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Using highly improved staggered quark (HISQ) Nf ¼ 2þ 1þ 1 MILC ensembles with five different
values of the lattice spacing, including four ensembles with physical quark masses, we perform the most
precise computation to date of the K → πlν vector form factor at zero momentum transfer,

fK
0π−þ ð0Þ ¼ 0.9696ð15Þstatð12Þsyst. This is the first calculation that includes the dominant finite-volume

effects, as calculated in chiral perturbation theory at next-to-leading order. Our result for the form factor
provides a direct determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element
jVusj ¼ 0.22333ð44Þfþð0Þð42Þexp, with a theory error that is, for the first time, at the same level as the

experimental error. The uncertainty of the semileptonic determination is now similar to that from leptonic
decays and the ratio fKþ=fπþ , which uses jVudj as input. Our value of jVusj is in tension at the 2–2.6σ level
both with the determinations from leptonic decays and with the unitarity of the CKM matrix. In the test of
CKM unitarity in the first row, the current limiting factor is the error in jVudj, although a recent determination
of the nucleus-independent radiative corrections to superallowed nuclear β decays could reduce the jVudj2
uncertainty nearly to that of jVusj2. Alternative unitarity tests using onlykaondecays, forwhich improvements
in the theory and experimental inputs are likely in the next few years, reveal similar tensions and could be
further improved by taking correlations between the theory inputs. As part of our analysis, we calculated the
correction to fKπþ ð0Þ due to nonequilibrated topological charge at leading order in chiral perturbation theory,
for both the full-QCD and the partially quenched cases. We also obtain the combination of low-energy
constants in the chiral effective Lagrangian ½Cr

12 þ Cr
34 − ðLr

5Þ2�ðMρÞ ¼ ð2.92� 0.31Þ × 10−6.
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I. INTRODUCTION

High-precision tests of the unitarity of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, as predicted by the
Standard Model (SM), are at the forefront of the current
flavor physics program. Any violation of the unitarity of the
CKMmatrix, which describes flavor-changing interactions,
would be evidence of the existence of physics beyond the
Standard Model (BSM).
In particular, first-row unitarity, which requires that

Δu ≡ jVudj2 þ jVusj2 þ jVubj2 − 1 ð1:1Þ

vanish, is currently the most precisely tested condition.
Even in the absence of deviations, high-precision determi-
nations of the CKM matrix elements involved in the test in
Eq. (1.1) put important constraints on the scale of the
allowed new physics [1].
At the current level of precision one can neglect jVubj2 in

Eq. (1.1). Of the other two CKM matrix elements involved,
jVudj is precisely determined from superallowed nuclear β
decays [2]. It can also be extracted from measurements of
the neutron lifetime [3] and pion β decay [4], albeit with
much larger errors [5]. Improved experimental measure-
ments of these processes would be interesting because they
are theoretically cleaner.
The best determinations of jVusj are from kaon decays

[6]. The extraction of jVusj from semileptonic kaon (Kl3)
decay requires knowledge of the form factor at zero
momentum transfer, fKπþ ð0Þ, which is still the largest source
of uncertainty on jVusj. On the experimental side, it is
expected that the ongoing and forthcoming experiments
(NA62, OKA, KLOE-2, LHCb and TREK E36) could
reduce the experimental error to ∼0.12%within 5 years [7].
Reducing the theoretical error in the vector form-factor
calculation is therefore a crucial task: it is this task that we
take up in this paper.
Determinations of jVusj from leptonic kaon and pion

decays (Kl2 and πl2), combined with fK=fπ from lattice
QCD, currently have somewhat smaller errors than those
from Kl3. The total error in jVusj from leptonic decays is
0.25% [8–16], while from semileptonic decays it is 0.34%
[6]. These leptonic determinations are indirect, however,
because they require an external input for jVudj, namely
Ref. [2]. The direct extraction of jVusj from only kaon
leptonic decays using fK as nonperturbative input gives
a larger error of 0.46%.1

Currently, the value of jVusj obtained from leptonic kaon
decay is ∼2σ larger than the value from semileptonic kaon
decay [16]. The leptonic decay is mediated by the axial-
vector current while the semileptonic decay by the vector
current. According to the SM, both approaches should give

the same jVusj, because the W boson current has a V − A
structure. Thus, any significant difference should be care-
fully analyzed.
In addition, if jVudj is taken from Ref. [2], the leptonic

value of jVusj is consistent with unitarity, Eq. (1.1), but the
semileptonic value of jVusj leads to a ∼2σ disagreement
with unitarity. As we were finishing this work, a paper
appeared with a new calculation of the nucleus-independent
electroweak radiative corrections involved in the extraction
of jVudj from superallowed β decays with a new approach
based on dispersion relations [17]. If this calculation is
confirmed, the resulting value of jVudj would increase the
present tension with unitarity. Investigating the origin of
these tensions and performing even more stringent tests is
crucial for the internal consistency of the Standard Model.
It is thus necessary to reduce the error on both the
experimental and the lattice-QCD inputs entering determi-
nations of jVusj.
In this paper, we focus on semileptonic kaon decay. The

(photon-inclusive) decay rate for K0 can be written [18]

ΓðK0 → π−lþνlðγÞÞ

¼ G2
Fm

5
K

128π3
SEWjVusfK

0π−þ ð0Þj2Ið0ÞK0lð1þ δK
0l

EM þ δK
0π−

SUð2ÞÞ;
ð1:2Þ

where GF is the Fermi constant as determined by muon
decay, SEW ¼ 1.0232ð3Þ is the universal short-distance

electroweak correction [19–21],2 and Ið0Þ
K0l is a phase-space

integral which depends on the shape of the fK
0πþ

þ;0 ðq2Þ form
factors given in Eq. (1.4) below. The long-distance electro-
magnetic corrections are parametrized by δK

0l
EM . The strong

isospin-breaking parameter δKπSUð2Þ is defined as a correction
with respect to the K0 decay:

δKπSUð2Þ ¼
�

fKπþ ð0Þ
fK

0π−þ ð0Þ

�
2

− 1; ð1:3Þ

so that δK
0π−

SUð2Þ ≡ 0. The Kþ decay rate,

ΓðKþ → π0lþνlðγÞÞ, can be obtained by multiplying the
right-hand side of Eq. (1.2) with the Clebsch-Gordan

coefficient C2
Kþ ¼ 1=2 and replacing Ið0Þ

K0l, δK
0l

EM , and

δK
0π−

SUð2Þ with the analogous Ið0ÞKþl, δK
þl

EM , and δK
þπ0

SUð2Þ. The

long-distance electromagnetic corrections, which are
mode dependent, were calculated to Oðe2p2Þ in
Ref. [22] and are incorporated into the experimental
average for jVusjfK0π−þ ð0Þ, adding a 0.11% uncertainty to
the experimental errors.

1This error is based on the Nf ¼ 2þ 1 FLAG average for fK
[6], which includes only calculations which do not use fπ , and
thus jVudj, to set the lattice scale [10,13,15].

2This value of SEW is from Ref. [21]. We use it because it is the
value used for the experimental average in Ref. [7].
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The input needed from lattice QCD in Eq. (1.2) is
the vector form factor at zero momentum transfer,
fK

0π−þ ðq2 ¼ 0Þ, defined by

hπþjVμjK0i ¼ fK
0π−þ ðq2Þ½pμ

K þ pμ
π� þ fK

0π−
− ðq2Þ½pμ

K − pμ
π�

¼ fK
0π−þ ðq2Þ

�
pμ
K þ pμ

π −
m2

K −m2
π

q2
qμ
�

þ fK
0π−

0 ðq2Þm
2
K −m2

π

q2
qμ; ð1:4Þ

where Vμ ¼ s̄γμu and q≡ pK − pπ.
The most precise value for fK

0π−þ ðq2 ¼ 0Þ to date is
provided by the Nf ¼ 2þ 1þ 1 Fermilab Lattice/MILC

calculation in Refs. [23,24], fK
0π−þ ð0Þ ¼ 0.9704ð�0.33%Þ.

More recent lattice-QCD calculations by the RBC/UKQCD
(Nf ¼ 2þ 1) [25] and ETMC (Nf ¼ 2þ 1þ 1) [26]
collaborations agree very well with the Fermilab Lattice/
MILC central value but with larger errors. Earlier Nf ¼
2þ 1 calculations with unphysically heavy pions by the
Fermilab Lattice/MILC [27] and RBC/UKQCD [28,29]
collaborations, as well as the more recent JLQCD calcu-
lation in Ref. [30], yielded smaller values for fKπþ ð0Þ,
but with larger errors. With the exception of the
earliest calculation [29], these Nf ¼ 2þ 1 results are
compatible with the newer Nf ¼ 2þ 1þ 1 ones. For
comparison, the average of the relevant experimental input
[7], jVusjfK0π−þ ð0Þ ¼ 0.21654ð41Þ, has a 0.19% error. This
average includes the strong isospin and electromagnetic
corrections in Eq. (1.2) for each decay mode.
In this work we reduce the main sources of uncertainty in

our previous calculation of fK
0π−þ ðq2 ¼ 0Þ to reach a total

error of 0.19%, obtaining themost precise calculation to date,
and matching the current experimental uncertainty, for the
first time. The main improvements over our previous
calculation [23,24] are increased statistics in some key
ensembles, the addition of a new (smaller) lattice spacing,
and the correction of finite-volume effects at next-to-leading
order (NLO) in chiral perturbation theory (ChPT).
Preliminary results were presented in Refs. [31,32].
There are other ways to determine jVusj. Semileptonic

hyperon decays unfortunately lack sufficiently precise
knowledge of the SU(3)-breaking corrections, which pre-
cludes a competitive determination. A conservative esti-
mate of such effects yields an uncertainty of ∼2% [33].
Inclusive hadronic τ decays have, in the past, yielded values
of jVusj smaller than the semileptonic kaon determination
and, thus, were in even more disagreement with unitarity
[34]. A more recent analysis [35] uses lattice QCD to
compute dimension-larger-than-4 condensates and, more
importantly, employs a dispersive technique to obtain the
Kπ branching fractions. It points to an inclusive-τ value
of jVusj compatible with unitarity [35], although it still
remains on the low side. An even more promising approach

also based on inclusive strange hadronic τ decay data is
presented in Ref. [36]. Its basic ingredients are replacing
the operator-product expansion in the relevant sum rules by
lattice hadronic vacuum polarization functions and opti-
mizing the weight functions to suppress contributions from
the high-energy region, where the experimental data have
poor precision. Preliminary results in Ref. [36] are com-
patible with both semileptonic and leptonic determinations
(and thus with unitarity), but have larger errors than either.
Because the total errors on jVusj in Refs. [35–37] are
dominated by experimental uncertainties, it is expected that
these determinations will be significantly improved with
new data from the Belle II experiment [38]. Determinations
of jVusj from exclusive τ decays, which use the same
nonperturbative inputs as the leptonic kaon decay deter-
minations, namely fK� and fK�=fπ� , are still in tension
with unitarity [39], but this could also change with future
experimental measurements.
This paper is organized as follows. In Sec. II we describe

the methodology of the numerical lattice-QCD simulations
and the details of the ensembles, actions, and correlation
functions used. Section III shows how, following the ChPT
approaches of Refs. [40] and [41], one can correct for
leading-order finite-volume effects and for the effects of
nonequilibrated topological charge on the ensemble with
finest lattice spacing (a ≈ 0.042 fm), respectively. We
discuss the joint chiral interpolation and continuum
extrapolation of our data to the physical point in
Sec. IV. Section V analyzes the statistical and systematic
uncertainties. Final results for the form factor fK

0π−þ , as well
as for the relevant Oðp6Þ low-energy constants, are pre-
sented in Sec. VI. In Sec. VII, we use our form-factor result
to extract a value of jVusj from kaon semileptonic exper-
imental data and discuss the implications of this value for
phenomenology. Finally, we present our conclusions and
the prospects for further improvement in Sec. VIII.

II. LATTICE SETUP AND ANALYSIS

The methodology in this work largely follows that of our
previous work in Refs. [23,24,27]. The approach, pio-
neered by HPQCD [42], is based on the Ward-Takahashi
identity relating the matrix elements of a vector current to
that of the corresponding scalar density:

qμhπjV lat
μ jKiZV ¼ ðms −muÞhπjSlatjKiZS; ð2:1Þ

with ZV and ZS the lattice renormalization factors for the
vector current and scalar density, respectively, where the
scalar density is defined as the product of the scalar current
and the quark masses ðms −muÞ. Working with staggered
fermions, and choosing V lat

μ to be the partially conserved,
taste singlet, vector current, and Slat to be its divergence, we
have ZV ¼ ZS ¼ 1. Thus, Slat is a local, taste-singlet
density, with the same flavor content as the vector current,
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S ¼ s̄u. With the above identity and the definition of the
form factors in Eq. (1.4), one can extract the scalar form
factor f0ðq2Þ at any value of the momentum transfer q2 by
using

fKπ0 ðq2Þ ¼ ms −mu

m2
K −m2

π
hπjSjKiq2 : ð2:2Þ

In addition, a kinematic constraint requires fKπþ ð0Þ¼fKπ0 ð0Þ,
so this relation can be employed to calculate fKπþ ð0Þ from
3-point correlation functions with a scalar insertion. As
already discussed in our first work [27], the use of a local
scalar density instead of a vector current has two main
advantages: avoiding the use of a renormalization factor and
avoiding the use of noisier correlation functions with either a
nonlocal vector current or external non-Goldstone mes-
ons [42,43].

