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The recent light-by-light scattering cross section measurement made by the ATLAS Collaboration is
used to constrain nonlinear corrections to Maxwell electrodynamics parametrized by the Lagrangian
L ¼ F þ 4αF2 þ 4βG2 þ 4δFG. The ion’s radiation is described using the equivalent photon approxi-
mation, and the influence of four different nuclear charge distributions is evaluated. Special attention is
given to the interference term between the Standard Model and the nonlinear corrections amplitudes. By
virtue of the quadratic dependence on α, β, and δ, the nonlinear contribution to the Standard Model γγ cross
section is able to delimit a finite region of the parameter’s phase space. The upper values for α and β in this
region are of order 10−10 GeV−4, a constraint of at least 12 orders of magnitude more precise when
compared to low-energy experiments. An upper value of the same order for δ is obtained for the first time in
the LHC energy regime. We also give our predictions for the Standard Model cross section measured at
ATLAS for each distribution and analyze the impact of the absorption factor. We finally give predictions
for the future measurements to be done with upgraded tracking acceptance jηj < 4 by the ATLAS
Collaboration.
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I. INTRODUCTION

Maxwell electrodynamics is one of the most successful
theories in physics. Since its publication in 1873,
it has been the source of notable predictions, such as
electromagnetic waves, and served as a keystone for the
proposal of new theories, such as Einstein’s special
relativity. The efforts to quantize the theory of electrody-
namics helped to lay the foundations of quantum field
theory. Its quantized version is capable of matching
experimental results up to 10 parts per billion [1], making
it one of the most precise theories available. Despite all
these achievements, the increasing ingenuity of new experi-
ments, in both low- and high-energy domains, imposes the
necessity to keep testing, whether to validate the theory or
to find new sources of physics.

Historically, Maxwell’s equations were derived phenom-
enologically. It is interesting, however, to look at them from
another point of view. Following a “bottom-up” approach,
its Lagrangian can be derived imposing a Lorentz invariant
gauge theory with Uð1Þ symmetry and second-order linear
equations of motion for the potentials [2]. In this way,
generalizations of Maxwell electrodynamics can be
obtained by breaking at least one of the restrictions
mentioned above. Indeed, Proca and Podolsky electrody-
namics arise by breaking the internal Uð1Þ symmetry—
introducing a mass term—and allowing higher-order equa-
tions of motion, respectively [3–5]. On the other hand, by
allowing nonlinear equations of motion, an interesting class
of electrodynamics, which are generically called nonlinear
electrodynamics (NLED), arises [6]. The most well-known
examples of NLED are Euler-Heisenberg [7] and Born-
Infeld [8,9] theories, both proposed in the 1930s with very
different purposes. The first one emerges as a direct
consequence of Dirac’s relativistic theory of the electron,
while the second arises as an attempt to solve the
divergence of a pointlike particle potential. It is noteworthy
that interest in Born-Infeld theory was revived after it was
shown that it arises as the underlying electrodynamics in
the low-energy regime of string theories [10].
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In the present paper, we focus our study on nonlinear
corrections to Maxwell electrodynamics, which includes
NLED in regimes where their Lagrangians can be correctly
described by the first terms of their respective MacLaurin
series. Consequences of these corrections are well known
and are expected if QED proves to be right [11]. For this
reason, several groups are currently working on proposing
feasible tests based on these phenomena. Low-energy
experiments, such as PVLAS [12] and BMV [13], are
built to detect the presence of magnetic birefringence by
measuring the ellipticity acquired by a linearly polarized
beam after traversing a magnetic field. While their current
results are compatible with zero, they can be used to restrict
a region of the parameter space constraining nonlinear
corrections, such as was done in Ref. [14]. These experi-
ments, however, are sensitive to specific combinations of
the parameters and thus cannot completely constrain the
phase space by themselves.
The hydrogen atom—and more generally hydrogenlike

atoms—form a neat low-energy laboratory to test for
nonlinear corrections. High precision measurements of
their transition energies are readily found in the literature
[15]. Through perturbation theory, it is possible to analyze
the modification of the energy spectrum by the inclusion of
several terms in the Lagrangian. In particular, this frame-
work can be used to study how the modification of
Coulomb’s potential due to NLED affects the ground-state
energy. Comparison with experimental results constrains
the magnitude of these corrections and, consequently, the
parameters of the theory [16–18]. It is noteworthy that the
complete Lagrangian is needed in this procedure, which
imposes a particular analysis for each theory.
The equations of motion that describe classical electro-

dynamics are linear and, as such, cannot predict the
interaction between electromagnetic waves in vacuum.
Light-by-light scattering is a purely quantum process,
which arises as a consequence of vacuum polarization
and occurs at leading order via an Oðα4Þ virtual one-loop
diagram consisting of charged particles. This phenomenon
has already been measured indirectly through the electron’s
and muon’s anomalous magnetic moment [19,20].
Recently, in 2013, d’Enterria and Silveira suggested that
the observation of light-by-light scattering would be
achievable at LHC energies in ultraperipheral collisions
with heavy ions [21]. As a consequence, the ATLAS
Collaboration announced the first direct detection in
2016 [22].
If the vacuum is invariant byC, P, and T transformations,

the first-order nonlinear corrections can be described by the
addition of Lorentz invariants F2 and G2 to Maxwell’s
Lagrangian [see Eqs. (1) and (2) for definitions]. However,
if we allow CP violation, the term FG must also be
added. Contributions to such a term may come from
within the Standard Model, from the weak and strong
sectors [23], or from beyond Standard Model physics [24].

