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We consider the maximally symmetric two-Higgs doublet model (MS-2HDM) in which the so-called
Standard Model (SM) alignment can be naturally realized as a consequence of an accidental SO(5)
symmetry in the Higgs sector. This symmetry is broken (i) explicitly by renormalization-group (RG) effects
and (ii) softly by the bilinear scalar mass termm2

12. We find that in the MS-2HDM all quartic couplings can
unify at large RG scales μX ∼ 1011–1020 GeV. In particular, we show that quartic coupling unification can
take place in two different conformally invariant points, where all quartic couplings vanish. We perform a
vacuum stability analysis of the model in order to ensure that the electroweak vacuum is sufficiently long-
lived. The MS-2HDM is a minimal and very predictive extension of the SM governed by only three
additional parameters: the unification scale μX, the charged Higgs mass Mh� (or m2

12), and tan β, which
allow one to determine the entire Higgs sector of the model. In terms of these input parameters, we present
illustrative predictions of misalignment for the SM-like Higgs-boson couplings to the W� and Z bosons
and, for the first time to our knowledge, to the top and bottom quarks.

DOI: 10.1103/PhysRevD.99.115014

I. INTRODUCTION

Despite intense scrutiny, the Standard Model (SM) has
proven to be very successful in describing the fundamental
interactions of particle physics [1–3]. The discovery of the
Higgs particle [4,5] at the CERN Large Hadron Collider
(LHC) was one of the most important achievements toward
a minimal ultraviolet (UV) completion of the SM [6,7].
In spite of its great success, the search for new physics
beyond the SM still has strong theoretical and experimen-
tal motivations, and opens up new possibilities including
the study of nonstandard scenarios with extended Higgs
sectors. However, the latest LHC data dictate that the
observed Higgs boson must interact with the electroweak
(EW) gauge bosons (Z, W�) with coupling strengths that
are very close to their SM values [8,9]. This simple fact
puts severe limits on possible scalar-sector extensions of
the SM.
One class of minimal extensions of the SM is the two-

Higgs doublet model (2HDM), where the SM scalar sector
is extended by a second Higgs doublet [10,11]. This model
can, in principle, account for a SM-like Higgs boson

and contains additionally one charged and two neutral
scalars whose observation could be within reach of the
LHC [12,13].
In the 2HDM, one may have four different types of

Yukawa interactions mediating no flavor changing neutral
currents at the tree level [14–17]. More explicitly, in Type I
(inert-type), all the fermions couple to the first doublet Φ1

and none to the second doublet Φ2. In Type II (MSSM-
type), the down-type quarks and the charged leptons couple
to Φ1, and the up-type quarks couple to Φ2. In Type III
(flipped-model), the down-type quarks couple to Φ1, and
the up-type quarks and the charged leptons couple toΦ2. In
Type IV (lepton-specific model), all quarks couple to Φ1,
and the charged leptons couple toΦ2. As mentioned above,
in all these different settings of the 2HDM, the couplings of
the SM-like Higgs boson to the electroweak gauge bosons
(Z;W�) must be very close to those predicted by the SM,
so as to be in agreement with the current Higgs signals at
the LHC. This is only possible within the so-called SM
alignment limit of the 2HDM [18–25]. In particular, in the
Type-II 2HDM, the couplings of the SM-like Higgs boson
to vector bosons lie within 10% of the SM value at
95% C.L. [26–28].
In this paper, we consider the simplest realization of a

Type-II 2HDM, the so-called maximally symmetric two-
Higgs doublet model (MS-2HDM). In this model, the
aforementioned SM alignment can emerge naturally as a
consequence of an accidental SO(5) symmetry in the Higgs
sector [22,29–31], without resorting to ad hoc arrange-
ments among the parameters of the theory [21,32–36].
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The SO(5) symmetry is broken explicitly by two sources:
(i) by renormalization-group (RG) effects, and (ii) softly by
the bilinear scalar mass term m2

12. A remarkable feature of
the MS-2HDM is that all quartic couplings can unify at
very large scales μX ∼ 1011–1020 GeV, for a wide range of
tan β values and charged Higgs-boson masses. In particular,
we find that quartic coupling unification can happen in two
different conformally invariant points, where all quartic
couplings vanish. The first conformal point is at a relatively
low scale typically of order 1011 GeV, while the second
one is at high scale close to the Planck scale ∼1019 GeV.
Most remarkably, we find that the MS-2HDM becomes a
very predictive extension of the SM which is governed by
only three additional parameters: the quartic coupling
unification scale μX, the charged Higgs mass Mh� (or
m2

12), and tan β. These three parameters also suffice to
determine the entire Higgs-mass spectrum of the model. By
means of these input parameters, we are able to obtain
definite predictions of misalignment for the SM-like Higgs-
boson couplings to theW� and Z bosons and to the top and
bottom quarks, which might be testable at future precision
high-energy colliders.
The layout of the paper is as follows. After this

introductory section, Sec. II briefly reviews the basic
features of the 2HDM and discusses the conditions for
achieving exact SM alignment. In Sec. III, we describe the
MS-2HDM, thereby illuminating the origin of natural
SM alignment. We also outline the breaking pattern of the
SO(5) symmetry, which results from the soft-breaking mass
m2

12 and the RG effects, and discuss its implications for the
Higgs-mass spectrum. In Sec. IV, we analyze in more detail
the impact of RG effects up to two loops on all relevant
quartic couplings by considering their running from the
quartic coupling unification scale μX to the charged Higgs-
boson mass. In particular, we show that the running quartic
couplings can be unified at two different conformally
invariant points. In the same section, we present illustrative
predictions for the unification of all quartic couplings for
typical values of tan β and charged Higgs-boson masses.
Section V presents our misalignment predictions for Higgs-
boson couplings to gauge bosons and top and bottom
quarks. In Sec. VI, we analyze the EW vacuum lifetime of
the MS-2HDM by considering the bounce solution to the
Euclidean equation of motion for the classical potential,
with a negative running quartic coupling λ2. We estimate
the EW vacuum lifetime τ which turns out to be adequately
long, being many orders of magnitude larger than the
age of the Universe (in the absence of Plank-scale sup-
pressed operators [37,38]). Finally, Sec. VII contains our
conclusions.

