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Dark matter (DM) could couple to particles in the Standard Model (SM) through a light vector mediator.
In the limit of small coupling, this portal could be responsible for producing the observed DM abundance
through a mechanism known as freeze-in. Furthermore, the requisite DM-SM couplings provide a concrete
benchmark for direct and indirect searches for DM. We present updated calculations of the relic abundance
for DM produced by freeze-in through a light vector mediator. We identify an additional production
channel: the decay of photons that acquire an in-medium plasma mass. These plasmon decays are a
dominant channel for DM production for sub-MeV DM masses, and including this channel leads to a
significant reduction in the predicted signal strength for DM searches. Accounting for production from both
plasmon decays and annihilations of SM fermions, the DM acquires a highly nonthermal phase-space
distribution which impacts the cosmology at later times; these cosmological effects will be explored in a
companion paper.
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I. INTRODUCTION

One of the most well-studied mechanisms for setting the
observed dark matter (DM) abundance is thermal freeze-
out, where DM is in equilibrium with the Standard Model
(SM) thermal bath at very early times. The DM abundance
is then depleted through annihilations at later times until the
DM drops out of chemical equilibrium. The appeal of this
mechanism is that the final relic abundance is generally
independent of the high-temperature initial conditions at
reheating. Furthermore, producing the observed relic abun-
dance requires a particular thermally averaged annihilation
cross section in most thermal freeze-out scenarios,
hσvi ∼ 10−26 cm3=s. This weak-scale cross section pro-
vides a target that can be probed by direct and indirect
detection experiments. Assuming the relic abundance is set
by annihilations to SM particles, then consistency with big
bang nucleosynthesis (BBN) generally requires that ther-
mal freeze-out candidates have masses mχ ≳ 1 MeV [1–3].
The appealing simplicity of this scenario has led to an
enormous number of DM searches targeting the thermal

freeze-out mechanism, with a particular emphasis on
weakly interacting massive particle candidates in the mχ ∼
GeV–TeV mass range. More recently, there has been a
growing interest in mχ ∼ keV–GeV thermal candidates
where interactions with the SM or within a hidden sector
deplete the DM density to the observed value [4–17].
The freeze-in mechanism for DM production is a

compelling alternative to thermal freeze-out, where DM
is instead produced by feeble, sub-Hubble interactions of
SM particles [18–23]. If the dominant freeze-in process is
annihilation of SM particles into DM via a light mediator,
then many of the appealing features of thermal freeze-out
are maintained. For annihilation through a mediator lighter
than the DM, the thermal cross section typically scales as
hσvi ∼ g2χg2SM=ð4πTÞ2, where gχ is the mediator-DM cou-
pling, gSM is the mediator-SM coupling, and T is the SM
temperature. With this scaling, DM freeze-in dominantly
occurs at the lowest temperature where the process is
kinematically accessible, and thus the mechanism is not
sensitive to the reheat scale.1

Freeze-in through a light vector mediator has emerged as
a key benchmark for sub-GeV direct detection experiments.
Producing the observed DM relic abundance implies a tiny
value for the coupling constants, which is difficult to target
with accelerator searches. However, sufficiently light
mediators give rise to scattering cross sections that scale
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1We assume the minimal scenario where the dark sector is not
populated in abundance at reheating.
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as σ ∝ 1=v4 for relative velocity v, implying that the
kinematics of the MilkyWay (where v ∼ 10−3) can enhance
the detectability of DM coupling to a light mediator. If the
mediator also couples to charged SM fermions, then the
DM can scatter off of electrons or nuclei and may be
detectable with the next generations of direct detection
experiments [24–35] (see also Ref. [36] for a recent
review). Indeed, recent experimental results by SENSEI
[37,38], SuperCDMS [39], and DarkSide [40] are demon-
strating significant progress towards achieving the sensi-
tivity needed in the MeV–GeV mass range. It was also
shown recently that Xenon1T [41] is for the first time
constraining freeze-in in the GeV–TeV mass range [42].
In the keV–MeV DM mass range, freeze-in through a

light mediator is the leading scenario that could be tested by
proposed low-threshold direct detection experiments.
References [43,44] studied the possible direct detection
cross sections in models of sub-MeV DM, finding that it
would be difficult to observe thermal freeze-out scenarios
(even purely within a dark sector) due to a combination of
BBN, cosmic microwave background (CMB), fifth force,
and stellar emission constraints. Obtaining accurate pre-
dictions of freeze-in is thus an important step in the
program to search for low-mass DM. While freeze-in from
electron-positron annihilations via a light vector mediator
has been studied in the past [24,45], in this work we
thoroughly explore a previously overlooked production
mechanism: freeze-in through plasma effects. The contri-
bution of plasma effects to dark sector thermalization was
estimated earlier in Refs. [46,47] and the effect on freeze-in
via a heavier mediator was recently considered in Ref. [48],
but it was not included in previous studies of freeze-in
through a light vector mediator. We find that the plasma
production of DM is a dominant channel for sub-MeV
DM masses, and will therefore restrict our discussion to
this mass range. The additional contribution to the relic
abundance implies that the target cross section for direct
detection is lower by roughly an order of magnitude for the
lowest experimentally accessible DM masses.
The rest of this paper is organized as follows. We begin

in Sec. II by reviewing the arguments for the simplest
viable freeze-in models in the keV–MeVmass range: either
pure millicharged DM arising from a DM hypercharge or
effectively millicharged DM that is coupled to an ultralight
dark photon mediator. These two scenarios are almost
phenomenologically identical, with the key difference
being that DM-DM scattering can be parametrically larger
when dark photon interactions are present. These DM
candidates have recently received considerable attention in
the context of the anomalous 21 cm global signal [49–53].
In Sec. III we compute the DM relic abundance from
freeze-in via a light mediator. We include the effects of
plasmon decays for the first time, and show the impact
for direct detection. We then present the calculation of
the phase-space distribution for freeze-in DM in Sec. IV.

A summary of our results can be found in Sec. V. In a
companion paper [54], we will apply the calculations of
the phase-space distribution to cosmological observables,
showing that the CMB and probes of large-scale structure
provide a strong complementary test of DM freeze-in for
mχ ∼ keV–MeV. In particular, we find that existing cos-
mological constraints restrict mχ ≳ tens of keV for freeze-
in via a light mediator, and it will be possible to probe even
higher masses with planned experiments.

II. MODELS FOR SUB-MEV FREEZE-IN

A. The case for light vector mediators

The simplest observationally viable models for sub-MeV
freeze-in through a light mediator can be divided into two
classes, where (1) the DM only has interactions mediated
by the SM photon or (2) the DM has interactions with an
ultralight kinetically mixed dark photon. We note that
models of millicharged DM [46,55] can fall under either
category: they can arise as a limit of the dark-photon model
where the dark photon is nearly massless, or they could be
present as Dirac fermions with a tiny hypercharge.2

For sub-MeV freeze-in to be relevant for direct detection,
vector mediators are the only observationally viable option
due to stringent constraints on other light mediators with the
requisite couplings to the SM, as outlined below. For direct
detection of freeze-in, the mediator masses must be suffi-
ciently small compared to the typical momentum transfer for
scattering processes. If the mediators are heavier, then they
do not give rise to the v−4 enhancement that would render
extremely feeble DM-SM interactions detectable on Earth.
For nuclear recoils the relevant momentum scale is set by
galactic kinematics q ∼mχv ∼ 10−3mχ , while for electron
recoils the typical electron momentum in the target material
is most relevant q ∼ αme ≈ 4 keV, where me is the electron
mass and α is the electromagnetic fine structure constant.
Thus for sub-MeV DM, the experimentally relevant medi-
ators have masses below Oð1Þ keV.
Assuming an annihilation cross section of SM fermions

into DM with the form hσvi ∼ g2χg2SM=ð4πTÞ2, the relic
abundance can be estimated as

Yχ ¼
nχ
s
∼
n2SMhσvi

sH
∼ 2 × 10−4

g2χg2SMMPl

T
; ð1Þ

where MPl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the reduced Planck mass and

we assumed T ∼MeV. Then for mχ ∼MeV, we find that
gχgSM ≃ 10−12 to saturate the relic abundance. This order-
of-magnitude estimate is in agreement with more detailed
calculations below. Since obtaining the relic abundance

2Other models that have been considered in the past require
giving neutrinos small charges as well [56], which we do not
consider further due to strong experimental bounds on neutrino
charge [57].

DVORKIN, LIN, and SCHUTZ PHYS. REV. D 99, 115009 (2019)

115009-2



from freeze-in requires gχgSM ∼ 10−12, gSM must be greater

than 10−12 if we require the dark sector to be perturbative
(i.e., gχ ≲ 1). Weakly coupled, sub-keV mediators can be
emitted in stars, affecting their luminosity and lifetime.
The observed properties of stars lead to strong bounds on
such mediators, which we summarize here (see also
Refs. [43,44], where these bounds are collected and
discussed in the context of sub-MeV DM models):
(a) Scalars and pseudoscalars coupled to electrons—The

strongest bound on a light scalar with interaction
gϕeeϕēe comes from helium ignition in red giants,
with gϕee ≲ 7 × 10−16 for sub-keV masses [58]. For a
sub-keV pseudoscalar, observations of white dwarfs
give typical constraints of gaee ≲ 2 × 10−13 [59–61]. A
caveat for most stellar emission bounds is that when
the coupling is increased, the new particle may be
trapped within the star and would not lead to anoma-
lous energy loss. However, this would still affect
energy transport in the star, which can be constrained
for the range of couplings relevant for freeze-in
through this mediator [62,63].