When compared to the free Lagrangian, these terms
dominate at high-energy regimes where their effects
become relevant. For this reason, the light-by-light scatter-
ing cross section may be used to obtain today’s most
precise constraints for nonlinear corrections to Maxwell
electrodynamics. This idea has already been used to
constrain Born-Infeld’s parameter [25].
In this work, we completely constrain the phase space of

nonlinear parameters associated with the F2, G2, and FG
terms. Using the equivalent photon approximation, we
compare the results obtained with four different charge
distributions and study the impact of the absorption factor
[26,27] and the relevance of the interference term arising
between nonlinear corrections and the Standard Model
amplitudes.
This paper is organized in the following way. In Sec. II,

imposing a series of requirements, the general form for the
Lagrangian describing nonlinear corrections to Maxwell
electrodynamics is presented and followed by a brief
discussion of its consequences. Considering corrections
up to quadratic order in the invariants, we deduce the
differential and total cross sections for the elastic non-
polarized γγ scattering. In Sec. III, we detail the necessary
ingredients for the theoretical description of the experi-
ment. Four different distributions are proposed to describe
the nuclear charge. Using the equivalent photon approxi-
mation, the ions are then treated as high-energy photon
sources. We also review the experimental cuts and describe
the γγ cross section according to the Standard Model and
nonlinear corrections. Next, in Sec. IV, we present our
calculations based on the Standard Model for the cross
section measured at ATLAS. We compare the results
obtained from each charge distribution, with and without
the absorption factor. Using the cross section measured by
the ATLAS Collaboration, we derive an expression which
fully constrains the phase space accessible to the param-
eters. Finally, we end the section with our prediction for the
cross section to be measured at LHC with extended
acceptance tracking. Our conclusions are given in Sec. V.

II. NONLINEAR CORRECTIONS

There are several approaches available in physics which
allows one to calculate observables to any accuracy desired.
When the “full theory” is known, we are able to make
predictions at any energy scale. However, when some
degrees of freedom of the theory are large compared to
the scale of interest, it is often appropriate to integrate them
out. This top-down approach is used in order to obtain a
simpler description of the relevant phenomena in a par-
ticular energy regime. An example of such is Euler-
Heisenberg theory when the energies are much smaller
than the mass of the electron, me.
On the other hand, it is possible that the full theory is not

known, is nonperturbative in the scale of interest, or even
exist. In this case, an effective theory can be built by writing
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down a Lagrangian with all possible operators following a
set of rules and symmetries that the theory should satisfy in
the energy regime of interest. This bottom-up approach has
been used in several areas of physics. The most well-known
example of this approach is the beta decay theory proposed
by Fermi when only the hadrons and leptons undergoing
weak decay were known. Although Fermi’s interaction is
nonrenomalizable and violates unitarity at high energies, it
was able to correctly describe the process in the low-energy
regime.
Following a bottom-up effective field theory approach,

the form of the Lagrangian for a generic nonlinear
electrodynamics theory is greatly restricted by the impo-
sition of the Lorentz and gauge group symmetries. The only
relativistic gauge invariants available are F and G, which
can be defined as

F≡ −
1

4
FμνFμν ¼

1

2
ðE2 − B2Þ; ð1Þ

G≡ −
1

4
F̃μνFμν ¼ E⃗ · B⃗; ð2Þ

where Fμν is the electromagnetic field strength and F̃μν ≡
1
2
εμναβFαβ its dual. We focus on nonlinear corrections

coming from theories of which the Lagrangian is express-
ible through analytic functions. In this way, theories can be
described as a MacLaurin series in the invariants [11],

L ¼
X∞
i;j¼0

cijFiGj: ð3Þ

Since the features of these theories arise in intense field
regimes, all of them must be, in the weak field limit,
indistinguishable from Maxwell electrodynamics. Thus,
the coefficients must be chosen to be c00 ¼ c01 ¼ 0 and
c10 ¼ 1. The first terms of the Lagrangian expansion are
then

