
 

Weyl gauge symmetry and its spontaneous breaking
in the standard model and inflation

D.M. Ghilencea1,* and Hyun Min Lee2,3,†
1Department of Theoretical Physics, National Institute of Physics and Nuclear Engineering (IFIN),

Bucharest 077125, Romania
2Department of Physics, Chung-Ang University, Seoul 06974, Korea

3School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea

(Received 25 February 2019; published 6 June 2019)

We discuss the local (gauged) Weyl symmetry and its spontaneous breaking and apply it to model
building beyond the standard model (SM) and inflation. In models with nonminimal couplings of the scalar
fields to the Ricci scalar that are conformal invariant, the spontaneous generation by a scalar field(s)
vacuum expectation value of a positive Newton constant demands a negative kinetic term for the scalar field
or vice versa. This is naturally avoided in models with additional Weyl gauge symmetry. The Weyl gauge
field ωμ couples to the scalar sector but not to the fermionic sector of a SM-like Lagrangian. The field ωμ

undergoes a Stueckelberg mechanism and becomes massive after “eating” the (radial mode) would-be
Goldstone field (dilaton ρ) in the scalar sector. Before the decoupling of ωμ, the dilaton can act as an UV
regulator and maintain the Weyl symmetry at the quantum level, with relevance for solving the hierarchy
problem. After the decoupling of ωμ, the scalar potential depends only on the remaining (angular variables)
scalar fields, which can be the Higgs field, inflaton, etc. We show that a successful inflation is then possible
with one of these scalar fields identified as the inflaton. While our approach is derived in the Riemannian
geometry with ωμ introduced to avoid ghosts, the natural framework is that of Weyl geometry, which for the
same matter spectrum is shown to generate the same Lagrangian, up to a total derivative.
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I. INTRODUCTION

In this paper, we discuss the Weyl gauge symmetry and
its spontaneous breaking together with its implications for
model building beyond the standard model (SM) and for
inflation.
One phenomenological motivation relates to the obser-

vation that the SM with a Higgs mass parameter set to zero
has a classical scale symmetry [1]. If this symmetry is
preserved at the quantum level by (a scale-invariant) UV
regularization as in [2–7] and is broken spontaneously only,
it can naturally protect at the quantum level a hierarchy of
fields vacuum expectation values (VEVs) of the theory
[3,6,8–10]. The hierarchy we refer to is that between the
Higgs fieldVEV (electroweak scale) and that of new physics
represented by the VEV of the flat direction (dilaton)
associated with global scale symmetry breaking. Such

hierarchy of VEVs can be generated by a classical hierarchy
of the dimensionless couplings of the theory [11,12].
A proper study of the hierarchy problem, based on the

above idea, demands including gravity and generating
spontaneously the Planck scale (Mp). This can be done
in Brans-Dicke-Jordan theories of gravity [13] via a non-
minimal coupling between a scalar field(s) and the scalar
curvature (R), when this field(s) develops a nonzero VEV.
However, demanding the theory be conformal invariant and
spontaneous-only breaking of the conformal symmetry
leads to a negative kinetic term for the corresponding
scalar field, a nuisance that is often quietly glided over. This
problem is automatically avoided in models with Weyl
gauge symmetry [14,16] and motivated our study of this
symmetry in Secs. II and III.
The Weyl gauge symmetry is the natural extension for

conformal-invariant models, e.g., [13–32]; the conformal
transformation of the metric is extended by the associated
gauge transformation of a Weyl gauge field (ωμ), which is
of geometric origin. Section III discusses how ωμ under-
goes a Stueckelberg mechanism and becomes massive by
eating the would-be Goldstone field (dilaton ρ); here, the
dilaton is the radial direction in the field space of scalar
fields (ϕj) of different nonminimal couplings ξj to R. The
Weyl gauge symmetry is then spontaneously broken and

*dumitru.ghilencea@cern.ch
†hminlee@cau.ac.kr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 115007 (2019)

2470-0010=2019=99(11)=115007(12) 115007-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.115007&domain=pdf&date_stamp=2019-06-06
https://doi.org/10.1103/PhysRevD.99.115007
https://doi.org/10.1103/PhysRevD.99.115007
https://doi.org/10.1103/PhysRevD.99.115007
https://doi.org/10.1103/PhysRevD.99.115007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


there are no negative kinetic terms in the theory. The
vacuum expectation value hρi of the flat direction (dilaton)
controls the mass of ωμ and Mp. After ωμ decouples, the
potential depends only on the remaining angular variables’
scalar fields, which can account for the Higgs field,
inflaton, etc.1 Our analysis extends previous studies
[19–23] to multiple scalar fields (ϕj) and different non-
minimal couplings (ξj).
We show (Sec. III D) how, prior to this symmetry

breaking, the dilaton can enforce an UV regularization
of the quantum corrections that keeps manifest the Weyl
symmetry. In Weyl-invariant models, the dilaton replaces
the subtraction scale, thus maintaining this symmetry at the
quantum level [2–7], after which it is eaten by ωμ and
disappears from the spectrum. One is left with the potential
for angular variables’ fields (e.g., Higgs field, etc.). This is
relevant for the hierarchy problem in Weyl-symmetric
theories.
While our analysis (Sec. II B) is formulated in

Riemannian geometry (RG) extended by the Weyl gauge
symmetry, the natural framework for this study is Weyl
conformal geometry (WG) [14–16]. In the RG case,
imposing the Weyl symmetry to avoid generating ghosts
leads to a SM-like Lagrangian with the corresponding
currentKμ ¼ ∂μK, whereKμ interacts with the field ωμ and
K ¼ ρ2. We show that this Lagrangian is identical, up to a
total derivative term, to the simplest Lagrangian one can
build in the Weyl geometry for the same set of matter fields,
using the curvature scalar and curvature tensors of WG
(Sec. II C). This equivalence is an interesting result that
follows from the relation between R computed in
Riemannian geometry and its counterpart R̃ computed in
Weyl geometry.
We also verify that, in the Lagrangian L of the SM

endowed with Weyl gauge symmetry, unlike the Higgs
sector, gauge bosons and fermions do not couple to ωμ [22]
[except a possible kinetic mixing of ωμ to Uð1ÞY]. L can be
used for further phenomenological studies of the Weyl
gauge symmetry.
For the case of two scalar fields present with non-

minimal couplings, after the Weyl field ωμ decouples,
the potential depends only on the angular field θ and
becomes constant for large tan θ. We show that successful
inflation is then possible, in which the field θ is playing
the role of the inflaton. This is another result of this work,
discussed in Sec. IV. Our conclusions are presented
in Sec. V.