A. Lattice actions, parameters,
and correlation functions

We perform our calculation on the highly improved
staggered quark (HISQ) Nf ¼ 2þ 1þ 1 MILC configu-
rations [44–46] with sea quarks simulated with the HISQ
action [47]. We also employ the HISQ action for the
valence quarks. We have already seen in our previous work
that the use of the HISQ action greatly reduces discretiza-
tion effects [23,24]. The charm-quark and strange-quark
masses on the Nf ¼ 2þ 1þ 1 MILC configurations are
always tuned to values close to the physical ones, while the
light-quark masses vary between 0.2ms and ms=27, with
the latter approximately the physical value. In this work, we
include data generated at five different values of the lattice
spacing down to a ≈ 0.042 fm, with sea pion masses

ranging from 319 to 134 MeV. Table I lists the key
parameters of the ensembles analyzed here and the corre-
lation functions calculated on them. The ensembles include
four with physical quark masses and a ≈ 0.15; 0.12; 0.09;
0.06 fm. Ensembles that are new since our analysis in
Refs. [23,24] are marked with a dagger in the last column;
those where we have increased the statistics are marked
with an asterisk. Table I also lists the pseudoscalar-taste
(physical) pion mass mπ;P and the root-mean-squared pion
mass mRMS

π for each ensemble. The difference is a measure
of the dominant discretization effects, which arise from
taste-changing interactions. As expected, they decrease
rapidly as the lattice spacing is reduced. The data included
in this analysis are graphically depicted in Fig. 1.
The structure of the three-point function with a scalar

insertion that we generate to access the matrix element in
Eq. (2.2) is the same as in our previous work [23,24,27].
We generate light quarks at a time slice tsrc and extended
strange propagators at a fixed distance T from the source.
For each configuration we have Nsrc time sources placed
at tsrc ¼ t0; t0 þ Lt=Nsrc; t0 þ 2Lt=Nsrc…, where Lt is
the temporal length of the lattice. The time t0 varies
randomly from configuration to configuration in an interval
½0; Lt=Nsrc� to reduce autocorrelations. Roughly following
Ref. [48] we use random-wall sources at the pion source
time tsrc. On that spatial time slice, we choose four
stochastic color-vector fields from a Gaussian distribution,
with support on all three colors, and compute light-quark
propagators from each of the four sources. Between the
source and the kaon sink at time tsrc þ T, we contract the
extended strange propagator with a light propagator to form
the scalar density. We then study the t dependence to isolate
the desired matrix element.

TABLE I. Parameters of the Nf ¼ 2þ 1þ 1 gauge-field ensembles used in this work, and details of the correlation functions
generated. A dagger at the end of a row indicates an ensemble that is new since our work in Ref. [23]; an asterisk indicates that the
statistics have been increased. Nconf is the number of configurations included in the analysis; Nsrc the number of time sources used on
each configuration; and L and Lt the spatial and temporal sizes of the lattice, respectively. The column labeled T lists the source-sink
separations for the three-point functions generated on each ensemble. Themπ values are in MeV, withmπ;P the Goldstone (pseudoscalar
taste) π mass, andmRMS

π the root-mean-squared (over all tastes) π mass. The ensemble with a ≈ 0.12 fm,ml=ms ¼ 0.1 andmπ;PL ¼ 3.2
is used solely for the study of finite-volume effects.

≈aðfmÞ ml=msea
s mπ;PL L3 × Lt Nconf × Nsrc T amsea

s amval
s mπ;P mRMS

π

0.15 0.035 3.2 323 × 48 1000 × 4 12,13,15,16,17,18 0.0647 0.069 05 130 314
0.12 0.2 4.5 243 × 64 1053 × 8 15,18,20,21,22 0.0509 0.0535 299 364

0.1 3.2 243 × 64 1020 × 8 15,18,20,21,22 0.0507 0.053 221 303 †
0.1 4.3 323 × 64 993 × 4 15,18,20,21,22 0.0507 0.053 216 299
0.1 5.4 403 × 64 1029 × 8 15,18,20,21,22 0.0507 0.053 214 298 *
0.035 3.9 483 × 64 945 × 8 15,18,20,21,22 0.0507 0.0531 133 246

0.09 0.2 4.5 323 × 96 773 × 4 23,27,32,33,34 0.037 0.038 301 323
0.1 4.7 483 × 96 853 × 4 23,27,32,33,34 0.0363 0.038 215 221
0.035 3.7 643 × 96 950 × 8 23,27,32,33,34 0.0363 0.0363 130 176 *

0.06 0.2 4.5 483 × 144 1000 × 8 34,41,48,49,50 0.024 0.024 304 308 *
0.035 3.7 963 × 192 692 × 6 31,39,40,48,49 0.022 0.022 135 144 †

0.042 0.2 4.3 643 × 192 432 × 12 40,52,53,64,65 0.0158 0.0158 294 296 †
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The light-quark masses are always the same in the sea
and valence sectors, while the sea and valence strange-
quark masses are slightly different in some of the ensem-
bles3; see Table I. Table I also lists the number of
configurations and time sources on each ensemble. We
compute three-point functions as described above for 5 or 6
different values of the source-sink separation T, listed in
Table I, which correspond to approximately the same
physical distances across ensembles. We include both even
and odd values of T to disentangle the effects from
oscillating states in the correlation functions.
We simulate directly at zero momentum transfer, q2 ≈ 0,

by tuning the external momentum of the pion using
partially twisted boundary conditions. In particular, we tune

jθ⃗2j ¼
L
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

K þm2
π

2mK

�
2

−m2
π

s
; ð2:3Þ

with θ⃗2 the twist angle of the daughter propagator going
from the pion to the current. The rest of the propagators are
generated with periodic boundary conditions, the same as
in the sea sector. We always have diagonal twist angles,

θ⃗2 ¼ jθ⃗2jð1; 1; 1Þ=
ffiffiffi
3

p
, which turn out to give smaller finite-

volume effects than twisting in only one direction [40]. The
values of jθ⃗2j for each ensemble, as well as the correspond-
ing momentum of the pion, are given in Table II.
For each ensemble, we generate zero-momentum two-

point π and K correlation functions and two-point π
correlation functions with external momentum given by
the twist angle θ⃗2, defined in Eq. (2.3). These correlators
are given by

CP
2ptðp⃗; tÞ¼

1

L3

X
x⃗

X
y⃗

hΦp⃗
Pðy⃗; tþ tsrcÞΦp⃗†

P ðx⃗; tsrcÞi; ð2:4Þ

where the interpolating operator Φp⃗†
P ðx⃗; tÞ creates a meson

P ¼ π, K at time t with momentum p⃗. The random wall
sources automatically implement the sum over x⃗. We also
generate three-point correlation functions with the kaon at
rest:

CK→π
3pt ðp⃗π; p⃗K ¼ 0; t; tsrc; TÞ

¼ 1

L3

X
x⃗;y⃗;z⃗

hΦp⃗K¼0
K ðx⃗; tsrc þ TÞSðz⃗; tÞΦp⃗π†

π ðy⃗; tsrcÞi; ð2:5Þ

where the pion recoil momentum p⃗π is either equal to zero
or to the values listed in Table II. The scalar density is a
local taste-singlet.

B. Fit methods and statistical analysis

The fitting strategy we follow to extract the physical
quantities from our correlation functions has already been
discussed in Refs. [27,49]. We fit the two-point correlation
functions for a pseudoscalar meson P to the expression

TABLE II. Twisting angles and external momenta injected in
the three-point functions. The quark masses aml and amsea

s are
the same as in Table I, and θ⃗2 is the twisting angle for the light
daughter propagator in the pion, defined in Eq. (2.3). The
superscript P in the pion masses refers to the pseudoscalar taste.

0.25 ≈ aðfmÞ ml=msea
s mπ;PL jθ⃗2j jap⃗Pj

0.15 0.035 3.2 1.80966 0.17766
0.12 0.2 4.5 0.84749 0.11094

0.1 3.2 0.98192 0.12853
0.1 4.3 1.30923 0.12853
0.1 5.4 1.63653 0.12853
0.035 3.9 2.16464 0.14168

0.09 0.2 4.5 0.82675 0.08117
0.1 4.7 1.45024 0.09492
0.035 3.7 2.08413 0.10230

0.06 0.2 4.5 0.81673 0.05345
0.035 3.7 2.01756 0.06602

0.042 0.2 4.3 0.78006 0.03829

FIG. 1. Gauge-field ensembles analyzed in this work (param-
eters of these gauge-field ensembles are listed in Table I). The
area of each disk is proportional to the statistical sample size
Nconf × Nsrc. Ensembles on which we have increased the statistics
or we have added since our earlier work in Ref. [24] are indicated
with black outlines. The three disks with a ≈ 0.12 fm and mπ ≈
200 MeV correspond to the three ensembles with ml=msea

s ¼ 0.1
and different volumes (smaller to larger from top to bottom) in
Table I. The yellow disk (smallest volume) is not included in the
final analysis but used only to study finite-volume effects.

3At the time the analysis began, the physical value of ams on
those ensembles had been determined more accurately than when
the ensembles were generated. We used the more accurate values
for the valence strange-quark mass to be closer to the physical
point.
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CP
2ptðp⃗P; tÞ ¼

XNexp

m¼0

ð−1Þmðtþ1ÞðZP
mÞ2ðe−Em

P t þ e−E
m
P ðLt−tÞÞ;

ð2:6Þ

using Bayesian techniques. In Eq. (2.6), Lt is the temporal
size of the lattice. The oscillating terms with ð−1Þmðtþ1Þ do
not appear for a zero-momentum π. We fit the three-point
correlation functions to

CK→π
3pt ðp⃗π; p⃗K; t;TÞ

¼
XN3pt

exp

m;n¼0

ð−1Þmðtþ1Þð−1ÞnðT−tþ1ÞAmnðq2ÞZπ
mZK

n

× ðe−Em
π tþe−E

m
π ðLt−tÞÞðe−En

KðT−tÞ þe−E
n
KðLt−TþtÞÞ; ð2:7Þ

where the pion and kaon energies and amplitudes, En
π , En

K ,
Zπ
n and ZK

n , are the same as those appearing in the two-point
fit functions.
We first fit the two-point functions one by one on each

ensemble and check the stability of the ground state
masses/energies and amplitudes under the choice of fitting
range, t ∈ ½tmin; tmax�, and the number of exponentials
included in the fit function [Nexp in Eq. (2.6)]. We always
include the same number N of regular and oscillating states
in those fits, i.e., Nexp ¼ 2N. To evaluate the relative
quality of the fits we use the χ2=dof and the Q value
defined in Ref. [50], a quality of fit statistic adapted for fits
with Bayesian priors that is similar to the standard p value
[3]. By construction, Q ∈ ½0; 1� with larger Q values
indicating greater compatibility between the data and fit
function given the prior constraints—see Ref. [50] for
details and explicit formulas. In particular, we disregard
any fit with Q < 0.1. We also disregard fits with
χ2=dof ≲ 0.05, since those low χ2=dof are generally an
indication of a bad identification of the ground state and the
corresponding fits tend to be unstable with the variation of
tmin, number of exponentials, and/or bootstrap resampling.
We observe that for most of the choices of time range and

for all ensembles, fits stabilize when including 2þ 2 or
3þ 3 states. From that parameter-scanning procedure, we
select an optimal set of fit parameters for the two-point
functions, with a common tmin for all the functions on the
same ensemble. Fixing N ¼ 3, the chosen tmin is the
smallest value for which the ground state parameters for
all relevant two-point functions reach a plateau and, in
addition, for which the fit results (central values, errors, and
quality) are stable under variations of the number of
exponentials and bootstrap resampling. For a fixed tmin,
tmax is chosen, in general, as the value for which fit results
are insensitive to the addition of late-time data for which
statistical errors are larger.
We then use those ½tmin; tmax� ranges to perform a fully

correlated combined Bayesian fit including the two- and

three-point functions needed to extract fKπ0 ð0Þ: π two-point
correlation functions with and without momentum; K two-
point correlation functions without momentum; and NT

three-point correlation functions with q2 ≈ 0, where NT is
the number of source-sink separations T included in the
combined fit. In general, we include three-point functions
only at NT ¼ 3 or 4 different values of T out of the 5 or 6,
for which we have data. However, the T values included in
the combined fits generally cover most of the available
range, corresponding to a physical range of ≈0.5–1.0 fm.
This allows us to resolve excited states while at the same
time including data with good ground state contributions.
We find that the resulting fits are stable under variations of
time range, number of exponentials, and bootstrap resam-
pling. We also find that adding more T values does not
improve the quality (error and stability) of the fits. Table III
lists our parameter choices for the combined three-point
function fits.
In general, we use three-point data in the combined fits

with t ∈ ½tmin; T − tmin�, where tmin is the value optimized
for the two-point functions. However, on some ensembles,
especially the largest ones, we need to either shorten the
three-point fit range or thin the three-point data in order to
obtain an acceptable fit, as measured by the χ2=dof and
Q value. A comparison of fit results to data for the
a ≈ 0.09 fm ensemble with physical quark masses, one of
the most relevant in our analysis, is given in Fig. 2. This
is a typical case, the comparisons of the fits and data on
the other ensembles are similar. The figure plots the
rescaled three-point functions, in which the time-
dependent contributions of the kaon and pion ground
states are removed:

TABLE III. Values of the source-sink separation T and tmin in
our preferred fits; results for the vector form factor at zero
momentum transfer; and one-loop finite-volume corrections,
ΔVfþð0Þ ¼ fVþð0Þ − f∞þ ð0Þ, on each ensemble—see Sec. III A
for details of the calculation of ΔVfþð0Þ. The errors in fþð0Þ
are statistical only. They are generated with a 500-bootstrap
distribution.