L ¼ F þ c20F2 þ c02G2 þ c11FGþ � � � ; ð4Þ

where the first term is Maxwell’s Lagrangian. Due to the
analyticity of the Lagrangians, their power series must
always converge inside a convergence radius or energy
regime. For this to be true, below some characteristic
energy scale Λ, each term must consistently be less relevant
when compared with the ones with a lower degree. Thus,
any NLED that satisfies all previous requirements can be
described by (4). Theories in which Λ is much greater than
the energies involved in the LHC, their Lagrangian can be
correctly approximated by the first terms of the series.
For the purposes of this investigation, we consider as

relevant terms up to second order in the invariants,

L ¼ F þ 4αF2 þ 4βG2 þ 4δFG; ð5Þ

where α, β, and δ are parameters with dimension of energy
to the inverse fourth power. It is important to remember that
each nonlinear theory possesses a particular energy regime
at which their effects become relevant and thus the validity
of the expansion (5) needs to be verified for each one them
separately. It is possible to study from (5) the behavior of
several theories by simply matching the coefficients. As an
example, to recover Born-Infeld theory—and in general,
Born-Infeld–like theories [28–30]—we must choose α ¼
β ¼ 1

8b2 and δ ¼ 0, where b represents the maximum value
of the electric field.1

The presence of these nonlinear corrections has pro-
found consequences. Classically, they may be interpreted,
through the classical constitutive equations, as giving rise
to dielectric properties of the vacuum. The electric permit-
tivity and the magnetic permeability are now tensors and
depend on the electromagnetic field itself. As a result of
this, several nonlinear processes emerge in the presence of
an external electromagnetic field. From this point of view,
Euler-Heisenberg effective theory classically describes the
effects of vacuum polarization due to electron-positron pair
creation in energy regimes well below the electron’s
mass [11].
On the other hand, the quantization of (4) gives rise to

the direct autointeraction of photons without resorting to
any intermediate virtual particle. The interaction between
four photons can be made explicit by rewriting the
Lagrangian (5) as

L ¼ L0 þ γ½A12A34�½A56A78�ð∂a1Aa2Þð∂a3Aa4Þð∂a5Aa6Þð∂a7Aa8Þ;
ð6Þ

where L0 is Maxwell’s Lagrangian, ∂a1Aa2 is the derivative
of the 4-potential contracted with the eight-dimensional
matrix γ½A12A34�½A56A78�. The gamma matrix is defined as

γ½A12A34�½A56A78� ≡ αγ½A12A34�½A56A78�
F2 þ βγ½A12A34�½A56A78�

G2

þ δγ½A12A34�½A56A78�
FG ; ð7Þ

where α and β are the same parameters found in (5)
and with

γ½A12A34�½A56A78�
F2 ≡ δa1a3δa2a4δa5a7δa6a8 − 2δa1a3δa2a4δa5a8δa6a7

þ δa1a4δa2a3δa5a8δa6a7 ; ð8Þ

γ½A12A34�½A56A78�
G2 ≡ εa1a2a3a4εa5a6a7a8 ; ð9Þ

and

1This maximum value for the electric field may vary from one
Born-Infeld–like theory to another and may not even exist, such
as in the case of the exponential electrodynamic.
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γ½A12A34�½A56A78�
FG ≡ −ðδa1a3δa2a4 − δa1a4δa2a3Þεa5a6a7a8 : ð10Þ

We have used a block notation Aij ≡ aiaj to emphasize the
matrices’ invariance through their permutation. For exam-
ple, permuting A12 ↔ A34 indicates that we need to
permute a1 ↔ a3 and a2 ↔ a4 simultaneously. The matrix
γG2 is also symmetric by the simultaneous permutation of
A12 ↔ A56 and A34 ↔ A78. With the help of these proper-
ties, we are able to derive the probability amplitude for the
elastic γγ → γγ scattering, which can be written as

MNL ¼ ½PA12A34A56A78
γ½A12A34�½A56A78��

× pa1ε
�
a2ðpÞp0

a3ε
�
a4ðp0Þka5εa6ðmÞk0a7εa8ðk0Þ; ð11Þ

where p and εðp; iÞ generically represents the 4-momentum
and the polarization vector of the photons. In (11), the totally
symmetric permutation operator PA12A34A56A78

acts on γ and
indicates that we must add together all possible γs with
permutated indices. As should be expected, the substitution
of (7) into (11) gives the total amplitude as the sum of the
amplitudes due to each of the squared invariant terms and
thus is a linear function of the parameters α, β, and δ. As a
result, the parameters can be easily extracted from the
interference term between (11) and the leading-order ampli-
tude from the Standard Model, easing up numerical
computations.
The nonpolarized square of (11) can be expressed in a

simple and reference-independent way in terms of
Mandelstam’s variables as

1

4

X
Pol:

jMj2 ¼ 4

�
1

2
ðα− βÞ2þðα2þ β2þ δ2Þ

�
ðs4þ t4þu4Þ:

ð12Þ

Particularizing to the center-of-mass frame allows us to
write the differential cross section as�
dσ
dΩ