II. IMPLICATIONS OF WEYL
GAUGE SYMMETRY

We review how models invariant under conformal trans-
formations become ghost-free while generating spontane-
ously a positive Newton constant, when a Weyl gauge
transformation is added. The Lagrangian so obtained is
then shown to be equivalent to that derived in Weyl
geometry, up to a total derivative; a SM-like model with
this symmetry is also constructed.

A. Weyl symmetry or how to obtain
a Lagrangian without ghosts

Consider a (local) conformal transformation of the
metric2 and of a scalar field ϕ and a fermion ψ as follows:

gμν → g0μν ¼ e2αðxÞgμν;

ϕ → ϕ0 ¼ e−αðxÞΔsϕ; ψ → ψ 0 ¼ e−αðxÞΔfψ : ð1Þ

Then gμν0 ¼ e−2αðxÞgμν and
ffiffiffiffi
g0

p
¼ e4αðxÞ

ffiffiffi
g

p
with g ¼

j det gμνj. Here Δs ¼ 1 and Δf ¼ 3=2.
We would like to generate the Planck scale spontane-

ously, from the VEVof a scalar field ϕ. To this purpose, one
uses that the Lagrangian

L�
1 ¼ � ffiffiffi

g
p ξ

2

�
1

6
ϕ2Rþ gμν∂μϕ∂νϕ

�
ð2Þ

is invariant under transformation (1).3 ξ is the nonminimal
coupling and we assume ξ > 0.
Then one is facing the following issue. To generate the

Einstein term

LE ¼ −
1

2

ffiffiffi
g

p
M2

pR; ð3Þ

after spontaneous breaking of conformal symmetry from a
VEVof ϕ from the first term in (2), one must take the minus
sign in front of (2); that means a negative kinetic term for ϕ
(ghost) is present in the theory, which may not be
acceptable. Alternatively, a positive kinetic term leads to
M2

p < 0. One usually sets Mp ¼ hϕi (gauge fixing the
Planck scale) and the ghost presence is then ignored. Yet,
one cannot have the benefit of conformal symmetry but
ignore this side effect, therefore, we would like to under-
stand its meaning.
To avoid this problem, we associate with transformation

(1) that of a (Weyl) vector field ωμ [14] which, in light of
(1), is of geometric origin1The mechanism of the Weyl gauge symmetry breaking used

here differs from that in [23], where a complex scalar is
considered rather the (real) dilaton and a Coleman-Weinberg
mechanism (unitary gauge) is used (instead of a Stueckelberg
mechanism), which breaks explicitly the Weyl symmetry by UV
regularization. An explicit (classical) breaking was also consid-
ered in [25] for one scalar field case.

2Conventions: metric ðþ;−;−;−Þ, Rλ
μνσ ¼ ∂νΓλ

μσ − ∂σΓλ
μν þ

Γλ
νρΓ

ρ
μσ − Γλ

σρΓ
ρ
μν, Rμσ ¼ Rλ

μλσ , R ¼ gμνRμν.
3To see this, one uses that under Eq. (1) R transforms as

R → R0 ¼ e−2αðxÞðR − 6e−αðxÞ□eαðxÞÞ.
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ωμ → ω0
μ ¼ ωμ −

2

q
∂μαðxÞ; ð4Þ

then consider adding the kinetic term below, with a suitable
normalization coefficient

L2 ¼
1

2
ð1þ ξÞ ffiffiffi

g
p

gμνD̃μϕD̃νϕ; D̃μ ≡ ∂μ −
q
2
ωμ: ð5Þ

L2 is invariant under (1) and (4) since D̃μϕ → e−αD̃μϕ,
due to the presence of ωμ. Since L�

1 is also invariant under
(1) and (4), the sum L�

1 þL2 is also invariant. Hereafter,
we take L−

1 . One has L−
1 þ L2 ¼ ð1=2Þgμν∂μϕ∂νϕ−

ð1=12Þξϕ2R þ � � �, with a canonically normalized
kinetic term for ϕ. Thus, the Planck ðmassÞ2 generated by
hϕ2i and the kinetic term of ϕ can be simultaneously
positive.4 This is made possible by the additional presence
of the Weyl field ωμ; this is a sufficient condition for the
consistency of the theory (absence of ghosts).

B. SM Lagrangian with Weyl gauge symmetry

We use the above observation about L−
1 þ L2 to con-

struct a Lagrangian without ghosts and invariant under
Eqs. (1) and (4). For generality, consider a version of
L−
1 þ L2 with more scalar fields ϕj of nonminimal cou-

plings ξj, then a Weyl-invariant Lagrangian is

L ¼ ffiffiffi
g

p �
−
ξj
2

�
1

6
ϕ2
jRþ gμν∂μϕj∂νϕj

�

þ ð1þ ξjÞ
1

2
gμνD̃μϕjD̃νϕj − VðϕjÞ

�
: ð6Þ

A summation is understood over repeated index
j ¼ 1; 2; 3;…. We also added a potential VðϕjÞ for the
scalars ϕj; given the conformal symmetry, V is a homo-
geneous function, so

VðϕjÞ ¼ ϕ4
kVðϕj=ϕkÞ; k ¼ fixed: ð7Þ

L can be rewritten as

L ¼ ffiffiffi
g

p �
−
ξj
12

ϕ2
jRþ gμν

2
ð∂μϕjÞð∂νϕjÞ

−
q
4
gμνωμKν þ

q2

8
Kωμω

μ − VðϕjÞ
�
; ð8Þ

where

Kν ¼ ∂νK; K ¼ ð1þ ξjÞϕ2
j : ð9Þ

L above is invariant under (1) and (4) for all values of ξj,
thanks to the ωμ-dependent terms. L has a positive kinetic
term for ϕj andM2

p > 0 when generated by the VEVof hϕi
(assuming ξj > 0). In the absence of the ωμ-dependent part,
L is not conformal (unless ξj ¼ −1), but only globally
conformal. Unlike in gauge theories, ωμ is a vector under a
real transformation of the fields ϕj (missing the i factor).
The associated current Kμ is nonzero for ϕj reals.
Further, we include a kinetic term for ωμ with the usual