≈aðfmÞ ml=msea
s mπ;PL T tmin fþð0Þ ΔVfþð0Þ

0.15 0.035 3.2 12,16,17 4 0.9744(24) −0.0007
0.12 0.2 4.5 15,21,22 5 0.9874(24) 0.0002

0.1 3.2 15,18,21 4 0.9830(31) −0.0003
0.1 4.3 15,18,21 4 0.9808(22) −0.0001
0.1 5.4 15,18,21 4 0.9809(17) −4 × 10−5

0.035 3.9 18,21,22 6 0.9707(18) −0.0003
0.09 0.2 4.5 27,32,33 3 0.9868(18) 0.0006

0.1 4.7 23,27,32 6 0.9807(22) 0.0002
0.035 3.7 23,27,32 8 0.9709(27) −0.0001

0.06 0.2 4.5 34,41,49,50 8 0.9862(16) 0.0008
0.035 3.7 31,40,49 10 0.9697(33) 0.0005

0.042 0.2 4.3 40,52,53 12 0.9856(37) 0.0010
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C3pt;rescaled

¼ CK→π
3pt ðp⃗π; 0; t; TÞ

Zπ
0Z

K
0 ðe−E

0
π t þ e−E

0
πðLt−tÞÞðe−E0

KðT−tÞ þ e−E
0
KðLt−TþtÞÞ :

ð2:8Þ

In the absence of excited state contributions C3pt;rescaled

would be time independent. Figure 2 shows the

comparison of the rescaled correlation functions included
in the fit (filled green points) with the results from the fit
(open orange circles). We see that the C3pt;rescaled exhibit
plateaus with a mild oscillation that is more pronounced
for the smaller T value, but which can be accounted for
almost entirely by the first oscillating state included in the
fit. The agreement between data and the fit is excellent,
especially for the time ranges included in the fit, marked
by the orange lines. For times closer to the source or
the sink, the large errors on the orange points indicate
a substantial contribution from the excited states included
in the fit that the data cannot constrain accurately.
Nevertheless, the falloff of the correlators is well
described by the fit functions.
From the combined fits, we extract the scalar form factor

at zero momentum transfer via

fKπ0 ð0Þ ¼ 2A00ð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
EπmK

p ms −ml

m2
K −m2

π
; ð2:9Þ

where A00ð0Þ is the ground state three-point parameter in
Eq. (2.7), the meson masses and energies are the values
extracted from the combined fits and ms and ml are the
valence strange and light-quark masses simulated.
We check the stability of the combined fit results under

the variation of fit ranges, number of states, and number and
values of source-sink separations included, and choose a
preferred fit for each ensemble so the shift on the central
value with those variations is well under the statistical error,
and the error is also stable. Examples of these stability
studies are shown in Fig. 3. On a few ensembles, the
stability tests lead to slight adjustments of our chosen value
of tmin, from the tmin determined in the two-point only fits

5 10 15 20
t

C
3p

t, 
no

rm
al

iz
ed

Fitted correlator (fit range)
Fitted correlator
Correlator data

T = 32

T = 27

T = 23

2
 /dof = 0.75       Q = 0.95χ

FIG. 2. Comparison of data and fit results for the rescaled three-
point functions defined in Eq. (2.8) on the a ≈ 0.09 fm ensemble
with physical quark masses. Green squares are the data points and
orange circles are obtained from the fit posteriors. The fit includes
the three three-point functions shown, with T ¼ 23, 27, 32, in the
fit ranges shown by the orange lines. Correlators with T ¼ 27, 23
are given a vertical offset, different for each T, so results for the
three correlators do not lie on top of each other. Errors are
statistical only.

FIG. 3. Variation of the fit result for fþð0Þ with tmin (left panel) and Nexp (right panel) for the ensemble with a ≈ 0.09 fm and physical
light-quark masses. The errors are statistical, generated with a 500-bootstrap distribution. The black point on each figure corresponds to
our preferred fit with tmin ¼ 8 and Nexp ¼ 3þ 3.
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discussed above. Our final choices of tmin correspond to
very similar physical distances, approximately 0.6–0.7 fm,
on each ensemble. The number of exponentials is always
chosen to be 3þ 3, since also for these combined fits
adding more exponentials does not change the fit results
and also does not improve fit stability. The parameter
values used in the preferred combined fits are listed in
Table III.
We study the effect of autocorrelations by blocking the

data by increasing numbers of successive configurations
and redoing the analysis. We do not see evidence of
significant autocorrelations on all ensembles, but for those
where we do see significant changes in central value and
error, stability is reached with a block size of 4. For
ensembles where we observe significant changes in central
value and error for the form factor with blocking, those
effects stabilize when blocking by 4. An example for the
ensemble with a ≈ 0.15 fm and physical quark masses is
given in Fig. 4. Similar results are obtained for the other
ensembles. An alternate estimate of autocorrelation effects
can be obtained by calculating the integrated autocorrela-
tion time. We find that the integrated autocorrelation times
in the two-point correlation functions included in our
analysis are all smaller than 1.4, suggesting that a reason-
able block size would be 3 or less. We thus choose to
account for autocorrelation effects and block the data in all
ensembles by 4. In another test, we construct the covariance
matrix from the correlation matrix obtained with the
unblocked data together with the variances obtained from
the blocked data [46]. Using the same fit setup and
parameter choices as before, we find results that are
essentially the same as those obtained with our preferred
fit method.

In Table III and Fig. 5, we show the raw results for the
vector form factor at zero momentum transfer from the
combined fits described above. The statistical errors shown
in the table and the figure as a function of aml=am

physical
s

come from 500 bootstrap resamples and range from 0.16%
to 0.38%. The fully correlated covariance matrix is recal-
culated on each bootstrap resample. In the figure, one can
see that for a fixed value of the light-quark mass, ml, the
points with different shapes, which correspond to different
values of the lattice spacing, lie on top of each other, with
the exception of the data point for the 0.15 fm ensemble
with physical quark masses (in the leftmost cluster of
points). This is the only ensemble where we observe
statistically significant discretization effects.

III. FORM-FACTOR CORRECTIONS

Before performing the chiral-continuum fit, we correct
the form-factor results listed in Table III and shown in
Fig. 5 for the leading-order finite-volume effects and the
nonequilibrated topological charge in our finest ensemble.
These corrections are described in the following two
subsections.

A. Finite volume

In this work we use NLO ChPT to correct our form-
factor results for finite-volume effects, whereas in our
previous calculation [23,24] we simply estimated the
associated systematic error from a comparison of the lattice
data at two different spatial volumes, with other parameters
held fixed. The partially twisted boundary conditions used
in our calculation introduce several complications in the
analysis. In particular, an extra form factor hμ is required to

FIG. 4. Variation of fþð0Þ with the block size for the ensemble
with a ≈ 0.15 fm and physical quark masses. The errors are
statistical, generated with a 500-bootstrap distribution. The black
point corresponds to our preferred fit with Nblock ¼ 4.

FIG. 5. Form factor fK
0π−ð0Þ vs light-quark mass. The data

points are the raw results listed in Table III before applying the
corrections described in Sec. III. Errors shown are statistical only,
obtained from 500 bootstrap resamples. Different symbols and
colors denote different lattice spacings. Data at the same light-
quark mass but different lattice spacing are offset horizontally.
The open orange circle corresponds to the smallest volume
ensemble with a ≈ 0.12 fm and ml=ms ¼ 0.1.
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parametrize the weak-current matrix element in finite
volume:

hπ−ðp0ÞjVμjK0ðpÞi ¼ fþðpμ þ p0
μÞ þ f−qμ þ hμ: ð3:1Þ

The three form factors depend on the choice of twisting
angles, as well as the value of q2.
We apply the one-loop formulas in Ref. [40] in the

staggered partially twisted partially quenched case to all
ensembles included in our calculation for the choices of
twist angles in Table III. Because we are calculating the
vector form factor at zero momentum transfer via the
relation in Eq. (2.2), and the quantity we obtain at finite
volume on the lattice is hπjSjKiðms −mdÞ=ðm2

K −m2
πÞ, the

FV correction to our results is given by

ΔVfþð0Þ≡fVþð0Þ−f∞þ ð0Þ

¼ ðms−mdÞΔVhπjSjKi
ðmV

KÞ2− ðmV
π Þ2

−
ðms−mdÞhπjSjKiVðΔVm2

K −ΔVm2
πÞ

½ðmV
KÞ2− ðmV

π Þ2�2
; ð3:2Þ

where the meson masses in the denominators are the ones
from the simulations, and quantities that are second order
in the finite-volume corrections have been neglected. In
Eq. (3.2), the FV correction for a given quantity X, ΔVX, is
defined as ΔVX ≡ XV − X∞. Notice that, since we extract
the meson masses from correlation functions where all the
propagators have zero momentum, the FV corrections to
the meson masses should be calculated from the formulas
in Ref. [40] with zero twisting angles.
The resulting FV corrections are listed in the last column

of Table III. We find that they are ≤ 0.1% on all ensembles.
Some of the values for ΔVfþð0Þ are particularly small due
to the cancellation between the two contributions in
Eq. (3.2). We subtract the ΔVfþð0Þ from the finite-volume
fKπþ ð0Þ (listed in the next-to-last column in Table III) before
performing the chiral-continuum fit discussed in Sec. IV.

B. Nonequilibrated topological charge

The HISQ Nf ¼ 2þ 1þ 1 MILC simulations with
smallest lattice spacings have reached a regime where
the distribution of the topological charge Q is not properly
sampled [41,51], which affects the physical observables
calculated on those ensembles. The issue is relevant here
for the ensemble with the finest lattice spacing,
a ≈ 0.042 fm. On the other hand, the topological charge
is reasonably well equilibrated on the other ensembles,
which have a≳ 0.06 fm.
In order to correct for this systematic effect, one can use

ChPT to study the Q-dependence of a given observ-
able [41,52,53]. The recent ChPT study in Ref. [41] has
already been applied to the calculation of heavy-light

meson decay constants and masses in Refs. [46,54].
Here, we extend the analysis of Ref. [41] to fKπþ ð0Þ.
The three-point correlation functions relevant for this

study, as well as any meson mass calculated in a finite
volume V and at fixed Q, satisfy [52,53]

BjQ;V ¼ Bþ 1

2χTV
B00

�
1 −

Q2

χTV

�
þ O

�
1

ðχTVÞ2
�
; ð3:3Þ

where B on the right-hand side is the infinite-volume value
of the quantity of interest averaged over Q; B00 is its second
derivative with respect to the vacuum angle θ, evaluated at
θ ¼ 0; and χT ¼ limV→∞hQ2i=V is the infinite-volume
topological susceptibility. Knowing the dependence on Q
or, equivalently, on θ, one can calculate the appropriate
correction to B to account for the difference between the
correct hQ2i and the simulation hQ2isample.
With Eq. (3.3), we follow Ref. [41] to calculate the

correction as

ΔQfKπþ ð0Þ≡ fKπþ ð0Þsample − fKπþ ð0Þequil

¼ 1

2χTV
ðfKπþ ð0ÞÞ00

�
1 −

hQ2isample

χTV

�
; ð3:4Þ

where fKπþ ð0Þsample is the simulation value.
Although we extract fKπþ ð0Þ from the scalar-density

matrix element in Eq. (2.2) it is simpler to first calculate
the θ dependence of the vector-current matrix element
directly. In ChPT, the vector current with the relevant
flavor is

Vμ ¼ f2

4
ð∂μΣΣ† − Σ†∂μΣÞ13; ð3:5Þ

where Σ is the SU(3) chiral matrix. In the presence of θ, and
for themu ¼ md ¼ ml and full QCD case (the case relevant
for this work), the Oðp2Þ ChPT Lagrangian is

