sum in the first term is over all fermions f with
hypercharge Yf and the sum in the second term is over
all complex scalars ϕ with hypercharge Yϕ. We recall that
we use SUð5Þ normalization for g1, i.e., the SM hyper-
charge gauge coupling g0 is related to g1 by g1 ¼

ffiffiffiffiffiffiffiffi
5=3

p
g0.

Thus, in the SM, at large μ, for three generations,P
fY

2
f ¼ 3 × ð10=3Þ ¼ 10, and for one Higgs doublet

containing two complex fields with YH ¼ 1=2,
P

ϕY
2
ϕ ¼

2ð1=2Þ2 ¼ 1=2, we get b1 ¼ 41=10. This agrees with, for
example, Ref. [51].
We complete our derivation of the SM fermion contri-

butions to the one-loop β-functions. After adding the other
contributions, the complete one-loop β-functions are as
given in Eqs. (7)–(9).

APPENDIX B: VLF CONTRIBUTIONS
TO THE RGE

Here, we extend the β-functions derived in Sec. II A
and Appendix A to include VLF contributions, which we
denote as βVLFκ .
We first derive the βVLFga . The βVLFg3 is gotten easily from

Eq. (A9). Since the SM quark is vectorlike with respect to
SUð3Þ, we have an identical contribution for a VLQ, and
we obtain the result shown in Eq. (15). For obtaining βVLFg2 ,
we note that this is similar to the SUð3Þ contribution, owing
to the fact that for a VLF, SUð2Þ is also vectorlike just
as the SMF was for SUð3Þ. Thus, taking twice the second
term in Eq. (A10) will give us βVLFg2 as given in Eq. (16).
Since for a VLF both L and R chiralities contribute, we
take twice the first term in Eq. (A11) to obtain βVLFg1 as given
in Eq. (17); the 2n2 is just the number of fermions in n2
doublets having hypercharge Yχ .
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Next, we derive the contributions present only when a
full family is added, i.e., when the ỹ operator of Eq. (13)
can be written down.
Let us recall that the SM top (and bottom) sector has

the following Feynman rules for the couplings with the
Higgs-doublet fields fh;ϕ1;2;3g [all vertices have an overall
ð−iyt=

ffiffiffi
2

p Þ] written in terms of the Dirac spinors t ¼
ðtLtRÞT and b ¼ ðbLbRÞT :

fh;ϕ3gtt̄∶ f1;−iγ5g and fϕ1;ϕ2gbt̄∶ f−PL;−iPLg:

Now, when a full VLF family is present, we have the
SUð2Þ doublet VLF χ ¼ ðχ1χ2ÞT and a singlet ξ. We can
assemble the following Dirac spinors: ψ1 ¼ ðχ1LξRÞT ,
ψ2 ¼ ðξLχ1RÞT , ξ ¼ ðξLξRÞT , and χ2 ¼ ðξ2Lξ2RÞT . Using
these, we can write the Feynman rules with the Higgs-
doublet fields fh;ϕ1;2;3g as follows [all vertices have an
overall ð−iỹ= ffiffiffi

2
p Þ]:

fh;ϕ3gψ1ψ̄1∶ f1;−iγ5g and

fϕ1;ϕ2gχ2ψ̄1∶ f−PL;−iPLg;

fh;ϕ3gψ2ψ̄2∶ f1; iγ5g and

fϕ1;ϕ2gχ2ψ̄2∶ f−PR;−iPRg:

We write it this way to bring forth the analogy between the
SMF and VLF, with the realization that for the VLF, we
have two Dirac sets that each have a similarity with the SM
couplings. The first Dirac fermion ψ1 has identical cou-
plings, while the second Dirac fermion ψ2 has couplings

that is similar but not identical, with a change i → −i in the
ϕ3 couplings and PL → PR in the ϕ1;2 couplings. We
observe that all the diagrams that contribute to the β-
functions are immune to both of these changes, and therefore
each of them gives the same SM contribution as for the t
quark. Furthermore, the Goldstone bosons with each Dirac
fermion contributes zero to the β-function as in the SM.
Thus, to obtain the VLF contributions to βVLFλ , we just
multiply the SM contribution after combining Eqs. (A7)
and (A8) by a factor of 2 and obtain Eq. (18). Next, the VLF
contribution to βyt is due to only the wave function
renormalization contribution to h, i.e., Σh, and this contri-
bution can be gotten from the second term in Eq. (A4) but
multiplied by 2 since there are two VLF Dirac sets as argued
above and changing the coupling to ytỹ2 instead of y3t , which
then gives us the βVLFyt in Eq. (19). Next, consider the
evolution of either the hψ1ψ̄1 coupling or the hψ2ψ̄2

coupling, either of which is ỹ. The VLF contribution to
βỹ is due to these three contributions: (i) the vertex
contribution proportional to 3ỹ3 as in the first term in
Eq. (A4); (ii) the VLF contributions in Σh, which yields
twice the second term in Eq. (A4) proportional to 2 × 2N0

cỹ3

since each of the ψ1 and ψ2 contribute as in the SM; and
(iii) the top-quark contribution in Σh, which yields 2Ncy2t ỹ
as in the second term in Eq. (A4). Adding these three
contributions then gives the first part of βỹ in Eq. (20). We
write the ỹg2a contributions to βỹ following Eqs. (A5) and
(A6), which gives the last part in Eq. (20). We thus complete
the derivation of the VLF contributions to the β-functions
given in Eqs. (15)–(20).
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