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Gauge theories, through the local symmetry which is in their core, exhibit many local constraints, that
must be taken care of and addressed in any calculation. In the Hamiltonian picture this is phrased through
the Gauss laws, which are local constraints that restrict the physical Hilbert space and relate the matter and
gauge degrees of freedom. In this work, we present a way that uses all the Gauss laws in lattice gauge
theories with staggered fermions for completely removing the matter degrees of freedom, at the cost of
locally extending the interaction range, breaking the symmetry and introducing new local constraints, due
to the finiteness of the original local matter spaces.
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I. INTRODUCTION

The principle of gauge invariance is very important in
physics, as it describes the fundamental forces and inter-
actions in the standard model of particle physics. The
excitations of gauge fields—gauge bosons—mediate local
interactions between the matter particles. It is a local
symmetry, that involves many constants of motion defined
at each point of space, giving rise to local constraints
(Gauss laws) satisfied by both the matter and gauge degrees
of freedom (d.o.f.).
Gauge symmetry also implies a redundancy in

the mathematical description. Only gauge-invariant
quantities—combinations of the fields that are invariant
under the gauge transformations—are considered physical.
This immediately raises the question whether this redun-
dancy could be lifted, at least partially, by simply solving
the local constraints and expressing some of the fields
in terms of the others, while still keeping the locality of
the theory. In fact, this is an important part of the Higgs
mechanism [1,2] as well as in its lattice version [3], where
the Goldstone bosons are absorbed by the gauge field,
giving it a mass, removing all the local constraints, and
eliminating part of the matter fields. The unitary trans-
formation that takes care of it is simply the well-known
unitary gauge fixing. In this work we will show that a
similar procedure can also be devised to eliminate the
fermionic matter in the context of UðNÞ and SUðNÞ lattice
gauge theories (LGTs) [4,5] with staggered fermions in
the Hamiltonian representation [6].

In order to obtain this result, we extend the method of
Ref. [3] to LGTs where the matter is represented by hard-
core bosons in a staggered configuration. Combining that
with our recent work [7], where we showed that fermionic
matter in SUðNÞ and UðNÞ LGTs can be transformed
into hard-core bosons, allows us to completely eliminate
the fermionic matter while keeping locality. Specifically,
on the one hand we introduce a unitary transformation
that decouples the matter from the gauge fields in the
Hamiltonian, while keeping the locality of the theory.
Furthermore, it enforces a trivial product state for the
matter, and a new local constraint for the gauge fields,
which stems from the finiteness of the local Hilbert space
of the bosons. Thus, even though the original gauge
symmetry is broken by explicitly solving the Gauss laws
as in the scalar field case [3], other local constraints
satisfied by the gauge fields alone arise. On the other
hand, the unitary transformation introduced in Ref. [7]
replaces the fermionic d.o.f. by (hard-core) bosonic ones,
while transferring the statistics to the gauge field. As a
result, the interaction range is slightly, but locally,
extended. As this procedure uses only a finite subgroup
of the gauge group, the gauge symmetry is not broken
and one obtains Gauss laws in which the fermionic d.o.f.
are replaced by hard-core bosonic ones. Thus, the com-
plete procedure consists of two transformations: first, the
fermionic matter is converted to hard-core bosonic matter,
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and then the latter is eliminated. The resulting theory only
contains gauge d.o.f., is local, breaks local gauge invari-
ance, but introduces other local constraints.
The work is organized as follows. First, we argue that the

Gauss law could be solved for matter fields in arbitrary
dimensions, while a complete solution of it for the gauge
field is not always possible; then we proceed to a demon-
stration of the Uð1Þ case, starting with a review of the Uð1Þ
unitary gauge for the complex scalar field on the lattice of
Ref. [3], extend it to hard-core bosonic matter (that has finite
local spaces but no fermionic statistics) and eventually to
staggered fermionic matter fields by combining with the
results of Ref. [7]. After these demonstrations, we generalize
the procedure to UðNÞ and SUðNÞ lattice gauge theories,
with anyN > 1, coupled to fundamental staggered fermions.
Throughout this work we assume the summation of

repeated matrix and vector indices, unless stated differently.

II. THE GAUSS LAW

A. The classical case

Already in the context of classical electrodynamics, the
gauge fields and matter are related through the Gauss law,
that has nothing to do with quantization. It is given by the
equation

∇ · EðxÞ ¼ ρðxÞ ð1Þ

stating that the divergence of the electric field EðxÞ at any
space point x is equal to the local charge density ρðxÞ
associated with the matter. It is one of Maxwell’s equations,
that is obtained as an equation of motion in the Euler-
Lagrange formalism; nevertheless, it is a static equation that
includes no time derivatives—a set of local constraints.
Indeed, when one uses instead the Hamilton formalism that
does not treat time and space on an equal footing, it does
not appear as an equation of motion anymore (but rather as
a constraint that is added to the Hamiltonian with a
Lagrange multiplier after the Legendre transformation).
The question is, then, whether we could solve the

constraints and use them for reducing the number of
d.o.f. in our system by completely eliminating either the
gauge field or the matter. If it is the gauge field that we wish
to eliminate, we should solve Eq. (1) for EðxÞ. In this case it
is a differential equation, and it can only be integrated in one
space dimension where it becomes a simple first-order
equation, ∂E=∂x ¼ ρðxÞ, giving rise to a nonlocal solution,

EðxÞ ¼
Zx

dx0ρðx0Þ: ð2Þ

This is a well-known solution that may be generalized to
non-Abelian groups and quantum cases as well, but not
beyond 1þ 1d: in more dimensions the electric field has
more components and there are just not enough constraints

(constants of motion) that can be used for integration
(the electric field is a rotation vector, and the equations
are rotation scalars).
The solution for the matter, on the other hand, is

completely different, as the charge density is a rotation
scalar, and Eq. (1) is just a simple algebraic equation for it,
already explicitly and locally solved. In this work we will
show how to use that to completely eliminate matter fields
in particular lattice gauge theories.

B. Lattice gauge theories

The physical Hilbert space of a quantum gauge theory,
Hphys, is contained in the product of the Hilbert spaces of
the gauge field, Hgauge, and the matter, Hmatter:

Hphys ⊂ Hgauge ⊗ Hmatter: ð3Þ

It is not equal to the product, as the gauge field and matter
d.o.f. are connected through the Gauss law, that becomes
(for electrodynamics) the eigenvalue equation

∇ ·EðxÞjψi ¼ ρðxÞjψi: ð4Þ

From now on, we will focus on lattice gauge theories
[4,5]. In the Hamiltonian picture [5] time is continuous,
and the d.o.f. reside, in dþ 1 dimensions, on a Zd lattice.
We will begin our demonstration with Uð1Þ gauge fields.
The matter, either bosonic or fermionic, resides at the

vertices. Later on we will focus on particular types of
matter, but for now it will be enough for us to define charge
operators QðxÞ at each vertex x ∈ Zd. In the Uð1Þ case it
will take integer eigenvalues, either bounded or not,
depending on the type of matter used. Gauge fields, on
the other hand, reside on the lattice’s links ðx; iÞ, emanating
from the vertex x in the direction i ¼ 1;…; d. The local
Hilbert space of a Uð1Þ gauge field on a link is that of a
particle on a ring: the role of the vector potential will be
played by a compact variable ϕðxÞ, canonically conjugate
to the electric field operator—the “angular momentum”
Eðx; iÞ, with an unbounded integer spectrum. Thanks to the
canonical relation