Lχ ¼
f2

8
trð∂μΣ∂μΣ†Þ − μf2

4
trðM�

AΣþMAΣ†Þ; ð3:6Þ

where f is the chiral-limit value of the meson decay
constant, and μ the low-energy constant that relates meson
and quark masses at leading order (LO)—see Eq. (4.3).
Here MA ≡ eiθ=3M, with M the usual quark mass matrix
in the absence of θ.
When θ ≠ 0, Σ gets the vacuum expectation value

hΣi ¼

0
B@

eiα 0 0

0 eiα 0

0 0 e−2iα

1
CA: ð3:7Þ

The parameter α encodes the dependence on θ, with
αðθ ¼ 0Þ ¼ 0. The relation between α and θ is obtained
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by minimizing the potential energy term in the Lagrangian,
which gives the condition

ml sin

�
α −

θ

3

�
þms sin

�
2αþ θ

3

�
¼ 0: ð3:8Þ

For the expansion of the relevant observables, one needs α0,
the first derivative of α with respect to θ evaluated at θ ¼ 0.
Equation (3.8) implies [41]

α0 ¼ ml −ms

3ðml þ 2msÞ
: ð3:9Þ

One may expand Σ around its vacuum expectation
value via

Σ ¼
ffiffiffiffiffiffiffi
hΣi

p
e2iΦ=f

ffiffiffiffiffiffiffi
hΣi

p
; ð3:10Þ

with Φ the 3 × 3 matrix of meson fields. With this result
substituted into Eq. (3.5), at tree level there are two possible
diagrams, shown in Fig. 6, that may contribute to the matrix
element hπjVμjKi. The strong three-point vertex in the
right-hand diagram is forbidden by parity when θ ¼ 0, but
here comes from the mass term in Eq. (3.6), which violates
parity symmetry unless one also takes θ → −θ (which is
called “extended parity”). The weak vertex in the right-
hand diagram generates a factor of qμ, implying that
diagram contributes only to the form factor f−. From the
left-hand diagram, one finds

fKπþ ð0Þ ¼ cos

�
3

2
α

�
: ð3:11Þ

Finally, from Eq. (3.9), the result needed to adjust the form
factor via Eq. (3.4) is

fKπþ ð0Þ00 ¼ −
1

4

ðml −msÞ2
ðml þ 2msÞ2

: ð3:12Þ

Because we actually use Eq. (2.2) to calculate fKπþ ð0Þ, it
is important to check that we can reproduce Eq. (3.12) by

calculating the matrix element of the scalar density that
appears in the θ ≠ 0 Ward identity at q2 ¼ 0,

fKπþ ð0Þ ¼ 1

m2
K −m2

π
hπjS̃jKiq2¼0; ð3:13Þ

with S̃ ¼ 1
2
ψ̄ ½λf;M�ψ , and λf ∈ SUðNfÞ the appropriate

flavor matrix to select the s̄u current. Note that it is no
longer convenient to take out a factor ofms −ml from S̃, as
we do for S in Eq. (2.2), because the quark masses now
carry factors of expð�iθ=3Þ. In ChPT,

S̃ ¼ −
f2

4
μðΣM�

A þ Σ†MA −M�
AΣ −MAΣ†Þ13: ð3:14Þ

Evaluating the diagrams in Fig. 6, we find

hπjS̃jKiq2¼0 ¼ μðms −mlÞ cos
�
α

2
þ θ

3

�

þ 2

3

ms −ml

m2
K

μ2 sin

�
α

2
þ θ

3

�

×

�
ms sin

�
2αþ θ

3

�
− 2ml sin

�
α −

θ

3

��
;

ð3:15Þ

where the contributions in the first and second lines
come from the propagator and vertex diagrams in Fig. 6,
respectively.
The Ward identity in Eq. (3.13) is then satisfied trivially

at LO for θ ¼ 0. For θ ≠ 0, we may calculate fKπþ ð0Þ00 from
Eq. (3.13) using Eq. (3.9), the fact that α00 ¼ 0 (which
follows from extended parity), and the second derivatives

m00
π ¼ −mπð0Þ

m2
s

2ðml þ 2msÞ2
;

m00
K ¼ −mKð0Þ

mlms

2ðml þ 2msÞ2
ð3:16Þ

from [41]. After some algebra, we find that the result agrees
with Eq. (3.12), as expected. We have also checked analyti-
cally that the Ward identity holds for arbitrary q and θ.
Following the procedure in Ref. [41] for the partially

quenched case, we may generalize Eq. (3.12) to

fKπþ ð0Þ00 ¼ −
1

4

m2
l m

2
s

ðml þ 2msÞ2
ðmx −myÞ2

m2
xm2

y
; ð3:17Þ

where x and y are the active valence quarks [the valence up
and strange for fK

0π−þ ð0Þ], and ml and ms are the light and
strange sea quark masses. In deriving Eq. (3.17), we have
set the spectator quark mass (the d quark mass for fK

0π−þ )
equal to the light sea mass ml; in other words, the spectator
quark is unitary, not partially quenched. This has allowed

FIG. 6. Diagrams contributing to hπjρjKi at tree level, where ρ
is either the vector current Vμ or the scalar density S̃. The squares
are weak vertices with the insertion of the current or density and
the black dot is a strong vertex.
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us to avoid analyzing the case of three partially quenched
quarks, which was not treated in Ref. [41]. Since the mass
of the spectator quark does not affect fK

0π−þ ð0Þ to LO, we
believe Eq. (3.17) will remain valid even when the spectator
quark is partially quenched. As expected, Eq. (3.17)
reduces to Eq. (3.12) when mx ¼ ml and my ¼ ms.
As discussed at the beginning of this section, the

correction is only needed on the finest ensemble included
in this analysis, with a ≈ 0.042 fm. We calculate the
correction of Eq. (3.4) using Eq. (3.12), the value of the
average of the topological charge measured on that ensem-
ble, hQ2isample ¼ 27.59 [41], and the correct hQ2i as
estimated by the LO ChPT expression for the topological
susceptibility [55,56]

χT ¼ f2π
4

�
1

2m−2
ll;I þm−2

ss;I

�
; ð3:18Þ

where the singlet meson sea masses are defined in Eq. (4.3),
below. The resulting correction ΔQfKπþ ð0Þ ¼ 0.000 18 is
subtracted from the fKπþ ð0Þsample value listed in the last row
of Table III before performing the chiral-continuum fit.

IV. CHIRAL-CONTINUUM INTERPOLATION/
EXTRAPOLATION

We follow a methodology very similar to that in our
previous analyses [23,24] in order to combine our simu-
lation data into physical results in the continuum limit and
with the correct quark/meson masses. Here we summarize
the main ingredients and then discuss in more detail the
new features added in order to accurately account for finite-
volume and isospin-breaking corrections. Accounting for
these effects turns out to be essential, given the improve-
ments in the simulation data.
Our methodology is developed in the framework of

chiral perturbation theory, which allows us to incorporate
effects due to mass dependence, discretization, finite
volume, and isospin breaking in a systematic way. In
particular, in the isospin limit, we can write fKπþ ð0Þ as a
chiral expansion

fKπþ ð0Þ ¼ 1þ f2 þ f4 þ f6 þ � � � ; ð4:1Þ

where the functions fi are chiral corrections of OðpiÞ. The
Ademollo-Gatto (AG) theorem [57] ensures that the vector
form factor goes to 1 in the limit ms → mu, and that
corrections to this limit are second order. That means that
the functions fi are proportional to ðms −muÞ2 or, equiv-
alently, ðm2

K −m2
πÞ2. The theorem thus implies that, in the

continuum, the Oðp2Þ (one-loop) contribution, f2, is
completely fixed in terms of experimental quantities: the
decay constant fπ and meson masses.
The specific fit function we employ for the extrapolation

to the continuum and interpolation to the physical quark

masses is the same as in Ref. [23]. It consists of a NLO
partially quenched staggered ChPT (PQSChPT) expression
[58] fPQSChPT2 ðaÞ, plus NNLO continuum ChPT terms [59]
fcont4 , plus extra analytic terms to parametrize higher-order
discretization and chiral effects. Schematically, it can be
written

fKπþ ð0Þ ¼ 1þ fPQSChPT2 ðaÞ þ fcont4 þ g1;a

þ r41ðm2
π −m2

KÞ2½C̃4 þ g2;a þ hmπ
�; ð4:2Þ

where the functions g1;a and g2;a account for higher-order
discretization effects, and the function hmπ

includes ana-
lytical terms that parametrize higher-order chiral effects.
We have taken the pure counterterm contribution at two
loops out of fcont4 and written it separately. This contribu-
tion corresponds to the term proportional to C̃4, which is
given by the combination of low-energy constants (LECs)
C12 þ C34 − L2

5. The Oðp4Þ LEC L5 can be extracted from
global fits or from lattice-QCD calculations of light-light
quantities, but the Oðp6Þ LECs C12 and C34 [60,61] are not
known. (Only model-based estimates and imprecise global
fit values exist.) We therefore take C̃4 as a constrained fit
parameter. All dimensionful quantities entering in the fit
function in Eq. (4.2) are converted into r1 units by using the
values of r1=a in Table IV.
Since our simulations are performed in the isospin limit,

mu ¼ md, f2 and f4 are evaluated for degenerate up and
down quarks. The explicit NLO PQSChPT function
fPQSChPT2 ðaÞ can be found in Ref. [58]. It incorporates
the dominant discretization effects coming from the taste-
symmetry breaking of staggered fermions. The function
fPQSChPT2 ðaÞ depends on the HISQ taste splittings ΔΞ
through the sea meson masses

m2
ij;Ξ ¼ μðmi þmjÞ þ a2ΔΞ; ð4:3Þ

with mi, mj sea quark masses, the slope μ to be determined
by fits of the ChPTexpressions to experimentally measured
meson masses, and Ξ labeling the meson taste. Values of
ΔΞ for each ensemble are given in Table IV. The function
fPQSChPT2 ðaÞ also depends on the taste-violating hairpin
parameters, δ0V and δ0A, which come from ChPT discon-
nected diagrams. We fix the taste splittings in the fit
function to their values in Table IV since they are precisely
enough known that the corresponding errors do not affect
our results significantly. The values are from Ref. [45], as
well as unpublished updates with better statistics and the
inclusion of new ensembles not previously analyzed. The
uncertainty in the hairpin parameters is, however, quite
large. We therefore treat them as constrained fit parameters
with central values and widths equal to those in Table V,
determined from fits to light-light meson quantities [66].
Their uncertainty is thus propagated to the final fit errors.

jVusj FROM Kl3 DECAY AND FOUR-FLAVOR LATTICE QCD PHYS. REV. D 99, 114509 (2019)

114509-11



For some of the meson masses that appear in f2 there are
no experimental measurements or lattice results, as for
example, for mvalence

ss or for the sea-valence meson masses
involving strange quarks. Because we use values given by
NLO ChPT for these masses, our f2 function has some
dependence on the corresponding Oðp4Þ LECs Li. This is
the best approximation we have, and we find that different
implementations of higher-order corrections result in
changes to the central values that are significantly smaller
than the statistical errors.
The continuum NNLO ChPT function fcont4 also depends

on the Oðp4Þ LECs.We take most of them as constrained fit
parameters with prior central values equal to the posteriors
obtained in the Oðp6Þ global fit BE14 in Ref. [65]. We take
as an input parameter the combination 2L6 − L4 instead of
L4 because the fit is more sensitive to that combination and
because L4 is fixed in fit BE14. The prior widths are set to
twice the errors in Ref. [65]. The chiral scale, at which the
LECs and chiral logarithms in the ChPT expression of
Eq. (4.2) are evaluated, is set equal to the mass of the ρ
meson, i.e., Λχ ¼ Mρ. The Oðp4Þ LECs from Ref. [65],
used as priors here, agree within errors with (but are more
precise than) the only realistic lattice calculations available
at the moment: the Nf ¼ 2þ 1 MILC [13] and the Nf ¼
2þ 1þ 1 HPQCD [12] calculations. The prior central
values and widths used in our chiral-continuum fit to
Eq. (4.2) are listed in Table V.
The Oðp4Þ LECs L7 and L8 appear only in the isospin

corrections and in the NLO expressions for some of the
meson masses in f2 and f4. Their effect on f2 and f4 in the
isospin limit is, however, negligibly small, and their main
impact is via the isospin-breaking corrections, which are

TABLE V. Priors for the fit parameters entering in Eq. (4.2), as
well as the posterior values obtained for those parameters in our
preferred fit. The dimensionless χPT parameter s is given by the
quantity 1=ð8π2ðr1fπÞ2Þ ≈ 0.3. The priors listed for the hairpin
parameters are for the a ≈ 0.12 fm ensembles, and those for the
other lattice spacings are obtained by rescaling these numbers,
assuming that the hairpin parameters scale like the average of the
ΔΞ. These values are obtained from fits to light-light quantities
using two-loop PQChPT [66]. The uncertainty includes statistical
and systematic errors. The prior central values for the NLO LECs
are from fit BE14 in Ref. [65] withΛχ ¼ 0.77 GeV,while the prior
widths are twice the errors in Ref. [65]. We fix the LECs L7 andL8

and give their values inTable IV, as explained in the text. The entries
“−0.000” denote small negative numbers that round to zero.