II. TYPE-II 2HDM AND SM ALIGNMENT

The Higgs sector of the 2HDM is described by two scalar
SU(2) doublets,

Φ1 ¼
�
ϕþ
1

ϕ0
1

�
; Φ2 ¼

�
ϕþ
2

ϕ0
2

�
: ð2:1Þ

In terms of these doublets, the most general SUð2ÞL ⊗
Uð1ÞY-invariant Higgs potential is given by

V ¼ −μ21ðΦ†
1Φ1Þ − μ22ðΦ†

2Φ2Þ − ½m2
12ðΦ†

1Φ2Þ þ H:c:�
þ λ1ðΦ†

1Φ1Þ2 þ λ2ðΦ†
2Φ2Þ2 þ λ3ðΦ†

1Φ1ÞðΦ†
2Φ2Þ

þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
�
1

2
λ5ðΦ†

1Φ2Þ2

þ λ6ðΦ†
1Φ1ÞðΦ†

1Φ2Þ þ λ7ðΦ†
1Φ2ÞðΦ†

2Φ2Þ þ H:c:

�
;

ð2:2Þ
where the mass term m2

12 and quartic couplings λ5, λ6, and
λ7 are complex parameters. Instead, the remaining mass
terms, μ21 and μ22, and the quartic couplings λ1;2;3;4 are real.
Of these 14 theoretical parameters, only 11 are physical,
since three can be removed using a SUð2Þ reparametriza-
tion of the Higgs doublets Φ1 and Φ2 [34].
In the present article, we will restrict our attention to CP

conservation and to CP-conserving vacua. In the Type-II
2HDM, both scalar doublets Φ1 and Φ2 receive nonzero
vacuum expectation values (VEVs). Specifically, we have
hϕ0

1i ¼ v1=
ffiffiffi
2

p
and hϕ0

2i ¼ v2=
ffiffiffi
2

p
, where v1;2 are nonzero

and v≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
is the VEV of the SM Higgs doublet.

The minimization conditions resulting from the 2HDM
potential in (2.2) give rise to the following relations:

μ21 ¼ m2
12tβ −

1

2
v2c2βð2λ1 þ 3λ6tβ þ λ345t2β þ λ7t3βÞ; ð2:3Þ

μ22¼m2
12t

−1
β −

1

2
v2s2βð2λ1þ3λ6t−1β þλ345t−2β þλ7t−3β Þ;

ð2:4Þ

where sβ ≡ sin β, cβ ≡ cos β, tβ ≡ tan β ¼ v2=v1, and
λ345 ≡ λ3 þ λ4 þ λ5. Following the standard linear expan-
sion of the two scalar doublets Φj (with j ¼ 1, 2) about
their VEVs, we may conveniently reexpress them as

Φj ¼
� ϕþ

j

1ffiffi
2

p ðvj þ ϕj þ iϕ0
jÞ
�
: ð2:5Þ

After spontaneous symmetry breaking (SSB), the standard
EW gauge fields, the W� and Z bosons, acquire their
masses from the three would-be Goldstone bosons
ðG�; G0Þ [39]. As a consequence, the model has only five
physical scalar states: two CP-even scalars (h,H), one CP-
odd scalar (a), and two charged bosons (h�). The mixings
in the CP-odd and charged scalar sectors are individually
governed by the same angle β,
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G� ¼ cβϕ�
1 þ sβϕ�

2 ; h� ¼ −sβϕ�
1 þ cβϕ�

2 ;

G0 ¼ cβϕ1 þ sβϕ2; a ¼ −sβϕ1 þ cβϕ2: ð2:6Þ

Correspondingly, the masses of the h� and a scalars are
given by

M2
h� ¼ m2

12

sβcβ
−
v2

2
ðλ4 þ λ5Þ þ

v2

2sβcβ
ðλ6c2β þ λ7s2βÞ;

M2
a ¼ M2

h� þ v2

2
ðλ4 − λ5Þ: ð2:7Þ

To obtain the masses of the two CP-even scalars, h and
H, we need to diagonalize the two-by-two CP-even mass
matrix M2

S,

M2
S ¼

�
A C

C B

�
; ð2:8Þ

which may explicitly be written down as

M2
S¼M2

a

� s2β −sβcβ
−sβcβ c2β

�
þv2

 
2λ1c2βþλ5s2βþ2λ6sβcβ λ34sβcβþλ6c2βþ λ7s2β

λ34sβcβþλ6c2βþλ7s2β 2λ2s2βþλ5c2βþ2λ7sβcβ

!
;

with λ34 ≡ λ3 þ λ4. The mixing angle α necessary for the
diagonalization of M2

S may be determined by

tan 2α ¼ 2C
A − B

: ð2:9Þ

The SM Higgs field may now be identified by the linear
field combination,

HSM ¼ϕ1 cosβþϕ2 sinβ¼Hcosðβ−αÞþhsinðβ−αÞ:
ð2:10Þ

In this way, one can obtain the SM-normalized couplings of
the CP-even h and H scalars to the EW gauge bosons
(V ¼ W�; Z) as follows:

ghVV ¼ sinðβ − αÞ; gHVV ¼ cosðβ − αÞ; ð2:11Þ

with gHSMVV ¼ 1 by definition. In a similar manner, we may
derive the SM-normalized couplings of the CP-even and
CP-odd scalars to up-type and down-type quarks. These
couplings are exhibited in Table I.
From Table I, we observe that there are two ways to

realize the SM alignment limit:
(i) SM-like h scenario: Mh ≈ 125 GeV, sinðβ − αÞ ¼ 1

with β − α ¼ π=2.