½ϕðx; iÞ; Eðy; jÞ� ¼ iδijδðx; yÞ ð5Þ

(where both deltas are Kronecker deltas) the group element
operator defined by

UðxÞ ¼ eiϕðx;iÞ ð6Þ

is simply an electric field raising operator,

½Eðx; iÞ; Uðy; jÞ� ¼ δijδðx; yÞUðy; jÞ: ð7Þ

The pure-gauge part of the Hamiltonian of such theories
is usually the Kogut-Susskind Hamiltonian,
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HKS ¼
g2

2

X
x;i

E2ðx; iÞ − 1

g2
X
x;i<j

cosðϕðx; iÞ þ ϕðxþ ei; jÞ

− ϕðxþ ej; iÞ − ϕðx; jÞÞ ð8Þ

where ei is a unit vector in the i direction.
The interaction of the matter with the gauge field takes

the form

Hint ¼
X
x;i

ðϵðx; iÞa†ðxÞUðx; iÞaðxþ eiÞ þ H:c:Þ ð9Þ

where a†ðxÞ is bosonic or fermionic, such that

½QðxÞ; a†ðyÞ� ¼ δðx; yÞa†ðxÞ: ð10Þ

This can be added to some free matter part, HM, and
altogether H ¼ HKS þHM þHint.
Gauge invariance is the invariance under transformations

generated by the local generators

GðxÞ ¼
X
i

ðEðx; iÞ − Eðx − ei; iÞÞ −QðxÞ: ð11Þ

These operators commute with the Hamiltonian,

½H;GðxÞ� ¼ 0; ∀ x ∈ Zd; ð12Þ
which is a local symmetry, or a set of local constraints.
A physical state jψi is gauge invariant, that is, it is an
eigenstate of all the local generators GðxÞ,

GðxÞjψi ¼ λðxÞjψi ð13Þ

and the commutation relations (12) imply that states with
different fλðxÞg are not connected by the dynamics, and
give rise to disconnected sectors,

Hphys ¼ ⋃HphysðfλðxÞgÞ: ð14Þ

The eigenvalue equation (13) could be rewritten as
X
i

ðEðx; iÞ−Eðx− ei; iÞÞjψi ¼ ðQðxÞ þ λðxÞÞjψi ð15Þ

which we recognize as the Gauss law: the divergence of
electric fields at a vertex equals the charge there, which is
composed of the dynamical charge—the operator QðxÞ,
and the eigenvalues λðxÞ which we can now recognize as
static charges. From now on we shall choose λðxÞ ¼ 0
everywhere, that is, we restrict our physical Hilbert space to
the sector with no static charges, but the results may be
generalized in a straightforward way also to any other
charge sector. Defining the local electric field divergence
operator as DðxÞ ¼ P

i ðEðx; iÞ − Eðx − ei; iÞÞ, we can
now rewrite the Gauss law we will use from now on as

DðxÞjψi ¼ QðxÞjψi: ð16Þ

C. Gauge-invariant states

A general state inHgauge ⊗ Hmatter could be expanded asP
g;m Aðg;mÞjgigauge ⊗ jmimatter, using some arbitrary

bases jgi; jmi of the gauge field and matter Hilbert spaces
respectively. However, thanks to the Gauss law (16), a
physical state may be expanded in a more restrictive way.
For that, we define the charge states of the matter, which are
eigenstates (not necessarily unique) of the charge operators
fQðxÞg,

QðxÞjfqgi ¼ qðxÞjfqgi: ð17Þ

Similarly, we can define (nonunique) eigenstates of the
electric field divergence operators DðxÞ (not unique) as

DðxÞjfdgi ¼ dðxÞjfdgi: ð18Þ

The gauge-invariant states may be expanded as

jψi ¼
X
fq;dg

fðfq; dgÞ
�Y

x

δdðxÞ;qðxÞ

�
jfdgigauge ⊗ jfqgimatter:

ð19Þ

The notations jfqgi and jfdgi are, as mentioned above,
generally nonunique: different local matter configurations,
corresponding to different quantum states, may give rise to
similar local fqg eigenvalues of the charge operators fQg,
and similarly with the divergences of the electric field fDg
and their eigenvalues fdg (which is the usual case, in which
more indices can be added). The notations above are merely
illustrative and their accurate details will be discussed later;
here the important thing we wanted to emphasize is that
the physical Hilbert space is not spanned by all the product
states).

D. Solving the Gauss laws in a lattice gauge theory

After having described the Hilbert space of a lattice
gauge theory, and the implication of the local symmetries
on its structure, we are ready to see how to use the Gauss
laws, or their explicit solutions, for simplifying the
description and reducing the redundant d.o.f.
We wish to discuss particular types of unitary trans-

formations, that take a gauge-invariant state jψi as in
Eq. (19), satisfying Eq. (16), and completely eliminate
either the gauge field or matter d.o.f., while conserving
the physical information, i.e., the amplitudes of elements in
superposition. This will be done by using the gauge
symmetry and will, eventually, break it. One can consider,
obviously, other types of transformations that leave some
ingredients of the field and do not remove them completely,
but we will not discuss such transformations here.
A complete removal of the gauge field would be done by

a transformation W, as follows:
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Wjψi ¼ j0igauge ⊗
X
fqg

fðfqgÞjfqgimatter; ð20Þ

where j0igauge is some “empty” gauge field state that is
factored out.
This transformation, in the cases where it can be defined,

is a controlled operation, making use of the symmetry and
the local set of constraints. One locally transforms the
degrees of freedom that are to be decoupled, in a procedure
controlled by those that remain. This requires the solution
of the Gauss law that was previously discussed; for that
reason, the transformation W is only possible, in general,
for one spatial dimension, where the gauge field can be
integrated, using the quantum, lattice analogue of Eq. (2).
There the divergence of a vector quantity was replaced by a
simple differential equation; here we obtain a simple
difference equation, that can be inverted nonlocally, since
the number of links (electric fields) is equal to the number
of vertices (charges and constraints), while in more
dimensions there are not enough equations: in dþ 1
dimensions, the links scale as d times the vertices.
Therefore, only in this case is the gauge field completely
redundant: in more dimensions it cannot be completely
removed. In 1þ 1d we define (for open boundary con-
ditions; in the other case of periodic ones, one could not
remove the gauge field completely)

W ¼ exp

�
i
X
x

ϕðxÞ
X
y<x

QðyÞ
�
: ð21Þ

Using the canonical relation (5), one obtains that

WEðxÞW† ¼ EðxÞ −
X
y<x

QðyÞ ð22Þ

which is zero on the physical Hilbert space, thanks to the
Gauss laws. This type of transformation was used, for
example, in Refs. [8–12]. For a further discussion and the
relation to minimal coupling, please refer to Ref. [13].
In the next sections we will focus on the other option,

where the matter is decoupled and eliminated.