Fit parameters
Gaussian priors

(central value � width)
ChPT fit
posteriors

r21a
2δ0V 0.050� 0.024 0.050� 0.024

r21a
2δ0A −0.0946� 0.0094 −0.0958� 0.0093

K1 0� 0.01 0.001� 0.010
K2 0� 0.03 0.001� 0.030
K0

2 0� 0.81 0.083� 0.063
K3 0� 0.015 −0.000� 0.015
C̃4 0� s2 −0.052� 0.006
C̃6 0� s3 0.006� 0.022
C̃8 0� s4 −0.000� 0.008
Lr
1ðΛχÞ × 103 0.53� 0.12 0.55� 0.12

Lr
2ðΛχÞ × 103 0.81� 0.08 0.81� 0.08

Lr
3ðΛχÞ × 103 −3.07� 0.40 −3.03� 0.40

½2Lr
6 − Lr

4ðΛχÞ� × 103 −0.02� 0.10 −0.01� 0.11
Lr
5ðΛχÞ × 103 1.01� 0.12 1.00� 0.12

Lr
6ðΛχÞ × 103 0.14� 0.10 0.13� 0.09

TABLE IV. Inputs for the parameters taken as fixed in the fit function. The r1=a values are obtained from a mass-
independent scale setting [45,62]. The absolute scale r1 is from Ref. [63]. The value of the decay constant fπ is taken
from Ref. [3]; its error, though shown, is negligible in our calculation. Taste splittings r21a

2ΔΞ are taken from
Ref. [45] and more recent updates; slopes aμ come from the analysis presented in Ref. [64], although they were not
published there. We do not consider errors either on the taste splittings or on the slopes because they also have a
negligible effect on the final results. Notice that taste splittings for the a ≈ 0.042 fm ensemble are not measured but
obtained from the 0.06 fm results, by applying the expected scaling factor α2sa2. The LECs L7 and L8, both central
values and errors, are taken from fit BE14 in Ref. [65].

≈a (fm) 0.15 0.12 0.09 0.06 0.042 Continuum

r1 0.3117� 0.0022 fm
fπ 130.50� 0.13 MeV
Λχr1 ¼ Mρr1 1.2163
aμ 2.0565 1.6994 1.2820 0.8873 0.6986
r1=a 2.090(6) 2.608(4) 3.588(7) 5.442(10) 7.143(24)
r21a

2ΔP 0 0 0 0 0
r21a

2ΔV 0.301197 0.167563 0.052723 0.009542 0.004794
r21a

2ΔT 0.204127 0.103326 0.034894 0.006974 0.003504
r21a

2ΔA 0.106046 0.053983 0.018187 0.003588 0.001803
r21a

2ΔI 0.399862 0.209269 0.066393 0.012493 0.006276
Lr
7ðΛχÞ × 103 −0.34� 0.09

Lr
8ðΛχÞ × 103 0.47� 0.10

A. BAZAVOV et al. PHYS. REV. D 99, 114509 (2019)

114509-12



added after performing the chiral-continuum fit (see
Sec. V F). We choose then to take L7 and L8 as fixed
parameters in the chiral-continuum fit and include their
uncertainties in the total error as described in Sec. V B.
Once the Oðα2sa2Þ taste-violating discretization errors for

staggered fermions are removed through the explicit
dependence on a of fPQSChPT2 ðaÞ, the dominant discretiza-
tion errors at Oðp2Þ in ChPT are Oðαsa2Þ and Oða4Þ. Since
we are forced to use continuum ChPT at Oðp4Þ, the
discretization errors there are Oðαsa2Þ and Oðα2sa2Þ. We
take these errors into account through the functions g1;a and
g2;a in Eq. (4.2):

g1;a ¼ K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21a

2Δ̄
�
a
r1

�
2

s
þ K3

�
a
r1

�
4

; ð4:4aÞ

g2;a ¼ K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21a

2Δ̄
�
a
r1

�
2

s
þ K0

2r
2
1a

2Δ̄; ð4:4bÞ

where the Ki are fit parameters, Δ̄ ¼ 1
16
ðΔP þ 4ΔAþ

6ΔT þ 4ΔV þ ΔIÞ is the average taste splitting, and
r21a

2Δ̄ is a proxy for α2sa2. Table V lists the priors employed
for the Ki’s. The terms proportional to K2 and K0

2 are
generic terms parametrizing discretization effects of
Oðαsa2Þ and Oðα2sa2Þ, respectively, obeying the AG theo-
rem. We include the terms proportional to K1 and K3 to
account for Oðαsa2Þ and a4 violations of the AG theorem at
finite lattice spacing arising from symmetry-breaking dis-
cretization effects in the form-factor decomposition,
Eq. (1.4), and in the continuum dispersion relation. We
find that adding an Oða4Þ term instead of the one propor-
tional to K0

2 yields fit results that are nearly identical.
As in Refs. [23,24], we also add generic analytical terms

corresponding to higher orders in the chiral expansion until
the error of the chiral-continuum fit saturates, i.e., until the
central value, the error and the χ2=dof (andQ) value do not
change appreciably. That happens at N4LO [Oðp8Þ]—see
Sec. V. The function hmπ

in Eq. (4.2), which collects these
effects, therefore takes the form

hmπ
¼ C̃6r21m

2
π þ C̃8r41m

4
π: ð4:5Þ

The terms proportional to C̃6 and C̃8 are Oðp6Þ and Oðp8Þ,
respectively. The C̃i are constrained fit parameters; the
priors for them can be found in Table V. Further discussion
of the fit function, priors used in the Bayesian approach,
and tests performed can be found in Refs. [23,24].

A. Fit results

We fit our finite-volume corrected form-factor data to the
functional form in Eq. (4.2) with the functions gi;a and hmπ

given in Eqs. (4.4) and (4.5), respectively. All the results

listed in Table III are included in our central-value fit, except
for the ensemble with a ≈ 0.12 fm andmπ;PL ¼ 3.2, which
we use only to check finite-volume effects. We then
extrapolate to the continuum limit and interpolate to the
pure-QCD meson masses, i.e., with electromagnetic effects
removed, using the parameters determined from the fit
described above together with the continuum isospin-break-
ing NNLO ChPT expressions in Ref. [67], plus the N3LO
and the N4LO chiral terms in Eq. (4.5), which do not vanish
in the continuum limit. We take the pure-QCD masses from
Ref. [46]4: mQCD

K0 ¼ 497.567MeV, mQCD
Kþ ¼ 491.405 MeV,

mQCD
πþ ¼ 135.142 MeV, mQCD

π0
¼ 134.977 MeV. For the

K0 → π−lν case we find

FIG. 7. Form factor fK
0π−ð0Þ vs light-quark mass. The data

points correspond to the results in Table III and are corrected for
the one-loop finite-volume effects also listed in that table.
Different symbols and colors denote different lattice spacings.
The data point at the a ≈ 0.042 fm ensemble includes the
correction given in Sec. III B. The error bars on the data points
are statistical only, obtained from 500 bootstrap resamples. Data
points at the same light-quark mass but different lattice spacings
are offset horizontally. The gray continuous line shows the
continuum extrapolation in the isospin limit as a function of
the light-quark mass, and the yellow star is the continuum result
interpolated to the physical light-quark masses. The cyan error
band, as well as the error bar on the physical point, is the
statistical chiral-continuum fit error (obtained using 500 boot-
strap resamples), which includes discretization and higher-order
chiral errors, as well as the uncertainty from some of the input
parameters, as discussed in the text. The continuum extrapolation
line is obtained by setting the valence and sea light-quark masses
equal, setting ms to its physical value, turning off all discretiza-
tion effects, and considering mu ¼ md, i.e., without isospin-
breaking effects. On the other hand, the yellow star is the
interpolation to the physical masses and includes strong iso-
spin-breaking effects at NNLO.

4The π0 QCD mass is just the experimental one, and the πþ
QCD mass includes the estimate of the small isospin-breaking
correction, which comes from Ref. [68].
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fK
0π−þ ð0Þ ¼ 0.9696� 0.0015; ð4:6Þ

where the error is from the fit only, and does not yet include
all systematic effects. The statistical error is estimated by
fitting to a set of 500 bootstrap samples for each ensemble.
On each of those fits, we randomly change the central values
of all the priors sampling over Gaussian distributions,
keeping the same widths as in Table V. The plot in
Fig. 7 shows, as a function of the light-quark mass, the
central interpolation curve as well as its error band in the
continuum and with the strange-quark mass adjusted to its
physical value. In order to make the comparison to data
clearer, the curve in Fig. 7 does not include any strong
isospin-breaking effects, i.e., ml ¼ mu ¼ md. The point at
the physical masses (yellow star) in Fig. 7, however, is our
central result in Eq. (4.6), which includes strong isospin-
breaking effects at NNLO.
The result in Eq. (4.6) includes isospin corrections up to

NNLO—see Sec. V F for more details. For K0 decays,
isospin corrections enter only at NLO (f2) and beyond, and
are small, < 0.15%. It also includes corrections for the
leading-order finite-volume effects as described in
Sec. III A.
The second column in Table V shows the posteriors for

the fit parameters of the chiral-continuum fit that leads to
the result in Eq. (4.6). We cannot determine the coefficients
Ki accurately since there is very little a2 dependence in our
results. In fact, if we remove the a ≈ 0.15 fm point we
could fit our data without including discretization effects at
all. Our lattice data also provide little constraint on the

individual values of the Oðp4Þ LECs. As seen in Table V,
the posterior fit values of the Lr

i are generally the same as
the priors.

V. SYSTEMATIC ERROR ANALYSIS

The error in Eq. (4.6) includes statistical, chiral-extrapo-
lation, and discretization errors, as well as the uncertainties
associated with the inputs that are treated as constrained fit
parameters: Oðp4Þ LECs (except L7;8) and taste-violating
hairpin parameters. The uncertainties of the data and
constrained input parameters are propagated through the
fit via 500 bootstrap resamples.
In this section, we further study these sources of

uncertainty, perform tests of the stability of our preferred
fit strategies, and estimate the other sources of systematic
error entering in our calculation of fKπþ ð0Þ: uncertainty in
the inputs, scale error, partial-quenching effects, higher-
order finite-volume effects, isospin-breaking corrections,
and the effects of nonequilibrated topological charge.

A. Fit function, discretization
error and chiral interpolation

Because we have data at the physical light-quark masses,
the chiral fit is an interpolation, and is largely independent
of the precise form of the fit function and the values of the
ChPT parameters. We have performed a number of tests to
check this stability under variations in the fit function and
to estimate the effect of higher-order terms in the chiral and
Symanzik expansions. Figure 8 shows the tests performed

FIG. 8. Stability of the continuum extrapolation and chiral interpolation with respect to the choice of fit function. The blue band
corresponds to our preferred fit function (labeled “base”). Notice that the analytical parametrization is applied only at NNLO and
beyond. The PQSChPT expression is used at NLO, including isospin corrections. The Q value for each fit is shown in the right-hand-
side plot. The red point on that plot corresponds to a fit with χ2=dof < 0.05. See the text for the explanation of the different tests
performed.
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and discussed in this subsection, together with the results
from additional fits discussed in the following subsections,
which we use to estimate several systematic uncertainties.
First of all, in order to be sure that effects due to higher-

order terms in the chiral expansion are properly included in
the Bayesian analysis that leads to the fit error shown in
Eq. (4.6), we need to check that this error stabilizes as we
add higher-order chiral terms. The point labeled NNLO in
Fig. 8 includes only terms up to NNLO, i.e., without
the hmπ

function in Eq. (4.2). Only minimal changes in the
central value and errors are produced by the addition of the
N3LO term C̃6ðm2

K −m2
πÞ2m2

π from Eqs. (4.5) and (4.2).
The difference between this and the base fit is the N4LO
term C̃8ðm2

K −m2
πÞ2m4

π, and we see that it has a negligibly
small effect.
Different values of the decay constant used in the two-

loop (NNLO) term fcont4 are equivalent up to omitted
higher-order terms, and therefore should have a negligible
effect on our analysis. In contrast, the decay constant at one
loop has to be set equal to the physical pion decay constant,
fπ , in order to be consistent with the particular expression
chosen for fcont4 . In the base fit, we use fπ as the chiral
expansion parameter in fcont4 . We check that other possible
choices, such as fK ¼ ð155.6� 0.4Þ MeV [16] (labeled
“fK vs fπ at two loops” in Fig. 8) and an estimate of the
decay constant in the chiral limit, f0 ¼ ð113.5� 8.5Þ MeV
[13], shift the central value in Eq. (4.6) by less than 0.06%,
well under the statistical error.
As another test of the ChPT fit and errors, we replace the

continuum two-loop ChPTexpression in Eq. (4.2), fcont4 , by
an analytic function, and consecutively add N3LO and
N4LO analytic terms—see results labeled “NNLO analyt.,”
“N3LO analyt.,” and “N4LO analyt.,” respectively, in
Fig. 8. All the results agree very well with our base fit
within statistics, being nearly identical once the N3LO
analytic term is included.
The three results labeled “no analyt. a2” (which corre-

sponds to a fit without including g1;a and g2;a in the fit
function), “α2sa2ðm2π−m2