(b) Scalars and pseudoscalars coupled to nucleons—
Similar to the case of mediators coupling to electrons,
red giants constrain gϕnn ≲ 10−12 for a scalar [58] and
gann ≲ few × 10−10 for a pseudoscalar [59,64]. While
the latter coupling appears at face value to be suffi-
ciently large, freeze-in through baryons is largely sup-
pressed after the QCD phase transition due to the low
baryon number density. Therefore, in this case our
estimate for the minimum gSM with T ∼ 1 MeV is
much too low and freeze-in would have to occur with a
larger value of gSM that is in tension with stellar bounds.

(c) Scalar mixing with the Higgs—The bounds here are
similar to those in the two previous cases, and it has
been shown in Ref. [65] that freeze-in through this
portal is only a viable mechanism for producing all of
the DM for DM masses above a few hundred MeV.

(d) Kinetically mixed dark photon—In this case, the
stellar constraints on gSM decrease linearly with the
mediator mass for masses below ∼100 eV [66,67]
because of the in-medium plasma mass suppression
of producing dark photons from SM interactions, as
detailed in Eq. (5) and the surrounding discussion in
Sec. II C. From the collected bounds on dark photons
from Ref. [68], a dark photon can have gSM > 10−12

when its mass is well below 1 eV. At even lower
masses, the coupling could be ∼10−3 for masses
below ≲10−14 eV.

(e) B − L vector—Stellar constraints on a B − L vector
are similar to that for the dark photon. However, for
eV-scale and lighter mediator masses, a B − L vector
is also strongly constrained by fifth force searches
(e.g., [69,70]), which limits the mediator-SM coupling
to below 10−12.

Since we are focusing on the simplest benchmarks for
direct detection, we do not consider more exotic possibil-
ities with additional particles and interactions. From the
bounds on new particles with the couplings described
above, we conclude that freeze-in through a light mediator
is viable either when the mediator is (1) the SM photon, and
the DM has a tiny electric charge, or (2) when the mediator
is an ultralight kinetically mixed dark photon.
We discuss these two closely related scenarios in the rest

of the section. In both cases, DM has an effective chargeQe
(or millicharge Q) with respect to the SM photon. This
parameter determines the relic abundance, irrespective of
which of the two models is under consideration. Both
models allow for heat and momentum transfer between SM
particles and DM during epochs when the typical relative
velocities are low (as discussed in Sec. IV C), which is
relevant to observations of the CMB [71–77] and the
cosmological 21 cm global signal [49–53]. The main
phenomenological difference between these two possibil-
ities is that DM-DM scattering via a dark photon can be
parametrically larger than DM-DM scattering mediated by
the SM photon, as discussed below. If present at a sufficient
level, the DM self-scattering can play an important role in
determining the DM phase-space distribution at late times,
well after freeze-in.

B. DM with photon mediated interactions

If the DM is a Dirac fermion χ with a tiny hypercharge
QY (the only gauge-invariant, renormalizable operator
leading to a bare millicharge), then it can interact via the
SM photon. After electroweak symmetry breaking, the DM
obtains an electric charge given by eQY ≡ eQ (taking the
convention where the Gell-Mann–Nishijima formula reads
Q ¼ I3 þ Y). Although there are also Z-mediated DM
interactions, they are negligible for the relevant epochs
where T ≪ mZ. This gives the simplest model of milli-
charged DM. It is difficult to incorporate such matter
content into a grand unified theory [78]; however, this
scenario is economical in that it requires that no additional
particles be introduced to the SM aside from the DM itself.
The possibility that this DM candidate obtains its relic

abundance by thermal freeze-out has been considered
before in Ref. [79], where it was shown to be excluded
by structure formation when all of the DM is produced this
way. Thus, freeze-in is the simplest remaining possibility
for producing this DM candidate, with gχ ¼ eQ and
gSM ¼ e in the language of the previous subsections.
There are stellar emission bounds on this DM candidate

because the DM can be pair produced by the decay of
plasmons in stars, leading to additional energy loss [46,47].
These bounds are shown as the shaded region in our
summary plot, Fig. 8. Constraints on DM pair produced in
SN1987a were derived in Refs. [46,80] and require Q≲
10−9 formχ up to a fewMeV, which does not impact freeze-
in. However, there are constraints on freeze-in with mχ
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below Oð10Þ keV from emission in white dwarfs, hori-
zontal branch stars, and red giants (see Appendix B of
Ref. [47] for more details). Note that the range ofmχ where
stellar emission can constrain freeze-in is exponentially
sensitive to assumptions about temperatures within the
stars. In addition, the bounds derived are applicable in the
weak coupling limit where the DM escapes cleanly from
the star. For sufficiently large Q, DM emission could
contribute to energy transport within the star and the effects
have not been carefully studied in this regime. The
couplings for freeze-in are large enough that they could
be in this regime and stellar bounds on freeze-in should be
regarded with care.
The relevant interactions for the relic abundance and

phase-space distribution in this model are SM annihilations
and plasma decay into the DM. DM-SM scattering can
become important at late times but, as we discuss in
Sec. IV C, the effect must be small to be consistent with
limits from the CMB. The DM self-scattering cross section
is proportional to Q4, and we find it to be irrelevant for the
phase space. Finally DM-photon scattering is also propor-
tional to Q4 and is not enhanced in the low-velocity limit,
so it is also irrelevant.

C. DM with dark photon interactions

We next consider Dirac fermion DM coupled to a
kinetically mixed dark photon A0, with the vacuum
Lagrangian given by

L ⊃ −
1

4
FμνFμν þ κ

2
FμνF0μν −

1

4
F0
μνF0μν þ 1

2
m2

A0A0
μA0μ

þ eJμEMAμ þ gχ χ̄γμχA0
μ þ χ̄ði∂ −mχÞχ; ð2Þ

where A is the SM photon, κ is the kinetic mixing
parameter, and χ is Dirac fermion DM. For the purposes
of this discussion, we consider Abelian kinetic mixing,
noting that non-Abelian kinetic mixing is also possible
[81,82]. The mixing parameter κ could have any number of
origins; for instance, it could be generated as a result of
loop diagrams with heavy matter fields charged under both
A and A0 [83] or from certain compactifications of type IIB
strings [84,85]. Since the kinetic mixing term is a marginal
operator, we take the point of view of a bottom-up effective
field theory and we will treat it here as a small free
parameter without specifying its origin. In this model, the
combination of couplings relevant for the relic abundance
is gχgSM ¼ gχκe.
As discussed in Sec. II A, the dark photon mass must

satisfy mA0 ≲ 1 eV in order to give a sufficient coupling for
freeze-in while also evading existing bounds on stellar
energy loss [68]. However, the requirements are even more
stringent because unlike the model presented in Sec. II B
there could be large A0-mediated DM self-interaction. For
mA0 < eV, the mediator would be light enough to give rise

to v−4 enhanced DM self-scattering in astrophysical envi-
ronments, with a rate proportional to g4χ . Furthermore, as
mentioned above, the freeze-in relic abundance is deter-
mined by ðgχκeÞ2 entering into Eq. (1) (with κe ¼ gSM),
meaning that large gχ can be compensated for by reducing κ
to give the same observed relic abundance. Thus, a sizable
DM self-interaction is possible, and could be relevant to
astrophysical probes of self-interacting DM (SIDM). The
effects of SIDM are typically parametrized by the momen-
tum-transfer self-scattering cross section, which in the limit
of a very light vector mediator is given by [86]

σT;χχ ¼
Z

d cos θCM
dσχχ

d cos θCM
ð1 − cos θCMÞ

≈
8πα2χ
m2

χv4
ln
ðmχvÞ2
m2

A0
; ð3Þ

where θCM is the scattering angle in the center-of-mass
(CM) frame, σχχ is the self-interaction cross section, and αχ
is the dark equivalent of the electromagnetic fine structure
constant, αχ ≡ g2χ=4π. Typical bounds on SIDM require
σχχ=mχ < 1–10 cm2=g for systems ranging from dwarf
galaxies where v ∼ 10−4 to merging clusters where v ∼
10−2 (for a recent review, see Ref. [87]). While few
simulation-based studies of self-interactions have been
done in the ultralight mediator limit (see, for instance,
Ref. [88]), we can estimate the expected bound. Taking the
more restrictive limit of σχχ=mχ ∼ 1 cm2=g, the bound is

gχ ≲ 4 × 10−5 ×

�
v

10−3

�
×

�
mχ

1 MeV

�
3=4

×

�
10

ln ðm2
χv2=m2

A0 Þ
�

1=4
: ð4Þ

Since κegχ ≳ 10−12 is needed for sub-MeV freeze-in, the
SIDM bounds imply that the kinetic mixing is κ ≳ 10−7 for
MeV-scale DM. For sub-eV dark photons, such large
kinetic mixing is only possible when mA0 ≲ 10−10 eV
[68]. For even lighter DM, gχ is even more restricted so
κ ≳ 10−5 is required for freeze-in, which is possible when
mA0 ≲ 10−14 eV. Therefore, we are required to consider an
“ultralight” dark photon [43]. Note that black hole super-
radiance constrains dark photons being present in the mass
spectrum (in the small-coupling limit where dark photon
interactions do not affect the superradiance) between
∼10−14 and 10−11 eV and preliminarily between ∼10−19
and 10−17 eV [89].
Such a light dark photon is phenomenologically equiv-

alent to the massless dark photon limit for all processes
considered in this paper because themA0 is much lower than
the effective in-medium photon mass mA in the early
Universe. Then, following Appendix D of Ref. [43], the
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vacuum Lagrangian in Eq. (2) is modified with an addi-
tional term m2

AA
μAμ=2.