III. ELIMINATING THE MATTER FROM
A Uð1Þ LATTICE GAUGE THEORY

We wish to construct a unitary transformation U which
similarly decouples the matter from a physical state jψi as
in Eq. (19), satisfying the Gauss law (16), that is, a
transformation of the type

Ujψi ¼ j0imatter ⊗
X
fdg

fðfdgÞjfdgigauge: ð23Þ

Below we shall see when such a transformation can be
constructed and how. It will involve the solution of the

Gauss law for the matter, and therefore, as discussed above,
it does not depend on the dimension of space: the number
of equations is exactly the number of charges, or the
number of electric field divergences.
Let us assume the existence of unitary transformations

uðxÞ that act on the matter at the vertex x. They mutually
commute,

½uðxÞ; uðyÞ� ¼ ½uðxÞ; u†ðyÞ� ¼ 0 ð24Þ

and change the local charges as follows:

uqjqi ¼ j0i ð25Þ

for each integer q ≠ 0. Since u is unitary, negative values
involve Hermitian conjugation.
We still have to check in which cases such transforma-

tions exist, but when they do, in order to eliminate the
charge, we will have to act on each vertex with a power of
this transformation, that is exactly equal to the initial
amount of charge that was there. We can do it thanks to
the Gauss law: let us define a controlled, local unitary
transformation UðxÞ that lowers the charge at x by an
amount given by DðxÞ, the divergence of the electric field
there. Thanks to the Gauss law (16), this is equal to the
charge and hence, acting on gauge-invariant states it will
reduce QðxÞ to zero. Let us see that explicitly: consider an
expansion (19) of a gauge-invariant state jψi. Then,

QðxÞuðxÞDðxÞjψi

¼
X
fq;dg

fðfqgÞ
�Y

x

δdðxÞ;qðxÞ

�
uðxÞDðxÞjfdgigauge⊗ jfqgimatter

¼
X
fq;dg

fðfqgÞ
�Y

x

δdðxÞ;qðxÞ

�
uðxÞdðxÞjfdgigauge⊗ jfqgimatter

¼
X
fq;dg

fðfqgÞ
�Y

x

δdðxÞ;qðxÞ

�
jfdgigauge⊗uðxÞqðxÞjfqgimatter

¼0: ð26Þ

We can hence define the local controlled unitaries

UðxÞ ¼ uðxÞDðxÞ ð27Þ

and the transformation

U ¼
Y
x

UðxÞ ð28Þ

will give rise to Eq. (23), as we wish.
All this can be achieved, for example, if u is a unitary

lowering charge operator,

½QðxÞ; uðxÞ� ¼ −uðxÞ ð29Þ
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but it is not required. In such a case, an infinite charge
ladder is required, as in the case of complex scalar fields
which will be the first we discuss. How does the Gauss law
transform in such a case? It is simple to see in the case that
u is a charge lowering operator, e.g., that Eq. (29) is
satisfied. Then, since UDðxÞU† ¼ DðxÞ, and

UQðxÞU† ¼ QðxÞ þDðxÞ ð30Þ

we obtain that UðDðxÞ −QðxÞÞU† ¼ 0, and hence the
Gauss law (16) transforms to a trivial 0 ¼ 0 and the gauge
symmetry completely breaks down. When Eq. (29) is not
satisfied, one has to be extra cautious, and this, as we shall
see, will be the case when the matter is fermionic.
Next, let us see in which cases such transformations

could be defined.

A. Complex scalar matter

First, we consider the case in which each vertex hosts a
complex scalar field, ΦðxÞ, for which the relevant trans-
formation—the lattice version of the unitary gauge of the
Brout-Englert-Higgs mechanism [1,2]—was discussed by
Fradkin and Shenker in Ref. [3]. The field may be
expanded in a polar form, with a radial and angular part
(phase); we assume, for simplicity, that the radial part is
frozen, for example due to the Higgs mechanism. Following
Ref. [3],

ΦðxÞ ¼ R0e−iθðxÞ: ð31Þ

At each vertex we have a nonbounded charge operatorQðxÞ
with an infinite spectrum of integers. It is raised by the
operators eiθðxÞ, which mutually commute, and therefore

uðxÞ ¼ e−iθðxÞ ð32Þ

satisfies both Eqs. (29) and (24), allowing us to obtain awell-
defined U using Eqs. (27) and (28). Since u here is a unitary
lowering operator, the Gauss laws will vanish for the trans-
formed state using Eq. (30).
The complete transformation then takes the form

U ¼ e−i
P

x
θðxÞDðxÞ ¼ ei

P
x;i
Eðx;iÞðθðxþeiÞ−θðxÞÞ ð33Þ

which, seen now as a transformation of the gauge fields
controlled by the matter, is recognized as the unitary gauge
[3]. In such theories, the interaction terms take the form
Φ†ðxÞUðx; iÞΦðxþ eiÞ, which, after freezing the radial
field, become (if ϵ is real)

Hint ¼ 2R2
0

X
x;i

ϵðx; iÞ cosðϕðx; iÞ þ θðxÞ − θðxþ eiÞÞ:

ð34Þ

Note that

Uϕðx; iÞU† ¼ ϕðx; iÞ þ θðxþ eiÞ − θðxþ eiÞ ð35Þ

and therefore, after the transformation the matter field
decouples from the interaction terms, and we obtain
massive gauge fields,

H̃int ¼ UHintU† ¼ 2R2
0

X
x;i

ϵðx; iÞ cos ðϕðx; iÞÞ; ð36Þ

thanks to the terms proportional to R2
0 cos ðϕðx; iÞÞ. These

terms explicitly break gauge invariance, which does not exist
anymore as anticipated. The other parts of the Hamiltonian
commute with the transformation and do not transform [the
rest are pure gauge terms, and the GðxÞ are generators of
pure gauge transformations and therefore commute with
them].
Similar transformations are possible for other Higgs

scenarios, with different groups. For example, see Ref. [14]
for Z2. If the radial component of the field is not frozen, it
will not be eliminated, since it is not coupled to the gauge
field and thus not subject to any local constraints.
Before we move on to other types of matter, one could

ask what happens if we couple the same gauge field to more
matter fields, residing at the vertices and adding up to the
local charges, QðxÞ ¼ P

iQiðxÞ. In this case, in general, a
transformation of the form U will not be possible, since
the spectrum of the local charge operators QðxÞ will be
degenerate. Microscopic matter configurations must be
completely distinguishable in terms of their charges, if
one wishes to decouple the matter in the manner described
above. The controlled operation is based on the divergence
of the electric fields which is equal to the total fermionic
charge at the vertex, with no way to distinguish different
charge contributions.