KÞ”, and “α2sa2ðm2
π−m2

KÞþαsa2”
in Fig. 8 represent a check that the discretization errors are
properly included in the fit error of Eq. (4.6). Once we
include the term of order α2sa2ðm2

K −m2
πÞ2 (proportional to

K0
2) in Eq. (4.4), which is required to get a fit of similar

quality to our base fit (see Fig. 8), the central value and
errors barely change with the addition of αsa2 corrections
[the result labeled “α2sa2ðm2

π −m2
KÞ þ αsa2”]. Adding the

two remaining discretization terms in g1;a and g2;a, which
returns us to the base fit, makes no noticeable difference.
The rapid stabilization of the fit reflects the tiny lattice-
spacing dependence of our data.
Of all the data in Fig. 5, only the point at a ≈ 0.15 fm

shows what appear to be significant discretization effects.
Dropping that data point has the effect of increasing the
errors (see result labeled “no a ≈ 0.15 fm”), since the other

ensembles provide very little constraint of the analytical a2

fit parameters. In fact, after dropping that point, we can fit
our remaining data with a continuum fit function, although
we see from Fig. 8 (result labeled “continuum, no
a ≈ 0.15 fm”) that the result is larger than our central
result by about two standard deviations, measured in terms
of the fit errors, and the quality of the fit significantly drops.
Adding analytical discretization corrections via the func-
tions g1;a and g2;a to the continuum fit function allows us to
fit all our data, giving a result that is consistent with the
base fit and with a similar Q value (see result labeled
“continuumþ analyt: a2”), although with a larger error.
In contrast to the noticeable effect of the coarsest

ensemble on the total error, the effect of our finest lattice
spacing, a ≈ 0.042 fm, on the central value and the error is
very small since statistics in this ensemble is limited and, in
addition, it has ml ¼ 0.2ms, so it is relatively far from the
physical point.
As shown in Fig. 8, both the ensembles with physical

quark masses and those with unphysical masses are
important in fixing the central value and reducing the fit
error. The larger error of the fit including only physical-
quark-mass ensembles reflects the weaker constraints on
the higher-order discretization terms and the lack of
constraints on the higher-order chiral terms, which can
have an effect on the results from nominally “physical”
ensembles due to mistunings of the strange and light-quark
masses. On the other hand, the larger error of the fit
including only the unphysical-quark-mass ensembles
reflects primarily the error of the chiral extrapolation.
Finally, we test the robustness of our Bayesian error

estimation strategy similarly to our previous work [23,24],
by obtaining separate estimates of each source of error from
central value variations observed with simpler fits with and
without the corresponding higher-order terms—see
Ref. [23] for details. Taking the total error as their
quadrature sum, we find that this procedure yields smaller
uncertainties than those in Eq. (4.6).
For the reasons discussed above, the statistical fit error

shown in Eq. (4.6), which is obtained with our base fit
using Eq. (4.2), together with the higher-order chiral and
discretization terms in Eqs. (4.4) and (4.5), properly
includes the errors from higher-order discretization effects
and chiral corrections in addition to the statistical errors.
The inclusion of the unphysical light-quark-mass data in
our ChPT description gives us a handle on these higher-
order effects and allows us to robustly correct for mass
mistunings and estimate the error associated with the
truncation of the corresponding series.

B. Inputs for the fixed parameters in the chiral function

The values and errors of the fixed inputs we use in our
chiral-continuum fit are listed in Table IV. The HISQ taste
splittings are known precisely enough that their errors have
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no impact on the final uncertainty. Similarly, when we
change the pion decay constant within its error and repeat
the fit, results for the form factor are unchanged at the
precision we quote. The uncertainty is small because the
dependence on fπ enters through the coefficients and
parameters in the ChPT fit function, which, as discussed
above, already have little effect on the results. Finally, by
varying Λχ in the range Mρ � 0.5 GeV, we have checked
that our results are independent of the chiral scale, as they
should be. We therefore do not need to add an uncertainty
due to the errors in the inputs or the choice of chiral scale to
the statistical fit error.
However, the LECs L7 and L8 (which we treat as fixed

input parameters, unlike the other LECs), do have an
impact on the form-factor error, mainly through their effect
on the isospin corrections. We estimate this uncertainty by
varying their central values by their respective standard
deviations, repeating the fit, and recalculating the form
factor (including isospin corrections). We take the shift that
this variation produces as the uncertainty associated with
these LECs, and add it in quadrature to the fit error, as
shown in Table VI. The above procedure does not under-
estimate the error due to these LECs, since if we treat L7

and L8 as constrained fit parameters instead, the same as the
other Oðp4Þ LECs, we obtain a slightly smaller total error.

C. Lattice scale

We rewrite all the dimensionful quantities entering in the
two-loop ChPT fit function in r1 units, where the r1 scale is
obtained from the static-quark potential [69,70]. The lattice
parameters are converted to r1 units by multiplying by
the values of the relative scales r1=a in Table IV, while
the physical parameters are converted by using r1 ¼
0.3117ð22Þ fm [63].
The form factor fKπþ ð0Þ is a dimensionless quantity, and

thus the effect of the error in the lattice scale is small. When
we change the scale r1 by its error, the central value only
shifts by�0.0008. We include this variation as a systematic
error in Table VI. The errors in the relative scales r1=a, on
the other hand, have no significant impact on our results.

D. Partial-quenching effects in ms at NNLO

The valence and sea strange-quark masses differ on some
of the ensembles as explained in Sec. II, leading to partial-
quenching effects—see Table I. These effects can be
exactly treated at NLO within the PQSChPT framework,
but at NNLO only the full-QCD ChPT expressions are
available. We then have the choice of using either the sea or
the valence ms at NNLO and beyond. In practice, this
ambiguity only affects fcont4 in Eq. (4.2) since the factor
ðm2

π −m2
KÞ2 in that equation comes from the valence sector.

The result in Eq. (4.6) is obtained using the valence
strange-quark masses at NNLO. If we use the sea strange-
quark masses at NNLO instead, fK

0π−þ ð0Þ shifts by 0.013%,
which we include on the line labeled “mval

s ≠ msea
s ” in the

error budget. This systematic effect is small because the sea
strange-quark masses are generally well tuned on the HISQ
Nf ¼ 2þ 1þ 1 MILC ensembles, and mval

s ¼ msea
s on the

most relevant ensembles in the chiral-continuum interpo-
lation/extrapolation, the ensembles with physical quark
masses and a ≈ 0.09; 0.06 fm.

E. Higher-order finite-volume corrections

In our previous calculation [23,24], the uncertainty due
to finite-volume effects was one of the two dominant
sources of error. (The other was the fit error.) The finite-
volume error was estimated to be of the same order as the
statistical error from a comparison of the lattice data from
two different volumes, with other parameters held fixed.
Then, although very small, 0.2%, this error turned out to be
a limiting factor for precision. In this work we have
increased the statistics on the ensembles analyzed in
Refs. [23,24] to check finite size effects. We have also
sharpened this direct comparison by generating data on a
third, smaller, volume. The three ensembles are those with
a ≈ 0.12 fm and ml=msea

s ¼ 0.1 in Table I and Fig. 1.
Table III gives the values for fKπþ ð0Þ on these three
volumes. The results on the two largest volumes are
essentially the same, while that on the smallest volume
differs from the others by less than the statistical error.
From this comparison alone we could conclude that finite-
volume effects are smaller than 0.17%, the smallest
statistical error on the three ensembles.
To reduce the error further we use NLO staggered

partially twisted partially quenched ChPT [40] to correct
the form factor prior to the chiral-continuum fit, as
described in Sec. III A. The resulting finite-volume cor-
rections are ≤ 0.1% on all ensembles. If we did not correct
our data for finite-volume effects at one loop, the result for
fK

0π−þ ð0Þ would shift by 0.000 51. Although we expect
NNLO finite-volume corrections to be suppressed by a
typical one-loop suppression factor, we conservatively take
this shift as the estimate for the higher-order finite-volume
effects. This gives a 0.053% error that we include in the
error budget in Table VI.

TABLE VI. Error budget for fK
0π−þ ð0Þ in percent.

Source of uncertainty
Error fK

0π−þ ð0Þ
(%)

Statisticalþ discretizationþ chiral interpolation 0.154
Lr
7;8 0.079

Scale r1 0.080
mval

s ≠ msea
s 0.013

Higher-order finite-volume corrections 0.053
Higher-order isospin corrections 0.015
Isospin-breaking parameter R 0.002
Total error 0.199
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F. Isospin-breaking corrections

Isospin-breaking corrections accounting for the differ-
ence between the up- and down-quark masses can be
calculated in the ChPT framework and thus written as a
chiral expansion starting at NLO for neutral kaons

ΔisospinfK
0π−þ ð0Þ≡ fK

0π−þ ð0Þ − fKπþ;isospin limitð0Þ
¼

ffiffiffi
3

p
ðζð4Þ

S;K0π−
þ ζð6Þ

S;K0π−
…Þ; ð5:1Þ

where the parameters ζðiÞ
S;K0π−

are Oððmu −mdÞpiÞ isospin
corrections. In our result for fK

0π−þ ð0Þ in Eq. (4.6), we
include both NLO [Oððmu −mdÞp4Þ] and NNLO
[Oððmu −mdÞp6Þ] corrections calculated in Refs. [68]
and [67], respectively. These corrections depend on the
lowest-order π0 − η mixing angle εð2Þ, or, alternatively, the
quantity R≡ ðms− m̂Þ=ðmd−muÞ with m̂≡ ðmu þmdÞ=2.
In order to arrive at the number in Eq. (4.6), we use the
expressions in Ref. [67], the QCD meson masses quoted in
Sec. IVA, and the values of the LECs obtained from our fits
and shown in Table V (for Lr

7 and Lr
8 we take the input

values in Table IV). The only combination of Oðp6Þ LECs
that enters at this order in the isospin-breaking terms for
K0 → π−lν decays is C12 þ C36. This combination, which
we obtain from our fitting procedure, is the same one that
appears in the isospin limit.
We use a power-counting estimate for the error due to

isospin corrections not included in our result, N3LO and
higher, by taking the calculated NNLO correction and
multiplying it by a typical chiral-loop suppression factor.
For quantities involving a strange quark, we may estimate
this factor to bem2

K=ð8π2f2πÞ ≈ 0.18. The size of the ratio of
the isospin limit NNLO and NLO contributions to fK

0π−þ ð0Þ
that we obtain in this work is a bit larger, ≈0.26. We
conservatively multiply the calculated NNLO isospin-
breaking correction, −0.000 57, by the larger number,
which yields a 0.015% uncertainty.

Another source of error is the parametric uncertainty in
the isospin-breaking quantity R used to obtain the correc-
tions in Eq. (5.1). We use the value

R ¼ 35.59ð21Þstat
�þ88

−96
�
syst

½35�EM-scheme: ð5:2Þ

The analysis that yields to this result is the same as in
Ref. [46], except that we have included more configura-
tions at the ensembles with a ≈ 0.06 fm and a ≈ 0.042 fm,
and included the a ≈ 0.15 fm data in the central fit. The
electromagnetic errors are estimated as in Ref. [71].
We estimate the error on the form factor coming from the

uncertainty on R by varying this quantity within its error
and redoing the fit. As expected, the impact on the form
factor for the neutral mode is nearly negligible, 0.002%.
Nevertheless, we include it in our error budget.

G. Nonequilibrated topological charge

As described in Sec. III B, a correction due to improper
sampling of the topological charge is needed only on the
a ≈ 0.042 fm ensemble with ml ¼ 0.2ms, where we obtain
ΔQfKπþ ð0Þ ¼ 0.000 18. Not surprisingly, given that (i) this
ensemble has little influence on the chiral-continuum
interpolation/extrapolation (see Fig. 8 for the effect of
removing the ensemble completely), and (ii) the correction
is much smaller than the statistical error on the ensemble
(see Table III), the effect of the correction on the physical
value of fKπþ ð0Þ is negligible. We therefore do not add an
uncertainty due to this effect to our error budget.