3 Rotating away the mixing term in
the presence of mA and mA0 and rewriting in terms of the
mass eigenstates Ã and Ã0, the in-medium Lagrangian is
given by

LIM ⊃ −
1

4
F̃μνF̃μν −

1

4
F̃0
μνF̃0μν þm2

A

2
ÃμÃμ þ

m2
A0

2
Ã0μÃ0

μ

þ JμEM

�
eÃμ þ

eκm2
A0

m2
A0 −m2

A
Ã0

μ

�

þ gχ χ̄γμχ
�
Ã0

μ −
κm2

A

m2
A0 −m2

A
Ãμ

�
: ð5Þ

From this, we see that when mA ≫ mA0 , the interaction
terms above reduce to

LIM ⊃ JμEMðeÃμÞ þ gχ χ̄γμχðÃ0
μ þ κÃμÞ; ð6Þ

meaning that DM has an effective millicharge parameter
Q ¼ κgχ=e, and the interactions are identical to those for a
massless dark photon. Note that this suppression of the
A0-SM coupling in the mA0 ≪ mA limit is the source of the
in-medium (plasma mass) suppression of the stellar con-
straints on dark photons [66,67] discussed in Sec. II A.
Also note that this suppression means that the dark photon
is not abundantly produced by SM interactions in the early
Universe and does not contribute to the effective number of
relativistic species, Neff .
In the exactly massless A0 limit, we are free to perform a

field redefinition on A0 → A0 þ κA in the vacuum
Lagrangian, Eq. (2), which eliminates the kinetic mixing
termandgenerates aDM interaction term gχ χ̄γμχðA0

μ þ κAμÞ,
which is again identical to having a millicharge Q ¼ κgχ=e
under Uð1ÞEM.
The model considered here thus provides another reali-

zation of millicharged DM, and all of the stellar constraints
discussed in the previous section apply. The only difference
is the additional DM self-interaction via the A0, which
potentially leads to sizable self-interactions.

III. RELIC ABUNDANCE FROM FREEZE-IN

Here we compute the relic abundance of DM from
freeze-in. We begin by reproducing the contribution from
annihilation of SM fermions ff̄ → χχ̄ that was previously
calculated in Refs. [24,45]. Because freeze-in is peaked at

low temperatures and this paper concerns sub-MeV DM,
electrons are the primary source of DM for this channel; in
the rest of this section we explicitly refer to freeze-in off
electrons, noting we have numerically checked that adding
heavier fermions (for instance muons) to the calculation
changes the results by less than 1%. In addition to freeze-in
off electrons, there is a contribution from plasmon decays,
γ� → χχ̄, which we calculate for the first time. Photon
annihilation into DM γγ → χχ̄ is suppressed by an addi-
tional factor of Q2 and can be safely neglected.
In what follows, we take the observed present-day relic

DM abundance to be ωc ≡ Ωch2 ¼ 0.12 [91]. After freeze-
in, the DM density should scale like a−3 and it is common
practice to compare this to another quantity that has the
same scaling irrespective of changes to the SM bath temper-
ature. In this work we choose to compare the number
density to the entropy density. Taking the present-day CMB
temperature to be 2.73 K, the observed yield is then

Y ≡ nχ=s ¼ 4.35 × 10−7 ×

�
1 MeV
mχ

�
: ð7Þ

Formχ ≳ 1 keV, the DM yield is much lower than the order
unity yield for relativistic species, such that DM contributes
negligibly to Neff . This is in contrast to other DM models,
such as thermal freeze-out, where sub-MeV DM would
generically inject a considerable amount of entropy to the
photon or neutrino sectors and would violate observational
bounds on Neff .

4

The low DM occupation number also implies that it is
possible to self-consistently ignore backreactions that
would reduce the DM number density, namely DM
annihilation to electrons and inverse decays to plasmons.
For instance, if we ignore the backreaction, the solution for
the number density of DM is significantly lower than the
electron number density during the entirety of freeze-in in
spite of the fact that the latter is becoming Boltzmann
suppressed. Depletion of the DM number density through
annihilation to dark photons χχ̄ → γ0γ0 is negligible for the
same reason. In what follows, we solve the zeroth moment
of the Boltzmann equation ignoring backreactions, noting
that we have numerically checked that they are negligible.
The relevant equation is then

dnDM
da

þ 3nDM
a

¼ 2

aH
ðhσvieþe−→χχ̄n

2
e þ hΓiγ�→χχ̄nγ�Þ: ð8Þ

Here we are using a as our time variable. The relationship
between a and the SM temperature T (which determines the3For simplicity we consider a constant m2

A for the schematic
purposes of this discussion, although the photon polarization
tensor Πμνðq⃗;ωÞ (which gives rise to the in-medium effective
mass) depends on the photon momentum q⃗, energy ω, polariza-
tion, and thermal properties of the medium. For an on-shell mode
with ω ∼ jq⃗j, m2

A would correspond to the plasma mass, as
discussed in Sec. III B. For scattering processes with a highly off-
shell mode, jq⃗j ≫ ω, m2

A is given by the Debye mass [90].

4An exception for thermal, sub-MeV DM was pointed out in
Ref. [17], where the DM thermalizes with the SM thermal bath
after neutrino-photon decoupling, reducing the contribution to
Neff . Furthermore, in this model changes to Neff that occur
after DM thermalization are compensated for by decoupling at a
later time.

MAKING DARK MATTER OUT OF LIGHT: FREEZE-IN FROM … PHYS. REV. D 99, 115009 (2019)

115009-5



DM production rate) is not adiabatic during freeze-in
because the electrons are leaving the thermal bath at this
time; this is discussed further in Appendix A. Note that we
are solving for the total DM density which includes both χ
and χ̄ in the matter budget; assuming zero DM chemical
potential, nDM ¼ 2nχ ¼ 2nχ̄ , which accounts for the factor
of 2 in Eq. (8).5

A. Annihilations

In computing the DM relic abundance from annhilations
of electron-positron pairs, we use the well-known results of
Ref. [92]. We provide an alternate derivation of these
results in this subsection, which we validate here because
we use similar techniques to derive the full collision term
for annihilation in Sec. IVA.
In our calculation, we treat the two scenarios discussed in

Sec. II as indistinguishable in the limit that mA0 → 0. We
also ignore the in-medium photon mass for this process,
which we find to be a percent level effect for s-channel
annihilations happening at the relevant range of temper-
atures. In this limit, the matrix element squared isX
d:o:f:

jMj2eþe−↔χχ̄

¼ 32Q2e4

ðpeþ þpe−Þ4
ððpeþ ·pχÞðpe− ·pχ̄Þþðpeþ ·pχ̄Þðpe− ·pχÞ

þm2
eðpχ ·pχ̄Þþm2

χðpeþ ·pe−Þþ2m2
em2

χÞ; ð9Þ

where we sum over both initial and final spin degrees of
freedom (d.o.f.) without averaging and where Q is the
effective millicharge in the dark photon case, Q ¼ κgχ=e.
The thermally averaged cross section appearing in Eq. (8)
for this process is given by

hσvieþe−→χχ̄n
2
e

¼
Z

đ3peþ

2Eeþ

đ3pe−

2Ee−

đ3pχ

2Eχ

đ3pχ̄

2Eχ̄
e−ðEeþþEe− Þ=T

×
X
d:o:f:

jMj2eþe−→χχ̄ð2πÞ4δð4Þðpeþ þ pe− − pχ − pχ̄Þ;

ð10Þ

where đ3p≡ d3p=ð2πÞ3. We assume that from the onset of
freeze-in, the electrons have entered the nonrelativistic
regime where their phase space is given by a Maxwell-
Boltzmann distribution with temperature T and zero
chemical potential. As we will show, sub-MeV DM
freeze-in through the annihilation channel is most effective
at temperatures T ≲me where the effects of Fermi-Dirac
statistics can be neglected. We also ignore Pauli blocking of
the DM due to its low occupation number.
To evaluate the thermal cross section, we note that the

primordial plasma has a preferred rest frame (where bulk
motions average to zero), which breaks Lorentz invariance.
The phase-space factors of Eq. (10) are evaluated in a frame
that is comoving with the plasma. Practically, we can
perform the integration by inserting factors of unity,

Z
d3q12ds12

2E12

δð4Þðq12 − p1 − p2Þ ¼ 1; ð11Þ

where q12 is the effective bulk 4-momentum of the particles
labeled 1 and 2 and s12 can be thought of as the effective
(Lorentz invariant) mass squared of a single particle with
that bulk 3-momentum and energy (i.e., here E12 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s12 þ q⃗212

p
). Inserting such a factor into Eq. (10) gives

hσvieþe−→χχ̄n
2
e ¼

Z
d3qχχ̄dsχχ̄

2Eχχ̄

Z
đ3peþ

2Eeþ

đ3pe−

2Ee−

đ3pχ

2Eχ

đ3pχ̄

2Eχ̄
e−ðEeþþEe− Þ=T

×
X
d:o:f:

jMj2eþe−→χχ̄ð2πÞ4δð4Þðpeþ þ pe− − pχ − pχ̄Þδð4Þðqχχ̄ − pχ − pχ̄Þ: ð12Þ

The integral over pχ and pχ̄ does not depend on the frame of qχχ̄ , so the two-body phase space of pχ and pχ̄ can be evaluated
in the CM frame of qχχ̄ . We define