B. Staggered hard-core bosonic matter

Our next stop en route to fermions will be hard-core
bosonic matter. In this case, the matter Hilbert space on
each vertex is that of a spin-half particle. To be able to
eventually generalize to staggered fermions, we will
stagger the hard-core bosons. On each vertex we define
the “number operator,”

nðxÞ ¼ 1

2
ðσzðxÞ þ 1Þ ð37Þ

and the staggered charge operators

QðxÞ ¼ nðxÞ − sðxÞ ð38Þ

where sðxÞ ¼ 0 (1) on the even (odd) sublattice represent-
ing particles (antiparticles). The Gauss law (16) may then
be rewritten as

REMOVING STAGGERED FERMIONIC MATTER IN UðNÞ … PHYS. REV. D 99, 114511 (2019)

114511-5



GðxÞjψi ¼ nðxÞjψi; ð39Þ

where we introduce

GðxÞ ¼ DðxÞ þ sðxÞ: ð40Þ

The parts of the Hamiltonian that depend on the matter
take the form

HM ¼ M
X
x

ð−1ÞsðxÞnðxÞ ð41Þ

and

Hint ¼
X
x;i

ðϵðx; iÞσþðxÞUðx; iÞσ−ðxþ eiÞ þ H:c:Þ: ð42Þ

Unlike in the scalar case, now the charges are bounded,
because the operators nðxÞ are bounded. The Gauss law in
the form (39) implies that the spectrum of the operators
GðxÞ in the physical Hilbert space consists only of 0,1.
Therefore we can write down extra local constraints that, at
this point, are completely redundant:

GðxÞðGðxÞ − 1Þjψi ¼ 0: ð43Þ

We define, at each vertex x, the operators PgðxÞ, which
project to the subspaces where GðxÞ ¼ g. The physical
Hilbert space is contained within the subspace of g ¼ 0, 1
everywhere, and therefore we can multiply the entire
Hamiltonian by the projectors PðxÞ ¼ P1ðxÞ þ P0ðxÞ
and have exactly the same spectrum and dynamics within
the physical Hilbert space. However, since most of the
Hamiltonian terms commute with the operators GðxÞ, it is
sufficient to do it for the interaction part—the only part that
does not commute—and even there it is sufficient to
include only the most relevant local projectors. Finally
we obtain, using the Gauss law, that within the physical
Hilbert space,

Hphys
int ¼

X
x;i

ðϵðx;iÞP1ðxÞσþðxÞUðx;iÞσ−ðxþeiÞP0ðxþeiÞ

þH:c:Þ ð44Þ

The Gauss law also helps us to rewrite, within the
physical Hilbert space, the mass part of the Hamiltonian as

Hphys
M ¼ M

X
x

ð−1ÞsðxÞGðxÞ ¼ 2M
X
x;i

ð−1ÞsðxÞEðx; iÞ

þ const: ð45Þ

Another implication is that now, that we do not have an
infinite ladder of charges, we cannot define a unitary u that
lowers Q. Instead, we can define

uðxÞ ¼ σxðxÞ ð46Þ

which will satisfy Eq. (25) but not Eq. (29).
We would like to construct a local transformation UðxÞ

that eliminates the charges. Using the modified, staggered
Gauss law (39), we construct the local transformation

UðxÞ ¼ uðxÞGðxÞ ¼ σxðxÞGðxÞ: ð47Þ

That takes a spin-up state (corresponding thanks to the
Gauss law to G ¼ 1) to a spin-down state, and leaves spin-
down states invariant. The operatorsGðxÞ are left invariant,
and using UðxÞσzðxÞU†ðxÞ ¼ ð−1ÞGðxÞσzðxÞ we obtain
that the transformed state, jψ̃i ¼ Ujψi satisfies

σzðxÞjψ̃i ¼ −ð−1ÞGðxÞð1 − 2GðxÞÞjψ̃i: ð48Þ

From this equation, it looks as if there is still some local
coupling between the gauge field and the matter. However,
this is not the case: recall the conditions (43) on the spectrum
of the GðxÞ operators that were redundant before the
transformation; now they are not redundant anymore, and
in fact, they are invariant under the transformation, that is

GðxÞðGðxÞ − 1Þjψ̃i ¼ 0: ð49Þ

This implies that

ð1 − 2GðxÞÞjψ̃i ¼ ð−1ÞGðxÞjψ̃i ð50Þ

and Eq. (48) simplifies to

σzðxÞjψ̃i ¼ −jψ̃i ð51Þ

as expected, implying that all the matter d.o.f. are decoupled
and in a spin-down state, or that

nðxÞjψ̃i ¼ 0: ð52Þ

How does the Hamiltonian transform? As before, the
pure gauge part HKS does not transform at all, as it
commutes with the transformation. The mass part (45)
commutes as well and does not transform, and we are left
with the transformation of the interaction part. However, in
this case we have to be more careful with the transformation
of the interaction part of the Hamiltonian than in the
complex scalar case. The interaction term does not com-
mute with GðxÞ and thus changes their eigenvalues. Unlike
in the scalar case, here we started with matter that resides in
finite local Hilbert spaces, giving rise to the local con-
straints (43) and (49), which have to be incorporated into
the interaction explicitly before transforming it; otherwise
we will get terms that break them. Thus, we transform the
physical interaction Hamiltonian, within the physical sub-
space (44), and obtain
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H̃phys
int ¼ UHphys

int U†

¼
X
x;i

ðϵðx; iÞP1ðxÞUðx; iÞP0ðxþ eiÞ

⊗ j↓ih↓jx ⊗ j↓ih↓jxþei þ H:c:Þ: ð53Þ

We can now completely forget about the matter d.o.f. as
they are decoupled. The final Hamiltonian to be used in the
transformed physical Hilbert space is, therefore,

⊗
x
h↓jxUHphysU†⊗

x
j↓ix

¼ HKS þ 2M
X
x;i

ð−1ÞsðxÞEðx; iÞ

þ
X
x;i

ðϵðx; iÞP1ðxÞUðx; iÞP0ðxþ eiÞ þ H:c:Þ ð54Þ

without any local Gauss laws but with the local constraints
(49) that are taken care of by the projectors. These
projectors extend the range of interaction, and this is the
price we have to pay for having, originally, local matter
spaces that are finite.
Here, once again, we could not add multiple matter

species coupled to the same gauge field, because this would
destroy the unique mapping between a charge configura-
tion and a matter state. This also gives a good motivation
for staggering: if, instead, we had two hard-core bosonic
species per site, coupled to the same gauge field, we would
not be able to perform such a decoupling transformation.

C. Staggered fermionic matter

Finally, we are ready to deal with staggered fermionic
matter [6]. In this case, at each vertex there is one fermionic
species, created by the operator ψ†ðxÞ. The fermionic
number operators, as usual, are nðxÞ ¼ ψ†ðxÞψðxÞ, and
with them one may define the charges just like in the hard-
core bosonic case (38).
The parts of the Hamiltonian that involve the matter take

the form

HM ¼ M
X
x

ð−1ÞsðxÞnðxÞ ð55Þ

and

Hint ¼
X
x;i

ðϵðx; iÞψ†ðxÞUðx; iÞψðxþ eiÞ þ H:c:Þ: ð56Þ

One could be tempted to use a Majorana mode as the local
unitary, uðxÞ ¼ ψðxÞ þ ψ†ðxÞ, and indeed it is unitary and
satisfies Eq. (25), but as it has an odd fermionic parity (it
changes the parity of the states it acts upon), the commu-
tation property (24) does not hold and one cannot define (28)
with it, since the local terms will not have a well-defined
fermionic parity and hence their product will have to be in
some fixed order, giving rise to nonlocal strings.