(ii) SM-like H scenario: MH ≈ 125 GeV, cosðβ − αÞ ¼
1 with β ¼ α.

In these limits, the CP-evenHðhÞ scalar couples to the EW
gauge bosons with coupling strength exactly as that of the
SM Higgs boson, while hðHÞ does not couple to them at all
[22]. In the above two scenarios, the SM-like Higgs boson
is identified with the 125 GeV resonance observed at the
LHC [6,7]. In the literature, the neutral Higgs partner (H) in
the SM-like h scenario is usually termed the heavy Higgs
boson. Instead, in the SM-like H scenario, the partner
particle h can only have a mass smaller than ∼125 GeV
[23]. In this paper, we consider the alignment limit with
β ¼ α, which falls in the category of the SM-like H
scenario, but the CP-even scalar partner h can be either
lighter or heavier than the observed scalar resonance at the
LHC. In the alignment limit, the SM-like Higgs boson
becomes aligned with one of the neutral eigenstates.
In the so-called Higgs basis [32], the CP-even mass

matrix M2
S given in (2.8) takes on the form

M̂2
S ¼
�

cβ sβ
−sβ cβ

�
M2

S

�
cβ −sβ
sβ cβ

�
¼
�
Â Ĉ

Ĉ B̂

�
; ð2:12Þ

with

TABLE I. Tree-level couplings of a neutral scalar boson S (with S ¼ h, H, a) to the W� and Z bosons and to quarks in the Type-II
2HDM.

S gSVV (V ¼ W�; Z) gSuu gSdd

h sinðβ − αÞ sinðβ − αÞ þ 1
tan β cosðβ − αÞ sinðβ − αÞ − tan β cosðβ − αÞ

H cosðβ − αÞ cosðβ − αÞ − 1
tan β sinðβ − αÞ cosðβ − αÞ þ tan β sinðβ − αÞ

a 0 −iγ5 cot β −iγ5 tan β
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Â ¼ 2v2½c4βλ1 þ s2βc
2
βλ345 þ s4βλ2 þ 2sβcβðc2βλ6 þ s2βλ7Þ�;

B̂ ¼ M2
a þ λ5v2 þ 2v2½s2βc2βðλ1 þ λ2 − λ345Þ

− sβcβðc2β − s2βÞðλ6 − λ7Þ�;
Ĉ ¼ v2½s3βcβð2λ2 − λ345Þ − c3βsβð2λ1 − λ345Þ

þ c2βð1 − 4s2βÞλ6 þ s2βð4c2β − 1Þλ7�: ð2:13Þ

The SM alignment limit, cosðβ − αÞ → 1, can be realized
in two different ways: (i) Ĉ → 0 and (ii) Mh� ∼Ma ≫ v.
The first realization (i) does not depend on the choice of the
non-SM scalar masses, such as Mh� and Ma, whereas the
second one (ii) is only possible in the well-known decou-
pling limit [32–34]. In the first case, SM alignment is
obtained by setting Ĉ ¼ 0, which in turn implies the
condition [22]

λ7t4β − ð2λ2 − λ345Þt3β þ 3ðλ6 − λ7Þt2β
þ ð2λ1 − λ345Þtβ − λ6 ¼ 0: ð2:14Þ

Barring fine-tuning among quartic couplings, (2.14) leads
to the following constraints:

λ1 ¼ λ2 ¼
λ345
2

; λ6 ¼ λ7 ¼ 0; ð2:15Þ

which are independent of tan β and nonstandard scalar
masses. In this case, the two CP-even Higgs masses in the
alignment limit are given by

M2
H ¼ 2v2ðλ1c4β þ λ345s2βc

2
β þ λ2s4βÞ≡ 2λSMv2; ð2:16Þ

M2
h ¼ M2

a þ λ5v2 þ 2v2s2βc
2
βðλ1 þ λ2 − λ345Þ: ð2:17Þ

In the second realization (ii) mentioned above, we may
simplify matters by expanding M2

H;h in powers of
v=Ma ≪ 1. In this way, we obtain [22]

M2
H ≃ 2λSMv2 −

v4s2βc
2
β

M2
a þ λ5v2

× ½s2βð2λ2 − λ345Þ − c2βð2λ1 − λ345Þ�2; ð2:18Þ

M2
h ≃M2

a þ λ5v2 ≫ v2: ð2:19Þ

Note that at large tan β, the phenomenological properties of
the H-boson resemble more and more those of the SM
Higgs boson [20,21]. Since we are interested in analyzing
the deviation of the H-boson couplings from their SM
values, we follow an approximate approach inspired by the
seesaw mechanism [40]. In particular, we may express all
theH-boson couplings in terms of the light-to-heavy scalar-
mixing parameter Ĉ=B̂. Thus, employing (2.9) for the
hatted quantities and ignoring Â next to Ĉ, we may derive
the approximate analytic expressions

gHVV ≃ 1 −
Ĉ2

2B̂2
; ð2:20aÞ

ghVV ≃−
Ĉ

B̂
¼ v2sβcβ
M2

aþλ5v2
½c2βð2λ1−λ345Þ− s2βð2λ2−λ345Þ�:

ð2:20bÞ

Given the tight experimental limits on the deviation of gHVV
from 1, one must have that the light-to-heavy scalar mixing
parameter Ĉ=B̂ ≪ 1, which justifies our seesaw-inspired
approximation. In fact, in the exact SM alignment limit,
α → β, the mixing parameter Ĉ=B̂ vanishes identically.
In a similar fashion, we may derive approximate analytic

expressions for the h- and H-boson couplings to up- and
down-type quarks. To leading order in the light-to-heavy
scalar mixing Ĉ=B̂, these are given by

ghuu ≃ −
Ĉ

B̂
þ 1

tan β
; ð2:21aÞ

ghdd ≃ −
Ĉ

B̂
− tan β; ð2:21bÞ

gHuu ≃ 1þ 1

tan β
Ĉ

B̂
; ð2:21cÞ

gHdd ≃ 1 −
Ĉ

B̂
tan β: ð2:21dÞ

In the SM alignment limit, we have gHuu → 1 and
gHdd → 1. Obviously, any deviation of the gHuu and
gHdd couplings from their SM values is controlled by
tan β and Ĉ=B̂.
In the present study, our primary interest lies in natural

realizations of SM alignment, for which neither a mass
hierarchy Ma ≫ v nor a fine-tuning among the quartic
couplings will be necessary. To this end, one is therefore
compelled to identify possible maximal symmetries of the
2HDM potential that would impose the condition stated in
(2.14). In the next section, we will show how SM alignment
can be achieved naturally by virtue of an SO(5) symmetry
imposed on the theory.