Φχχ̄ðsχχ̄ÞjMj2CMðsχχ̄Þ≡
Z

đ3pχ

2Eχ

Z
đ3pχ̄

2Eχ̄
ð2πÞ4δð4Þðqχχ̄ − pχ − pχ̄Þ

X
d:o:f:

jMj2eþe−→χχ̄

¼ Q2e4

2πs2χχ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

sχχ̄

s �
s2χχ̄ þ

1

3
ðsχχ̄ − 4m2

eÞðsχχ̄ − 4m2
χÞ þ 4sχχ̄ðm2

χ þm2
eÞ
�
; ð13Þ

5This factor is related to the usual factor of 1=2 that appears in the Boltzmann equation for Dirac fermions [92,93]; however, unlike
the ordinary case of thermal DM, the change in the comoving DM density for freeze-in is independent of the DM number density
[i.e., there is no factor of n2DM appearing in Eq. (8)], which accounts for the factor of 4 difference.
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and insert this into the expression for the thermally
averaged cross section

hσvieþe−→χχ̄n
2
e ¼

Z
d3qχχ̄dsχχ̄

2Eχχ̄
e−Eχχ̄=TΦχχ̄ðsχχ̄ÞjMj2CMðsχχ̄Þ

×
Z

đ3peþ

2Eeþ

đ3pe−

2Ee−
δð4Þðpeþ þ pe− − qχχ̄Þ:

ð14Þ

Again, we can evaluate the integral over peþ and pe− in the
center-of-mass frame. Defining

Φeþe−ðsχχ̄Þ≡ 1

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
e

sχχ̄

s
; ð15Þ

the thermally averaged cross section becomes

hσvieþe−→χχ̄n
2
e ¼

1

ð2πÞ4
Z

d3qχχ̄dsχχ̄
2Eχχ̄

e−Eχχ̄=T

×Φeþe−ðsχχ̄ÞΦχχ̄ðsχχ̄ÞjMj2CMðsχχ̄Þ: ð16Þ

We can write this result in terms of the first order
modified Bessel function of the second kind K1ðzÞ ¼
z
R
∞
1 due−zu

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 1

p
with u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2χχ̄=sχχ̄

q
:

hσvieþe−→χχ̄n
2
e ¼

T
ð2πÞ3

Z
ds

ffiffiffi
s

p
Φeþe−ðsÞ

×Φχχ̄ðsÞjMj2CMðsÞK1ð
ffiffiffi
s

p
=TÞ; ð17Þ

where we have dropped the subscript on the integration
variable s. Note that s is restricted to s > 4 max ðm2

e; m2
χÞ.

Our derivation indeed reproduces the result of Ref. [92]
as claimed.

B. Plasmon decay

The early Universe is an optically thick plasma where
photons acquire an in-medium mass; this can be under-
stood classically as arising from the electrons’ oscillatory
response to a propagating electric field and the dynamical
shielding of that electric field. This effective mass is also
manifest in the photon propagator and the polarization
vectors of external photon legs in the medium; in other
words, the photon mass and wave function are renor-
malized in the plasma. The effective masses and dressed
polarization functions for the transverse and longitudinal
“plasmon” modes are shown in Fig. 1 and explicit
formulas are provided in Appendix B, where we sum-
marize the relevant results of Ref. [94]. The effective
mass for plasmons is closely related to the plasma
frequency. For a relativistic plasma at zero chemical
potential, the plasma frequency is ωp ¼ eT=3 ≈ 0.1T,
where e is electric charge.
Plasmons can undergo decay provided that it is kine-

matically allowed. For instance, plasmons can decay to
neutrino pairs through mixing with the Z boson [94].
Plasmons cannot decay to charged particles in the SM
because their effective mass is also renormalized in the
medium and it is always kinematically forbidden. However,
this is not the case for millicharged DM where corrections
to the mass are suppressed by powers of Q.
The effective matrix element that captures plasmons

decaying to DM is

iMγ�→χχ̄ ¼ iQeϵ̃μðkÞūðpχÞγμvðpχ̄Þ; ð18Þ

FIG. 1. (Left panel) The effective in-medium mass and (right panel) wave function renormalization for photons, as computed in
Coulomb gauge for a plasma with T ¼ 1 MeV and zero chemical potential (see Appendix B for relevent formulas). The transverse mode
is relevant at all wavelengths while the longitudinal mode crosses the light cone at high k and can thus only propagate at low k. Also
shown are the low-k, low-T and high-k, high-T limits for the effective transverse mass, mt ¼ ωp and mt ¼

ffiffiffiffiffiffiffiffi
3=2

p
ωp, respectively.
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where ϵ̃μðkÞ is the dressed polarization vector for the
longitudinal and transverse plasmon modes as detailed
in Appendix B, where we work in Coulomb gauge
following Ref. [94]. We express this process in terms
of the DM effective millicharge Q and in Appendix C

we show explicitly that decaying through a dark
photon gives the same effective matrix element in the
limit mA0 → 0. In squaring and summing over polar-
izations, only the diagonal terms (LL, þþ, and −−)
contribute,

X
d:o:f:

jMj2γ�→χχ̄ ¼ 4Q2e2 ×

� 2ZtðkÞðp2
χsin2θ þ ωtðkÞEχ − kpχ cos θÞ þ þ& − −;

ZlðkÞ ωlðkÞ2
k2 ðωlðkÞEχ − 2E2

χ þ kpχ cos θÞ LL;
ð19Þ

where the photon four-momentum is given by Kμ ¼ ðωðkÞ; k⃗Þμ with appropriate dispersion relations for transverse and
longitudinal modes ωtðkÞ and ωlðkÞ (see Appendix B and Ref. [94]), the DM 4-momentum is given by ðEχ ; p⃗χÞμ, θ is the
angle between k⃗ and p⃗χ , and ZtðkÞ and ZlðkÞ are wave function renormalization factors (shown in Fig. 1, see also
Appendix B and Ref. [94]) that are related to the dressed polarization vectors for the transverse and longitudinal modes.
The thermally averaged decay rate is

hΓiγ�→χχ̄nγ� ¼
Z

đ3k
2ωðkÞ

đ3pχ

2Eχ

đ3pχ̄

2Eχ̄
fðωðkÞÞð2πÞ4δð4ÞðK − pχ − pχ̄Þ

X
d:o:f:

jMj2γ�→χχ̄ ; ð20Þ

and can be evaluated directly. Taking the plasmons to be Bose-Einstein distributed, the longitudinal and transverse
contributions to this rate are

hΓiγ�l→χχ̄nγ�l ¼
Q2e2

ð2πÞ3
Z

k2dk
ZlðkÞωlðkÞðmlðkÞ2 þ 2m2

χÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mlðkÞ2ðmlðkÞ2 − 4m2

χÞ
q

3mlðkÞ4ðeωlðkÞ=T − 1Þ ; ð21Þ

hΓiγ�t→χχ̄nγ�t ¼
4Q2e2

ð2πÞ3
Z

k2dk
ZtðkÞðmtðkÞ2 −m2

χÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mtðkÞ2ðmtðkÞ2 − 4m2

χÞ
q

3ωtðkÞmtðkÞ2ðeωtðkÞ=T − 1Þ ; ð22Þ

where the effective plasmon masses are mlðkÞ2 ¼
ωlðkÞ2 − k2 for the longitudinal modes and mtðkÞ2 ¼
ωtðkÞ2 − k2 for the tranverse ones (see Fig. 1). The final
integrals over k can be computed numerically and the
total plasmon contribution to decay is dominated by the
transverse modes (note that we are working in Coulomb
gauge). This is because the longitudinal mode has a
finite range of k over which it can propagate, meaning
that it has less available phase space than the transverse
mode which has no restriction in k. Furthermore, the
longitudinal mass and renormalization factors fall
steeply within the range of k where this mode can
propagate.

C. Couplings for freeze-in

In solving the zeroth moment of the Boltzmann equation
for the DM relic abundance, we find that the relative
contributions from eþe− annihilation and plasmon decays
are starkly different in different mass ranges, as illustrated
in Fig. 2. This can be understood by considering the fact
that freeze-in is dominant at low temperatures, provided
that it is kinematically allowed and that the population the

DM is freezing in from has a sufficient abundance. For sub-
MeV DM, freeze-in from eþe− annihilation is always
kinematically allowed and this process only ends when
the electron number density becomes Boltzmann sup-
pressed, namely T ≲me. Meanwhile, the plasmon abun-
dance is not Boltzmann suppressed but the mass runs with
temperature, so freeze-in through plasmon decay ends
when it is no longer kinematically allowed, namely when
mγ� ∼ ωp ¼ 2mχ . Since ωp ≈ 0.1T in the relativistic limit,
plasmon decay to millicharged DM shuts off at an earlier
time compared to annihilation. These two criteria are
shown in Fig. 2 and indeed we see that plasmon decays
are more dominant in determining the relic abundance for
lower mass DM because the decays are active for a longer
period of time.
In terms of the effective millicharge needed to produce

the observed DM relic abundance, we find that including
plasmon decays leads to a significant reduction in coupling
for keV-mass DM while the effect is small once mχ ¼
MeV. The change to the freeze-in benchmark for direct
detection is shown in Fig. 3, where the cross section for
electron recoils is
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σe ¼
16πQ2α2μ2χe

ðαmeÞ4
: ð23Þ

Here μχe is the electron-DM reduced mass, μχe ¼ memχ=
ðme þmχÞ. At the lowest mass where proposed low-
threshold direct detection experiments are sensitive, the
plasmon decay channel for DM production lowers the
expected signal strength by roughly an order of magnitude.
It has been noted in the literature [95–97] that milli-

charged DM could be efficiently accelerated in supernova
remnants, which would lead to an accelerated component
of dark cosmic rays and eject DM from the disk. Both of
these effects can lead to substantial changes to the predicted

direct detection rates and sensitivities of proposed experi-
ments shown above. However, the conclusions are highly
sensitive to aspects of cosmic ray physics which are not
fully understood, such as the injection of particles into the
diffusive shock acceleration process. The predictions
would also be sensitive to whether the DM obtains its
effective millicharge through a kinetic mixing portal; in this
case, the dark photon mass and couplings can affect the
acceleration, and an exploration of these effects is beyond
the scope of this work.