(pseudo)Riemannian definition

Lg ¼ −
ffiffiffi
g

p
4

gμρgνσFμνFρσ; Fμν ¼ Dμων −Dνωμ;

Dμων ¼ ∂μων − Γρ
μνωρ: ð10Þ

Lg is invariant under (1) and (4), since the metric part is
invariant and Fμν (¼∂μων − ∂νωμ) is invariant, too. The
Riemann connection5 Γρ

μν, symmetric under the exchange
μ ↔ ν, is not invariant under (1).
Finally, one can consider the Weyl-invariant Lagrangian

Lf for the massless fermions of the theory that transform
under (1). Lf has the usual form in (pseudo)Riemann space

Lf ¼ ffiffiffi
g

p
ψ̄iγaeμaDμψ ; Dμψ ¼

�
∂μ þ

1

2
ωab
μ σab

�
ψ ;

ð11Þ

where ωab
μ ¼ eλbð−∂μeλa þ eνaΓν

μλÞ is the spin connection

and σab ¼ 1
4
½γa; γb�. Note that gμν ¼ eμaeνbηab and

eμaeνa ¼ δμν . Under a Weyl transformation of the
metric (1), the vierbein eaμ transforms as eμa0 ¼ eαðxÞeμa,
while for the spin connection we have ωab0

μ ¼
ωab
μ þ ðeμaeνb − eνaeμbÞ∂μα. Then it can be shown that

Lf is invariant under a Weyl gauge transformation [Eqs. (1)
and (4)] and there is no coupling of fermions to the gauge
field ωμ.
Regarding the SM gauge fields’ kinetic terms (LG), these

are invariant under Weyl gauge symmetry. Indeed, the
gauge fields’ presence under the covariant derivative that
contains ∂μ shows that these are invariant, since coordinates
do not transform under (1). Therefore, there is no coupling
between the SM gauge fields and ωμ.

6 For example, for the
Uð1ÞY gauge field Aμ, the covariant derivative can be
written as DμAν ¼ ∂μAν − Γρ

μνAρ. The gauge kinetic terms

4This is automatic in Weyl geometry, see Sec. II C and
[19,22,23].

5The Riemann affine connection used here is Γρ
μν ¼

ð1=2Þgρβ½∂νgβμ þ ∂μgβν − ∂βgμν�.
6An exception is a possible kinetic mixing of the field strength

of ωμ to that of Uð1ÞY [33].
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do not contain the Christoffel symbols because Fμν ¼
DμAν −DνAμ ¼ ∂μAν − ∂νAμ.
The sum, L ¼ Lþ Lg þ Lf þ LG, is the total SM-like

Lagrangian with Weyl gauge symmetry,7 which is invariant
under (1) and (4). Here L is immediately adapted to
accommodate the Higgs doublet of the SM with one of
the ϕj fields to account for the Higgs neutral scalar. In
conclusion, we have a SM-like Lagrangian that is invariant
under (1) and (4).

C. From Riemann to Weyl conformal geometry

The presence of the Weyl gauge field in our model in the
Riemannian geometry and invariant under (1) and (4) is
natural in Weyl’s conformal geometry [14,16] (also [15]).
Following [16], we write the SM-like Lagrangian with
this symmetry directly in Weyl geometry and we verify that
it agrees with that of the previous section, built in the
Riemannian geometry (with ωμ introduced to avoid
ghosts).
Weyl geometry is a scalar-vector-tensor theory of gravity

and thus provides a generalization (to classes of equivalence)
of Brans-Dicke-Jordan scalar-tensor theory [13] and of other
conformal-invariant models [18]. It was used for model
building [19,20] with renewed recent interest in [22–29] and
applications to inflation, see, e.g., [30–32,36–41]. If theWeyl
field is set to zero, one obtains (Weyl integrable) models
similar to Brans-Dicke-Jordan theory [29].
In Weyl geometry, the curvature scalars and tensors and

the connection are different from the Riemannian case
where they are induced by the metric alone. In Weyl
geometry,

Γ̃ρ
μν ¼ Γρ

μν þ q
2
½δρμων þ δρνωμ − gμνωρ�; ð12Þ

where Γρ
μν are the connection coefficients in the

Riemannian geometry. Under (1) and (4), the coefficients
Γ̃ρ
μν are invariant, as one can easily check. The system is

torsion-free. The Riemann tensor in Weyl geometry is then
generated by the new Γ̃ρ

μν

R̃λ
μνσ ¼ ∂νΓ̃λ

μσ − ∂σΓ̃λ
μν þ Γ̃λ

νρΓ̃
ρ
μσ − Γ̃λ

σρΓ̃
ρ
μν; ð13Þ

and then R̃μσ ¼ R̃λ
μλσ , R̃ ¼ gμνR̃μν. We can then compute R̃

and find

R̃ ¼ R − 3q

�
∂μω

μ þ 1

2
ωρgλβ∂ρgλβ

�
−
3

2
q2ωμωμ

¼ R − 3qDμω
μ −

3

2
q2ωμωμ: ð14Þ

Then under transformations (1) and (4),

R̃ → R̃0 ¼ e−2αðxÞR̃: ð15Þ

As a result

L1w ¼ −
ffiffiffi
g

p 1

12
ξjϕ

2
j R̃; ðsum over j ¼ 1; 2:Þ ð16Þ

is invariant under combined transformations (1) and (4).
This is unlike the Riemannian case of the previous section
where the nonminimal coupling term in the action was not
invariant.
Further, we can define a kinetic term for ϕ in Weyl

geometry, invariant under (1) and (4),

L2w ¼ 1

2

ffiffiffi
g

p
gμνD̃μϕjD̃νϕj −

ffiffiffi
g

p
VðϕjÞ: ð17Þ

We also have a gauge kinetic term (L3w) for ωμ, now
defined by new coefficients Γ̃ of (12)

