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Quantum gravity models as string theory, loop quantum gravity, and noncommutative field theories allow
for the violation of Lorentz symmetry in the Planck scale. In order to examine the implications of such
violation in planar models, we present here a CPT-even effective model, in the Standard Model extension
framework, for Maxwell-Chern-Simons quantum electrodynamics (QED3), with a Lorentz violation tensor
parameter coupled to the photon field. The magnetoelectric effect induced by the space-time anisotropy in the
model is discussed. We then derive the exact classical photon propagator. The electrostatic interaction is
investigated and the long-range classical potential, corrected to second order in the Lorentz-violating tensor
parameter, is obtained as well as its radiative correction in the isotropic violation scenario, derived at one-loop
approximation from the vacuum polarization tensor. Also, the contribution of the space-time anisotropy to
the magnetic moment of the fermion trough the vertex diagram is evaluated on shell and in the forward
scattering approximation, in the absence of the topological Chern-Simons term.
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I. INTRODUCTION

Lorentz invariance is an important premise of all
relativistic theoretical models, having absolute experimen-
tal support. However, quantum gravity models as string
theory, loop quantum gravity, and noncommutative space-
time, predict the violation of this important symmetry in
some high energy scale (towards Planck scale), increasing
the interest in the physics beyond the Standard Model in the
last three decades.

In order to investigate the phenomenological implication
of this predicted symmetry loss in the low-energy scale,
Colladay and Kostelecky proposed an effective extension to
the Standard Model [ 1-3] where the Lorentz violation occurs
via a spontaneous symmetry breaking mechanism, similar to
the string field motivated model [4,5], where Lorentz tensors
assume vacuum expectation values, establishing preferred
directions in space-time and breaking particle Lorentz trans-
formations that are not unitary in the vacuum [1]. These
tensors parametrize external fields that couple to the dynami-
cal particle and gauge fields of the Standard Model.

Our interest in the present work is to approach the
Lorentz violation in the photon sector of chiral reducible
QED;, highlighting its effect upon the electrostatic inter-
action of charged particles in the plane and on the magnetic
moment of the fermion.

The paper is organized as follows: in Sec. II, we present
the model and discuss the magnetoelectric effect induced
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by the anisotropy in space-time. In Sec. III we determine
the exact classical photon propagator, reserving for the
Appendix the explicit expressions for its coefficients.
Section IV is devoted to the electrostatic potential, were
we develop its bare and radiative corrected terms, in one-
loop approximation and up to second order in the Lorentz
violation parameters, in the presence and in the absence of
the Chern-Simons interaction. In Sec. V, the leading
contribution to the magnetic moment of the fermion is
evaluated on shell and in the forward scattering approxi-
mation without taking into account the Chern-Simons term,
evidencing the contribution regarding Lorentz violation.
We conclude the present investigation with some remarks
on the main results and future perspectives.

II. THE MODEL

We studied the extended QED; model in the reducible
chiral representation given by the following Lagrangian
density (with the flat metric ¢ = diag(1,—1,-1)):

L(x) = (x) (i —m,t)y (x) — ey (x) A(x)y (x)
1 1
+2—g(9,4A”(X))2—ZF" (%) Fu (x)

1
+ 20 AT (x) FP (x) 4R

4 FP(x)F(x), (1)

afuv
where y(x) is the four-component spinor in the reducible
representation of QED5, with the associated 4 x 4 gamma
matrices (4 = 0, 1, 2) defined as in the four-dimensional
QED, the matrix 7 = iygy,y, in the fermion mass term
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being associated with the Haldane term [6,7,8], the electro-
magnetic field strength F*(x) = OFAY(x) — OYA¥(x)
defined by the tripotential A¥(x) = (gb(x)ﬁ(x)) { is the
gauge-fixing parameter, m., is the mass parameter related
to the Chern-Simons term (which is CPT even in tridimen-
sional space-time), and R, is the constant tensor field
that couples to the photon field and parametrizes the
Lorentz symmetry breaking, introducing a preferred direc-
tion in space-time.

The algebraic relations underlying (1) are summarized by

{r'.v'} = 29", (2)
[z, 7] = 0. 3)

As its four-dimensional counterpart [2], the Lorentz-
violating term introduced in our planar model (1) preserves
CPT,

A'(xo,xl,x2)—P> — AT (X0, —x!, x?),
A0~2(x°,x‘,x2)—P>A°~2(x0, )

A0, x1,x?) _T)AO(_XO’XI7X2)’

A1,2(x0,x17x2)_T) — AT (=20, 51 2)

() S = A¥(x), 4)

and the tensor parameter R, exhibits the same properties
as the Riemann-Christoffel tensor [9]

Raﬂ/w = _Ra/ﬁ//,t = _R[)’a;w

Ropuw = Ruvap

Ropuw + Rawpy + Royup = 0

R opus + O Ry + Oy Ry = 0. (5)
Inview of (5), we chose a basis for the tensor R 5, formed

by two linearly independent trivectors' u, and v, as [9]