�
CM

¼
�
1

2
ðα− βÞ2 þ ðα2 þ β2 þ δ2Þ

� ðcos2θþ 7Þ2m6
γγ

512π2

ð13Þ

and the total cross section as

σCM ¼ 7

40π

�
1

2
ðα − βÞ2 þ ðα2 þ β2 þ δ2Þ

�
m6

γγ; ð14Þ

wheremγγ is the total energy in center-of-momentum frame
or the invariant mass of the diphoton system. A similar
result has been obtained in Refs. [31,32]. It is interesting to
notice the lack of symmetry of the parameter δ, when
compared to α and β, in Eq. (14). This is due to the fact that
the unpolarized interference term between the CP-odd and
CP-even terms is zero. From a dimensional point of view,

the cross section’s dependence on the sixth power of
the invariant mass can be expected from the linear
dependence of (11) on the parameters. Furthermore, this
dependence, which is characteristic of an effective field
theory, will violate both unitarity and the so-called Froissart
bound [33]—which limits the growth of the total cross
section to approximately log2mγγ—outside of the valid
energy regime. By matching the coefficients, it is possible
to recover known results for Born-Infeld and Heisenberg-
Euler, obtaining αBI ¼ βBI ¼ 1

8b2 and δBI ¼ 0 and αHE ¼
4
7
βHE ¼ 4

90
α2

m4 and δHE ¼ 0, respectively [34,35].

III. γγ SCATTERING IN THE EQUIVALENT
PHOTON APPROXIMATION

The LHC has been optimized for proton collisions, and
therefore most of the physics coming from it is based on
that kind of experiment. However, for a short period of the
year—for one or two months—the LHC is dedicated to
heavy-ion collisions. Analyzing 480 μb−1 of lead-208-ion
collision data collected in 2015, the ATLAS Collaboration
announced the detection of light-by-light scattering with a
cross section of 70� 24 ðstat:Þ � 17 ðsyst:Þ nb2 [22]. This
process can be produced in ultraperipheral collisions
(UPCs) of charged particles, where they cross each other
with an impact parameter greater than the sum of the ion’s
radii (Fig. 1). This kind of collision has the advantage of
avoiding strong interaction from nuclear overlap and thus
cleaning the signal’s background.
Any charged particle accelerated at high energies pro-

duces an intense electromagnetic field [36]. Comparison
of the electromagnetic energy flux with the photon flux in
the frequency space allows estimating the distribution of
photons emitted by the ion. This is the essence behind
the semiclassical equivalent photon approximation (EPA)
[37–39]. In this way, charged particles taking part in
electromagnetic processes can be replaced by their respec-
tive photon distribution. As observed by d’Enterria and
Silveira [21], heavy ions allow observing light-by-light
scattering due to the coherent production of radiation by
their nucleons. The luminosity is enhanced by a factor of
Z4 ∼ 107 compensating the low cross section of order
Oðα4Þ ∼ 10−9. On the other hand, the electromagnetic
radiation produced by the nuclear charge distribution
interferes destructively when wavelengths are of the order
of the ion’s radius R. This limits the upper value of the
energy spectrum to ωmax ≈

γ
R ≈ 80 GeV for the lead-208

ion [21].
In the EPA, the production of photons by the quasielastic

scattering of ions in UPC AA → A�A� þ γγ can be des-
cribed by convoluting the subsystem γγ → γγ cross section
with the effective photon flux [40],

2Most of the systematic uncertainty comes from photon
reconstruction and identification efficiency uncertainties.
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σPbPb→PbPbγγ ¼
Z

σγγ→γγðmγγÞdnγγ; ð15Þ

with

dnγγ
dbd2bcdmγγdY

¼ πmγγbN

�
mγγ

2
eY; b1

�

× N

�
mγγ

2
e−Y; b2

�
S2ðbÞ; ð16Þ

where mγγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω1ω2

p
is the diphoton invariant mass, Y ¼

1
2
ðη1 þ η2Þ is the rapidity of the diphoton in the lab

reference, and b1 and b2 are the impact-parameters.3

Nðω; bÞ represents the flux of photons with energy ω
emitted by the ion at a distance b in the plane perpendicular
to the motion. The absorption factor S2ðbÞ encodes the
ion’s probability of survival when scattering with impact
parameter b, ensuring that only UPCs are considered and
can be conveniently described in a first approximation as

S2ðbÞ ¼ Θðb − 2RÞ; ð17Þ

where R ≃ 7.1 fm is the lead radius. The connection
between the impact parameters is given by the expressions

b⃗ ¼ b⃗1 − b⃗2 and b⃗c ¼
b⃗1 þ b⃗2

2
:

More details on this framework can be found in Ref. [41].
The photon flux in the impact-parameter space can be

written as

Nðω; bÞ ¼ Z2α

π

1

ω
ϕðω; bÞ2; ð18Þ

where the function ϕðω; bÞ, given by

ϕðω; bÞ ¼
Z

∞

ω
γ

1

u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 −

�
ω

γ

�
2

s
J1

 
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 −

�
ω

γ

�
2

s !