L3w ¼ −
ffiffiffi
g

p
4

gμρgνσFμνFρσ; Fμν ¼ D̃μων − D̃νωμ;

D̃μων ¼ ∂μων − Γ̃ρ
μνωρ: ð18Þ

However, Γ̃ρ
μν are symmetric in μ ↔ ν and also invariant

under Weyl transformation Eqs. (1) and (4). Thus, Fμν and
L3w are equal to their counterparts in the previous section
[Eq. (10)], so L3w ¼ Lg. The same can be said about the
SM gauge fields’ kinetic terms.
Further, the fermionic Lagrangian is defined with the

Weyl connection, as follows:

L4w ¼ ffiffiffi
g

p
ψ̄iγaeμaD̃μψ ;

D̃μψ ¼
�
∂μ þ

1

2
ω̃ab
μ σab −

3

4
qωμ

�
ψ ; ð19Þ

where ω̃ab
μ ¼ eλbð−∂μeλa þ eνaΓ̃ν

μλÞ. However, one shows
[22] that L4w ¼ Lf with Lf of (11).
Adding together L1w, L2w, L3w, and L4w, each of these

invariant under (1) and (4), we obtain a total Lagrangian for
the case of Weyl geometry. It is interesting to see that this
Lagrangian is equal to Lþ Lg þ Lf of (8), (10), and (11),
up to a total derivative term. This follows from the relation

L1w þ L2w ¼ Lþ q
4
ξj∂μ½

ffiffiffi
g

p
ϕ2
jω

μ�: ð20Þ

To show Eq. (20), one uses the relation between R̃ and R
of Eq. (14) that relates Weyl and Riemann scalar curvatures
and that ∂λg ¼ ggμσ∂λgσμ.
Equation (20) shows that our model agrees (for the two-

fields case) with that in [22] built within Weyl geometry
from the onset and following [16]. We thus obtained the

7One could also add a Weyl tensor-squared term to the action,
which is invariant under (1), or a quadratic term in the Weyl scalar
curvature R̃2, see [34,35] for further details.
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same Lagrangian in Riemann and Weyl geometry, albeit
with different initial motivations. Our motivation for a
consistent ghost-free conformal action, with this symmetry
broken spontaneously, led us to introduce a gauge trans-
formation and Weyl gauge field associated with (1).

III. SPONTANEOUS BREAKING
OF WEYL GAUGE SYMMETRY

In this section, we show how the Weyl conformal
symmetry of our model is spontaneously broken for one
or more scalar fields of nonminimal couplings ξj to R.
Then, we show that the (radial mode) would-be Goldstone
boson (dilaton ρ) of the Weyl symmetry decouples from the
angular variables’ fields, due to a Stueckelberg mechanism
for the Weyl gauge field, which becomes massive. Before
decoupling, the dilaton can provide a scale-invariant UV
regularization for models in which quantum scale invari-
ance is important.

A. One scalar field and the
Stueckelberg mechanism for ωμ

Let us first show how spontaneous breaking of Weyl
symmetry happens for one scalar field ϕ. Then L of Eq. (8)
simplifies (no sum over j) and we replace ϕj → ϕ, then

K ¼ ð1þ ξÞϕ2; V ¼ λ

4!
ϕ4; ð21Þ

where V is the only one allowed by the Weyl symmetry. To
decouple the scalar field fluctuations from R, we go to the
Einstein frame by rescaling the metric to

ĝμν ¼ Ωgμν; Ω ¼ ξ

6

ϕ2

hϕi2 : ð22Þ

Hereafter, a hat on a variable denotes the Einstein frame
value of that variable. From Eq. (8) for one field and
Eq. (22) we obtain the tensor-scalar part of the Einstein
frame Lagrangian as

L̂¼
ffiffiffî
g

p �
−
1

2
hϕi2R̂þ3

4
hϕi2ð∂μ lnΩÞ2

þ 1

Ω

�
1

2
ð∂μϕÞ2þ

q2

8
Kωμω

μ−
q
4
ωμKμ

�
−

V
Ω2

�
; ð23Þ

giving

L̂ ¼
ffiffiffî
g

p �
−
1

2
hϕi2R̂þ 3hϕi2

�
1þ 1

ξ

��∂μϕ

ϕ

�
2

þ 3

4
q2hϕi2

�
1þ 1

ξ

�
ωμω

μ

− 3qhϕi2
�
1þ 1

ξ

�
ωμ∂μ lnϕ −

3λ

2ξ2
hϕi4

�
; ð24Þ

where all contractions are with the new metric ĝμν. Finally,
we introduce

ω0
μ ¼ ωμ −

2

q
∂μ lnϕ; ð25Þ

giving

L̂¼
ffiffiffî
g

p �
−
1

2
hϕi2R̂þ3

4
q2hϕi2

�
1þ1

ξ

�
ω0
μω

0μ−
3λ

2ξ2
hϕi4

�
:

ð26Þ

As a result, the scalar (dilaton) field ϕ is eaten by the
Weyl gauge boson ωμ. The mass of ωμ is m2

ω ¼
ð3q2=2Þð1þ 1=ξÞhϕi2. Therefore, conformal symmetry
is broken spontaneously as in the Stueckelberg formulation
for a massive Uð1Þ without a corresponding Higgs mode.
The number of degrees of freedom (d.o.f.) remains the
same (three): in the Jordan frame we had a real scalar and a
massless vector, while in Einstein frame, after breaking
there is no scalar field but a massive vector boson. Also
note that the gauge kinetic term Lg of ωμ, see Eq. (10), is
invariant under (22) and (25). The scalar potential becomes
a cosmological constant, V0 ¼ 3λhϕi4=ð2ξ2Þ, in the
Einstein frame.
The transformation (25) may be seen as a Weyl gauge

transformation (4) with α ¼ ln
ffiffiffiffi
Ω

p
corresponding to (22).