1 1
Raﬁm] = E (uavﬂ + uyva)g/ln + 5 (MAU,] + Mﬂ”i)gay

1
- E (uavn + unv(l)gﬂﬂ - 5 (u/lvﬂ + uﬂvi)g(m

5
- g M.U(g,mgﬁq - gar/glﬂ)’ (6)

'The tensor structure (6) involving u, and v, components is
not the most general, in that it contains five independent
parameters in contrast to the six allowed by R4, in three
dimensions. Physically, this means that we consider 1 “frozen
degree of freedom” in the Lorentz-violating parameter space,
imposing a constraint among those components, which reflects
on the gauge propagator structure, baring a similarity with a
particular choice of a noncovariant gauge-fixing term in dealing
with the gauge sector of the Standard Model of particle physics.

The proposed planar model (1) comprises a rich phe-
nomenology already in the pure gauge case, as will be
briefly discussed next.

A. Magnetoelectric effect

Taking the pure Maxwell part of (1), neglecting the
Chern-Simons term for simplicity, leads to the Lagrangian
density

LX) = = g F)F (0) = § R FPR)F (), (7)

which can be written in terms of the electric and magnetic
field strengths, E(7, ) and B(7,t), and anisotropy trivec-
tors, u* and ¥, through (6)

Lo = (G =1 ) @70) - )

— D.E(F. 1)ii.E(F. 1) + B2(F., 1)ii. 0, (8)

where we defined the “vector product” in the tridimensional
space-time as @ x b = e%/ab j» with the spatial indices
i;j =1, 2, resulting in a pseudoscalar.

From (8) follows the electric displacement bivector
D(7,t) = OLgy/OE and the magnetic induction H(7, 1) =
—0Lgy/ 0B, which provide the electric polarization 15(7, 1)
and magnetization M(7,¢) of the anisotropic medium
through

D =E +4xP (9)
and
H = B—4zM, (10)

ending up with

1 5 L=
— [——u.vEx +2uE, — v, i.E

YTzl 4
—u,b.E + u’v,B + UOM.VB}, (11)
1 5 0,0 c L
P, = i —Zu.vEy +2uVE, — v u.E
- u),i}.f? —u’v, B — vouxB] , (12)
! 5 2ol 02 B 07
M=——|--uvB-2Bu.v+u’vxE+v""uxE|. (13)
4| 4

These expressions reveal that the anisotropy induced by
the Lorentz symmetry breaking makes the vacuum behave as
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a polarizable medium and exhibit the magnetoelectric effect
[10,11]; i.e., an electric (magnetic) field generates a mag-
netization (electric polarization) of the medium, as shown in
(11)—(13). Therefore, in the condensed matter scenario, the
Lagrangian density (8) can provide an effective model for
describing anisotropic planar systems with magnetoelectric
capabilities, of interest in magnetic sensor devices.

Another feature of the pure gauge Lorentz-violating
model (8) that follows directly from the associated equa-
tions of motion is the transversality loss of plane waves,
producing transverse magnetic modes in the spatially
anisotropic vacuum [8]. In an isotropic vacuum, i.e., u# =
(u°,0) and v* = (1°,0), the transversality of the wave is
preserved and the electromagnetic field propagates in the
usual transverse electric-magnetic mode [8].

III. PHOTON PROPAGATOR

The photon propagator D**(p) of the full model (1) is
derived, in momentum space, from the Green’s equation
associated with the vector field A#(p),

(~GuyP + Py = iMes€ " + 2R 1D (p) = 5
(14)

where we introduced =1+ 1/¢.
Exploring the tensor structure of our planar model, we
proposed the following ansatz for the propagator:

D(p) = C,g"° + Cyp"p° + iC3e"* p,; + C4u"1° + Csu®v" + Cou''u® + C70"0° + iCge"u, + iCoe v,
+iCio(p x u)u? +iCyy(p X u)u" +iCyy(v X u)u” +iCi3(v X u)7u" +iCy4(v x p)°u’ 4+ iCys5(v x p)'u®
+iCis(p x u)"° + iCi7(p X u)°v" + iCig(v X u)"v” 4 iCio(v X u)°v" 4 iCyy(v X p)°v" 4+ iCy (v X p)T0°
+ Coap"u® + Co3up? + Coup"v” + Cos"p? 4 iCas(p X u)"p? + iCy7(p x u)?p" + iCog(p x v)"p?
+iCyo(p X v)7p" + iC30(u x )7 p" + iC31 (U X v)"p? + iC3(u X v)"(u X v) + iC33(u x p)"(u x p)°
+ iCaa(v X p)"(v X p)° + iC35(v X p)"(u X p)” 4 iCs(u X p)'(v x p)? +iCs(v X p)'(u x v)°
+iCag(u X v)1(v X p)? 4+ iCs9(u X v)"(u X p)° 4 iCyo(u x p)'(u x v)°, (15)

where the coefficients C, = Ci(p), with (k =1, ..., 40),
are functions of the photon trimomentum p*.