× FðuÞdu; ð19Þ

is associated with the intensity of the electric field produced
by the ion, γ is the ion’s Lorentz factor, and J1ðxÞ is the
Bessel function of the first kind. The main ingredient of the
photon flux is the form factor FðuÞ given by the Fourier
transform of the charge distribution,

FðqÞ ¼ 4π

Z
∞

0

drr2ρðrÞ sin ðqrÞ
qr

; ð20Þ

for radially symmetric charge distributions. There are
several parametrizations for the charge distribution, and
they introduce an important theoretical uncertainty [21].
More realistic, and therefore complex, parametrization
carries more details of the charge distribution, introducing
proximity effects absent in others. However, at large impact
parameters, all parametrizations should be equivalent.
We compare the results obtained with the four charge

distributions shown in Table I. While a Yukawa charge
distribution is considered rather unrealistic, it has the
advantage of allowing an analytical expression for ϕðω; bÞ,

ϕðω; bÞ ¼ ω

γ
K1

�
bω
γ

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω

γ

�
2

þ Λ2

s

× K1

 
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω

γ

�
2

þ Λ2

s !
: ð21Þ

A second charge distribution is parametrized using a Fermi
with two parameters (2P) model [42]. The constant ρ0 is
such that its form factor is normalized to 1 at the origin.

TABLE I. Charge distributions and corresponding form factors.
Yukawa and Gaussian distribution parameters, Λ ¼ 0.088 GeV
and Q0 ¼ 0.060 GeV, are such as to obtain the lead root-mean-
square radius [26,44]. Fermi 2P distribution parameters a ¼
0.549 fm and c ¼ 6.642 fm describe the diffuseness and the
radius of the lead ion, respectively [42]. The homogeneously
charged sphere distribution is characterized by the ion’s radius
R ¼ 7.1 fm [45].

Model Charge distribution Form factor

Yukawa Λ2

4π
e−Λr
r

Λ2

Λ2þq2

Fermi 2P ρ0
1þe

r−c
a

[43]

Gaussian Q3
0ffiffiffiffiffi
8π2

p e−
1
2
Q2

0
r2

e
−1
2
q2

Q2
0

Sphere 3
4πR3 ΘðR − rÞ 3j1ðqRÞ

qR

FIG. 1. Ultraperipheral collision of lead ions. Charged particles
scattering with impact parameter greater than the sum of their
radii. Quasivirtual photons emitted by the ions scatter produce a
new pair of photons.

3The labels 1 and 2 refer to the ions and the photons each one
produces.
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This model is considered much more realistic but has no
closed form for its corresponding form factor. An expres-
sion, however, can be obtained in terms of a series [43].
Two other widely used distributions in the literature,
Gaussian and of a homogeneously charged sphere, have
simple form factors and are included for comparison [44].
A normalized plot of these charge distributions is shown
in Fig. 2.
Several triggers and cuts are used during the operation

of the detector and along the analysis of the data. At the
LHC, up to 40 million collisions per second can occur, each
one producing several events. Triggers are chosen in order
to reduce this huge amount of information to the roughly
400 events per seconds that the ATLAS detector is capable
of recording. Then, cuts are applied to clean the signal
from its background and to take advantage of the detector’s
components efficiencies. As a consequence, in order to
correctly predict the measurements, this cuts must be
included. During the analysis of the γγ scattering, the main
cuts used by the ATLAS Collaboration to select events
were individual photon transverse momentum pt > 3 GeV,
pseudorapidity jηj < 2.37 (excluding the electromagnetic
calorimeter transition region 1.37 < jηj < 1.52), and
invariant diphoton mass mγγ > 6 GeV. To include these
cuts, we replace the total cross section with the differential

distribution σγγ →
R dσγγ

dpt
dpt and perform a change of

variables transforming the invariant mass mγγ and the
diphoton rapidity Y into the rapidities of the outgoing
photons η1 and η2, using

mγγ ¼ 2pt cosh

�
η1 − η2

2

�
; ð22Þ

Y ¼ 1

2
ðη1 þ η2Þ: ð23Þ

Photons produced by the ions may have transverse momen-
tum up to q⊥ ≃ 1=R ≃ 28 MeV but are assumed to be
emitted along the beam in order to derive (22). This
assumption is part of the EPA scheme and connects the
center-of-mass reference frame to the laboratory frame
through a simple boost in the z-direction. Other cuts, such
as on the diphoton transverse momentum pγγ

t < 2 GeV and
on the acoplanarity 1 − Δϕγγ=π < 0.01, are imposed as a
total fixed cut of 15% estimated using Table 1 in Ref. [22].
The γγ → γγ scattering has contributions from several