VI. RESULTS

Our final result for the vector form factor is

fK
0π−þ ð0Þ ¼ 0.9696ð15Þstatð12Þsyst ¼ 0.9696ð19Þ; ð6:1Þ

where the first error in the middle expression is the
combined statistical, discretization and chiral interpolation

TABLE VII. Form factor fK
0π−þ ð0Þ as extracted from the most recent lattice calculations (first half of the table),

from phenomenological approaches using two-loop ChPT, and from the 1984 calculation by Leutwyler and Roos,
which uses one-loop ChPT and a quark model for higher-order terms. For those calculations based on two-loop
ChPT, we also indicate the method used in the estimate of the Oðp6Þ LECs.
Group fK

0π−þ ð0Þ Method

This work 0.9696(15)(12) Staggered fermions (Nf ¼ 2þ 1þ 1)
ETM [26] 0.9709(45)(9) Twisted-mass fermions (Nf ¼ 2þ 1þ 1)
Fermilab Lattice/MILC [23] 0.9704(24)(22) Staggered fermions (Nf ¼ 2þ 1þ 1)
JLQCD [30] 0.9636ð36Þðþ57

−35 Þ Overlap fermions (Nf ¼ 2þ 1)
RBC/UKQCD [25] 0.9685(34)(14) Domain-wall fermions (Nf ¼ 2þ 1)
Bijnens and Ecker [65,72] 0.970(8) ChPTþ NNLO global fit
Kastner and Neufeld [73] 0.986(8) ChPTþ largeNc þ dispersive
Cirigliano et al. [74] 0.984(12) ChPTþ largeNc
Jamin, Oller, and Pich [75] 0.974(11) ChPTþ dispersive (scalar form factor)
Bijnens and Talavera [59] 0.976(10) ChPTþ Leutwyler and Roos
Leutwyler and Roos [76] 0.961(8) One-loop ChPTþ quark model
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error discussed in Sec. IVA, and the second the sum in
quadrature of all the systematic errors discussed in Sec. V.
Table VI summarizes all sources of error in our calculation.
The total uncertainty is the smallest achieved to date.
We compare our result for fK

0π−þ ð0Þ with the results from
the most recent lattice calculations and phenomenological
approaches in Table VII, and with the results entering the
FLAG average and those from phenomenological
approaches in Fig. 9. Our value for fK

0π−þ ð0Þ agrees within
errors with previous Nf ¼ 2þ 1 and Nf ¼ 2þ 1þ 1

lattice calculations. In particular, the value is close to the
otherNf ¼ 2þ 1þ 1 results, but with significantly smaller
errors. It also agrees with the most recent phenomenologi-
cal determinations [65,72], which are based on two-loop
ChPT with LECs determined by NNLO global fits. The
lattice results in Table VII and in Fig. 9 do not include
isospin corrections, with the exception of the Fermilab
Lattice/MILC result in Ref. [23] (only NLO corrections)
and our result here (up to NNLO corrections).

A. Oðp6Þ LEC combination Cr
12 +C

r
34

The parameter C̃4 in the two-loop ChPT fit function that
we use to interpolate fKπþ ð0Þ to the physical point—see
Eq. (4.2)—is related to the combination of Oðp4Þ and
Oðp6Þ LECs

C̃4 ¼ −
8

f4π
½C12 þ C34 − L2

5�: ð6:2Þ

We can thus use the values of C̃4 and Lr
5 from our fit output

in Table V to extract the combination of Oðp6Þ LECs
involved. Taking correlations into account, we find

½Cr
12 þ Cr

34�ðMρÞ ¼ 3.93ð36Þstatð20Þsyst × 10−6: ð6:3Þ

The first error in Eq. (6.3) includes statistics, chiral
extrapolation and discretization errors, as well as the
uncertainty from the LECs (except L7 and L8) and the
taste-violating hairpin parameters, as discussed in Sec. V.
The second error is the sum in quadrature of the rest of the
systematic uncertainties. The detailed error budget is in
Table VIII. We obtain all the errors in the same way as for
fKπþ ð0Þ. Isospin corrections do not apply to this quantity
since it is defined in the isospin limit. In practice, the values
of LECs coming from a fit may be significantly affected by
the presence or absence of higher-order chiral terms in the
fit function. Therefore, applications of our result in
Eq. (6.3) should allow the same type of corrections as in
(the continuum limit of) Eq. (4.2). The complete error
budget for this quantity can be found in Table VIII.
Our result in Eq. (6.3) agrees with nonlattice determi-

nations in Refs. [74–76]. In those papers, the contribution
to fþð0Þ from C12 þ C34 was calculated using the large Nc
approximation, a coupled-channel dispersion relation
analysis, and a quark model, respectively. However, the
value for C12 þ C34 − L2

5 found in Ref. [73], which is
based on ChPT, large Nc estimates of the LECs, and
dispersive methods, is ∼3σ smaller than our value,
½Cr

12 þ Cr
34 − ðLr

5Þ2�ðMρÞ ¼ ð2.92� 0.31Þ × 10−6.
The result in Eq. (6.3) also agrees very well with our

previous calculation of this combination of LECs in
Ref. [27], on the MILC Nf ¼ 2þ 1 asqtad configurations,
although with greatly reduced errors. In fact, all sources of
error are reduced due to several factors: the use of the
MILC Nf ¼ 2þ 1þ 1 HISQ configurations with smaller
discretization errors than the asqtad action, data at smaller
lattice spacings, data with physical light-quark masses,
better tuning of the strange sea quark masses, and including
NLO finite-volume corrections explicitly. The agreement
with the JLQCD result in Ref. [30] is borderline, but the
JLQCD calculation relies on simulations at a single lattice
spacing, although a systematic error is quoted for it, and it
does not include data at the physical light-quark masses.
Those systematics could affect more strongly the value of
the combination of LECs than the form factor itself.

FIG. 9. Comparison of fK
0π−þ ð0Þ from this analysis with

previous lattice results entering in the FLAG averages [6]
together with those averages for Nf ¼ 2þ 1þ 1 and
Nf ¼ 2þ 1, as well as nonlattice determinations based on ChPT.
The beige band corresponds to our result. The references and
numerical results for all determinations are given in Table VII.

TABLE VIII. Error budget for the LEC combinations of order
p6: ½Cr

12 þ Cr
34�ðMρÞ and ½Cr

12 þ Cr
34 − ðLr

5Þ2�ðMρÞ.

Source of uncertainty

½Cr
12 þ Cr

34�
ðMρÞ × 106

½Cr
12 þ Cr

34 − ðLr
5Þ2�

ðMρÞ × 106

Stat:þ disc:þ chiral inter: 0.36 0.23
Lr
7;8 0.12 0.13

Scale r1 0.13 0.14
mval

s ≠ msea
s 0.02 0.02

Finite volume 0.09 0.08
Total error 0.41 0.031
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VII. PHENOMENOLOGICAL IMPLICATIONS

A. Determination of jVusj
Combining the form factor in Eq. (6.1) with the latest

experimental average jVusjfK0π−þ ¼ 0.21654ð41Þ from
Ref. [7], we obtain

jVusj ¼ 0.22333ð44Þfþð0Þð42Þexp ¼ 0.22333ð61Þ; ð7:1Þ

where the first error is from the uncertainty on the form
factor, and the second is the experimental uncertainty. Both
errors are now of the same size. The experimental error in
Eq. (7.1) includes the uncertainty on the long-distance
electromagnetic and strong isospin-breaking corrections,
δKlEM and δKπSUð2Þ, which are taken into account when doing

the experimental average of the neutral and charged modes
[7]. This uncertainty is however dominated by the errors in
the lifetime and branching-ratio measurements of the
neutral-kaon modes [7]. Other uncertainties such as those
from the phase-space integrals are insignificant [7].
In Fig. 10 we compare our extraction of jVusj from K

semileptonic decays with other determinations using K
semileptonic and leptonic decays, and hadronic τ decays.
Our semileptonic determination of jVusj is the most precise
to date not relying on an external input for jVudj. The
central value agrees very well with the most recent lattice

and nonlattice semileptonic calculations, as well as with
those based on hadronic tau decay; the latter have much
larger errors. Our result, however, is in tension with the
leptonic determination using fK=fπ and with the unitarity
prediction given by jVusj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jVudj2

p
with jVudj from

Ref. [2]. The agreement with the leptonic determination
using fK is borderline. The sizes of the disagreements
—2.6σ with unitarity and 2.2σ with the leptonic determi-
nation using fK=fπ—are similar to those using other recent
lattice calculations for the semileptonic vector form factor.
As a consistency check of the semileptonic extraction of

jVusj, we can consider the neutral- and charged-kaon
modes separately. Using our result in Eq. (6.1)
together with the experimental average for neutral modes
only [7], jVusjfK0π−þ ð0Þ ¼ 0.2163ð5Þ,5 we can compare
jVusj as extracted exclusively from neutral-kaon decays:
jVusjK0π−¼0.22309ð44Þfþð0Þð44Þexpð25ÞδKlEM¼0.22309ð67Þ.
In this case, we can disentangle the purely experimental

FIG. 10. Summary of recent jVusj determinations. The semileptonic determinations, labeled Kl3, use inputs for fKπþ ð0Þ from the most
recent lattice calculations in Refs. [23,25,26], respectively. The leptonic determinations, labeled Kl2, use as inputs the 2þ 1-flavor
lattice-QCD average fK from FLAG [6], which only includes calculations where the lattice scale is set from physical inputs other than
fπ , and the most recent and precise determination of fK�=fπ� from Ref. [46]. The inclusive hadronic τ-decay determinations are the
most recent ones, from Boyle et al. 2018 [36] and Hudspith et al. 2017 [35]. The second value from Ref. [36] comes from relating the
τ → Klν branching fraction to the Kμ2 branching fraction to get the experimental contribution from the K pole. The two values in
Ref. [35] correspond to using the normalization for τ decays into Kπ modes as obtained in Ref. [37] or as given by HFLAV [39]. For the
exclusive τ determination we follow the calculation by the HFLAV group [39], but we update the value of the ratio fK�=fπ� to that in
Ref. [46]. The unitarity value is taken to be jVusj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jVudj2

p
with jVudj from Ref. [2]. RC stands for radiative corrections. The

dotted magenta vertical lines correspond to this unitarity value. The gray vertical band corresponds to our result in Eq. (7.1).

5Notice that in order to perform the separate averages,
Moulson [7] uses the phase-space integrals as extracted from
the overall average of form-factor parameters. Although the
phase-space factors are affected by isospin-breaking corrections,
those corrections are expected to have a negligible impact at this
level of precision since the uncertainty on the phase-space
integrals currently has an insignificant impact on the experimen-
tal averages [7].
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error from the uncertainty in the long-distance electromag-
netic corrections, δKlEM, which is the same for all neutral
modes, ∼0.22% [77,78]. This result is in very good
agreement with the value in Eq. (7.1) within errors, which
constitutes a good test of the ChPT calculation of isospin
(larger for the charged modes) and EM (larger for the
neutral modes) corrections included in the total experi-
mental average, as was already made clear by the results
in Ref. [7].

B. Tests of CKM unitarity

Using our main result for jVusj in Eq. (7.1), the value
jVudj ¼ 0.97420ð21Þ from superallowed nuclear β decays
[2], and noting that jVubj2 is negligible, we find that the
measure of deviation from first-row CKM unitarity in
Eq. (1.1) is

Δu ≡ jVudj2 þ jVusj2 þ jVubj2 − 1

¼ −0.00104ð27ÞVus
ð41ÞVud

; ð7:2Þ

which is ∼2.1σ away from the unitarity prediction, with an
error dominated by the uncertainty on jVudj. This makes
revisiting the determination of jVudj a priority for CKM
tests. In this vein, one should examine not only super-
allowed β decays but also other approaches.
At present, the precision in the extraction of jVudj from

the measurement of the neutron lifetime [3] or pion β
decays [4] is still far from that obtained from superallowed
β decays. In the case of superallowed β decays, additional
measurements will have a small effect on jVudj. At the
moment, the greatest improvement would come from a
calculation of the short-distance radiative correction, which
is the main source of uncertainty [2]. A very recent
calculation of the nucleus-independent contribution to
those corrections, following a new methodology based
on dispersion relations [17], obtains a value around 2σ
larger than the current best determination by Marciano and
Sirlin [79] and with a significant reduction of the error. The
increased electroweak radiative correction, when combined
with the superallowed β decay results [2], results in a lower
value of jVudj. The authors of Ref. [17] quote
jVudj ¼ 0.97366ð15Þ. Together with our result for jVusj,
this value of jVudj considerably increases the tension with
unitarity:

Δu ≡ jVudj2 þ jVusj2 þ jVubj2 − 1

¼ −0.00209ð27ÞVus
ð29ÞVud

; ð7:3Þ

a more than 5σ discrepancy. We discuss further
phenomenological implications of this new calculation in
Sec. VII D. For the remainder of this section, we use the
result by Marciano and Sirlin [79], which leads to jVudj ¼
0.97420ð21Þ and Eq. (7.2).

To avoid using jVudj as an input, we can instead perform
a unitarity test relying only on experimental kaon-decay
measurements [7], on the lattice input from the most recent
determination of fKþ=fπþ [46], and on our result in
Eq. (6.1) for fK

0π−þ ð0Þ. The result of the unitarity test using
those inputs, noting again that jVubj is negligible, is6

Δu ≡ jVudj2 þ jVusj2 þ jVubj2 − 1

¼ −0.0151ð39Þfþð0Þð36ÞfK�=fπ� ð36Þexpð27ÞEM; ð7:4Þ

where the 2.2σ deviation from unitarity is a reflection of the
tension between the leptonic and semileptonic determina-
tions of CKM matrix elements. These results are shown in
Fig. 11, together with the test that takes jVudj from
superallowed β decays as input. No correlation between
Kl2 and Kl3 inputs, either on the theory or experimental
sides, has been taken into account in this test.