With (15), we solved the linear system provided by (14)
and obtained originally the exact photon propagator for the
Maxwell-Chern-Simons extended QED;5. For brevity, we
listed the respective coefficients in the Appendix.

In view of the phenomenological smallness expected
for the Lorentz violation quantities u* and o, with
J

mg + p?

|
bounds in four dimensions given in [12], we proceeded
with a perturbative expansion for the exact propagator
(15) in the anisotropy trivectors, in order to obtain
the leading contribution of the Lorentz violation for the
planar electrostatic potential. Consequently, up to
second order in the trivectors, the photon propagator
reduces to

1 1 1 1

5 5w
Drip) = [m%s—pﬁ?(mé—pz)zp'vp _Z(m%s—ﬁ)zu'v] 7 L;— 1 (pz)ﬁ?pz—m%ﬁz(pzi;é)z P
2
A S | G e )
- i(mg:n%spz)z [(ux p)7v" = (ux p)Tv7] + "(mgsm_ipz)z% [(px u)"p? = (p xu)p"]
" ﬁ%w X 0)1p” = (p x v)7p'] +’§; ﬁ[( X p)!(ux p)” + (ux p)'(vx p)°]
+ 0>, v?). (16)
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IV. ELECTROSTATIC POTENTIAL

From the photon propagator we can obtain information
about the electrostatic interaction of charged particles. In
this section we will derive the potential produced by a static
fermion in the plane, discussing the role of the Chern-
Simons term, and the radiative corrections induced by the
vacuum fluctuations, identifying the contributions of the
anisotropy introduced by the Lorentz violation.

A. Classical Potential

In momentum space, the electrostatic potential produced
by a single charged fermion is given by [13]

AY(R) = —eDP(0.%). (17)

1 2 mA -k -
Agl(k):—e{ === Mes S kvk.u
mi 4+ &K (md +k)?
5 mi -k e 00
—Z > _,2214.1)— =) ’ 21/!7}
(mCS+k) (k +mCS)
2m? -
i |vxk||uxk|} (18)
k(K + mg)?

Denoting the fixed angle between the bivectors i and 7
by f, the angle between the position vector 7 and the vector

u by a and the angle between the momentum vector k and
the vector i by 6, as depicted in Fig. 1, we performed the
Fourier transform of (18) to the position space,

- &LPE - -
1. Case m ., # 0 AY(F) = /We””Agl(k), (19)
From the photon propagator (16) in the Landau gauge
Z = oo, the electrostatic potential (17) reads obtaining, with use of the software Mathematica,
|
M) = =5 [ mmapp 5 [ 5 3 e
V) = —— m..pr - Mmegpr
cl o 0 1 +,02 o\MespP P w4 0 (1 +,02)2 P~ )do\IMesP P
e oo 2n . 1
-—|v|ju pdpdge’r <) — —
ek s+ P
X [(5m2, — p?) cos(B) + (=8m2 + 4p?) cos(2(a — ¢) — p)],
e e
= _%Ko(mcsr) + g”ODOBKO(mcsr) + mcerl (mcsr)]
e .
- gcos(ﬁ”v””d[3mcerl(mcsr) - KO(mcsr)]
O G
~ - cos(2a — )]l |~ > mer K (megr) = 2Ko(megr) +— . (20)
2 2 m

where J;(x) is the Bessel function of the first kind and order
[ and K;(x) is the modified Bessel function of the second
kind and order /.

The first term in (20) is the well-known Bessel
modified potential of planar Maxwell-Chern-Simons
electrodynamics. The second one gives the signature
of an isotropic Lorentz symmetry breaking in the
electrostatic interaction being sketched in’ Fig. 2. The
remaining terms in (20), sketched in Figs. 3 and 4, carry
the influence of spatial anisotropy on the classical potential,
manifested as a circularly symmetric contribution and
an angular dependency, in the third and fourth terms,
respectively.

“In all graphs in this section, we are only interested in showing
the behavior of the long-range electrostatic potential. Therefore,
we sketched all related figures in terms of adimensional quan-
tities, avoiding to attribute values for the physical parameters.

Ccs

2. Case mq,=0

In the absence of the topological mass, the photon
propagator (16) in the Landau gauge becomes

| x

FIG. 1. Angular parametrization of the relevant planar vectors.
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FIG. 2. Contribution to the electrostatic potential e VS

mer, in the isotropic case with m # 0.

potential W+%EH5| Vs mgst, in the anisotropic collinear case with
My # 0.
Drlg(p;mcs = O)
1 ( P’ 1 PP\ 5
=——|g" - -—|g" - —U.v
p? r) p p* )4

Therefore, the momentum-space potential (17) is

p.up.v 1 - 1 u®  Suw 2 -
—|—2—(p2)2 gw—l-?(u’?yﬂ—l-uﬁy”) A(c)l(k) = —e |:I_€,2—2]_€.2+4]_€2+(]_€, )2k'uk'v (22)
1
7 [p-v(p"u® + p°u) + p.u(p"v” + p°u")]
3 3 and, performing the Fourier transform, follows the
+ 00, v%). (21) position-space classical electrostatic potential