mechanisms. In the Standard Model, the leading-order
contribution proceeds via a virtual one-loop box diagram
(Fig. 3). The elementary particles that can compose the loop
are charged fermions (leptons and quarks) and bosons (W�).
The main contribution from each one of those particles is
at energies around three times their masses. Thus, for the
LHC energy regime and the physical limitations established
by the ion’s charge distribution, contributions coming from
theW� bosons and t quark are negligible.Another process by
which photons fluctuate into vector mesons, called the
Vector-meson dominance-Regge mechanism, has contribu-
tions in the experiment energy range. However, the photons
produced by this mechanism are very forwarded (jηj ≃ 5 or
θ ≃ 0.77° with the beam) and cannot be detected by the
ATLAS detector. Furthermore, their transverse momentum
is such that applied cuts would completely kill their con-
tribution [40]. Therefore, only leptons and light quarks are
considered. It is also worth mentioning that the QED and
QCD next-to-leading-order corrections amount to approx-
imately 0.35% and 3%, respectively, when compared to the
leading order of the photon-photon cross section in the
ultrarelativistic limit [46].
Extensions of the Standard Model introduce all sorts of

contributions through hypothetical charged or neutral
virtual particles. In this sense, the light-by-light scattering
can be used as a way to probe the quantum vacuum.
Nonlinear electrodynamics introduce interaction vertices,

Yukawa

Fermi 2P

Gaussian

Sphere

0 2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

r (fm)

(r
)

(f
m

–
3
)

FIG. 2. Plot of normalized nuclear charge distributions given in
Table I.

FIG. 3. Leading-order diagram for the Standard Model γγ
scattering. Leptons, quarks, and bosonsW� are the main particles
composing the loop.
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allowing photon fusion. In particular, the lowest-order
correction terms F2, G2, and FG allow direct interaction
between four photons, as depicted in Fig. 4. The amplitude
and cross sections due to these terms are given as a function
of the parameters α, β, and δ by Eqs. (11), (13), and (14). It
is noteworthy that, in the nonpolarized case, it is not
possible to distinguish the contribution from F2 and G2.
In order to constrain the contribution to the total γγ cross

section from nonlinear corrections, we assume the total
amplitude of the process to be the sum of the Standard
Model mechanisms mentioned above and (11). Hence, the
theoretical cross section, to be compared with ATLAS’s
result, is composed of pure contributions due to the
Standard Model and nonlinear corrections and an interfer-
ence term4:

σSM þ σNL þ σI ≅ σATLAS: ð24Þ
As discussed in the previous section, the interference term
is a linear function of α, β, and δ. Therefore, writing them
out explicitly, Eq. (24) can be rewritten as�
1

2
ðα − βÞ2 þ ðα2 þ β2 þ δ2Þ

�
σ̄NL þ ασ̄α þ βσ̄β|fflfflfflfflfflffl{zfflfflfflfflfflffl}

σI

≅ σATLAS − σSM; ð25Þ
where σ̄NL, σ̄α, and σ̄β are given in Table II, σATLAS ¼
70� 24 ðstat:Þ � 17 ðsyst:Þ nb, and σSM is given in
Table III for each distribution. It is noteworthy that the
expected interference term σ̄δ ¼ 0, just as was the case
between the CP-odd and CP-even interference terms
in Eq. (14).
The Standard Model cross section was obtained using

FEYNARTS3.10 [47] to generate the diagrams and build the
amplitude, FORMCALC9.6 [48] for algebraic simplifications
and numerical computations, and LOOPTOOLS2.15 [48] for
loop calculations. For the interference term, we also used
the FEYNRULES2.3 [49] package. Numerical results for
purely nonlinear corrections were confronted with those
obtained in Sec. II.

IV. RESULTS

In Table III, we list the result of our calculations using the
Standard Model for the cross section measured at ATLAS.
The results were obtained for each one of the four distribu-
tions presented in Sec. III. Besides, for comparison purposes,
we include the corresponding cross sections obtained by
neglecting the absorption factor (17). As a consequence,
without the absorption factor, the integration over a wider
range of the phase space overestimates the cross section by
around 20%.5 It is an interesting fact that the cross sections
obtained with the Gaussian and homogeneously charged
sphere distributions differ from the one derived using Fermi
2P by less than 0.1%. On the other hand, cross sections
obtained with Yukawa distribution are, in every case, 10%
larger than those obtained with Fermi 2P, in agreement with
Ref. [40]. Theoretical uncertainties are mainly due to lack of
knowledge in the ion’s charge and are considered to be of
order 20% of the total cross section [21].
To constrain the parameters α, β, and δ, we deduct the

Standard Model cross section prediction σSM (second
column of Table III) from the experimental result obtained
by the ATLAS Collaboration σATLAS and treat the remain-
ing value as being produced by the nonlinear corrections
alone [see Eq. (25)]. The theoretical, statistical, and
systematic uncertainties are added in quadrature. Using
3σ of confidence level, we are able to impose an upper limit
on the nonlinear correction contribution given by the
expression

FIG. 4. Interaction vertex due to nonlinear correction terms F2,
G2, and FG.