Then the scalar field ϕ transforms according to Eq. (1) into

ϕ0 ¼ e− ln
ffiffiffi
Ω

p
ϕ ¼

ffiffiffiffiffiffiffi
6=ξ

p
hϕi; ð27Þ

so ϕ0 is not dynamical anymore. Therefore spontaneous
breaking of conformal symmetry fixing the Planck scale (to
Mp ¼ hϕi) and Stueckelberg mechanism are related to a
Weyl transformation to a special unitary gauge (gauge
fixing).
While we used hϕi ≠ 0 in the definition of Ω and

subsequent equations, this is actually not needed and an
arbitrary mass scale M can be used instead of hϕi,
corresponding to a different gauge fixing (and different
Planck scale). Indeed, the Stueckelberg mechanism is a
rearrangement of the d.o.f. (which does not require
hϕi ≠ 0). Using an arbitrary M is consistent with the
fact that, for a single scalar field in a Weyl-invariant
theory, hϕi cannot be determined from the condition
4VðϕÞ − ϕV 0ðϕÞ ¼ 0, which is automatically respected,
hence hϕi remains a parameter (unknown). This condition
is also related to the conservation of the current DμKμ ¼ 0,
which for a Friedmann-Robertson-Walker metric leads to a
constant solution hϕi [30,31] that is not fixed by the theory.
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B. Two scalar fields and the
Stueckelberg mechanism for ωμ

Let us consider now the more interesting case of two
scalar fields in Eq. (8), (j ¼ 1, 2). Then

K ¼ ð1þ ξ1Þϕ2
1 þ ð1þ ξ2Þϕ2

2: ð28Þ

Since V is a homogeneous function of fields, one can
have

Vðϕ1;ϕ2Þ ¼
λ1
4!
ϕ4
1 þ

λ12
4

ϕ2
1ϕ

2
2 þ

λ2
4!
ϕ4
2: ð29Þ

In particular, if 3λ12 ¼ −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
, then

Vðϕ1;ϕ2Þ ¼
λ1
4!

�
ϕ2
1 −

ffiffiffiffiffi
λ2

pffiffiffiffiffi
λ1

p ϕ2
2

�
2

: ð30Þ

V can also contain terms like ϕ6
1=ϕ

2
2, etc. [6]. The results

below are for a general homogeneous function Vðϕ1;2Þ, i.e.,
it has a flat direction: Vðϕ1;2Þ ¼ ðϕ2

1 − k0ϕ2
2Þ2fðϕ1=ϕ2Þ,

(k0 ¼ constant).
To decouple R from the fluctuations of ϕ1;2, we consider

a transformation to the Einstein frame. Let us perform a
metric rescaling of L, Eq. (8), to

ĝμν ¼ Ωgμν; Ω ¼ 1

6v2
ðξ1ϕ2

1 þ ξ2ϕ
2
2Þ;

v2 ≡ hξ1ϕ2
1 þ ξ2ϕ

2
2i: ð31Þ

Here v ensures thatΩ is dimensionless.8 From Eq. (8) for
two fields and with (31), we obtain the corresponding
Einstein frame Lagrangian as

L̂ ¼
ffiffiffî
g

p �
−
1

2
v2R̂þ 3

4
v2ð∂μ lnΩÞ2 þ

1

Ω

�
1

2
ð∂μϕ1Þ2

þ 1

2

�
∂μϕ2Þ2 þ

q2

8
Kωμω

μ −
q
4
ωμKμ

�
− V̂

�
; ð32Þ

where all contractions are with the new metric ĝμν; Ω, K,
and V̂ are functions of ϕ1;2 with

V̂ðϕ1;ϕ2Þ ¼
1

Ω2
Vðϕ1;ϕ2Þ: ð33Þ

Then

L̂ ¼
ffiffiffî
g

p �
−
1

2
v2R̂þ 1

2
Gij∂μϕi∂μϕj

þ q2

8

K
Ω
ωμω

μ −
q
4
ωμ

Kμ

Ω
− V̂

�
; ð34Þ

where

Gij ¼
1

6v2Ω2

�
ξ1ð1þξ1Þϕ2

1þξ2ϕ
2
2 ξ1ξ2ϕ1ϕ2

ξ1ξ2ϕ1ϕ2 ξ2ð1þξ2Þϕ2
2þξ1ϕ

2
1

�
;

i;j¼ 1;2: ð35Þ

The kinetic terms in L̂ become diagonal (no mixing) in a
new fields basis of (ρ, θ), where

ϕ1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ1
p ρ sin θ;

ϕ2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2
p ρ cos θ: ð36Þ

It is more illustrative, however, to first bring the Weyl
terms in L̂ to a quadratic form using

ω0
μ ¼ ωμ −

1

q
∂μ lnK; ð37Þ

where we note that K ¼ ρ2. Adding L̂g of Eq. (10) with
Eq. (31) for the Weyl field ωμ, then

L̂þ L̂g ¼
ffiffiffî
g

p �
−
1

2
v2R̂þ 1

2
Gij∂μϕi∂μϕj −

1

8KΩ
ð∂μKÞ2

−
1

4
F0
μνF0μν þ K

8Ω
q2ω0

μω
0μ − V̂

�

¼
ffiffiffî
g

p �
−
1

2
v2R̂þ 1

2
Tij∂μϕi∂μϕj −

1

4
F0
μνF0μν

þ K
8Ω

q2ω0
μω

0μ − V̂

�
; ð38Þ

where F0
μν ¼ D̃μω

0
ν − D̃νω

0
μ is invariant under (37). Above

we denoted Tij ¼ Gij þHij, (i, j ¼ 1, 2), with

Hij¼−
1

Ω
1

K

� ð1þξ1Þ2ϕ2
1 ð1þξ1Þð1þξ2Þϕ1ϕ2

ð1þξ1Þð1þξ2Þϕ1ϕ2 ð1þξ2Þ2ϕ2
2

�
:

ð39Þ

In the new basis (36) the scalar kinetic terms in Eq. (38)
are reduced to a single term and