III. THE MAXIMALLY SYMMETRIC 2HDM

A convenient field basis to describe the 2HDM potential
will be to make use of an eight-dimensional SUð2ÞL-
covariant multiplet representation [41,42],

Φ ¼

0
BBB@

Φ1

Φ2

Φ̃1

Φ̃2

1
CCCA; ð3:1Þ
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with Φ̃1;2 ¼ iσ2Φ�
1;2. With the help of the multiplet Φ, a

six-dimensional Lorentz vector RA ¼ Φ†ΣAΦ may be
constructed, where A ¼ 0; 1;…; 5 and ΣA are (8 × 8)-
dimensional matrices whose precise analytic form is given
in [29,41]. In this bilinear field-space formalism, RA

transforms under the orthochronous SO(1,5) symmetry
group [22,29]. Since the SUð2ÞL gauge-kinetic terms of the
scalar doublets Φ1;2 must be canonical, the set of SO(1,5)
rotations reduces to those of SO(5). So, in the absence of
the hypercharge gauge coupling g0 and fermion Yukawa
couplings, the maximal symmetry group of the 2HDM is
SO(5). As a consequence, the 2HDM potential has a total of
13 accidental symmetries [41], of which 6 preserve Uð1ÞY
[43–45] and 7 are custodially symmetric [29]. Given the
isomorphism of the Lie algebras, SOð5Þ ∼ Spð4Þ, the
maximal symmetry group of the 2HDM in the original
Φ-field space is GΦ

2HDM ¼ ½Spð4Þ=Z2� × SUð2ÞL [29]. In
the Type-II 2HDM, the maximal symmetry group SO(5) is
the simplest of the three possible symmetries that can
realize natural SM alignment. The other two are in bilinear
[original] field space [22]: (i) Oð3Þ ⊗ Oð2Þ½SUð2ÞHF�, and
(ii) Z2 ⊗ ½Oð2Þ�2½SOð2ÞHF × CP�. In what follows, we
focus on the simplest realization of SM alignment, which
is called the MS-2HDM.
In the MS-2HDM, the SO(5) symmetry puts severe

restrictions on the allowed form of the kinematic param-
eters of the 2HDM potential in (2.2),

μ21 ¼ μ22; m2
12 ¼ 0;

λ2 ¼ λ1; λ3 ¼ 2λ1; λ4 ¼ Reðλ5Þ ¼ λ6 ¼ λ7 ¼ 0:

ð3:2Þ

Evidently, the MS-2HDM potential obeys naturally the
alignment constraints given in (2.15). As a consequence,
the scalar potential takes on a very simple form,

V ¼ −μ2ðjΦ1j2 þ jΦ2j2Þ þ λðjΦ1j2 þ jΦ2j2Þ2 þ ΔV;

ð3:3Þ

where

ΔV ¼
Xi≠j

i;j¼1;2

m2
ijðΦ†

iΦjÞ ð3:4Þ

are soft SO(5)-breaking mass terms, which are introduced
here for phenomenological reasons aswewill explain below.
After EW symmetry breaking, the following breaking

pattern emerges:

SOð5Þ⟶hΦ1;2i≠0
SOð4Þ: ð3:5Þ

IfΔV ¼ 0, theCP-even scalarH receives a nonzero squared
mass M2

H ¼ 2λ2v2, while the other scalars, h, a, and h�,

are all massless. These are massless pseudo-Goldstone
bosons that have sizable couplings to the SM gauge bosons.
Accordingly, several experimentally excluded decay chan-
nels would open, e.g., Z → ha and W� → h�h [46]. If the
SO(5) symmetry is realized at some high energy scale μX
(much above the EW scale), then due to RG effects the
following breaking pattern may take place [22]:

SOð5Þ ⊗ SUð2ÞL ⟶
g0≠0

Oð3Þ ⊗ Oð2Þ ⊗ SUð2ÞL
∼ Oð3Þ ⊗ Uð1ÞY ⊗ SUð2ÞL
⟶
Yukawa

Oð2Þ ⊗ Uð1ÞY ⊗ SUð2ÞL
∼ Uð1ÞPQ ⊗ Uð1ÞY ⊗ SUð2ÞL
⟶
hΦ1;2i≠0

Uð1Þem: ð3:6Þ

Note that the RG effect of the gauge coupling g0 only lifts the
charged Higgs massMh� , while the corresponding effect of
the Yukawa couplings (particularly that of the top quark yt)
renders the other CP-even pseudo-Goldstone boson h
massive. Instead, the CP-odd scalar a remains massless
and can be identified with a Peccei-Quinn (PQ) axion after
the SSB of a global Uð1ÞPQ symmetry [47–49]. Since weak-
scale PQ axions have been ruled out by experiment, we have
allowed for the SO(5) symmetry of theMS-2HDMpotential
in (3.3) to be broken by the soft SO(5)-breaking mass terms
in (3.4). Hence, without loss of generality, we may consider
that only the soft SO(5)-breaking parameter Reðm2

12Þ is
nonzero. With this minimal addition to the MS-2HDM
potential, the scalar-boson masses are given, to a very good
approximation, by