TABLE II. Proportionality constants. Numerical proportional-
ity constants for the nonlinear and interference cross sections. See
Eqs. (25) and (26).

Model σ̄NL (GeV6) σ̄α (GeV2) σ̄β (GeV2)

Yukawa 3.2 × 1021 −4.9 × 108 −1.1 × 109

Fermi, Gaussian, sphere 2.5 × 1021 −4.1 × 108 −9.3 × 108

TABLE III. Cross section results for the Standard Model
calculations of the ATLAS measurement [see Eq. (15)]. The
second row shows the results using a Yukawa distribution of
charge, while the third row shows the results using Fermi 2P,
Gaussian, and homogeneously charged sphere distributions. The
second and third columns show the results obtained with and
without including the absorption (abs.) factor (17). Uncertainties
due to the lack of knowledge of the ion’s charge distribution are
propagated and estimated to be of order 20% of the total cross
section [21].

Model With abs. Without abs.

Yukawa 42� 8 nb 52� 10 nb
Fermi, Gaussian, sphere 38� 8 nb 45� 9 nb

4In this case, the symbol ≅ means that both sides must be
compatible.

5Strong interaction due to nuclear overlap was not taken into
account.
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3

2
σ̄NLα

2 − σ̄NLαβ þ
3

2
σ̄NLβ

2 þ σ̄NLδ
2 þ σ̄ααþ σ̄ββ

≤
�
118 nb; Yukawa

122 nb; Fermi 2P
; ð26Þ

with coefficients given in Table II for each distribution.
Gaussian and homogeneously charged sphere distributions
give results similar to the Fermi 2P distribution. When
δ ¼ 0, the inequation (26) describes a region delimited
by an ellipse of which the major axis is parallel to the
line β ¼ α. The effect of first-degree monomials on the
ellipse equation is to shift its center and modify the length
of the axes. It can be shown that for (26) the translation
of the center from the origin due to the interference term is
less than 0.2% of the major axis length and the correspond-
ing axis correction is of order 0.001%. Therefore, any
contribution coming from the interference terms is com-
pletely clouded by the theoretical uncertainty and may be
neglected.
The phase space volume accessible to the parameters α

and β when δ ¼ 0 is presented in Fig. 5. We show the outer
bounds for Yukawa and Fermi 2P distributions (the
Gaussian and homogeneously charged sphere are similar
to the latter) as well as the line β ¼ α corresponding to
Born-Infeld–like theories. As a consequence of the quad-
ratic dependence on the parameters of the cross section
due to nonlinear corrections, we are able to completely

constrain a finite region of the phase space with one
experimental datum. This is not always possible, as is
the case of experiments that measure the magnetic bire-
fringence or Lamb shift effect [14]. Additionally, due to
causality and unitarity principles, the parameters must be
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FIG. 5. Phase space accessible to the parameters α and β
derived from (26) when δ ¼ 0. The more restrictive blue region is
obtained with a Yukawa distribution. The broader yellow region
is obtained with all three distributions: Fermi with two param-
eters, Gaussian, and homogeneously charged sphere. The green
line β ¼ α are the values accessible to Born-Infeld–like theories.
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FIG. 6. Phase space accessible to the parameters α and δ
derived from (26) for the special case when β ¼ 0. Due to
symmetry of the inequation, this phase space also corresponds
to α ¼ 0.
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FIG. 7. Phase space accessible to the parameters α and δ
derived from (26) when α ¼ β.
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positive [50]. We note that Yukawa distribution is more
restrictive
than the others. This is due to the fact that it leads to
an overestimation of the Standard Model cross section
(Table III), therefore leaving a smaller contribution to
nonlinear corrections. As a result, values accessible with
the Fermi 2P, Gaussian, and sphere distributions can be up
to 15% larger. In Figs. 6 and 7, we show the accessible
volumes for β ¼ 0 and α ¼ β against δ, respectively.
For an example, we use the upper limits in order to

constrain the parameter of Born-Infeld–like theories
defined by α ¼ β ¼ 1

8b2 and δ ¼ 0 (see Table IV). The
lower bound obtained using the Yukawa distribution
is bY ≳ 3.0 × 104 GeV2 ≃ 1.3 × 1028 Vm−1, while for
Fermi 2P and the others, it is bF ≳ 2.8 × 104 GeV2 ≃
1.2 × 1028 Vm−1. Similarly, we may define a mass
M≡ ffiffiffi

b
p

, for which we obtain M ≳ 170 GeV for all four
distributions, in accordance with Ref. [25].
An upper bound for the CP-odd term parameter δ has

been obtained for the first time in the energies accessible to
the LHC. From within the Standard Model, contributions to
FG are predicted from the weak and strong sectors [23].
Finally, with the future project of the ATLAS Collabo-

ration to measure the γγ → γγ scattering with extended
tracking acceptance jηj < 4 in mind, we calculate the
Standard Model prediction using the same remaining
cuts to be σY ¼ 52� 10 nb with the Yukawa distribution
and σF;G;S ¼ 45� 9 nb with the Fermi 2P, Gaussian, and
homogeneously charged sphere distributions.