8As for the one-field case, we could use instead of v an
arbitrary mass scale.
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L̂þ L̂g ¼
ffiffiffî
g

p �
−1
2

v2R̂þ 1

2
FðθÞv2ð∂μ tan θÞ2 −

1

4
F0
μνF0μν

þ 1

2
m2ðθÞĝμνw0

μw0
ν − V̂

�
; ð40Þ

with

FðθÞ ¼ 6b
ξ2

tan2θ þ ξ2=ξ1
ð1þ tan2θÞðtan2θ þ bÞ2 ; b ¼ ξ2ð1þ ξ1Þ

ξ1ð1þ ξ2Þ
:

ð41Þ

Therefore, we are left with the angular kinetic term for θ
only. The kinetic term of the radial (Goldstone) coordinate
ρ (where ρ2 ¼ K) has disappeared, via the Stueckelberg
mechanism, as it was eaten by the Weyl gauge boson ω0 in
Eq. (37). This is similar to the case with one scalar field in
Eq. (25). Thus, in the Einstein frame we have a massive
vector boson and one (real) scalar field left (θ), while in the
Jordan frame we had two (real) scalar fields and a massless
ωμ, so the number of d.o.f. is again conserved.
Further, the function m2ðθÞ in (40) is given by

m2ðθÞ¼ q2K
4Ω

¼ 3q2

2

v2ð1þξ1Þð1þξ2Þð1þ tan2θÞ
ξ1ð1þξ2Þ tanθ2þξ2ð1þξ1Þ

; ð42Þ

with

v2 ¼ hρi2
�

ξ1
1þ ξ1

sin2hθi þ ξ2
1þ ξ2

cos2hθi
�
: ð43Þ

Notice that if ξ1 ¼ ξ2 or if tan θ is large, the function
m2ðθÞ is actually independent of θ and then the Weyl gauge
field (ω0

μ) and the field θ decouple.
On the ground state θ ¼ hθi and the mass of ωμ is

m2ðhθiÞ ¼ 3

2
q2hρi2: ð44Þ

The mass of ωμ is thus determined by hρi alone; unlike θ

whose VEV is determined from V̂ (see below), hρi cannot
be predicted by the theory and is a free parameter (flat
direction).9

The Planck scale M2
p ¼ v2, Eq. (43), depends in general

on hθi. This is not a problem, since unlike ρ, the field
variable θ does not change under a Weyl transforma-
tion, Eq. (1). However, if the theory has anOð2Þ symmetry,
i.e., identical nonminimal couplings ξ1 ¼ ξ2, then
Mp is determined by the VEV of the dilaton alone M2

p ¼
v2 ¼ ξ1hρi2=ð1þ ξ1Þ; in this case, the would-be Goldstone

(dilaton) field ρ eaten by ωμ and fixing its mass also fixes
the Planck scale. The same is true in the limit of large
tan θ → ∞, when M2

p ¼ v2 ¼ ξ1hρi2=ð1þ ξ2Þ.
Regarding the potential V̂ in Eq. (40), it is given by

Eq. (33) expressed in terms of the new field variables ρ, θ.
With Eq. (7) and Vðϕ1;ϕ2Þ the initial potential in the
Jordan frame, then

V̂ ¼ 36v4
b2

ξ22

Vðc tan θ; 1Þ
ðtan2θ þ bÞ2 ; where c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2
1þ ξ1

s
; ð45Þ

which depends on θ only. Finally, another mechanism to
decouple the dilaton was studied in [30] using a global
version of the Weyl symmetry studied here (and assuming
this survives black hole physics [42]).

C. More fields and the Stueckelberg mechanism

The Stueckelberg mechanism for ωμ can be extended
for more scalar fields with nonminimal couplings,
using general coordinates. For three fields ϕ1 ¼
ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ1
p Þρ sin θ cos ζ, ϕ2 ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2
p Þρ sin θ sin ζ,

and ϕ3 ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ3

p Þρ cos θ. As before, the kinetic term
of radial field ρ is the Goldstone eaten by the vector boson
ωμ of mass q2K=ð4ΩÞjθ¼hθi. One is left with kinetic terms
for the angular coordinates fields θ, ζ; similarly, the scalar
potential will depend only on these fields. This generali-
zation is useful in cases where one of the scalar fields left is
a Higgs field, while the other is a second Higgs-like scalar,
inflaton, etc. The scalar potential is then

V̂ðθ;ϕÞ ¼ 1

Ω2
Vðϕ1;ϕ2;ϕ3Þ

¼ 36v4Vðz1; z2; z3Þ
ðξ1z21 þ ξ2z22 þ ξ3z23Þ2

; ð46Þ

where Vðϕ1;ϕ2;ϕ3Þ is the initial potential in the Jordan
frame and zj ¼ ϕj=ρ are functions of θ and ζ only. If
ξ1 ¼ ξ2 ¼ ξ3, then the Planck scale is also determined by
the same ρ field. The extension to more scalar fields is
straightforward. This study can also be extended to include
additional (Weyl gauge-invariant) terms quadratic in the
scalar curvature [34,35].

D. Other implications:
UV scale-invariant regularization

The above results have implications for models with
(global) scale invariance at the quantum level. Such models
are important since they can have a quantum stable
hierarchy between two scalar fields’ VEVs (Higgs and
dilaton), which is relevant for the SM hierarchy problem, as
we detail below.
Consider first a classical scale-invariant model. The SM

with a vanishing Higgs mass parameter is an example. This

9hρi may be fixed by quantum corrections; however, in
quantum scale-invariant theories only ratios of field VEVs
(scales) can be determined (in terms of dimensionless couplings),
so it remains a free parameter.
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symmetry can be preserved at the quantum level, by
ensuring that the UV regularization respects it. This is
done by replacing the subtraction scale μ by the dilaton
field ρ [2]. After spontaneous breaking of this symmetry,
μ ∼ hρi. In this way one obtains scale-invariant results at
the quantum level [3–6,10]. After the quantum calculation,
one can expand the result (e.g., the scalar potential) about
the VEV of the dilaton to recover standard results
(e.g., Coleman-Weinberg potential), plus additional higher
dimensional operators suppressed by the dilaton VEV [6].
Such models have only spontaneous breaking of the scale
symmetry, thus there is no dilatation anomaly [2,4,7,10].
The relation to the hierarchy problem is that the dilaton