IV. DARK MATTER PHASE-SPACE
DISTRIBUTION

Since freeze-in DM is so weakly coupled to the SM, it
does not thermalize with the SM during freeze-in and the
phase-space distribution can deviate substantially from a
thermal distribution. While this has no clear impact on
direct detection, since galaxy assembly is expected to
significantly alter the DM velocity distribution, it does
affect DM free streaming and DM-SM scattering in the
early Universe. Here we compute the full phase-space
distributions needed to determine the cosmological observ-
ables; the signatures, constraints, and detection prospects
will be presented in a companion paper [54].
We must solve the full Boltzmann equation in an

expanding background, given by

∂fχ
∂t −H

p2
χ

Eχ

∂fχ
∂Eχ

¼ Cðpχ ; tÞ
Eχ

; ð24Þ

where Cðpχ ; tÞ is the collision term, which encapsulates all
interactions that affect the phase space. At early times, the
interactions that determine the phase-space evolution are
eþe− annihilation and plasmon decay. We have checked
numerically that heavier fermion annihilation processes

FIG. 3. The effect of plasmon decays on the freeze-in bench-
mark for direct detection via electron recoils. Also shown are the
projected sensitivities of low-threshold experiments with kg-day
exposure, including a SuperCDMS G2 experiment [36] and
proposals using polar materials (GaAs and Al2O3) [30,31], Dirac
materials (ZrTe5) [29], or superconductors (Al SC) [35].

FIG. 2. Evolution of the comoving DM number density for (left panel)mχ ¼ 40 keV and (right panel) mχ ¼ 400 keV as compared to
the relic abundance of DM with that mass. Also shown are the relative contributions from electron-positron annihilations and plasmon
decays, as discussed in the text.
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(for instance, the annihilation of muon-antimuon pairs)
affect the phase space by a negligible amount because they
occur only at early times when freeze-in is less efficient.
Scattering has a negligible impact on the phase space
during freeze-in since the DM occupation number is much
smaller than that of electrons or plasmons. Neglecting the
small effect of scattering during freeze-in, the collision term
is independent of fχ to leading order and the Boltzmann
equation can be solved by direct integration [98],

fχðpχ ; tÞ ¼
Z

t

ti

dt0
CðaðtÞaðt0Þpχ ; t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðtÞ2
aðt0Þ2 p

2
χ þm2

χ

q

¼
Z

aðtÞ

ai

da0

a0Hða0Þ
CðaðtÞa0 pχ ; a0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðtÞ2
a02 p2

χ þm2
χ

q : ð25Þ

Here the factors of a in the integrand keep track of
redshifting of momentum due to expansion. We use the
scale factor a as our time variable rather than the common
choice of using the SM temperature because it is not
evolving adiabatically as the electron-positron pairs leave
the bath during freeze-in. The temperature evolution and
the evolution of the Hubble parameter are detailed in
Appendix A.
After freeze-in ends, the DM momenta redshift and the

phase-space distribution is constant in comoving momen-
tum. However, at late times DM-SM and DM-DM scattering

eventually can become important since the scattering cross
sections are peaked at low relative velocities. The effects of
DM-SM scattering on the phase space are generally negli-
gible for the allowed parameter space, but DM self-scattering
can lead to thermalization of the DM phase-space distribu-
tion. Whether this occurs is model dependent, and we
discuss the conditions for this to occur in Sec. IV D.

A. Phase space from annihilation

The computation of the full collision term from annihi-
lation proceeds similarly to the computation of its zeroth
moment. Once again, inserting a factor of unity as defined
in Eq. (11), we find

Cðpχ ; tÞeþe−→χχ̄ ¼
1

2ð2πÞ3
Z

d3qeþe−dseþe−

2Eχ̄2Eeþe−

× δðEeþe− − Eχ − Eχ̄Þe−Eeþe−=T

×Φeþe−ðseþe−ÞjMj2CMðseþe−Þ; ð26Þ

where Eχ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ þ p2
χ þ q2eþe− − 2pχqeþe− cos θ

q
, Eeþe− ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

seþe− þ q2eþe−
q

, and θ is the angle that q⃗eþe− makes with

the unconstrained, unintegrated p⃗χ . Defining x≡ cos θ
and dropping the subscript on the bulk electron momentum,
we find

Cðpχ ; tÞeþe−→χχ̄ ¼
1

2ð2πÞ2pχ

Z
dxqdqds

4E
δ

�
x −

2EχE − s

2pχq

�
e−E=TΦeþe−ðsÞjMj2CMðsÞ: ð27Þ

Requiring that x ∈ ½−1; 1� and switching integration variables,

Cðpχ ; tÞeþe−→χχ̄ ¼
1

8pχð2πÞ2
Z

ds
Z Eχ sþpχ

ffiffiffiffiffiffiffiffiffiffiffi
sðs−4m2

χ Þ
p
2m2

χ

Eχ s−pχ
ffiffiffiffiffiffiffiffiffiffiffi
sðs−4m2

χ Þ
p
2m2

χ

dEe−E=TΦeþe−ðsÞjMj2CMðsÞ

¼ T
4pχð2πÞ2

Z
dse

− Eχ s

2m2
χT sinh

0
B@pχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

χÞ
q

2m2
χT

1
CAΦeþe−ðsÞjMj2CMðsÞ: ð28Þ

Then, to solve for the final phase space from annihilation, we can combine Eqs. (25) and (28). Note that because pχ is fixed
(rather than an integration variable), s in the above integral is restricted to s > max ð4m2

e; 2mχðEχ þmχÞÞ unlike in the
integral for determining the thermally averaged cross section. The resulting evolution of the phase-space distribution is
shown in the left panel of Fig. 4.

B. Phase space from plasmon decay

The collision term from plasmon decay,

Cðpχ ; tÞγ�→χχ̄ ¼
1

2

Z
đ3k

2ωðkÞ
đ3pχ̄

2Eχ̄

1

eωðkÞ=T − 1
ð2πÞ4δð4ÞðK − pχ − pχ̄Þ

X
d:o:f:

jMj2γ�→χχ̄ ð29Þ
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proceeds through direct computation. We find

Cðpχ ; tÞγ�l→χχ̄ ¼
Q2e2

4πpχ

Z
dkωlðkÞZlðkÞ
kðeωlðkÞ=T − 1Þ ð2EχðωlðkÞ − EχÞ −mlðkÞ2=2Þ; ð30Þ

Cðpχ ; tÞγ�t→χχ̄ ¼
Q2e2

4πpχ

Z
dkkZtðkÞ

ωtðkÞðeωtðkÞ=T − 1Þ

�
2p2

χ −
ð2EχωtðkÞ −mtðkÞ2Þ2

2k2
þmtðkÞ2

�
; ð31Þ

where the limits of the k integral are determined by the
requirement that x0 ¼ ð2Eχωl;tðkÞ −ml;tðkÞ2Þ=2kpχ lies
in the range ½−1; 1�. The limits of integration cannot be
solved for in closed form because of the nontrivial
dispersion relations, so the phase space must be determined
numerically.
The evolution of the phase space from plasmon decays is

shown in the right panel of Fig. 4, and our results for the
combined phase space can be found in Fig. 5. The
distributions are noticeably nonthermal due to plasmon
decays. Figure 6 compares the average momentum and
momentum squared of the DM to the SM photons, which
serves as a useful metric to determine the DM free
streaming and suppression of the growth of structure.

C. Effect of DM-SM scattering

We argue here that the effect of DM-SM scattering on
the DM phase-space distribution is small from freeze-in
until the onset of recombination. The relevant quantity is
the momentum-transfer rate, which we estimate in the
limits where the DM is relativistic and nonrelativistic.

We do not consider scattering by relativistic, charged SM
particles because this is only relevant for electrons during
freeze-in; during freeze-in, the number density of DM is
many orders of magnitude smaller than the number
density of electrons and the effect of electron-DM
scattering is suppressed by nχ=ne relative to the dominant
effect of electron-positron annihilations on the phase
space. As outlined below, DM-SM scattering becomes
more important at low velocities, corresponding to later
cosmological times. This can affect CMB anisotropies
and the cosmological 21 cm signal, and we provide more
detailed calculations in that context in our companion
paper [54].
In the limit of relativistic DM scattering with non-

relativistic SM particles (the case after freeze-in until
Tγ ∼mχ), the differential cross section with respect to
the center-of-mass scattering angle θCM is given by

dσχb
d cos θCM

¼ πQ2α2

p2
CM

ð1þ cos θCMÞ
ð1 − cos θCM þm2

D=2p
2
CMÞ2

; ð32Þ

FIG. 4. A comparison of the phase-space evolution of DM being produced by (left panel) eþe− annihilation and (right panel) γ� decay
at mχ ¼ 40 keV. The momenta shown here are comoving, Pχ ≡ apχ where a ¼ 1 corresponds to T ¼ 1 MeV. The phase space is
normalized arbitrarily for the purposes of comparing the Pχ dependence side by side. Over time, the comoving phase space converges to
its final frozen-in shape. The phase space from annihilation is similar to that of the thermal electrons from which they inherit their
kinematics. Meanwhile, the phase space from plasmon decay is highly peaked at low Pχ because freeze-in through this channel occurs
predominantly at threshold when ωp ∼ 2mχ and the decay is peaked when the plasmon is “at rest,” k → 0.
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where pCM ≡ jp⃗CMj is the momentum in the CM frame and
mD is the Debye mass. Here we have taken pχ ≪ me,
which is a good approximation after freeze-in has ended.