N e 3 oo p e . 0 p
AY(7) :—ﬁ<1 —ZMOUO)/O [M—MJO(PV)dﬂ+§|“||U|COS(ﬂ)[) mjo(ﬂr)dﬂ

ir

e (o] 2 . 1
- _lillz dodgeirrcos(d) —2(a—
a1 [ [ oo coslp 20— )
e 3
=2 (130048 [+ 10(2) = ) = I, )
€ 5> € >
e [ 058 e+ 1n(2) = n(r) = Inom, )]+ [1[7] cos(6 — 2a). 23)

==
e

(s
0.0 .'/.
L

(a) (b)

0
FIG. 4. Contribution to the electrostatic potential W (z axis) vs mr (x axis) vs a (y axis), in the anisotropic case with m, # 0.
(a) Collinear # and 7; (b) perpendicular i and ¥.
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FIG. 5.
(z axis) vs p (x axis) vs a (y axis),
case with m = 0.

o . . AY
Contribution to the electrostatic potential —7 ==
(e/4m)[i]|7]

in the anisotropic

where Yoo = 0.577 is the Euler-Mascheroni constant and
m;, is an infrared regulator.3

The first and second terms in (23) recover the typical
logarithmic potential of planar Maxwell electrodynamics,
corrected by the space-time anisotropy introduced by the
trivectors u# and o*. In the third term, as occurs in (20),
the spatial anisotropy adds an angular dependence to the
potential (23), breaking its circular symmetry, as depicted
in Fig. 5.

B. Planar Uehling potential with
isotropic Lorentz violation

The quantum fluctuations of the electromagnetic vacuum
modify the photon propagator and contribute to the
electrostatic interaction of charged particles. In one-loop
approximation, the propagator dressed by quantum correc-
tions is

iDip,, (k) = iDp,, (k) + iD g (k)T (k)iDpg, (), (24)

where the first term is the classical propagator (16) and the
second encompasses the vacuum polarization contribution.
The vacuum polarization tensor, at one-loop, writes

3
M) = ¢ [ SRl Spnslp -l @5)

with the fermion propagator of our chiral model [8]

3Naturally, the constant terms in the potentials (23) and (39)
have no physical meaning and can be absorbed in the infrared
regulator by the redefinition m;, = im;,2e e,

Y+ m,T

S =_r o 26
0(p) pz_m3+i€ ( )

Decomposing (25) in its symmetric and antisymmetric
parts, gives

MSM(k) = —4¢2[2J5) (k) — k5 (k)
- k/,{]l/ (k) + g/wka‘]a (k>
+m2g, IV (k) = g, g5 (K)]. (27)
MIASYM (k) = —die?m, k%, ]V (k). (28)

written in terms of the auxiliary integrals
M(k) = / @p 1 ! (29)
) @)= my(p = k)P —m

I = / (‘P ! Pe__ (30)

27)* p* = m5 (p — k)* —mg

3
Jg’)(k):/(;lﬂl)) P’ —1m o(p I;{I)I;ﬁ—m - @

defined by

In the low-energy (long-range) limit,
k*> < m2, the integrals (29)—(31) result in [8]

: 2
JO(k)=—" I <2m” * Vk_) (32)
87Vk? 2m, — ViZ
' 2 &
I k) =— ln< o+ \/—> k,. (33)
v 2m, — Vi2

) =1 { +4\}k_2(4m0 K2)in @'Z ||:/\/Z—_z>]gﬂ

i 1 2m, +Vk?
—my———(4m2 =3k>)In [ e
+1675k2 [mo 4\/k_2( Mo ) n(2m0—\/k_2>]

X kakﬂ’ (34)

which define completely the polarization tensor (27), (28).

From the low-energy polarization tensor we can extract
the quantum correction to the long-range electrostatic
potential through the dressed propagator [13],

AY(K) = —eDy, (0, k)il (k)iD, (0, k), (35)
providing a Lorentz-violating planar version of the Uehling
potential of QED, [13,14]. Here we highlight the isotropic
violation scenario, u* = (1°,0) and v* = (1°,0), reserving
the issue of spatial anisotropy for a future communication.
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1. Case mq; # 0

From (16), in the isotropic case, and the one-loop polarization tensor, the long-range potential (35) in the momentum
space up to second order in |k|/m, can be expressed as

- e m e me +2m e 5¢3 m3
Ad(k) = ———=(mgs + 6m, = — = 9 = TS
Q( ) (Y4 m, ( )(mgs + k2)2 127 m% (mgs + ]}?)2 47 (mgs + k2)3 0vo
e’ 3 2 2 K
— @m—% (Smcs + 28mcsm0 - 12mcsm0) m Uupvg
& me +12m, (k)2 5
- 9 O(|k|”/m3). 36
487 m% (mgs ]-<>2)3 uyvo + (| | /mo) ( )

Performing the Fourier transform to the position space, we arrive at the corrected potential