M2
H ¼ 2λ2v2; M2

h ¼ M2
a ¼ M2

h� ¼ Reðm2
12Þ

sβcβ
: ð3:7Þ

Hence, all pseudo-Goldstone bosons, h, a, and h�, become
massive and almost degenerate inmass. Aswewill see in the
next section, this degeneracy is very stable against RG
effects even up to two-loop order.
In our study, we will consider the charged Higgs boson

massMh� as an input parameter above the 500 GeV range,
in agreement with B-meson constraints [50]. It will also be
our threshold above which all parameters run with 2HDM
renormalization group equations (RGEs). Moreover, we
implement the matching conditions with two-loop RG
effects of the SM at given Mh� threshold scales. We also
employ two-loop 2HDM RGEs to find the running of the
gauge, Yukawa, and quartic couplings at RG scales larger
than Mh� . For reviews on one-, two-, and three-loop RGEs
in the 2HDM, see [22,51–54]. The SM and the 2HDM
RGEs have been computed using the public Mathematica
package SARAH [55], which has been appropriately adapted
for the MS-2HDM.
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IV. QUARTIC COUPLING UNIFICATION

As we saw in the previous section, the SO(5) symmetry
of the MS-2HDM potential is broken explicitly by RG
effects and soft-mass terms. In this section, we will con-
sider a unified theoretical framework in which the SO(5)
symmetry is realized at some high-energy scale μX, where
all the conditions in (3.2) are met. Of particular interest is
the potential existence of conformally invariant unification
points at which all quartic couplings of the MS-2HDM
potential vanish simultaneously.
To address the above issue of quartic coupling unifica-

tion, we employ two-loop RGEs for the MS-2HDM from
the unification scale μX to the charged Higgs-boson mass
Mh� ≪ μX. Below this threshold scale μthr ¼ Mh� , the SM
is a good effective field theory, so we use the two-loop SM
RGEs given in [56] to match the relevant MS-2HDM
couplings to the corresponding SM quartic coupling λSM,
the Yukawa couplings, and the SUð2ÞL and Uð1ÞY gauge
couplings g2 and g0 (with g1 ¼

ffiffiffiffiffiffiffiffi
5=3

p
g0). In order to obtain

illustrative predictions, we have chosen our threshold scales
to be at μthr ¼ Mh� ¼ 500 GeV, 1 TeV, 10 TeV, and
100 TeV.
The theoretical SM parameters are determined in terms

of precision observables, such as the Z-boson mass (MZ),
the W�-boson mass (MW), the Fermi constant Gμ, the
strong coupling α3ðMZÞ, the top-quark mass (Mt), and the
Higgs boson mass (MHSM

). In detail, the following SM
values will be adopted [57]:

MW ¼ 80.384�0.014GeV;

MZ ¼ 91.1876�0.0021GeV;

MHSM
¼ 125.15�0.24GeV;

Mt¼ 173.34�0.76�0.3GeV;

v¼ð
ffiffiffi
2

p
GÞ−1=2¼ 246.21971�0.00006GeV;

α3ðMZÞ¼ 0.1184�0.0007: ð4:1Þ

The values of the two-loop SM couplings at different
threshold scales, μthr ¼ Mt, Mh� , are given in Table II.
The matching conditions for the Yukawa couplings at the

threshold scale μthr ¼ Mh� read

hMS-2HDM
t ¼ yt

sβ
; hMS-2HDM

b ¼ yb
cβ

; hMS-2HDM
τ ¼ yτ

cβ
:

ð4:2Þ

Note that for RG scales μ > μthr ¼ Mh� , the evolution of
the Yukawa couplings ht, hb, and hτ is governed by two-
loop 2HDM RGEs.
Figures 1 and 2 display the RG evolution of all

relevant couplings of the SM and the MS-2HDM,
for tan β ¼ 50 and m2

12 ≈ 702 GeV2 (Mh� ¼ 500 GeV).
The vertical dashed line indicates the threshold scale
μthr ¼ Mh� ¼ 500 GeV. At this RG scale, we observe
significant discontinuities in the running of Yukawa cou-
plings yb and yτ due to the matching conditions in (4.2).
As can be seen from Fig. 1, the quartic coupling λ2,

which determines the SM-like Higgs-boson mass MH,
decreases at high RG scales due to the running of the
top-Yukawa coupling ht and turns negative just above
the quartic coupling unification scale μX ∼ 1011 GeV, at
which all quartic couplings vanish. Thus, for energy scales
above the RG scale μX, we envisage that the MS-2HDM
will need to be embedded into another UV-complete theory.
Nevertheless, according to our estimates in Sec. VI, we
have checked that the resulting MS-2HDM potential leads
to a metastable but sufficiently long-lived EW vacuum,

TABLE II. SM couplings evaluated at the two-loop level in the MS scheme at various threshold scales μthr, i.e., for μthr ¼ Mt and
μthr ¼ Mh� ¼ 500 GeV, 1 TeV, 10 TeV, and 100 TeV.

μthr [GeV] g1 g2 g3 λSM yt yb yτ

Mt 0.3583 0.6779 1.1666 0.1292 0.9401 0.0157 0.010 00
500 0.3605 0.6423 1.0910 0.1102 0.8807 0.0146 0.010 08
103 0.3619 0.6388 1.0523 0.0997 0.8521 0.0140 0.010 12
104 0.3668 0.6274 0.9484 0.0719 0.7746 0.0123 0.010 22
105 0.3718 0.6164 0.8704 0.0518 0.7154 0.0111 0.010 26
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FIG. 1. The RG evolution of the quartic couplings λ1;2;3;4 and
the gauge and Yukawa couplings from the threshold scaleMh� ¼
500 GeV up to their first quartic coupling unification scale μð1ÞX ¼
1011 GeV for tan β ¼ 50.
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whose lifetime is many orders of magnitude larger than the
age of our Universe. In this respect, we regard the usual
constraints derived from convexity conditions on 2HDM
potentials [58] to be over-restrictive and unnecessary in our
theoretical framework.
Of equal importance is a second conformally invariant

unification point μð2ÞX at energy scales close to the reduced
Planck mass of order 1018 GeV, as shown in Fig. 2. In this
case, the key quartic coupling λ2 increases and becomes
positive again. Hence, in this second class of settings, any
embedding of the MS-2HDM into a UV-complete theory
must have to take quantum gravity into account as well.
In Fig. 3, we give numerical estimates of the mass

spectrum of the MS-2HDM, for tan β ¼ 50 and m2
12 ≈

702 GeV2 (Mh� ¼ 500 GeV). We find that all heavy Higgs
bosons, h, a, and h�, are approximately degenerate in

mass, almost independently of the quartic coupling
unification scale μX. In fact, to leading order, all masses
are determined by the soft mass term m2