In this approximation, the dependence on the SM particle
mass drops out, making scattering with electrons and
protons equally important (we refer to them collectively
as “baryons,” in the remainder of this discussion, hence the
subscript b in the cross section). The dependence on the
Debye mass comes from the photon propagator for electric
scattering in a medium [90]. The usual t-channel diver-
gence is thus regulated in the forward-scattering limit by
the Debye angle, defined as θD ≡mD=pCM. Note that our
treatment of the Debye angle differs from the one in the
often-quoted Ref. [79]: that treatment did not include the
Debye mass in the photon propagator, as discussed in
Appendix D. Once the plasma has become nonrelativistic
with Tγ ≲me, the Debye mass is given by

mD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παne=Tγ

q
¼ 3.7 × 10−6Tγ ð33Þ

in natural units, assuming Ωbh2 ¼ 0.022 [91] and that the
ionization fraction is unity. The momentum-transfer cross
section is defined for DM self-scattering in Eq. (3) and the
analogous definition applies for scattering between DM
and SM particles. For relativistic DM, we find that in the
limit of the Debye angle θD ≪ 1

σT;χb ¼
4πQ2α2

p2
χ

log
2

θD
: ð34Þ

Sincemb ≫ mχ and the baryons are nonrelativistic, the DM
momentum in the CM frame can be approximated by the
DM momentum in the comoving frame, pχ . As illustrated
in Fig. 6, the typical DM momentum is comparable to the

FIG. 6. A comparison between moments of the DM phase
space and the SM photon phase space as a function of DM mass.
For reference, the moments for the SM photon are hpγi ¼ 2.7Tγ

and hp2
γ i ¼ 10.35T2

γ . While the DM phase space is not thermal,
these moments can be thought of as relating to the DM effective
temperature, which will have ramifications for the subsequent
cosmology. As the DM mass rises, the effective temperature
increases because eþe− annihilations become more important
than plasmon decays and have a comparatively fatter high-pχ tail.
At even larger masses where mχ is comparable to me, that high-
pχ tail is suppressed because the DM mass becomes relevant to
the kinematics of annihilation, causing the effective temperature
to drop.

FIG. 5. A comparison of the contributions to the phase space for (left panel) mχ ¼ 40 keV and (right panel) mχ ¼ 400 keV. The
momenta shown here are comoving, Pχ ≡ apχ , where a ¼ 1 corresponds to T ¼ 1 MeV. The phase space is normalized to the
comoving DM relic abundance for each mass depicted. The plasmon contribution dominates more at low masses than at high masses
because freeze-in through this channel persists for longer at lower masses, ending when the plasmon mass is at threshold, ωp ∼ 2mχ .
Also shown (dashed lines) are the phase-space distributions that would arise if the DM could thermalize within its own sector,
conserving hP2

χi for nonrelativistic DM.
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SM photon temperature, with both quantities redshifting
after freeze-in. Therefore, we can estimate the momentum-
transfer rate per DM particle and per Hubble time as

npσT;χb
H

≈ 5.3 × 10−11
�

Q
10−10

�
2
�
MeV
Tγ

�
; ð35Þ

where np ≈ 1.5 × 10−10T3
γ and pχ ≈ 0.4pγ ≈ Tγ. For Tγ in

the keV–MeV range and Q < 10−10 for freeze-in, this rate
is tiny and thus scattering in this regime has a negligible
effect on the DM phase space.
For scattering of nonrelativistic DM and charged SM

particles (corresponding to lower temperatures and later
times), the differential cross section is instead given by

dσχb
d cos θCM

¼ 2πQ2α2

μ2χbv
4

1

ð1 − cos θCM þm2
D=2p

2
CMÞ2

; ð36Þ

where μχb is the reduced mass of the DM and baryon,
μχb ¼ mχmb=ðmχ þmbÞ, v is the relative velocity between
DM and SM particles, and pCM ¼ μχbv. The momentum-
transfer cross section is

σT;χb ¼
4πQ2α2

μ2χbv
4

log
2

θD
; ð37Þ

where again we take the θD ≪ 1 limit. Compared to the
treatment of the Coulomb logarithm in Ref. [79], our
treatment of the Debye mass results in a factor of 2.5–3
smaller momentum-transfer rate at recombination; this will
translate to a weaker CMB bound on generic millicharged
DM than has been reported previously [71–75], which we
explore in more detail in our companion paper [54].
Given the velocity scaling in Eq. (37), momentum

transfer is most important at late times. For freeze-in
couplings, there may be a substantial effect at the recombi-
nation epoch. In particular, momentum transfer during this
epoch leads to a drag force between the DM and baryon
fluids, which can affect CMB anisotropies [71,75–77]. The
CMB bounds require that the momentum-transfer rate is
slow compared to the rate of Hubble expansion at z ≈ 1100,
thus limiting the possible effect on the DM phase space.
We calculate the bounds in detail in the companion paper
[54], properly accounting for the velocity distribution for
freeze-in DM with the updated Coulomb logarithm.
In addition to DM-baryon scattering as discussed above,

DM-photon scattering is possible. However, these proc-
esses do not have the low-velocity v−4 enhancement in the
rate and the cross section scales as Q4, so the effects are
negligible. In the model with a dark photon A0, scattering
processes such as e− þ γ → e− þ A0 are also possible and
scale only as kinetic mixing squared κ2. However, these
processes are still negligible compared to DM-baryon
scattering since they lack the low-v enhancement and have

an additional large suppression due to the in-medium
kinetic mixing effects, as discussed in Sec. II C.
Processes like χ þ γ → χ þ A0 scale as Q2g2χ ; these also
lack the v−4 enhancement and any enhancement (relative to
DM-baryon scattering) from the large photon-to-baryon
ratio is more than compensated for by the factor of g2χ , even
at the largest values of gχ that saturate SIDM bounds.

D. Effect of DM-DM scattering

In the absence of a dark photon, DM self-scattering
is proportional to Q4, rendering it entirely negligible.
However, self-interactions of the DM can effectively
thermalize the phase-space distribution in the model with
a dark photon. The rate for dark photon mediated DM
scattering is proportional to g4χ , and thus may be important
if gχ is sufficiently large compared to κ. Similar to DM-
baryon scattering, the cross section scales as 1=v4 and so
these effects are most important at later times when the DM
is cooler. Sufficient levels of self-scattering will convert a
free-streaming phase-space distribution into a Maxwell-
Boltzmann or Gaussian velocity distribution. In the non-
relativistic limit, the quantity haðtÞ2p2

χi will remain the
same after this process (by conservation of comoving
energy), although other moments of the phase space differ.
To determine when self-scattering becomes important,

we estimate the redshift ztherm when the momentum-transfer
rate per DM particle and per Hubble time is order unity:

nχσT;χχv

HðzthermÞ
¼ 1; ð38Þ

where v is the relative velocity between DM particles and
σT;χχ is the self-scattering momentum-transfer cross
section given in Eq. (3), with the dark photon mass
regulating the forward scattering instead of the Debye
mass that is present for DM-baryon scattering. Using the
ratio of the average DM momentum to the photon
momentum in Fig. 6, we approximate the relative velocity
as v ≈ pχ=mχ ≈ TγðzÞ=mχ . In this estimate, we have
assumed that DM is nonrelativistic at the time self-
interactions become important.
The self-scattering randomizes the DM velocities while

preserving the average kinetic energy 3
2
Teff
χ ðzÞ≡hp2

χi=ð2mχÞ,
wherepχ is physical momentum and the averagemomentum
squared is given in Fig. 6. After self-scattering becomes
significant, the DM phase space is described by a thermal
Maxwell-Boltzmann distribution,

fDMðpχ ; zÞ ¼ nDMðzÞ
�

2π

mχTeff
χ ðzÞ

�
3=2

× 4πp2
χ exp

�
−

p2
χ

2mχTeff
χ ðzÞ

�
; ð39Þ

where nDMðzÞ is the DM number density.
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Figure 7 shows the redshift of thermalization for two
representative choices of κ (thus fixing gχ to yield the
observed relic abundance), where we see the assumption of
nonrelativistic DM is a reasonably good approximation in
our estimates. Since the phase-space calculations here will
be an input to determining CMB constraints on freeze-in
DM, we compare ztherm with the redshift of recombination
z ≈ 1100. For constraints from structure formation, a range
of redshifts will be relevant. We also show some fiducial
limits from SIDM, which give upper bounds on gχ . Figure 7
illustrates that the DM phase space at the time of recombi-
nation depends sensitively on the model parameters and on
the robustness of SIDM limits in different astrophysical
systems. For the largest values of gχ consistent with the
weaker assumed SIDM bounds, the DM phase space is
described by a Maxwell-Boltzmann distribution at the time
of recombination for all the DM masses we consider.
However, for κ ¼ 10−3 (which is consistent with bounds on
ultralight dark photons), gχ is small enough that DM self-
interactions are not important at recombination and the
phase space is described by the results of Secs. IVA–IV B.