- e me+6m, [ p e me +2m, [ p}
Ag(r) = 12”2 (;;l Mgy 0[; (1 +p2)2JO(mC§)0r)dp+ 2477:2 = m2 OA (1 +p2>2 JO(mCSpr)dp
o S o
5¢3 1 [« P
—— —=1 pr)d
+ 871'2 mCSA (1 +ﬂ2)3 O(mcspr) PUHVo
et 1 3 2 o [P
- Y (Sm&s + 28mggm, — 12mcsmo) o (1 I p2)3 Jo(mcspr)dpuovo
o CcS
e me+12m, [ p°
_ 96][2 cs m2 0/ (1 +p2)3J0(mcspr)d,0M01)0
o
e 1
= _487T2W [_Z(mcs + 2ma)KO(mcsr> + (m(z:s + 4mcsm0 + 12m%)rK1 (mcsr)]
o
e Smd +28mim, — 12m.m?2 (1 1
|:_ 967‘[2 = I’)’(:Z,mogg E— (5 mcerl (mcsr) - g m%srzKZ(mcsr)>
e me + 12m 1 5¢3
- 9671’2 = m2 . (KO(mcsr) - mcerl(mcsr) + gm%srzKZ(mcsr)) + WmcsrzKZ(mcsr)} UpVg. (37)
|
The first term in brackets in (37), illustrated The second term in (37), depicted in Fig. 7, singles out

in Fig. 6, recovers the quantum potential of the  the contribution that stems from the isotropic Lorentz
chiral model of QED; with Chern-Simons and Haldane  violation, which naturally preserves the circular symmetry
terms [8]. of the electrostatic potential.

6000

~2000 5000

—4000 [ 4000 r
—6000 |- 3000 :
—8000 | 2000 :

~10000

1000

~12000 -

S S S S S S S E S S S |

1 2 3 4 5

FIG. 6. Quantum correction to the electrostatic potential FIG.7. Quantum correction to the electrostatic potential —77% Al >

A9 . . . . . e*/(327%)
STy VS MesTs with m/m, = 0.001. Vs mger, with me/m, = 0.001, in the isotropic case.
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2. Case my =0

In the absence of the topological photon mass, the
momentum-space radiative correction to the long-range
electrostatic potential follows from (21) and (35)

el 11 1
-_— <1 —71401}0) I_éz + 0(|k‘ /m ) (38)

AO(k) 6 m,

Turning to the position space, we find the vacuum

polarization contribution
(o)
P
————Jolpr
) A ) olpr)dp

e 1 (1 3
1272% m, 2"

———(1 3uv>[— +1n(2)
12”2 m, ) 0v0 7 euler

—1In(r) = In(m;,)]. (39)

Ag(F) =

e 1

As expected in the isotropic scenario, the circular
symmetry of the electrostatic interaction is preserved. Its
interesting to note that the long-range radiative correction
(39) exhibits the same logarithmic behavior of the classical
planar potential of Maxwell electrodynamics.

V. MAGNETIC MOMENT

The electromagnetic vertex introduces the interaction
between the photon and the fermion fields trough the
gauge principle. This coupling also receives corrections
due to fluctuations of the fermion and photon fields
as well as from the Lorentz-violating background field
dressing the photon propagator, leading, for instance,
to a modification in the magnetic moment of the fermion
field. Our purpose in this section is to analyze the space-
time anisotropy contribution, in one-loop and on-shell
approximation and up to second order in the trivectors
ut and v*.

At one-loop order, the electromagnetic vertex correction
reads

- ierﬂ (plv p)
P53 d’ik Do . ’ .
= —le (271')3 iD (k)yl/lSO(p - k)yMZSO(p - k)ya‘
(40)
In the on-shell limit, defined by
pw,(p) = moty,(p) (41)
7 (p")p' =, (p")m,t (42)

and up to second order in the Lorentz violation parameters,
in the absence of the Chern-Simons term (i.e., m., = 0), the
vertex (40) can be written as

0)

—ieip,(P)Tu(p' P)w,(p) = —iewry (P T (0. p)yr,(p)

—iew (p" T (P, p)w . (D).
(43)

with

. 5\,
—iep, (P )T (P, P, (p) = € (1 + —M-v> (' p).

4
(44)
—iey, (P 0" (p . p)w,(p) == 1) (p . p) = 150 (p' . p)
—S18 (P ), (45)
where
. &Pk 1 kokVN _
1O%(p' p) = —/(zﬂ)gkz <ga” _k2> w,(p')
oy, Z o mo L Hme
71/ (p/ _ k)2 _ m(2) y (p k) 2 }/al//r p
(46)
3
(q) &k k.uk.v _ ' ﬁ/ - k+ m,t
1 ’ =2 I~ N3 [/12\2 Vs vy 1\2 2
Y= k +m,T v
XY u m]’ v, (p). (47)
$(q) d3k 1 a, v U0\, I
Iy, (P, p) = W;(u v+ u o) (p')
o M fme
yl/ (p/ _ k)2 _ m% Y/l (p k) 2 yal//r p
(48)
3
1800 = = | Gy e
x [k.v(k®u” + k'u®) + k.u(k*v” + k" v*)]
oo P ktmer gt mT
X Ws(p )yl/ (p/ _ k)2 _ m2 }/ﬂ (p k) _ m
X1y (P). (49)
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The vertex contribution to the magnetic dipole inter-
action comes from [8,13,14] a term proportional to*
(1/2)6,,7q%, With 6,4 = (i/2)[r,.74] and g, = Pl = Pa-
In order to put in ev1dence the leading contribution, we
examine the on-shell vertex (43)—(45) in the forward
scattering approximation, defined by ¢, — 0.