VEV is fixing Mp and so it must be much higher than the
Higgs VEV. Such hierarchy can be the result of one initial
classical tuning of the (dimensionless) couplings. This
tuning remains stable at the quantum level, due to quantum
scale invariance and a shift symmetry of the dilaton
(Goldstone mode) [9]. However, the dilaton remains in
the spectrum as a flat direction, even at quantum level. One
can then ask what happens to this flat direction for a more
general, local Weyl symmetry.
The result of this paper answers this question. As we

saw, the dilaton is eaten by the Weyl field ωμ, which
becomes massive, decouples from the spectrum and leaves
a potential function of the angular variables’ fields only
(which can be the Higgs field, inflaton, etc.).
For example, in a two-field case and assuming a potential

V of Eq. (30), after decoupling the potential V̂ depends only
on h≡ v cot θ, which can be the neutral Higgs field; taking
for simplicity ξ2 ¼ 0 and large ξ1, after dilaton decoupling,
the scalar potential (for a canonical kinetic term for h)
becomes in the Einstein frame

V̂ ¼ λ2
4!

�
h2 −

ffiffiffiffiffi
λ1

pffiffiffiffiffi
λ2

p v2

ðξ1=6Þ
�

2

; ð47Þ

which is indeed that of the SM, with m2
h ¼

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
v2=ξ1 ≪

v2 ∼ hρi2 for small (ultraweak) couplings and large ξ1.
What happens with this hierarchy at the quantum level?
Before the Stueckelberg mechanism, the dilaton can

enforce a scale- (or Weyl-) invariant UV regularization [2]
of the quantum corrections to potential (30), as described
above. In this way one can construct a quantum scale-
(Weyl-) invariant theory, dilatation (conformal) anomaly-
free, respectively. In this case, the mentioned classical
hierarchy between m2

h and v2 ∼ hρi2 remains stable at the
quantum level (for more details see discussion in [6,10]).

IV. INFLATION FROM WEYL
GAUGE SYMMETRY

In this section, we study inflation in models with
spontaneously broken Weyl gauge symmetry. We consider
the case of the two scalar fields of Sec. III B and regard the

potential for the angular-variable field θ, obtained after the
Stueckelberg mechanism, as being responsible for infla-
tion. The potential becomes constant at large tan θ. In this
limit, from Eqs. (40) and (42), θ and ω0

μ decouple and the
action for the inflaton (θ) can be written as

Linfl¼
ffiffiffî
g

p �
−
1

2
v2R̂þ3bv2

ξ2

τ2þξ2=ξ1
ð1þτ2Þðτ2þbÞ2 ð∂μτÞ2−V̂ðτÞ

�
;

τ≡ tanθ: ð48Þ

For V of (29), the Einstein frame potential expressed in
terms of τ is

V̂ ¼ 36v4

ðξ1ϕ2
1 þ ξ2ϕ

2
2Þ2

�
λ1
4!
ϕ4
1 þ

λ12
4

ϕ2
1ϕ

2
2 þ

λ2
4!
ϕ4
2

�

¼ 36v4ð1þ ξ1Þ2
ξ21ðτ2 þ bÞ2 ðc1τ4 þ c12τ2 þ c2Þ; ð49Þ

with

c1 ¼
λ1

4!ð1þ ξ1Þ2
; c12 ¼

λ12
4ð1þ ξ1Þð1þ ξ2Þ

;

c2 ¼
λ2

4!ð1þ ξ2Þ2
: ð50Þ

The potential is similar to that in Higgs portal inflation
[41,43], but in our case the angular field θ is the dynamical
field responsible for a slow-roll inflation (instead of being
frozen). For the case of global Weyl invariant models,
inflation was already studied in [31,36]. Note that if c12 ¼
−2 ffiffiffiffiffiffiffiffiffi

c1c2
p

(c1;2 > 0), then V̂ ¼ 0 at the minimum.
In the following, we consider the case ξ1 ¼ ξ2, which is

preferable since then θ and ω0
μ are decoupled from each

other for all values of θ [cf. (40)]. Then b ¼ 1, and the
kinetic term acquires a canonical form ð1=2Þð∂μχÞ2, with
the actual inflaton field χ defined by

χ ¼ vθ

ffiffiffiffiffi
6

ξ1

s
: ð51Þ

Then the inflaton potential in Eq. (49) becomes

V̂ ¼ V0cos4θ

�
tan4θ þ c12

c1
tan2θ þ c2

c1

�
; with

V0 ¼
36v4

ξ21
c1ð1þ ξ1Þ2; ð52Þ

with θ≡ ffiffiffiffiffiffiffiffiffi
ξ1=6

p
χ=v. The potential is illustrated in Fig. 1

for some choices of the quartic couplings that give V̂ ¼ 0 at
the minimum. Inflation takes place at tan θ ≫ 1 (or θ ∼ π

2
)

for which V¼V0½1þðc12=c1−2Þcot2θþð3−2c12=c1þ
c2=c1Þcot4θþ����. For ξ1 ≠ ξ2 with tan θ ≫ 1, we note
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FIG. 1. Inflaton potential as a function of τ ¼ tan θ, for ξ1 ¼ ξ2 and ratios c1;2=c1, c2=c1 of values shown above. V ¼ 0 at the
minimum [note θ ¼ ðχ=vÞ ffiffiffiffiffiffiffiffiffi

ξ1=6
p

with χ the actual inflaton]. The values of the spectral index and tensor-to-scalar ratio for these two
cases are shown in Fig. 2.