The comparison of the free-streaming and thermalized
phase space can be seen in Fig. 5.

V. RESULTS AND DISCUSSION

In this paper, we have shown that DM freeze-in through a
light vector mediator is substantially affected by plasmon
decay, which constitutes a new production channel. This is
an efficient way of producing sub-MeV DM and is
dominant over SM fermion annihilation for masses below
a few hundred keV. To account for this extra production
channel, the couplings between the DM and the SM must
be reduced in order to obtain the observed relic abundance
of DM. For the lightest DM masses that are accessible to
low-threshold direct detection experiments, the predicted
cross section is lowered by roughly an order of magnitude.
Updated predictions for freeze-in through a light vector
mediator are shown in Fig. 8.
The presence of this channel also affects the DM phase

space. In the absence of plasmon decays, the DM is never
technically thermal but it acquires a distribution that
appears thermal by inheriting the electron phase-space
distribution at the time of production. At early times
fχ;eþe−ðpχÞ ∼ e−pχ=Tχ;eþe− , where Tχ;eþe− is an effective
DM temperature inherited from the electrons; at late times,
this exponential distribution persists because the DM does
not thermalize to give the Maxwell-Boltzmann distribution
that would be expected for nonrelativistic matter in equi-
librium. On the other hand, the plasmon decay channel
yields a DM phase-space distribution that never appears
thermal, which can be attributed to the running of the

FIG. 8. Summary plot including early-Universe plasma effects
for the parameter space of sub-MeV freeze-in DM. The correct
DM relic abundance is obtained for couplings on the freeze-in
line. We show constraints coming from emission of DM pairs
in white dwarf, horizontal branch, and red giant stars [47],
while bounds from emission of DM pairs in supernovae apply for
Q≳ 10−9 [80]. Dotted lines are projected sensitivities of pro-
posed direct detection experiments as in Fig. 3.

FIG. 7. The approximate redshift when DM self-scattering
becomes important, ztherm, as a function of DM mass in the
model with dark photon mediated interactions. The freeze-in relic
abundance is determined by Q ¼ gχκ=e and we show ztherm
assuming two values of κ (where gχ is fixed to obtain the DM relic
abundance). The epoch when DM self-thermalization becomes
relevant is highly sensitive to the choice of couplings, which can
yield different results for CMB observables depending on
whether thermalization occurs before recombination. Note that
DM halo formation is neglected in this estimate. Also shown are
bounds on DM self-thermalization which come from the SIDM
limits on gχ in Eq. (4). For illustration, we assume σT;χχ ≲
1 cm2=g for scattering via an ultralight mediator and show both
v ∼ 10−3 and v ∼ 10−4, speeds relevant to a halo the size of the
Milky Way and to a dwarf galaxy. In this figure we have taken
mA0 ¼ 10−14 eV, which is sufficiently light that the constraints on
the kinetic mixing parameter κ are rather weak.
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plasmon mass with temperature and the fact that plasmon
decays occur dominantly as the plasmon wave number
k → 0. For DM masses where plasmon decays are the
dominant production mode, the phase space is peaked at
low momentum and has a long tail; for DM masses where
contributions from both channels are important, the phase-
space distribution is bimodal.
Though the DM is born with a highly nonthermal

distribution, it may be possible for the DM to thermalize
with itself under the right circumstances. For DM that is
only charged under the SMUð1ÞEM with millichargeQ, the
thermalization rate is suppressed by a factor of Q4 where
the requisite Q to produce the DM relic abundance is
Q ∼Oð10−11Þ. If the DM is also charged under a darkUð1Þ
gauge group that kinetically mixes with the SM Uð1ÞEM
(with mixing parameter κ), it may be possible for DM self-
scattering to thermalize the DM phase-space distribution. In
this case, Q ¼ κgχ=e (where κ can take on a wide range of
values) and DM self-scattering via the dark photon scales as
g4χ , meaning that with the appropriate choice of κ and gχ it is
possible to efficiently self-scatter while still producing the
observed relic abundance. The coupling gχ cannot be
arbitrarily large due to observational limits on SIDM in
astrophysical systems; however, there is a range of gχ where
self-scattering thermalizes the DM before recombination
and where the SIDM bounds are simultaneously satisfied.
Energy is conserved within the DM fluid, so for non-
relativistic DM hp2

χi will be conserved and the resulting
distribution has a well-defined notion of temperature.
Although the freeze-in DM phase-space distribution may

not be thermal, it is still informative to take moments of the
distribution. When comparing the first and second moments
of fχðpχÞ to the equivalent quantities for the SM photon
bath, we find that the typical DM momentum is similar to
the typical photon momentum, hpχi ≈ ð0.4 − 0.7Þ × hpγi,
depending on the DM mass. In other words, the DM is born
considerably warmer than what is typically assumed for
cold DM initial conditions. This will have ramifications for
cosmology in two key ways:
(a) Freeze-in DM will behave like warm DM, leading to

suppression of the matter power spectrum below some
physical scale roughly corresponding to the free-
streaming length. This effect is not already captured
by existing limits on warm DM, where different DM
phase-space distributions are assumed. To understand
this suppression quantitatively, a Boltzmann code is
necessary that accounts for the potentially nonthermal
phase space from freeze-in. Having understood this, it
will be possible to constrain DM freeze-in via a light
vector mediator using probes of the matter power
spectrum and the halo mass function.

(b) Existing CMB limits on DM with an effective milli-
charge do not straightforwardly apply to the case of
freeze-in. These limits stem from a DM-baryon drag;

because the drag is highly sensitive to the relative DM-
baryon velocity (the cross section scales like ∼v−4),
modifications to the DM phase space can substantially
alter the size of the effect. Existing limits have made
the assumption of cold dark matter, and the larger DM
velocities for freeze-in will lead to reduced drag force.
Taking into account the updated Debye logarithm
(which may weaken existing limits by a factor of
∼2 to 3), the limit on freeze-in will be further reduced
compared to previously reported results.

Both of these effects will be thoroughly explored in our
companion paper [54], which will place restrictions on the
range of masses where DM freeze-in via a light mediator is
observationally viable.
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APPENDIX A: EVOLUTION OF THE SM BATH

Throughout this work, we take the properties of the SM
thermal bath to be given by their equilibrium values at zero
chemical potential. The photons and neutrinos are relativ-
istic gases with energy and entropy densities

ργ ¼
π2T4

15
; sγ ¼

4ργ
3T

; ρν¼
7π2T4

ν

40
; sν¼

4ρν
3Tν

: ðA1Þ

Here we distinguish between the neutrino and SM bath
temperatures T and Tν; in this work we assume that the
neutrinos kinetically decouple at a temperature that is
higher than relevant for sub-MeV freeze-in and that their
temperature evolves adiabatically Tν ∼ 1=a during this
epoch, which is a good approximation at the percent level.
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We also ignore the negligible neutrino masses. Meanwhile,
the electrons are transitioning from being relativistic to
being nonrelativistic, so we use the unapproximated
expressions for the energy and entropy density,

ρe ¼
2

π2

Z
∞

me

dE
E2ðE2 −m2

eÞ1=2
eE=T þ 1

;

pe ¼
2

3π2

Z
∞

me

dE
ðE2 −m2

eÞ3=2
eE=T þ 1

;

se ¼
pe þ ρe

T
: ðA2Þ

Throughout the evolution of the SM bath, we require
conservation of entropy. Since we are assuming adiabatic
evolution of the neutrino temperature, its entropy
sνðTνÞaðTÞ3 is constant by definition. The remaining
constraint equation on the temperature evolution is then

ðsγðTÞ þ seðTÞÞa3 ¼ const; ðA3Þ

which yields a smooth temperature evolution TðaÞ, as
shown in Fig. 9. After the electrons have fully left the
bath, we recover the usual result Tν ¼ ð4=11Þ1=3T. We can
then use this temperature evolution to evolve the Hubble
parameter smoothly through the transition as the electrons
leave the thermal bath,

H2ðaÞ ¼ ρeðTðaÞÞ þ ργðTðaÞÞ þ ρνðTνðaÞÞ
3M2

Pl

ðA4Þ

with MPl the reduced Planck mass. Both the temperature
and Hubble evolution feed into the calculations of the
DM relic abundance and phase space in the main body of
the text.