Therefore, using the Gordon identity [8]

ws(P v, (p)

1

= _l/_/v(pl)Kp;l + p/,t)T + id;mT(p/a -

e P9, (p),

(50)

reminiscent of the Dirac equation associated with our three-
dimensional model, as well as the following identities valid
on shell:

|

ws(p")p' vou* + p' vy, (p')

= mol/_/s(p/)[ﬁuﬂ + ﬂvﬂ]ﬂ//r(p/)’ (51)
ws(p")p upp + p'ohl p"y,(p')
=, (p") 20" up’ vyy,(p). (52)

comes the relevant contribution from the vertex terms
(46)—(49) to the magnetic dipole moment

Tnag(q = 0) = —ie*{[-4miX(q > 0) +4m3X (q — 0) + 2X,(q — 0) + 4m3Y ,(q = 0) +4m3Y (g — 0)]

5
+ [-5m3X(q = 0) +5m3;X (g — 0) +§Xg(q - 0) +2m3X .,

+5miY (g — 0)

ol p'p - 4Ygg(q - 0)]”'7]}’

in terms of the auxiliary integrals5

X(g—0)=- 16 dzl/ sz - 1z1+m PATER
(55)

Xy(g—=0)= dzl/ dzz Zl 373
1671' [m222 —m? 7, +m? )%/

(56)

*The interaction energy between an external static electro-
magnetic field and the fermion field current density, dressed by
the one-loop vertex correction, is expressed by [13,14]

W= /_ B dxip(p')ley, + el (p'. p)ly,(p) Ak

Using the Gordon identity (50) and considering the external field
to be magnetic, the dipole interaction can be written as [8]

00 o 1
W = —gug / &3, (p') 5007w(p)B.
From the last expression, we can identify the analogous of the

magnetic moment, in our (2 + 1)-dimensional model,

© 1
(uMAS) = gup / dsz/s(p/)EO-lZﬂ/js(p)’

with ug = e/(2m,) being the analogous Bohr magneton,
and g playing the role of the gyromagnetic ratio.

SPlanar QED is known to be infrared divergent [15-19].
Therefore, expression (54) is expected to manifest this singular
behavior.

i
Miac(@ = 0) =Tuag(q = 0) m 0""tq,,  (53)
with the form factor I'y;, (¢ — 0) defined by [8]
(g = 0) +13m3Y,(q - 0)
(54)

i 1 41 1
X, (g—0)=— dz / dz ’
o ) 1671'A "o : [m3z3 —mlz; +m3]'/?

(57)
Xyp(qg—0)=- 16” dzl/ dz,

i [m5et - m,,Zl +m? P32 (58)

Y,(qg—0) = 32ﬂ dzl / dz, / i,
AT )

Yy(qg—0)= /dzl/ dzz/ dzs
§ [m323 — m,,Zz +m? P2 (60)

Yy(qg—0) = 0 / dz1/ dzz/ dzs
(61)

[m Z2 mtrZ +m ]1/2

Employing the software Mathematica to solve the
integral expression for the form factor (54), we find
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62 1 m;, m,

0 0 mi

2 1 .
A <10+ 121n<2'"4> 47

32zm, m, m;,

(62)

In the desired approximation, the corrected gyromag-
netic ratio reads [13,14]

g =2(1+4+Tyac(g = 0)). (63)

Therefore, defining the fine structure constant
a. = e*/m,, we recognize the usual QED correction
a./7 in the first term of (62), due to the vertex diagram
with the bare internal photon. The new feature comes from
the second term in the form factor (62) regarding the
contribution of the space-time anisotropy from the dressed
photon propagator, thus giving a correction of (5a,/87)u.v
for the gyromagnetic ratio.

As anticipated, the infrared regulator is present in the
form factor (62) as a consequence of the divergence of the
model in that limit [15-19], demanding a renormalization
procedure involving bremsstrahlung insertions in scatter-
ing processes.

VI. CONCLUDING REMARKS

In this work we presented a Standard Model extension
based effective model for chiral Maxwell-Chern-Simons
QED; in the reduced representation, with CPT-even
Lorentz symmetry violation in the photon sector (1). It
was shown that the anisotropy introduced by the Lorentz-
breaking parameters supports the magnetoelectric effect in
the plane (11)—(13), similarly to the feature investigated in
[11] in four dimensions, and the exact bare photon
propagator was computed in the employed parametrization
15)). From this propagator, the classical electrostatic
potential was determined, up to second order in the

|

Lorentz violation parameters, both in the presence and
the absence of the topological photon mass, (20) and (23).
In the isotropic violation scenario, the long-range correc-
tion, due to the vacuum fluctuations, to the potential was
obtained in one-loop approximation, taking into account
the Chern-Simons term and omitting its contribution as
well, (37) and (39).