In a recent work [7] we have shown that lattice gauge
theories with staggered fermionic matter whose gauge group
contains Z2 as a normal subgroup may be mapped to lattice
gauge theories with hard-core bosonic matter (spins), using a
local and unitary transformation that does not involve
nonlocal strings. This was done as well thanks to the fact
that in a gauge theory one has local constraints, that allow to
transfer the statistics information to the gauge fields.
However, since in that case only the parity is discussed,
and it has to do with the finite Z2 group that is not
continuous, the procedure carried out there did not break
the symmetry and only allowed to replace the fermionic
matter by hard-core bosons, with the only “payment” being
extra, but local, appearances of signs of electric fields in the
Hamiltonian, that account for the fermionic statistics.
Since Uð1Þ contains Z2 as a normal subgroup, one can

replace the fermions in a Uð1Þ gauge theory by hard-core
bosons. Following Ref. [7], we obtain that our model is
equivalently described by the Hamiltonian H0 ¼ H0

KS þ
H0

int þH0
M, in which H0

M ¼ HM (but with the spin n
operators),

H0
KS ¼

g2

2

X
x;i

E2ðx; iÞ − 1

g2
X
x;i<j

ξpðx; i; jÞ cosðϕðx; iÞ

þ ϕðxþ ei; jÞ − ϕðxþ ej; iÞ − ϕðx; jÞÞ ð57Þ

and

Hint ¼
X
x;i

ðξðx; iÞϵðx; iÞσþðxÞUðx; iÞσ−ðxþ eiÞ þ H:c:Þ

ð58Þ

where ξpðx; i; jÞ; ξðx; iÞ are local functions of the electric
fields on links that belong to the plaquette/link they are
associated with and its neighboring links [7]. Since these
functions commute with GðxÞ, one may use the procedure
introduced for staggered hard-core bosonic matter to
eliminate the matter in this fermionic case as well, once
the fermions are converted to hard-core bosons.

IV. EXTENSION TO NON-ABELIAN CASES

After having stated the procedure that allows one to
eliminate the matter of Uð1Þ lattice gauge theories, with
either hard-core bosonic or fermionic matter, we will now
generalize it to non-Abelian groups. For that, let us briefly
review the structure of those theories.

A. SUðNÞ and UðNÞ lattice gauge theories

1. The groups UðNÞ and SUðNÞ and their
Cartan subalgebra

We consider here lattice gauge theories whose gauge
group G is either UðNÞ or SUðNÞ. We denote group

REMOVING STAGGERED FERMIONIC MATTER IN UðNÞ … PHYS. REV. D 99, 114511 (2019)

114511-7



elements by g ∈ G, and irreducible representations by j;
unitary matrix representations are given by the Wigner
matrices, Dj

mnðgÞ. As these are Lie groups, the representa-
tion j is generated by a set of matrix generators, τja, whose
dimension is referred to as the representation’s dimension
dimðjÞ. For SUðNÞ, there are N2 − 1 such generators,
satisfying the group’s Lie algebra

½τja; τjb� ¼ ifabcτ
j
c ð59Þ

all of which are Hermitian and traceless matrices. We shall
discuss the fundamental representation, whose dimension
for SUðNÞ and UðNÞ is N, and in this case the representa-
tion index will be omitted. In this representation, one
usually chooses the Cartan-Weyl basis for the generators,
and the normalization condition

TrðτaτbÞ ¼
1

2
δab ð60Þ

follows.
In order to obtain the algebra of UðNÞ from that of

SUðNÞ, one only has to introduce one extra generator,

τ0 ¼
1ffiffiffiffiffiffiffi
2N

p 1: ð61Þ

The normalization is chosen in accordance with Eq. (60).
SUðNÞ and UðNÞ ðN > 1Þ are non-Abelian Lie groups,

whose generators, in general, do not commute, as in
Eq. (59). However, there exists a maximal subset of
generators that commute which form the Cartan subalge-
bra. For SUðNÞ there are N − 1 such generators, which is
the maximal number of N-dimensional diagonal traceless
matrices. We shall denote them by fTμgN−1

μ¼1
. Since the

identity matrix trivially commutes with any other matrix,
the Cartan subalgebra of UðNÞ will include the same N − 1
elements as in SUðNÞ, as well as T0 ¼ τ0; altogether, there
are N mutually commuting generators.

2. The gauge field

Let us begin with the description of the gauge d.o.f. As in
the Abelian case, they reside on the links of the lattice.
The gauge field on each link is described by a set of
operators [5,15]: the group element operators Uj

mn, which
are matrices of gauge field operators that transform as
group elements in the j representation (in the fundamental
representation, where we omit j, these are N × N matrices),
and the left and right transformation generators, La and Ra
respectively. These are two independent sets of operators
that fulfill the group’s Lie algebra,

½La; Lb� ¼ −ifabcLc;

½Ra; Rb� ¼ ifabcRc;

½La; Rb� ¼ 0 ð62Þ

that generate transformations of the Uj
mn:

½La;U
j
mn� ¼ ðτjaÞmm0Uj

m0n;

½Ra;U
j
mn� ¼ Uj

mn0 ðτjaÞn0n: ð63Þ
These operators satisfy RaRa ¼ LaLa ≡ J2. We will con-
sider, from now on, only the fundamental representation for
the gauge field.
The pure gauge (Kogut-Susskind) part of the Hamiltonian

takes the form [5]

HKS ¼
g2

2

X
x;i

J2ðx; iÞ − 1

2g2
X
x;i<j

ðTrðUðx; iÞUðxþ ei; jÞ

×U†ðxþ ej; iÞU†ðx; jÞÞ þ H:c:Þ: ð64Þ

3. The matter

As usual, the matter resides on the vertices. We will
consider once again staggered matter, and will restrict our
discussion to the fundamental representation, where on
each vertex there is a spinor with N components. In normal
cases it is fermionic, with creation operators ψ†

mðxÞ
satisfying the fermionic algebra

fψmðxÞ;ψ†
nðxÞg ¼ δmnδðx; yÞ;

fψmðxÞ;ψnðxÞg ¼ 0: ð65Þ
Out of the N fermionic species, one constructs the local

charges QaðxÞ. In the SUðNÞ case, there are N2 − 1 such
charges,

QaðxÞ ¼ ψ†
mðxÞðτaÞmnψnðxÞ; a ¼ 1;…; N2 − 1:

ð66Þ
In the UðNÞ case, one adds the extra Uð1Þ charge which is
explicit,

Q0ðxÞ ¼ ψ†
mðxÞðτ0ÞmnψnðxÞ −

ffiffiffiffi
N
2

r
sðxÞ

¼
ffiffiffiffi
N
2

r �X
m

nmðxÞ=N − sðxÞ
�
: ð67Þ

The charges Qa satisfy, at each vertex, the group algebra.
The parts of the Hamiltonian that involve the matter take

the form

HM ¼ M
X
x;m

ð−1ÞsðxÞnmðxÞ ð68Þ

and

Hint ¼
X
x;i

ðϵðx; iÞψ†
mðxÞUmnðx; iÞψnðxþ eiÞ þ H:c:Þ:

ð69Þ
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4. Gauge invariance

Gauge invariance now is non-Abelian: there are N2 − 1
local generators of gauge symmetry at each vertex for
SUðNÞ, and one more for UðNÞ. As the groups are non-
Abelian, these do not commute. One defines the non-
Abelian divergence of electric fields by

DaðxÞ ¼
X
i

ðLaðx; iÞ − Raðxþ ei; iÞÞ: ð70Þ

The Hamiltonian is invariant under transformations
generated by DaðxÞ −QaðxÞ; the non-Abelian Gauss
law is

DaðxÞjψi ¼ QaðxÞjψi ð71Þ

where Ra, La play the role of non-Abelian, right and left
electric fields.