FIG. 2. (Left) The spectral index ns as a function of the number of e-foldings N for two different cases. (Right) The spectral index ns
versus tensor-to-scalar ratio r for the corresponding cases. The green region in all the plots corresponds to Planck2018 values for ns
within 1σ (see text). The cyan region with r > 0.07 is excluded by Planck at 95% C.L. We chose ξ1 ¼ ξ2 for all the plots and c2=c1 ¼ 1

and c12=c1 ¼ ð−2Þ (upper) and c2=c1 ¼ 0.25 and c12=c1 ¼ ð−1Þ (lower). Here c12 is fixed by the condition V̂ ¼ 0 at the minimum.
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that there is an approximate relation between θ and the
canonical inflaton field χ similar to that in Eq. (51).
The slow-roll parameters (for ξ1 ¼ ξ2) are given by

ϵ ¼ 1

3
ξ1

ðc2 − c1 þ ðc1 − c12 þ c2Þ cosð2θÞÞ2 sec4θtan2θ
ðc2 þ c12tan2θ þ c1tan4θÞ2

;

ð53Þ

η¼−
1

3
ξ1
ððc2−c1Þcosð2θÞþðc1−c12þc2Þcosð4θÞÞsec4θ

c2þc12tan2θþc1tan4θ
:

ð54Þ
We find that ϵ and η can be small simultaneously

for ξ1 ≪ 1.
If we choose c2 ¼ c1, c12 ¼ −2c1 then the expressions

of the slow-roll parameters simplify further,

ϵ ¼ 4

3
ξ1 tan2ð2θÞ; ð55Þ

η ¼ 4

3
ξ1ð−1þ tan2ð2θÞÞ; ð56Þ

which leads to the scalar spectral index and the tensor-to-
scalar ratio as

ns ¼ 1þ 2η� − 6ϵ� ¼ 1 −
8

3
ξ1ð1þ 2tan2ð2θ�ÞÞ; ð57Þ

and

r ¼ 16ϵ� ¼
64

3
ξ1tan2ð2θ�Þ: ð58Þ

Further, the number of e-foldings during inflation is also
given by

N ¼ v−1
Z

χ�

χend

signðV̂ 0Þdχffiffiffiffiffiffiffiffiffiffiffi
2ϵðχÞp ¼ 3

4ξ1
log

				 sinð2θendÞsinð2θ�Þ
				; ð59Þ

where θ� is evaluated at the horizon exit and θend is the
inflaton value at the end of inflation. Inflation ends at ϵ ¼ 1,
i.e., j tanð2θendÞj ¼ ð 3

4ξ1
Þ1=2 from Eq. (55).

The normalization of the cosmic microwave background
anisotropies, V0=ð24π2v4ϵ�Þ ¼ 2.1 × 10−9 [44], constrains
c1 (or, equivalently, the quartic coupling λ1) and the
nonminimal couplings ξ1;2 to satisfy

c1ð1þ ξ1Þ2
ξ31

¼ 1.8 × 10−8tan2ð2θ�Þ: ð60Þ

This constraint is respected by choosing small values of c1
(or λ1), for given ξ1.
We have that ns ¼ 0.9670� 0.0039 (68% C.L.)

and r < 0.07 (95% C.L.) from Planck2018 (TT, TE,
EEþ low Eþ lensingþ BK14þ BAO) [44]. In Fig. 2,
we illustrate the relation between the spectral index versus

the number of e-foldings in the left plots and showed the
spectral index versus the tensor-to-scalar ratio in the right
plots. Here we have fixed ξ1 ¼ ξ2 ¼ 0.007, c2 ¼ c1, and
c12 ¼ −2c1 in the upper panel, and ξ1 ¼ ξ2 ¼ 0.01,
c2 ¼ 0.25c1, and c12 ¼ −c1 in the lower panel. As a result,
we find that our model of inflation is consistent with the
observed spectral index and the bound on r, for small
nonminimal couplings and appropriate quartic couplings.

V. CONCLUSIONS

In this work, we discussed the Weyl conformal sym-
metry and its spontaneous breaking and some implications
for model building beyond the SM and inflation.
In models with conformal symmetry (of the Brans-

Dicke-Jordan type) with scalar fields with nonminimal
couplings to the Ricci scalar, one can generate sponta-
neously the Planck scale from the VEVof a scalar field (or a
combination of them). However, a positive (negative)
Newton constant is accompanied by a negative (positive)
kinetic term for this field, respectively. This situation is
naturally avoided in models with an additional Weyl gauge
symmetry and a gauge field ωμ that is of geometric origin,
with a gauge transformation dictated by the conformal
transformation of the metric.
We showed that the Weyl field ωμ couples only to the

scalar sector but not to the fermionic sector of a SM-like
Lagrangian in curved space-time, which is interesting
for model building. Further, the field ωμ undergoes a
Stueckelberg mechanism and becomes massive after eating
the radial mode ρ ∼

ffiffiffiffi
K

p
(in field space) and would-be

Goldstone mode (dilaton). The Weyl gauge symmetry is
then spontaneously broken (and there are no negative
kinetic terms in the theory). Further, the VEV hρi deter-
mines the mass of ωμ and the Planck scale Mp (up to
possible additional angular variables’ field dependence).
The mass of ωμ can be larger or smaller thanMp depending
on the scalar field’s charge and nonminimal couplings.
After decoupling of ωμ the potential depends on the angular
variables’ fields only, which can play the role of the neutral
Higgs field, inflaton, etc. For two scalar fields of equal
nonminimal couplings, the field ωμ decouples from the
action even if it is light.
For the case with two scalar fields, the scalar potential

generally depends only on the angular-variable field θ, and
it is nearly constant at large tan θ, when ωμ also decouples.
Therefore, the potential can be relevant for a single-field
inflation. Investigating the details of the inflaton potential,
we found that successful inflation is possible, with values
of ns and r consistent with Planck2018 constraints, for
perturbative values of the couplings.
While this study was formulated in (pseudo)Riemannian

geometry extended with a real Weyl field (undergoing a
gauge transformation dictated by conformal transformation
of the metric), the natural framework is that of Weyl
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conformal geometry where this symmetry is manifest. In
the Riemannian case, imposing this symmetry avoids the
ghost kinetic term of conformal theory and leads to a
Lagrangian with a current ∂μK that interacts with the Weyl
field. This Lagrangian was shown to be identical, up to a
total derivative term, to that obtained in Weyl geometry
where the Weyl-symmetric Lagrangian is naturally built in,
with curvature scalar, tensors, and affine connection of
Weyl geometry. This equivalence is shown for a SM-like
Lagrangian endowed with Weyl gauge symmetry, using the
relation between R computed in Riemann geometry with
Levi-Civita connection and its counterpart in Weyl geom-
etry. This Lagrangian can be used for examining the

phenomenological constraints on the SM extended with
Weyl gauge symmetry.
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