The correction to the gyromagnetic ratio (63) due to the
anisotropy introduced by the trivectors u* and o* was
calculated from the vertex form factor, (53) and (54), on
shell, at one-loop and in the forward scattering approxi-
mation, up to first order in the scalar product u.v (62), in the
absence of the Chern-Simons interaction.

As future perspectives, the complete analysis of the one-
loop radiative corrections, i.e., self-energy and vertex
corrections of the model, is in progress [8]. Concerning
to the magnetic moment of the fermion, it is desirable to
investigate the case where the topological Chern-Simons
interaction is also included, employing the photon propa-
gator (16) to determine the modified form factor. In
addition, the quantum corrections for the electrostatic
potential in the spatially anisotropic scenario are also of
phenomenological interest in an interface with condensed
matter physics, to be reported. A general parametrization
for the Lorentz-violating tensor R,,,, taking into account
all its degrees of freedom and having (6) as a particular
case, may also unveil a broader scenario and will be a
subject of investigation in a near future.
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APPENDIX: EXACT PHOTON
PROPAGATOR COEFFICIENTS

The coefficients C;(p) that compose the photon propa-
gator (15) are listed here. For brevity, we introduced the
quantities

deno(C,) = {[16m%p* — (p*(4 — 5u.v) + 8p.up.v)?|
x [256mé p* — 32m2(p*(p* (=4 + u.v) (=4 + Su.v) — 8(p.(u x v))?)
+4p*(12 = Tu.v)u.pv.p + 32(p.u)*(p.v)?) + (p*(4 — 5u.v) + 8p.up.v)?

x(16(p.u)*v* + p*((=4 + u.v)? — 16u*v?) — 8(=4 + u.v)p.up.v + 16u*(p.v)?)]} !

and

(A1)
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1
deno(Cs) = { [m%sp2 T (p*(4 = 5u.v) + 8u.pv.p)?

x {—mé‘s(pz)2 + %m%spz(pz(pz(—4 + u.v) (=4 + 5u.v) = 8(p.(u x v))?)

+4p?(12 = Tu.v)u.pv.p + 32(u.p)*(v.p)?) 2(p*(4 = 5u.v) + 8u.pv.p)?

" 2567

x (16(u.p)*v? + p*((=4 + u.v)?> — 16u*v?) — 8(—4 + u.v)u.pv.p + 16u2(v.p)2)} }_1.

Therefore, the non-null coefficients are

p*(—=4 + 5u.v) — 8p.up.v

C =4 ’
1(p) —16m%p* + [p*(—=4 + 5u.v) — 8p.up.v]?

1

1
Cy(p) = oL {Z—l — 4[p*(—4 + Su.v) — 8p.up.v)

x (256mi(p*)? + [p*(4 = 5u.v) + 8p.up.v)*[(p?*)*((—4 + u.v)? — 16u>v?)
—16p*(=4 + u.v)p.up.v + 64(p.u)?*(p.v)?] = 32mZp*[(p*)* (=4 + u.v) (=4 + Su.v)
+64(p.u)?(p.v)? = 8p*((p.(u x v))> = 8p.up.v + 6u.vp.up.v))

X ([=16m2p* + (p*(=4 + Su.v) — 8p.up.v)?]

x [256mp? — 32m2(p*(p* (=4 + u.v) (=4 + 5u.v) = 8(p.(u x v)?)

+4p>(12 = Tu.v)p.up.v + 32(p.u)*(p.v)?))

+ (p*(4 = 5u.v) + 8p.up.v)>(16(p.u)*v* + p*((=4 + u.v)> — 16u*v?)

—8(=4 + u.v)p.up.v+ 16u2(p.v)2)])_1},

B 16m,
~16mZp* — [p*(4 = Su.v) + 8p.up.v]*’

Gs(p)

Cys(p) = —16[p*(=4 + 5u.v) — 8p.up.v)* [—=16m2p> + 16imqp*p.(u X v)
+ (p?(=4 + 5u.v) = 8p.up.v)(p*(—4 + u.v) — 4p.up.v)]deno(C,),

5 2 .
Cs(p) = p? [pz <—1 —|—Zu.v> - 2p.up.v] [—mcspz(mCS +ip.(uxv))

1
+ 16 (p*(—=4 + 5u.v) — 8p.up.v)(p*(—4 + u.v) — 4p.up.v)|deno(Cs)