B. Eliminating the matter in the UðNÞ case
As in the Uð1Þ case, for the elimination of matter we will

first convert it to a hard-core bosonic form, following
Ref. [7]. The mapping to bosons is possible in the UðNÞ
case, as it includes Z2 as a normal subgroup. The fermions
are mapped to spinors η†mðxÞ, whose components anti-
commute on site,

fηmðxÞ; η†nðxÞg ¼ δmn;

fηmðxÞ; ηnðxÞg ¼ 0 ð72Þ

but commute between different sites,

½ηmðxÞ; η†nðyÞ� ¼ ½ηmðxÞ; ηnðyÞ� ¼ 0 ð73Þ

for x ≠ y.
Number operators become

nmðxÞ ¼ η†mðxÞηmðxÞ ð74Þ

and the charges are

QaðxÞ ¼ η†mðxÞðTaÞmnηnðxÞ;
a ¼ 1;…; N2 − 1;

Q0ðxÞ ¼
ffiffiffiffi
N
2

r �X
m

nmðxÞ=N − sðxÞ
�
: ð75Þ

The Hamiltonian transforms to H0 ¼ H0
KS þH0

int þH0
M,

where H0
M ¼ HM (but with the new definition of number

operators with the hard-core bosons),

H0
KS ¼

g2

2

X
x;i

J2ðx; iÞ − 1

2g2
X
x;i<j

ðξpðx; i; jÞTrðUðx; iÞ

×Uðxþ ei; jÞU†ðxþ ej; iÞU†ðx; jÞÞ þ H:c:Þ
ð76Þ

and

H0
int¼

X
x;i

ðξðx; iÞϵðx; iÞη†mðxÞUmnðx; iÞηnðxþeiÞþH:c:Þ

ð77Þ

where, as in the Uð1Þ case, ξpðx; i; jÞ; ξðx; iÞ are local
functions of electric fields, belonging to neighboring links.
Furthermore, the electric fields that appear in these phase
factors are only those of the Uð1Þ subgroup that completes
SUðNÞ to UðNÞ[7],

Eðx; iÞ ¼
ffiffiffiffiffiffiffi
2N

p
L0ðx; iÞ ¼

ffiffiffiffiffiffiffi
2N

p
R0ðx; iÞ: ð78Þ

The method we employ is very similar to what we did in
the Uð1Þ case. We would like to define N commuting
operators GmðxÞ per vertex, that will satisfy N Gauss laws

GmðxÞjψi ¼ nmðxÞjψi: ð79Þ

These will allow us to eliminate each component of the
matter spinors independently of the others. In order to do
that, consider the N commuting charges of the Cartan
subalgebra,

QμðxÞ ¼ ΛμmnmðxÞ −
ffiffiffiffi
N
2

r
δμ0sðxÞ ð80Þ

where

Λμm ¼ ðTμÞmm ðno summationÞ ð81Þ
(where μ ¼ 0;…; N − 1; m ¼ 1;…; N). The normalization
of the generators (60) implies that ðΛΛTÞμν ¼ δμν=2 and
therefore Λ−1 ¼ 2ΛT . We now consider the N commuting
Gauss laws of the Cartan subalgebra. Using Eqs. (71) and
(80), they can be rewritten as

DμðxÞjψi ¼
�
ΛμmnmðxÞ −

ffiffiffiffi
N
2

r
δμ0sðxÞ

�
jψi: ð82Þ

Using Λ−1 ¼ 2ΛT with the above equation, we obtain that
Eq. (79) is satisfied, with

GmðxÞ ¼ 2ΛμmDμðxÞ þ sðxÞ ð83Þ

analogously to Eq. (40).
Combining Eq. (83) with Eq. (63), we obtain the very

simple Abelian transformation rules
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½GkðxÞ; Umnðy; iÞ� ¼ δðx; yÞδkmUmnðy; iÞ
− δðx; y þ eiÞδknUmnðy; iÞ
ðno summationÞ: ð84Þ

This, along with

GmðxÞðGmðxÞ − 1Þjψi ¼ 1 ð85Þ

that follows directly from Eq. (79) as in the Abelian case,
allows us to write H0

int projected to the physical Hilbert
space,

H0phys
int ¼

X
x;i;m;n

ðξðx; iÞϵðx; iÞPm
1 ðxÞη†mðxÞUmnðx; iÞηn

× ðxþ eiÞPn
0ðxþ eiÞ þ H:c:Þ ð86Þ

where Pm
g ðxÞ projects GmðxÞ to g. The Gauss laws also

enable us to rewrite, within the physical Hilbert space, the
mass part of the Hamiltonian as

Hphys
M ¼ M

X
x

ð−1ÞsðxÞGðxÞ ¼ 2M
X
x;i

ð−1ÞsðxÞEðx; iÞ

þ const ð87Þ

where E is the Abelian, Uð1Þ⊈SUðNÞ electric field (78).
With all that in hand, we can finally construct the local

building blocks of the transformation that removes the
matter. At each vertex, we define the unitaries

umðxÞ ¼ ηmðxÞ þ η†mðxÞ: ð88Þ

They do not commute with each other on site, but do
commute on different sites, which allows us to construct the
transformation from local, commuting pieces. We will have
then a transformation U ¼ Q

x UðxÞ with the local, com-
muting transformations

UðxÞ ¼ uNðxÞGNðxÞ � � � u1ðxÞG1ðxÞ: ð89Þ

The order of the uGm
m in the product matters, since they do

not commute, but different orders give rise, finally, to
physically equivalent results, and as the local products
commute with one another it does not matter. Eventually,
one obtains that

UPm
1 ðxÞη†mðxÞUmnðx; iÞηnðxþeiÞPn

0ðxþeiÞU†

¼ð−1Þ
P

m−1
i¼1

GiðxÞPm
1 ðxÞηmðxÞη†mðxÞUmnðx; iÞηn

× ðxþeiÞη†nðxþeiÞPn
0ðxþeiÞð−1Þ

P
n−1
i¼1

GiðxþeiÞ: ð90Þ

One can see that the matter is completely decoupled here,
the only instances of which are through projectors to nm ¼
0 everywhere. Therefore, we conclude that the original

Hamiltonian is equivalent to that of a matterless theory
without local symmetries (all the Gauss laws are trans-
formed to trivial 0 ¼ 0 equations as in the Abelian case),
whose Hamiltonian is

⊗
x
hnm ¼ 0jxUH0physU†⊗

x
jnm ¼ 0ix

¼ H0
KS þ 2M

X
x;i

ð−1ÞsðxÞEðx; iÞ

þ
X
x;i;m;n

ðϵðx; iÞξðx; iÞð−1Þ
P

m−1
i¼1

GiðxÞPm
1 ðxÞUmn

× ðx; iÞPn
0ðxþ eiÞð−1Þ

P
n−1
i¼1

GiðxþeiÞ þ H:c:Þ: ð91Þ

The price we pay for having originally fermionic matter is

double: the factors ξðx; iÞð−1Þ
P

m−1
i¼1

GiðxÞð−1Þ
P

n−1
i¼1

GiðxþeiÞ

for the statistics, and theprojectorsPm
1 ðxÞ andPn

0ðxþ eiÞ for
the finiteness of the local matter spaces. Both extend the
interaction range to nearest-neighbor links, but not beyond.
What happens if we wish to include a larger representa-

tion of the fermions? In this case, the method will not work,
for the simple reason that we have exactly N commuting
Gauss laws in the Cartan subalgebra, that can be inverted to
defineN differentGm operators. These can only correspond
to N fermionic number operators per vertex, no more. Once
again, we will also not be able to extend the method for
nonstaggered, or flavored fermions.