12 in (3.7).
The curve corresponding to the SM-like Higgs-boson mass
MH is mainly tracking λ2ðμÞ, which has two roots, one at

RG scales around μð1ÞX ∼ 1011 GeV and another one at

μð2ÞX ∼ 1018 GeV. The latter is the largest possible UV scale
of the MS-2HDM.
Figure 4 shows all conformally invariant quartic cou-

pling unification points in the ðtan β; log10 μÞ plane, by
considering different values of threshold scales μthr, i.e., for
μthr ¼ Mh� ¼ 500 GeV, 1 TeV, 10 TeV, and 100 TeV. The
lower curves (dashed curves) correspond to sets of low-
scale quartic coupling unification points, while the upper
curves (solid curves) give the corresponding sets of high-
scale unification points. From Fig. 4, we may also observe
the domains in which the λ2 coupling becomes negative.
These are given by the vertical μ-intervals bounded by the
lower and the upper curves, for a given choice of Mh� and
tan β. Evidently, as the threshold scale μthr ¼ Mh�

increases, the size of the negative λ2 domain increases
and becomes more pronounced for smaller values of tan β.
Before concluding this section, it is important to stress

that the MS-2HDM requires only three additional input
parameters: (i) the soft SO(5)-breaking mass parameterm2

12

(or Mh�), (ii) the ratio of VEVs tan β, and (iii) the
conformally invariant quartic coupling unification scale

μX which can only assume two discrete values: μð1ÞX and

μð2ÞX . Once the values of these three theoretical parameters
are given, the entire Higgs sector of the model can be
determined. In the next section, we will give typical
predictions in terms of these three input parameters.
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FIG. 2. The same as in Fig. 1, where the RG evolution extended
up to the second quartic coupling unification point μð2ÞX ¼
1018 GeV is shown.
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V. MISALIGNMENT PREDICTIONS FOR
HIGGS BOSON COUPLINGS

In this section, we present numerical estimates of the
predicted deviations of the SM-like Higgs-boson couplings
HVV (with V ¼ W�; Z), Htt̄, and Hbb̄, from their respec-
tive SM values. As was discussed in Sec. II, these
deviations are controlled by the light-to-heavy scalar
mixing parameter Ĉ=B̂. At the quartic coupling unification
scale μX, the SO(5) symmetry of the MS-2HDM is fully
restored and this mixing parameter vanishes. However, as
we saw in Sec. III, RG effects induced by the Uð1ÞY gauge
coupling and the Yukawa couplings of the third generation
of fermions break sizably the SO(5) symmetry, giving
rise to a calculable nonzero value for Ĉ=B̂ and so to
misalignment predictions for all H-boson couplings to SM
particles.
In Figs. 5 and 6, we exhibit the dependence of the phy-

sical misalignment parameter j1−g2HVV j (with gHSMVV ¼1)
as functions of the RG scale μ, for typical values of tan β,
such as tan β ¼ 2, 5, 20, 35, and 50. As expected, we
observe that the normalized coupling gHVV approaches the
SM value gHSMVV ¼ 1 at the lower- and higher-scale quartic

coupling unification points, μð1ÞX and μð2ÞX , as shown in
Figs. 5 and 6, respectively. We use dashed lines to display
our predictions to leading order in Ĉ=B̂ expansion, while
solid lines stand for the exact all-orders result. Since there is
a small deviation (below the per-mile level) of gHVV from
the SM value, the approximate and exact predicted values
are almost overlapping. Note that the misalignment reaches
its maximum value for low values of tan β and for the
higher quartic coupling unification points.
By analogy, Figs. 7 and 8 display misalignment pre-

dictions for the H-boson couplings to top and bottom
quarks, for tan β ¼ 2, 5, 20, 35, and 50 and for lower- and
higher-scale quartic coupling unification points, respec-
tively. As before, the deviation of the normalized couplings
gHtt and gHbb from their SM values are larger for low values
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FIG. 5. Numerical estimates of the misalignment parameter
j1 − g2HVV j pertinent to the HVV coupling (with V ¼ W�; Z) as
functions of the RG scale μ, for a low-scale quartic coupling
unification scenario, assumingMh� ¼ 500 GeV and tan β ¼ 2, 5,
20, 35, and 50.
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FIG. 6. The same as in Fig. 5, but for a high-scale quartic
coupling unification scenario.
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of tan β, e.g., tan β ¼ 2, and for higher quartic coupling

unification points μð2ÞX . This effect is more pronounced for
gHbb, as the degree of misalignment might be even larger
than 10%. In this case, a comparison between solid and
dashed lines demonstrates the goodness of our seesaw-
inspired approximation in terms of Ĉ=B̂.
Finally, we confront our misalignment predictions for the

SM-like Higgs boson couplings, gHZZ, gHtt, and gHbb with
existing experimental data from ATLAS and CMS, includ-
ing their statistical and systematic uncertainties [59]. All
these results are presented in Table III forMh� ¼ 500 GeV.
The observed results for gHZZ and gHtt are in excellent
agreement with the SM and the MS-2HDM. Instead, the
LHC data for gHbb can be fitted to the SM at the 3σ level.
The latter reduces only to 2σ in the MS-2HDM, for
tan β ¼ 2 assuming a high-scale quartic coupling unifica-
tion scenario. Future precision collider experiments will be
able to probe such a scenario.