Ce(p) = —p? [pz (—l —&-%u.v) - 2p.up.v] 3[—p21)2 + (p.v)*]deno(Cs),
C7(p) = —64[p*(4 — 5u.v) + 8u.pv.p]*[(p.u)* — p*u*]deno(Cy),
Cio(p) = =256m[p*(—=4 + 5u.v) — 8u.pv.p)?[p*v?> — (p.v)*]deno(C,),
Ci1(p) = 256m[p?*(—4 + Su.v) — 8u.pv.p)*[p*v* — (p.v)?*]deno(Cy),

Cia(p) = 64ms[p*(—=4 + 5u.v) — 8u.pv.p][16m2,p> — 16imp*p.(u x v)
— (p*(=4 + 5u.v) — 8u.pv.p)(p*(=4 + u.v) — 4u.pv.p)|deno(C,),
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5 .
CIS (p) = _n/lcsp2 |:p2 <_1 + Zu-v> - 2u.pv.p] [_mcspz(mcs + lp'(u X U))
1
+ T (p*(=4 + 5u.v) — 8u.pv.p)(p*(=4 + u.v) — 4u.pv.p)|deno(Cs),

Cis(p) = Cia(p),

Ci7(p) = 64m[p* (=4 + 5u.v) — 8u.pv.p][—16m% p* — 16imp*p.(u X v)
+ (p*(—=4 + 5u.v) — 8u.pv.p)(p*(—4 + u.v) — 4u.pv.p)]deno(C,),

Coo(p) = 256m[p*(4 — 5u.v) + 8u.pv.p]?[(p.u)* — p*u*]deno(Cy),

Ca(p) = —Cax(p).

16
Cu(p) = e [P* (=4 + 5u.v) — 8u.pv.p]?

x [64(u.p)*(v.p)* + (p*)*(=4 + Su.v)(du.pv* + (=4 + u.v)v.p)
— 16pv.p(mZ + imep.(u X v) + u.p(2u.pv* — 4v.p + 3u.vp.v))]deno(C,),

Conlp) = ;—6 [P(=4 + 5u.v) — 8u.pu.pl2[64 (. p)2(v.p)?

+ (p?)? (=4 + Su.v)(du.pv* + (=4 + u.v)v.p)
— 16p2v.p(m% — imep.(u X v) + u.p(2u.pv* — 4v.p + 3u.vp.v))]deno(C,),

16 .
Cu(p) = e [P? (=4 + 5u.v) — 8u.pv.p)?[-16m% p*u.p + 16ime p*u.pp.(u x v)

+ (p*(—=4 + 5u.v) — 8u.pv.p)(p*(—4 + u.v)u.p — 8(u.p)*v.p + 4p*u’v.p)|deno(C,),

16
Crs(p) = 2 [p?(—=4 + 5u.v) — 8u.pv.p]?[=16m% p*u.p — 16ime p*u.pp.(u x v)
+ (p*(=4 + 5u.v) — 8u.pv.p)(p*(=4 + u.v)u.p — 8(u.p)*v.p + 4p*u*v.p)|deno(Cy),

64m,

Ca(p) = —5— [p*(=4 + 5u.v) = 8u.pv.p|[64(u.p)*(v.p)* + (p*)*(—4 + 5u.v) (4u.vv* 4+ (=4 + u.v)v.p)

p
— 16p2v.p(m% — imep.(u X v) + u.p(Ru.pv* — 4v.p + 3u.vp.v))|deno(C,),

64m
Cy(p) = pn21 [P*(=4 4 5u.v) — 8u.pv.p|[64(u.p)*(v.p)* + (p*)*(—4 + 5u.v)(4u.vv*> + (=4 + u.v)v.p)
— 16p2v.p(m2 + imep.(u X v) + u.p(2u.pv* — 4v.p + 3u.vp.v))]deno(C,),
_ 6dm ) : 2
Cx(p) = —?[p (=4 4 Su.v) — 8u.pv.p|[16mip*u.p + 16imp*u.pp.(u x v)

— (P*(=4 + 5u.v) — 8u.pv.p)(p*(=4 + u.v)u.p — 8(u.p)*v.p + 4p>u’v.p)]deno(C,),

64m .
Cy(p) = p_n; [P? (=4 + 5u.v) — 8u.pv.p][16m2p*u.p — 16im.p*u.pp.(u x v)

— (P*(=4 + 5u.v) — 8u.pv.p)(p*(—4 + u.v)u.p — 8(u.p)*v.p + 4p?u’v.p)]deno(C,),

Cx3(p) = 1024im2[p* (=4 + Su.v) — 8u.pv.p|[p*v* — (p.v)?*]deno(C,),
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Ca(p) = 1024im2[p* (=4 + Su.v) — 8u.pv.p|[p*u® — (p.u)*|deno(C,),

Css(p) = —256im%[16m2p? + 16imp*p.(u x v)

— (p*(=4 + 5u.v) — 8u.pv.p)(p*(—4 + u.v) — 4u.pv.p)|deno(C,),

C36(p) = _256”’”%9[16””39172 - 16imcsp2p'(u X 1})

— (p*(=4 + 5u.v) — 8u.pv.p)(p* (=4 + u.v) — 4u.pv.p)|deno(Cy).
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