APPENDIX B: IN-MEDIUM PLASMA
PROPERTIES

In this Appendix, we follow the discussion of Ref. [94],
where the case of plasmons decaying to neutrinos was
considered. The key approximation developed in that work
was to evaluate thermal quantities at typical velocities,
where thermal integrals have the most support. Specifically,
the typical electron velocity is given by v� ¼ ω1=ωp,
defined in terms of the first mode frequency and plasma
frequency,

ω2
1 ¼

4α

π

Z
dp

p2

E

�
5

3
v2 − v4

�
feðEÞ; ðB1Þ

ω2
p ¼ 4α

π

Z
dp

p2

E

�
1 −

1

3
v2
�
feðEÞ; ðB2Þ

where fe is the phase-space density of electron-positron
pairs. Protons can also be included but their contribution
is negligible because protons are heavy and thus slow to
respond to electric fields, and also because their number
density is much lower than that of the electrons at the
relevant epochs.
The electromagnetic polarization tensor can be written as

a thermal integral and expressed in terms of the longitudinal
and transverse polarization functions, Πl and Πt, as

Πμνðω; k⃗Þ ¼
�
1;
ω

k
k̂

�
μ
�
1;
ω

k
k̂

�
ν

Πlðω; kÞ

þ ðð0; ϵ⃗þÞμð0; ϵ⃗þÞν þ ð0; ϵ⃗−Þμð0; ϵ⃗−ÞνÞΠtðω; kÞ;
ðB3Þ

where ω and k⃗ are the plasmon energy and wave vector, and
where the vacuum transverse polarization vectors ϵ⃗� are
chosen to be orthogonal to the direction of propagation
and normalized to unity. In terms of the quantities above,
the polarization functions can be approximated (see
Ref. [94]) as

Πlðω; kÞ ¼
3ω2

p

v2�

�
ω

2v�k
ln

�
ωþ v�k
ω − v�k

�
− 1

�
; ðB4Þ

Πtðω; kÞ ¼
3ω2

p

2v2�

�
ω2

k2
−
ωðω2 − v2�k2Þ

2v�k3
ln

�
ωþ v�k
ω − v�k

��
:

ðB5Þ

These approximations are accurate up to OðαÞ and up
to Oðk2Þ at small k for all electron temperatures and
densities [94].
The effective propagator can then be constructed; in

Coulomb gauge, its nonzero components are
FIG. 9. The nonadiabatic temperature evolution of the SM
thermal bath during freeze-in.
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D00ðω; k⃗Þ ¼ 1

k2 − Πlðω; kÞ
; ðB6Þ

Dijðω; k⃗Þ ¼ 1

ω2 − k2 − Πtðω; kÞ
ðδij − k̂ik̂jÞ: ðB7Þ

The poles in the propagator yield the renormalized longi-
tudinal and transverse dispersion relations for on-shell
plasmons,

ωlðkÞ2 ¼
ωlðkÞ2
k2

ΠlðωlðkÞ; kÞ;
ωtðkÞ2 ¼ k2 þ ΠtðωtðkÞ; kÞ; ðB8Þ

while the residues of the poles are identified as a combi-
nation of dressed polarization four-vectors, ϵ̃μðkÞϵ̃νðkÞ�, for
the appropriate polarization. The dressed polarization
vectors are given by

ϵ̃μLðkÞ ¼
ωlðkÞ
k

ffiffiffiffiffiffiffiffiffiffiffiffi
ZlðkÞ

p
ð1; 0⃗Þμ;

ϵ̃μ�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ZtðkÞ

p
ð0; ϵ⃗�Þμ: ðB9Þ

Given the approximations for Πl and Πt and the dispersion
relations, the residue functions can be written as

ZlðkÞ ¼
2ðωlðkÞ2 − v2�k2Þ

3ω2
p − ðωlðkÞ2 − v2�k2Þ

; ðB10Þ

ZtðkÞ ¼
2ωtðkÞ2ðωtðkÞ2 − v2�k2Þ

3ω2
pωtðkÞ2 þ ðωtðkÞ2 þ k2ÞðωtðkÞ2 − v2�k2Þ − 2ωtðkÞ2ðωtðkÞ2 − k2Þ : ðB11Þ

APPENDIX C: PLASMON DECAYS THROUGH
A DARK PHOTON

In this Appendix, we show that plasmon decays in the
millicharge basis [Eq. (6)] are identical to decays in the
basis where the dark photon has a coupling eκJμEMA

0
μ. In a

thermal plasma, this coupling generates an in-medium
mixing term in the Lagrangian given by κAμΠμνA0

ν, where
Πμν is the electromagnetic polarization tensor. The matrix
element in the dark photon basis is then given by

iM ¼ iκgχ ϵ̃μðkÞΠμνðω; k⃗ÞDνα
A0 ðω; k⃗ÞūðpχÞγαvðpχ̄Þ

≡ iκgχ ϵ̃μðkÞūðpχÞγαvðpχ̄ÞΓα
μ; ðC1Þ

where Dνα
A0 is the dark photon propagator. Taking the

mA0 ¼ 0 limit and working in Coulomb gauge, the propa-
gator is given by

Dνα
A0 ðω; k⃗Þ ¼ ð1; 0⃗Þνð1; 0⃗Þα

k2

þ ð0; ϵ⃗þÞνð0; ϵ⃗þÞα þ ð0; ϵ⃗−Þνð0; ϵ⃗−Þα
ω2 − k2

: ðC2Þ

Here we are ignoring in-medium corrections on the dark
photon propagator, which are suppressed by factors of κ2.
Contracting Dνα

A0 with Πμν yields a vertex

Γαμðω; k⃗Þ ¼ −
Πtðω; kÞðð0; ϵ⃗þÞμð0; ϵ⃗þÞα þ ð0; ϵ⃗−Þμð0; ϵ⃗−ÞαÞ

ω2 − k2
þ Πlðω; kÞð1; ωk k̂Þμð1; 0⃗Þα

k2

¼ −ð0; ϵ⃗þÞμð0; ϵ⃗þÞα − ð0; ϵ⃗−Þμð0; ϵ⃗−Þα þ
�
1;
ω

k
k̂

�
μ

ð1; 0⃗Þα: ðC3Þ

In the second line, we have assumed on-shell transverse and
longitudinal modes for the respective pieces of the vertex
function and used the dispersion relations of Eq. (B8).
Contracting this with a dressed polarization vector for the
external photon yields

ϵ̃μLðkÞΓα
μðωl; k⃗Þ ¼

ωlðkÞ
k

ffiffiffiffiffiffiffiffiffiffiffiffi
ZlðkÞ

p
ð1; 0⃗Þα; ðC4Þ

ϵ̃μ�ðk⃗ÞΓα
μðωt; k⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
ZtðkÞ

p
ð0; ϵ⃗�Þα; ðC5Þ

which gives the same result as the vertex obtained in the
millicharge basis.

APPENDIX D: REGULATING FORWARD
SCATTERING

The differential DM-baryon scattering cross section can
be written with respect to the CM angle θCM as

dσ
d cos θCM

¼ jMj2
32πs

: ðD1Þ

In the limit where all of the particles are nonrelativistic
and where mA0 ≪ mD (if a dark photon is even present in
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the theory), the matrix element squared for DM-baryon
Coulomb scattering is given by6

jMj2 ≈ 16Q2e4m2
χm2

b

ðq2 −m2
DÞ2

¼ 4Q2e4m2
χm2

b

p4
CMðcos θCM − 1 −m2

D=2p
2
CMÞ2

;

ðD2Þ

where we averaged over initial spins and summed over
final spins. Here q is the momentum-transfer four-vector
which satisfies q2 ¼ −2p2

CMð1 − cos θCMÞ in the CM
frame, pCM ¼ jp⃗CMj is the magnitude of the 3-momentum
in this frame, and mD is the Debye mass. This effective
mass arises from considering the longitudinal polarization
tensor of the plasma Π00 with the appropriate photon

kinematics (ω ≪ jq⃗j) [90], which corresponds to screened
Coulomb scattering. It can also be understood as the
effective mass appearing in the screened electric potential,
which takes the form of a Yukawa potential [90,99,100] or
as a scale appearing in the electric form factor for a
thermal Gibbs ensemble of charged particles in the plasma
[100]. Note that the transverse polarization tensor Πij,
which corresponds to the magnetic scattering mode,
vanishes in the static ω ≪ jq⃗j limit [90]; however, this
mode of scattering is negligible for a nonrelativistic
plasma where its contribution is suppressed by factors
of v [99,101].
The Debye mass automatically regulates the forward-

scattering divergence in the transfer cross section

σT;χb ¼
Z

d cos θCM
dσ

d cos θCM
ð1 − cos θCMÞ ≈

4πQ2α2

μ2χbv
4

ln

�
2pCM

mD

�
; ðD3Þ

where in the second equality we have taken the approxi-
mation s ¼ ðmb þmχÞ2 for nonrelativistic particles and
have also taken the approximation pCM ≫ mD. In the CM
frame pCM ¼ μχbv, where μχb ¼ mbmχ=ðmb þmχÞ is the
DM-baryon reduced mass and v is the relative velocity. If
we had cut the integral by hand at some angle θD (rather
than including the Debye mass in the propagator) we would
have obtained a logarithm ln 2=θD so we identify the
correct Debye angle as mD=pCM. This Coulomb logarithm
also agrees with other DM-baryon scattering rates found in
the literature, for instance in Refs. [47,55,100,102].
This procedure yields a different logarithm than Ref. [79],

which has been used for recent CMB constraints on milli-
charged DM. In that work, the angular integral was cut by
using the relation between impact parameter and scattering

angle for (electric) Coulomb scattering, and requiring that
the impact parameter for pairwise DM-baryon scattering not
exceed the Debye length λD ¼ 1=mD. This translated to
a minimum scattering angle that depended on the DM
millicharge, with θmin ¼ 2Qα=ð3TλDÞ. The corresponding
minimum momentum transfer in that case would be
jq⃗j2 ¼ 4Q2α2p2

CMm
2
D=ð9T2Þ. For freeze-in where pCM ≈

T and Q < 10−10, we see that jq⃗j2 ≪ m2
D and so we expect

that the Yukawa-like form of the effective potential leads to a
strong screening effect for modes of such large spatial size.
In other words, the requirement of Ref. [79] may not be
restrictive enough because DM-baryon scattering is sup-
pressed by factors of Q relative to the strong collective
effects in the plasma that give rise to the Debye mass.
Because forward scattering is so peaked, the resulting
transfer cross section is highly sensitive to the limits of
integration and their procedure yields a transfer cross section
that is a factor of ∼2 to 3 larger than the one obtained with
the procedure of Eq. (D3). As a result, CMB limits on
millicharged DM that use this result may be too strong.
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