VI. LIFETIME OF THE METASTABLE
ELECTROWEAK VACUUM

According to our discussion in Sec. IV, we have seen that
the MS-2HDM has two conformally invariant quartic
coupling unification points μð1;2ÞX for a given choice of
the charged Higgs-boson mass Mh� and tan β. Typically,

the first point is at μð1ÞX ∼ 1011 GeV and the second one at

μð2ÞX ∼ 1018 GeV. Between these two RG scales, i.e., for

μð1ÞX < μ < μð2ÞX , the running quartic coupling λ2ðμÞ turns
negative, which gives rise to a deeper minimum in the
effective MS-2HDM potential. This new minimum will
then be the true vacuum of the MS-2HDM. In this case, the
EW vacuum that we currently live in becomes metastable
and is usually called the false vacuum. For the high-scale
quartic coupling unification scenario, this vacuum insta-
bility might be a problem, unless the lifetime of the EW
vacuum is much larger than the age of the Universe.
In a general 2HDM, there are three different types of

ground states [10,60,61]: (i) an EW-breaking vacuum that
preserves CP and charge (normal minimum); (ii) an EW-
breaking vacuum that breaks CP spontaneously but keeps
charge conserved; and (iii) a charge-violating ground state,
where one of the upper components ϕþ

1;2 of the scalar
doublets Φ1;2 acquires a nonzero VEV. The existence of
various minima in the potential may result in tunneling
between different vacua. However, it is has been known for
some time [62–64] that if the effective 2HDM potential has
at least one CP- and charge-preserving local minimum,
then any other possible charged-violating minimum cannot
be deeper than this and so tunneling into such a local
minimum will not be energetically favored. Hence, our
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FIG. 8. The same as in Fig. 7, but for a high-scale quartic coupling unification scenario.

TABLE III. Predicted values of the SM-like Higgs boson couplings to the Z boson and to top and bottom quarks in the MS-2HDM for
both scenarios with low- and high-scale quartic coupling unification, assuming Mh� ¼ 500 GeV. The corresponding central values for
these couplings from ATLAS and CMS are also given, including their uncertainties [59].

Couplings ATLAS CMS tan β ¼ 2 tan β ¼ 5 tan β ¼ 20 tan β ¼ 35 tan β ¼ 50

jglow-scaleHZZ j [0.86, 1.00] [0.90, 1.00] 0.9999 0.9999 0.9999 0.9999 0.9999

jghigh-scaleHZZ j 0.9981 0.9998 0.9999 0.9999 0.9999

jglow-scaleHtt j 1.31þ0.35
−0.33 1.45þ0.42

−0.32 1.0049 1.0014 1.0001 1.0000 1.0000

jghigh-scaleHtt j 1.0987 1.0179 1.0003 1.0001 1.0001

jglow-scaleHbb j 0.49þ0.26
−0.19 0.57þ0.16

−0.16 0.9803 0.9649 0.9560 0.9574 0.9590

jghigh-scaleHbb j 0.8810 0.9264 0.9449 0.9456 0.9427
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false neutral EW vacuum can only tunnel to another neutral
vacuum, and our findings are consistent with this obser-
vation in the MS-2HDM.
The probability rate P for quantum tunneling through

a barrier is exponentially suppressed, and it may be
estimated by

P ∼ e−ΔSE ; ð6:1Þ

where ΔSE is the Euclidean action evaluated at the
Oð4Þ-symmetric bounce solution [66]. The action ΔSE
interpolates between the new phase at high field values and
the EW phase. As we will see below, ΔSE is the Euclidean
action of the corresponding bounce minus the action of the
false vacuum configuration [65]. To determine the lifetime
of the false vacuum, we have to look for the so-called
bounce solutions that satisfy the equations of motion,

d2ϕi

dr2
þ 3

r
dϕi

dr
¼ ∂VðϕÞ

∂ϕi
; ð6:2Þ

where the index i ¼ 1; 2;…; 5 labels all scalar fields
ϕi ¼ ðh;H; a; hþ; h−Þ and ϕ≡ fϕig. Note that the
fields ϕi depend only on the Euclidean radial coordinate
r ¼ ðt2E þ x2Þ1=2, as a consequence of the Oð4Þ symmetry
of the problem. The boundary conditions of the equations
of motion are

dϕi

dr

���
r¼0

¼ 0; lim
r→∞

ðϕiÞ ¼ ϕfv
i ; ð6:3Þ

where ϕfv
i are the values of the fields ϕi at the false vacuum.

More explicitly, the action ΔSE;i along a ϕi direction is
given by [66]

ΔSE;i≡S½ϕb
i �−S½ϕfv

i � ¼−
π2

2

Z
∞

0

drr3
∂VðϕbÞ
∂ϕb

i
ϕb
i : ð6:4Þ

Here, ϕb ≡ fϕb
i g denotes collectively the bounce solutions

satisfying the boundary conditions stated in (6.3). For our
MS-2HDM scenario, we have five second-order differential
equations to determine the bounce configurations, where
r ¼ 0 is the center of the bounce which asymptotically
approaches the false vacuum ϕfv ≡ fϕfv

i g as r → ∞.
As the second deeper minimum of the potential occurs at

field values ϕi ≫ v, where typically ϕi ≳ 1010 GeV, it will
be a good approximation if we only keep its quartic terms.
Therefore, the EW vacuum lifetime is computed by
considering only the scale-invariant part of the effective
potential:

Vðμ ≫ vÞ ≈ 1

4
½λ1h4 þ λ2H4 þ 2ðλ3 þ λ4Þh2H2�; ð6:5Þ

where the running quartic coupling λ2 is negative. This
analytic approximation leads to the following Euclidean
action for the Fubini instanton [67]:

ΔSE;i ≃ −
8π2

3jλij
; ð6:6Þ

where i ¼ 1, 2. Knowing ΔSE;i, an approximate formula
for the EW vacuum lifetime τ in units of the age of the
Universe (TU ∼ 13.7 × 109 yr) for the individual quantum
tunnelings from the EW vacuum to a deeper minimum in
the ϕi direction (ϕ1 ¼ h and ϕ2 ¼ H) may be derived,

τi ¼
eΔSE;i

ϕið0Þ4T4
U
: ð6:7Þ

Figure 9 gives the profile of the MS-2HDM potential
along the H- (black curves) and h- (red curves) field
directions. By considering the running quartic couplings,
the instability shown in Fig. 9 occurs when λ2 crosses zero

and becomes negative after the first unification point μð1ÞX .
Note that the scalar potential along the field direction of the
SM-likeHiggs bosonH has a highermaximum and a deeper
minimum compared to those found along the h direction.
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Table IV presents the results of our analysis, which gives
the center of the bounce solution ϕb

i ð0Þ for the neutral CP-
even Higgs bosons H and h, divided by the Plank mass
MP ≈ 1.9 × 1019 GeV. The same table includes numerical
estimates of the EW vacuum lifetimes τh and τH, as well as
the values of the effective quartic couplings λ1;2;3;4 at the
center of the bounce solution.
We find that the EW vacuum lifetime τ is many orders of

magnitude larger than the age of the Universe, and even
much larger than the SM EW vacuum lifetime τSM ∼
10640TU in the flat space (in the absence of Plank-scale
suppressed operators [37,38]). Therefore, we safely con-
clude that our Universe is adequately stable and so our
high-scale quartic coupling unification scenario is phe-
nomenologically viable.

VII. CONCLUSIONS

We have considered one of the simplest realizations of a
Type-II 2HDM, the so-called maximally symmetric two-
Higgs doublet model. The scalar potential of this model is
determined by a single quartic coupling and a single mass
parameter. This minimal form of the potential can be
reinforced by an accidental SO(5) symmetry in the bilinear
field space, which is isomorphic to Spð4Þ=Z2 in the field
basisΦ given in (3.1). The MS-2HDM can naturally realize
the so-called SM alignment limit, in which all SM-like
Higgs boson couplings to W� and Z bosons and to all
fermions are identical to their SM strength independently of
tan β and the mass of the charged Higgs boson.
The SO(5) symmetry of the MS-2HDM is broken

explicitly by RG effects due to the Uð1ÞY gauge coupling
and equally sizably by the Yukawa couplings of the
third generation of quarks and charged leptons. For
phenomenological reasons, we have also added a soft
SO(5)-breaking bilinear mass parameter m2

12 to the scalar
potential, which lifts the masses of all pseudo-Goldstone
bosons h�, h, and a above the 500 GeV range in agreement
with B-meson constraints. To evaluate the RG running of
the quartic couplings and the relevant SM couplings, we
have employed two-loop 2HDMRGEs from the unification
scale μX up to charged Higgs-boson mass Mh� . At the RG
scale Mh� , we have implemented matching conditions
between the MS-2HDM and the SM parameters.
Improving upon an earlier study [22], we have now

explicitly demonstrated that in the MS-2HDM all quartic

couplings can unify at much larger RG scales μX, where μX
lies between μð1ÞX ∼ 1011 GeV and μð2ÞX ∼ 1020 GeV. In
particular, we have shown that quartic coupling unification
can take place in two different conformally invariant points,
at which all quartic couplings vanish. This property is
unique for this model and can happen at different threshold
scalesMh� ¼ 500 GeV, 1 TeV, 10 TeV, and 100 TeV. More
precisely, the low-scale (high-scale) unification point arises
when λ2 crosses zero and becomes negative (positive) at the

RG scale μð1ÞX (μð2ÞX ). The region between these two scales
corresponds to negative values of λ2. For this reason, we
have performed a vacuum stability analysis of the model in
order to ensure that the EW vacuum is sufficiently long-
lived. In this respect, we have estimated the EW vacuum
lifetime τ which was found to be reassuringly long, i.e.,
much larger than that of the EW vacuum lifetime in the SM,
τSM ∼ 10640TU, assuming the absence of harmful Planck-
scale suppressed operators.
It is important to reiterate here that the MS-2HDM is a

very predictive extension of the SM, as it is governed by
only three additional parameters: (i) the charged Higgs-
boson mass Mh� (or m2

12), (ii) the ratio of VEVs tan β, and
(iii) the conformally invariant quartic coupling unification

scale μX which can take only two discrete values: μð1ÞX and

μð2ÞX . Given these three parameters, the entire Higgs sector
of the model can be determined. In this context, we have
presented illustrative predictions of misalignment for the
SM-like Higgs-boson couplings to the W� and Z bosons
and, for the first time, to the top and bottom quarks. The
predicted deviations to Hbb̄ coupling is of order 10% and
may be observable to future precision collider experiments.
Evidently, our novel theoretical framework can be straight-

forwardly extended to multi-HDMs with n scalar-doublets
based on the maximal symmetry group Spð2nÞ=Z2 ⊗
SUð2ÞL. We plan to report progress on this issue in an
upcoming publication.
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TABLE IV. Numerical values for the center of the bounce solution divided by the Plank massMP for neutral CP-even Higgs bosons h
and H, including their respective contributions to the EW vacuum lifetime τ in units of the age of the Universe TU. The values of the
quartic couplings λ1;2;3;4 at the center of the bounce solution are also given.

ϕið0Þ=MP λ1 λ2 λ3 λ4 τi=TU

H 1.73 × 10−5 4.2 × 10−4 −2.05 × 10−3 −9.86 × 10−3 2.818 × 10−2 ∼105400
h 5.06 × 10−7 −1.6 × 10−4 −1.11 × 10−3 −4.42 × 10−3 1.162 × 10−2 ∼10114180
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