C. The SUðNÞ case
Finally, we wish to discuss the case of another very

relevant gauge group: SUðNÞ. Can we repeat the same
procedure there? First, of course, we need to map fermionic
matter to hard-core bosonic ones. According to Ref. [7], this
is possible only for SUð2NÞwithout extra ingredients. If one
wishes to do it for SUð2N þ 1Þ, an auxiliary Z2 gauge field
has to be introduced, without dynamics, to absorb the parity
of the fermions and enable the transformation.
However, even if we do that, it will not allow us to repeat

the procedure used for UðNÞ, since in SUðNÞ we only have
N − 1 generators in the Cartan subalgebra, and the funda-
mental representation is N dimensional. We only have
N − 1 Gauss laws of the form (82) per vertex, while we
need N equations of the form (83). The inversion discussed
in the UðNÞ case will not be possible now (the matrix Λ is
no longer square). As we shall show, for SUð2NÞ there is
only one way to proceed—through the introduction of an
auxiliary Uð1Þ gauge field—but for SUð2N þ 1Þ one can
also use another method: the auxiliary Z2 gauge field
introduced in Ref. [7] is enough.

1. The SUð2N +1Þ case
We seek for another, independent equation, that will add

up to the N − 1 Gauss laws (82), allowing us to explicitly
solve for each nm separately. One could try to think of using
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the center ZN symmetry of SUðNÞ, which is an Abelian
subgroup that is a subgroup of the missingUð1Þ component
we had in UðNÞ. However, the elements of the center are
diagonal SUðNÞ elements that are generated with the N − 1
Cartan generators, so this will introduce no further, inde-
pendent equation.
Suppose that we add an auxiliary Z2 field, following the

procedure of Ref. [7]. While for SUð2N þ 1Þ it is required
for the conversion to hard-core bosons, it is not required for
SUð2NÞ, but we can try to add it nevertheless in both cases.
Then, on each link we introduce an extraZ2 Hilbert space—
a two-level space of a single spin—and wherever Umnðx; iÞ
appears in the Hamiltonian, we replace it by U0

mnðx; iÞ ¼
Umnðx; iÞZðx; iÞ, whereZðx; iÞ is the PauliZ operator acting
on the auxiliary field on that link. We do not include
dynamics for this field, as explained in Ref. [7].
The auxiliary field, when coupled to the matter in the

above way, introduces, in the extended Hilbert space, an
extra local Z2, given by

XðxÞjψi≡Y
i

½Xðx; iÞXðx − ei; iÞ�jψi ¼ ð−1Þ
P

m
nmðxÞjψi

ð92Þ

both before and after transforming to hard-core bosons.
Instead of the Cartan-Weyl basis we used in the UðNÞ

case, we will now use another form for the traceless
generators, replacing Λ by

Λ0
μm ¼ δμm − δNm; μ ¼ 1;…; N − 1; m ¼ 1;…; m:

ð93Þ

This brings the N − 1 Cartan Gauss laws (82) to the form

DμðxÞjψi ¼ ðnμðxÞ − nNðxÞÞjψi: ð94Þ

Note that

DðxÞjψi≡X
μ

DμðxÞjψi ¼
�X

m

nmðxÞ − NnNðxÞ
�
jψi

ð95Þ

and in particular

ð−1ÞDðxÞjψi ¼ ð−1ÞNnNðxÞð−1Þ
P

m
nmðxÞjψi: ð96Þ

Using the auxiliary Z2 local symmetry we obtain

ð−1ÞDðxÞjψi ¼ ð−1ÞNnNðxÞXðxÞjψi ð97Þ

and now the roads for even and odd values of N split. In the
even case, ð−1ÞNnNðxÞ ¼ 1, and the above equation shows
us that we gain nothing from introducing the auxiliary field,

since a local Z2 exists in the SUð2NÞ case anyway, as it is a
subgroup of the group’s center, Z2N . Therefore, the current
discussion can only be valid for SUð2N þ 1Þ, where, since
ð−1ÞNnNðxÞ¼ð−1ÞnNðxÞ¼1–2nNðxÞ, we obtain the desired
equation

nNðxÞjψi ¼
1

2
ð1 − XðxÞð−1ÞDðxÞÞjψi ð98Þ

and immediately define

GNðxÞ ¼
1

2
ð1 − XðxÞð−1ÞDðxÞÞ: ð99Þ

Combining it with Eq. (94), we can finally define

GμðxÞ ¼ DμðxÞ þ GNðxÞ ð100Þ

as well, which completes a linearly independent set
of N mutually commuting operators GmðxÞ satisfying
GmðxÞjψi ¼ nmðxÞjψi as in the UðNÞ case, but con-
structed differently. One can then construct the desired
transformation U using these GmðxÞ operators.
As before, one needs to constrain the operators Gμ to

have only 0,1 eigenvalues, which gives rise to local
constraints in the final, transformed model. However, note
that such a constraint is not required for GN now, since this
operator only has in its spectrum 0,1 anyway.
For the SUð2NÞ case, however, we will have to use

another method, which will be discussed next.

2. The SUð2NÞ case
In order to solve the SUð2NÞ case—where we simply do

not have enough commuting, linearly independent equa-
tions to invert—wewill need to introduce an auxiliaryUð1Þ
gauge field, and embed SUðNÞ in UðNÞ. This applies to
any N, and thus we will not restrict ourselves only to
SUð2NÞ in the discussion. As UðNÞ satisfies the require-
ments for transforming fermions to hard-core bosons, no
Z2 field has to be introduced, and the Uð1Þ auxiliary field
should be introduced before converting the fermions to
bosons.
On each link of our SUðNÞ system we introduce an

additional Uð1Þ gauge field, with electric field E and phase
operator ϕ. We define the extended UðNÞ group element
operators,