V. CONCLUSION

The recent measurement of the γγ scattering by the
ATLAS Collaboration has opened a new possibility to test
QED and constraining with great precision the phase
space where nonlinear corrections live. In this work, using
the equivalent photon approximation, we calculate the
Standard Model prediction for this phenomenon measured
at the ATLAS detector using four nuclear charge distribu-
tions (see Table III). These results are in accordance with
the literature [21,22,40]. We investigated leading-order
nonlinear corrections to Maxwell electrodynamics para-
metrizing the square of the invariants F2, G2, and FG and

obtained an analytic expression for the nonpolarized
squared amplitude for the γγ scattering (12) as well as
for the differential (13) and total (14) cross sections.
To constrain the parameters, we deducted the Standard

Model cross section prediction from the measured value by
the ATLAS Collaboration and interpreted the remaining
cross section as coming from the nonlinear corrections. As
a consequence of the functional dependence on α, β, and δ,
a finite region from the parameters phase space could be
completely constrained [Eq. (26)]. The interference term
between the Standard Model and nonlinear correction
amplitudes was analyzed and found to be negligible.
Lastly, we have shown the upper bound and its dependence
on the nuclear charge distribution (see Figs. 5–7).
The constraints obtained in this paper for the nonlinear

corrections derived using light-by-light scattering cross
section measurement are much more precise than those
obtained with any other experiment. When confronted with
those obtained in low-energy experiments, as in Ref. [14],
our constraints are up to 20 orders of magnitude lower
for α ¼ β. In Ref. [18], in which the effects of Born-Infeld–
like theories were analyzed using the hydrogen’s ionization
energy, the lower bound b ≥ 1.07 × 1021 Vm−1, corre-
sponding to α ¼ β ≤ 8.1 × 104 GeV−4, is 14 orders of
magnitude larger. Lastly, 12 orders of magnitude of
precision were obtained when comparing the upper
bound for the Born-Infeld parameter in Ref. [16]. Also,
defining the energy regime in Born-Infeld theory in terms
of its parameter as M ≡ ffiffiffi

b
p

, we obtain the lower bound
M ≳ 170 GeV, which is compatible with Ref. [25].
A first constraint for the δ parameter of the CP-odd term

FG of the order of δ ∼ 10−10 GeV−4 was obtained in the
LHC energy scale. Although from a different energy
regime, an estimation of the contribution from the strong
sector in the optical energies has been calculated using the
chiral perturbation theory with a θ-parameter of the order of
θ ∼ 10−10 to be δ ∼ 10−15 GeV−4 in Ref. [23].
The ATLAS Collaboration is aiming to improve the

tracking acceptance from jηj < 2.5 to jηj < 4. With this in
mind, we calculated the cross section to be measured as
45� 9 nb using the realistic Fermi with two parameters
nuclear charge distribution.
The first direct observation of the γγ scattering made by

the ATLAS Collaboration is, without any doubt, a great
achievement. This mechanism proves to be an elegant and
efficient way to probe the quantum vacuum, which allows
constraining a great variety of beyond Standard Model
theories. As a matter of fact, LHC p-p and Pb-Pb UPC
measurements have been used to bound the axion-like
particles-photon coupling constant for axion-like particles
masses above 1 GeV [51–53]. While this first measurement
is compatible with QED predictions, its 40% absolute
uncertainty is still an obstacle to overcome. Future mea-
surements, with greater precision, wider phase space, and
higher-energy regimes, will allow us to analyze with greater

TABLE IV. Upper values of the parameters for each distribu-
tion. The second and third columns show the upper values of α
and β shown in Fig. 5 for δ ¼ 0 when α ¼ β and β ¼ 0,
respectively. Due to the α ↔ β symmetry of (26), the β ¼ 0
case also corresponds to the upper value of β when α ¼ 0. The
third column shows the upper value of δ shown in Figs. 6 and 7.

δ ¼ 0 β ¼ 0

Model α ¼ β β ¼ 0 δ

Yukawa 1.4 × 10−10 1.6 × 10−10 1.9 × 10−10

Fermi, Gaussian, sphere 1.6 × 10−10 1.8 × 10−10 2.0 × 10−10
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detail several contributions that compose the mechanism.
As commented in Ref. [41], forthcoming light-by-light
scattering measurements could be used to constrain nuclear
charge distributions.
Finally, the increasing energy scales and experiment

precision will impose more sophisticated theoretical analy-
sis. In the scope of nonlinear corrections to Maxwell
electrodynamics, in order to obtain more precise con-
straints in these scenarios, a future investigation would

be to include higher-order terms from the Lagrangian
expansion.
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