U0ðx; iÞ ¼ Uðx; iÞeiϕðx;iÞ ð101Þ

that add the newUð1Þ component to the formerU operators.
We modify the Hamiltonian HSUðNÞ to another one, HUðNÞ,
by replacing any SUðNÞ operator U by the extended UðNÞ
operator U0, without adding any dynamics: the J2 terms in
HKS are left only with the SUðNÞ generators. Then, the
original SUðNÞ Hamiltonian may be obtained by projecting
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the new UðNÞ Hamiltonian to a configuration with ϕ ¼ 0
everywhere: since hϕ ¼ 0jU0jϕ ¼ 0i ¼ U, andHUðNÞ com-
pletely commutes with all the ϕ operators, we get that

hfϕ ¼ 0gjHUðNÞjfϕ ¼ 0gi ¼ HSUðNÞ: ð102Þ

Therefore, if jψi is an eigenstate ofHSUðNÞ, jψi ⊗ jfϕ ¼ 0gi
is an eigenstate of the extended HUðNÞ with the same energy.
However, this state is not invariant under the complete set
of UðNÞ gauge transformations, since the Abelian phase is
fixed on all the links.
We therefore define, for each state jψi in the SUðNÞ

physical Hilbert space, the state jΨi as follows:

jΨi ¼ N −1=2
Z

Dαe−i
ffiffiffiffiffi
2N

p P
x
ðD0ðxÞ−Q0ðxÞÞαðxÞjψi

⊗ jfϕ ¼ 0gi ð103Þ

where Dα≡Q
xdαðxÞ, fαðxÞg is a set of local phases, and

N is a normalization constant. The state jψi satisfies the
N2 − 1 Gauss laws (71) corresponding to SUðNÞ. The state
jΨi constructed from it using Eq. (103) preserves this
symmetry, and provides the missing UðNÞ Gauss law as
well: it has complete UðNÞ gauge invariance.
Let us show that the mapping jψi → jΨi is an isomor-

phism. We begin with the norm of jΨi,

hΨjΨi ¼ N −1
Z

DαDβ
D
ψ jei

ffiffiffiffiffi
2N

p P
x
QðxÞðαðxÞ−βðxÞÞjψ

E

× hfϕ ¼ 0gje−i
ffiffiffiffiffi
2N

p P
x
D0ðxÞðαðxÞ−βðxÞÞjfϕ ¼ 0gi:

ð104Þ

Changing the variables of integration, one obtains

hΨjΨi ¼ N −1
�Z

Dβ

�Z
Dα

D
ψ jei

ffiffiffiffiffi
2N

p P
x
QðxÞαðxÞjψ

E

× hfϕ ¼ 0gje−i
ffiffiffiffiffi
2N

p P
x
D0ðxÞαðxÞjfϕ ¼ 0gi: ð105Þ

Since e−i
ffiffiffiffiffi
2N

p P
x
D0ðxÞαðxÞ generates a pure-gauge transfor-

mation on the Uð1Þ part, we obtain that

hfϕ ¼ 0gje−i
ffiffiffiffiffi
2N

p P
x
D0ðxÞαðxÞjfϕ ¼ 0gi

¼
Y
x;i

hϕ ¼ 0jϕ ¼ αðxÞ − αðxþ eiÞi

¼
Y
x;i

δðαðxÞ − αðxþ eiÞÞ: ð106Þ

We have more delta functions than integrations: the
number of delta functions is the number of links, N L, and
the number of integrations is the number of vertices, N V
(both depend on the system size and topology). We choose
a path ofN V links that goes through all the vertices and use

it to perform all the integrations, and then we are left with
the same phase everywhere, α0, and an infinite constant,
δð0ÞN L−N V . Finally we obtain for the norm

hΨjΨi ¼ N −1δð0ÞN L−N V ð2πÞN V hψ jei
ffiffiffiffiffi
2N

p ð
P

x
QðxÞÞα0 jψi:

ð107Þ

The state jψi does not have a local Uð1Þ symmetry, but it
does have a global one (conservation of total number
of particles). The transformation we are left with, for
the computation of the norm, is global, and hence

hψ jei
ffiffiffiffiffi
2N

p ð
P

x
QðxÞÞα0 jψi ¼ hψ jψi. So if we set

N ¼ δð0ÞN L−N V ð2πÞN V ð108Þ

we get that the mapping jψi → jΨi preserves the norm.
What about inner products? Using exactly the same

arguments as above, we obtain that, in general,

hΨ1jΨ2i ¼ hψ1jψ2i: ð109Þ

Next, we show that it preserves the Hamiltonian matrix
elements,

hΨ1jHUðNÞjΨ2i ¼
Z

DαDβN −1hψ1j ⊗ hfϕ ¼ 0gj

× ei
ffiffiffiffiffi
2N

p P
x
ðD0ðxÞ−Q0ðxÞÞβðxÞHUðNÞ

× e−i
ffiffiffiffiffi
2N

p P
x
ðD0ðxÞ−Q0ðxÞÞαðxÞjψ2i

⊗ jfϕ ¼ 0gi: ð110Þ

But since e−i
ffiffiffiffiffi
2N

p P
x
ðD0ðxÞ−Q0ðxÞÞαðxÞ is a gauge transforma-

tion it commutes with HUðNÞ, and HUðNÞjψ2i ⊗
jfϕ ¼ 0gi ¼ HUðNÞ, and HUðNÞjψ2i ⊗ jfϕ ¼ 0gi ¼
ðHSUðNÞjψ2iÞ ⊗ jfϕ ¼ 0gi. Therefore, and using the same
methods for the integration etc.,

hΨ1jHUðNÞjΨ2i ¼ hψ1jHSUðNÞjψ2i: ð111Þ

Indeed, the physical Hilbert spaces of HSUðNÞ and HUðNÞ
are isomorphic, and one may use HUðNÞ to study HSUðNÞ.
This is true for open boundary conditions, where there are
no topological sectors. In the case of periodic boundaries,
only states in the same topological sector are connected
unitarily to jfϕ ¼ 0gi, and hence the right sector must be
sought. But in general we see that studying the extended
theory where SUðNÞ is embedded into UðNÞ is physically
equivalent. Therefore, one can use the above prescription to
embed an SUðNÞ lattice gauge theory into a UðNÞ one, and
then eliminate the fermions as explained in the previous
section.
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V. SUMMARY AND CONCLUSIONS

In this paper we have shown how to completely remove
staggered fundamental fermionic matter from UðNÞ and
SUðNÞ lattice gauge theories, by solving the Gauss law for
the matter, which, unlike the solution for the electric field, is
independent of the dimension. We extended the well-known
procedure for complex scalar fields, arising from the Higgs
mechanism, to fermionic matter and showed that it can be
eliminated as well, by making use of the gauge symmetry
and breaking it. However, unlike in the scalar case, when the
matter is fermionic one must introduce other local con-
straints, accounting for the finiteness of the local Hilbert
spaces of the original matter, and slightly extend the range of
interactions due to the same fact, and also accounting for the
fermionic statistics, building upon the result of Ref. [7].
This opens the way to possibly easier variational and

numerical computations for Hamiltonian lattice gauge

theories, without having to deal with extra d.o.f. for the
matter, in particular with fermionic Fock spaces, as well as
for quantum simulations of lattice gauge theories [16–20]
with fermionic matter, without the actual use of fermionic
d.o.f. in the simulator.
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Note added.—After the completion of this work, we
became aware of another work [21] discussing the elimi-
nation of the matter d.o.f., in 1þ 1 compact QED (the
Schwinger model).
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