FIG. 11. Constraints on jVudj and jVusj from our results (Kl3),
kaon leptonic decays (Kl2), superallowed nuclear β decays,
unitarity, and jVcdj, as discussed in the text. Blue ellipses
correspond to the allowed region from Kl3 and one of the other
two constraints with a 68% probability. Both regions have no
overlap with unitarity (black line). Correlations between Kl2 and
Kl3 are not taken into account. The orange horizontal line in the
yellow region corresponds to the central value for jVusj as
extracted from jVcdj.

6The disentanglement of the EM and experimental errors in
Eq. (7.4) is approximate, and intended only to indicate the relative
size of these errors. The separation of the sources of error is
precise for leptonic decays, but for semileptonic decays we
assume an overall 0.11% EM error in the uncertainty of the
experimental average. This should be a fairly good approxima-
tion, however, since the average is dominated by the neutral
modes for which the error is indeed 0.11%.
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One can perform another test of the unitarity of the
CKM matrix by comparing jVusj with jVcdj, which in
the SM should be equal up to corrections of Oðλ5Þ,
with jVusj ¼ λþ Oðλ7Þ. Including the Oðλ5Þ corrections,
which only affect the last significant digit, the most precise
determination of jVcdj ¼ 0.2151ð6ÞfDð49Þexptð6ÞEM from
leptonic decays [46] implies the value jVusjjVcdj ¼
0.2158ð52Þ. This value of jVusj agrees at the 1.4σ level
with our result in Eq. (7.1), although with an uncertainty
that is an order of magnitude larger. The uncertainty is
dominated by the experimental error on the leptonic decay
rate Dþ → lþν, which is expected to be reduced by BESIII
and Belle II. This result is also depicted in Fig. 11. As is the
case for our main result, jVusjjVcdj is in tension with first-row
CKM unitarity by about 2σ when it is used together with
jVudj from superallowed nuclear β decays in Eq. (1.1).
Note that, in order to perform this test, we change the

normalization of the decay constant fDþ obtained in
Ref. [46] to account for a change in the scale-setting
quantity in that work, fπþ , from the PDG value
fπþ ¼ 130.50� 0.13 MeV [3] to the FLAG average
fπþ ¼ 130.2� 0.8 MeV [6]. That gives us fDþ ¼
212.2ð0.3Þstatð0.4Þsystð1.2Þfπ ;FLAG½0.2�EMscheme.

7 The rea-
son for that change is that the PDG value relies on an
external input for jVudj, which is taken from superallowed
nuclear β decays, which obscures the comparison. The
FLAG number, however, is an average of direct lattice
determinations of fπþ . With this choice of fπþ , the errors
are fairly large, and the value of jVudj extracted from
experimental data on pion leptonic decays [16] agrees
within ∼1.5σ with both jVudj from superallowed nuclear β
decays and the value from kaon decays only that we
discuss below.

C. Ratio of leptonic and semileptonic decays

Another way of analyzing the tension between SM kaon
leptonic and semileptonic decays is by looking at ratios of
decay widths of leptonic and semileptonic decays, where
the dependence on jVusj cancels. We can construct two
ratios

ΓðK → lνÞ
ΓðK → πlνÞ ∝

�
fK�

fKπþ ð0Þ
�

2

;

ΓðK → lνÞ=Γðπ → lνÞ
ΓðK → πlνÞ ∝

1

jVudj2
�
fK�=fπ�
fKπþ ð0Þ

�
2

: ð7:5Þ

The first ratio does not depend on any CKM matrix
elements, while the second one is proportional to

1=jVudj2. In addition, the short-distance radiative correc-
tions cancel between numerator and denominator in the
first ratio, but not in the second.
Taking experimental averages for the kaon decays

and assuming the SM, we obtain8 [7,16]

fK�

fK
0π−þ ð0Þ

					
exp:

¼ 162.05ð40Þ MeV;

1

jVudj
fK�=fπ�

fK
0π−þ ð0Þ

					
exp:

¼ 1.2745ð30Þ: ð7:6Þ

With our result in Eq. (6.1) for fK
0π−þ ð0Þ, the average of

lattice calculations for fK� ¼ 155.6ð0.4Þ MeV from
Ref. [16], fK�=fπ� from Ref. [46], and jVudj ¼
0.97420ð21Þ from [2], those ratios are

fK�

fK
0π−þ ð0Þ

					
latt

¼ 160.58ð79Þ MeV;

1

jVudj
fK�=fπ�

fK
0π−þ ð0Þ

					
latt

¼ 1.2651
�þ31

−35
�
; ð7:7Þ

where we have not taken into account any correlation
between the decay constants and the form factor.
Comparing Eqs. (7.6) and (7.7), we see some tension,
∼1.7σ and 2.2σ, respectively, between the SM predictions
and the experimental measurements. The error from lattice
QCD is the main limiting factor in this comparison, but that
can be reduced by taking into account the correlation
between the numerator and denominator in Eq. (7.7), which
we plan to do in the future.
Alternatively, one can compare the ratio ½fK�=

fπ��=½jVudjfKπþ ð0Þ� as extracted from experiment and
theory to get a value of the CKM matrix element
jVudj, and compare it with the value from superallowed
nuclear β decays. The result of such an exercise
is jVudj ¼ 0.9669ð19Þfþðþ13

−19ÞfK=fπ ð23Þexp ¼ 0.9669ðþ32
−35Þ,

approximately 2.1σ lower than the value from superallowed
β decays. This result is seen in Fig. 11 at the intersection of
the two bands for Kl3 and Kl2. It also deviates from the
unitarity condition.
The unitarity test comparing jVusj=jVudj with

jVusjjVcdj=jVudj, again including corrections up to Oðλ5Þ,
and taking the decay constants fKþ=fπþ and fDþ=fπþ from
Ref. [46] and the experimental data on leptonic experi-
mental data from Ref. [16], fails at the 2σ level. This test is

7Although the dependence of fDþ on the scale-setting quantity
is much more complicated than a simple linear relation, this
estimate should capture most of the effect and, thus, be good
enough for this comparison, since its uncertainty is dominated by
that of the Dþ → lþν decay rate.

8We take ΓðK → lνÞ from Ref. [16], which does not use the
same value of the universal short-distance electroweak correction
SEW as [7] (from which we take the other experimental averages).
The imperfect cancellation is too small to affect the conclusion
drawn here.
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limited by the experimental error on the Dþ leptonic
decay rate.

D. Implications of the new extraction of jVudj
If the decrease of the central value and uncertainty of the

nucleus-independent electroweak radiative corrections
involved in the extraction of jVudj from superallowed β
decays in Ref. [17] is confirmed, the new value jVudj ¼
0.97366ð15Þ would exacerbate some of the tensions we
have just discussed.
First, as shown above, this value of jVudj and our

semileptonic result for jVusj would imply a greater than
5σ violation of first-row CKM unitarity. The tension
between our semileptonic value of jVusj and the one
extracted from kaon leptonic decays and fK�=fπ� , how-
ever, would be slightly reduced to 2σ, since a smaller value
of jVudj would give a smaller value of the leptonic jVusj,
closer to our semileptonic extraction. For the same reason,
the tension between the ratios involving jVudj in Eqs. (7.6)
and (7.7) would be slightly lessened.
In Fig. 12, as an example, we show the comparison of the

unitarity prediction
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jVudj2

p
for jVusj using both

jVudj ¼ 0.97366ð15Þ and jVudj ¼ 0.97420ð21Þ, together
with the results in this work. Given the important impli-
cations of a value of jVudj with a smaller error and a smaller
central value, it is very important to confirm the new
calculation of radiative corrections in Ref. [17], and to
understand the discrepancy with the previous best deter-
mination in Ref. [79].

VIII. CONCLUSIONS AND OUTLOOK

Using the HISQ Nf ¼ 2þ 1þ 1 MILC ensembles, we
have performed the most precise computation to date of the
vector form factor at zero momentum transfer, fK

0π−þ ð0Þ,
and the first one to include the dominant FV effects, as
calculated in ChPT at NLO. Our result for the form factor
enables a direct determination of the CKM matrix element
jVusj from semileptonic kaon decays with a theory error
that is, for the first time, at the same level as the
experimental error. Further, the uncertainty in this direct
determination is now similar to those from indirect deter-
minations based on leptonic decays with jVudj as input.

A key to achieving this level of precision is simulating
at near-physical values of the quark masses, which
drastically reduces the systematic errors associated with
the chiral extrapolation (replacing it with an interpola-
tion), as well as the error coming from the chiral LECs that
are inputs to the analysis. The finite-volume effects, one of
the main sources of uncertainty in our previous analyses,
have also been significantly reduced by explicitly includ-
ing them at NLO (the leading nontrivial order) in ChPT.
The dominant remaining source of error is now statistics,
which could be reduced by extending the key ensembles
with physical quark masses, and including the existing
MILC physical-mass ensemble with a finer lattice spacing
of a ≈ 0.042 fm.
Another important error arises from the uncertainty in

the ChPT LECs of order p6. That uncertainty could be
reduced by performing a combined analysis of form-factor
data together with light meson masses and decay constants,
which would put more constraints on the ChPT LECs. In
particular, the error from L8 is comparable to, but greater
than, that from L7, and the combined analysis could
significantly reduce the L8 error. Errors from L4, L5,
and L6 would also be reduced, but they have a much
smaller effect on the total error here.
We find that the extraction of jVusj from semileptonic

kaon decays is in tension both with the extraction from
leptonic kaon decays and with unitarity at the ∼2–2.6σ
level. In particular, the unitarity test based only on kaon
decay data, without any external input for jVudj, and having
as nonperturbative inputs fK

0π−þ ð0Þ from this work and
fK�=fπ� from Ref. [46], shows a ∼2.2σ tension. While
unitarity tests based on jVudj are currently limited by the
uncertainty in that matrix element, the tension with uni-
tarity would raise to the 5σ level if the new calculation of
radiative corrections involved in the extraction of jVudj
from superallowed β decays [17] is confirmed.
The test based on kaon-decay data has similarly sized

uncertainties arising from both theory and experiment. In
order to shed light on these tensions, improvements from
both the theoretical and experimental sides are urgently
needed, as are improvements in other approaches. A new
round of experiments is expected to reduce the experi-
mental error to ∼0.12% in the next few years [7].

FIG. 12. Comparison of the unitarity point using jVudj ¼ 0.97366ð15Þ with the results in this work, and with the unitarity point
corresponding to jVudj ¼ 0.97420ð21Þ. RC stands for radiative corrections.
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More importantly, the new high-statistics data will help to
check the consistency of current fits, and to perform a more
thorough study of systematic errors on the experimental
averages.
For the experimental determination of jVusjfK0π−þ ,

electromagnetic and isospin effects are currently being
estimated using phenomenology and ChPT techniques.
Although they are not yet a dominant source of error
(EM effects make a 0.11% correction to the individual
neutral channels), with the reduction of other sources of
error and the forthcoming improvement in the experimen-
tally measured branching ratios and lifetimes, they will
eventually need to be included directly in the lattice-QCD
simulations. Recent efforts in that direction can be found in
Refs. [80–83].
Isospin corrections are numerically important for the

charged kaon channels, where those effects enter already at
LO through π0-η mixing. The NNLO ChPT estimate of the
corrections for the charged modes has large errors [67] due
to the unknown value of the Oðp6Þ LECs. Fortunately, the
experimental average is dominated by the neutral-kaon
channels, so the charged-mode uncertainty does not have a
large effect on the final experimental average. The strong
isospin-breaking correction δSUð2Þ used in the experimental
average is a NLO ChPT estimate that partially includes
NNLO effects; it does not include the uncertainty asso-
ciated with higher-order terms in the chiral expansion.
However, the fact that the value used in the average and the
one extracted from experiment are so close [2.45(19)% vs
2.82(38)% [7]], that the result for jVusj using only the
neutral modes agrees with the one using all decay modes
(see Sec. VII A), and that neutral modes are the dominant
ones in the average, indicates that the experimental average
using this estimate is robust.
The uncertainties from the phase-space integrals are

insignificant at present in the final error for the exper-
imental average. It is therefore not crucial at present to have
a better representation of those, i.e., to have the q2

dependence of the form factors. In the future, however,
lattice calculations of fKπþ ðq2Þ could provide better deter-
minations of the form-factor slope than those relying on
experimental data [7,26].
An important future step in the investigation of the

tensions observed in the first-row unitarity relation, and in
the value of jVusj extracted from different sources, will be
to perform a correlated analysis of semileptonic and
leptonic kaon decays. That analysis would provide a more
precise value of the ratio ½fK�=fπ��=½jVudjfKπþ ð0Þ� and
potentially give an insight into the tensions. Another key
point in the study of those tensions is clarifying the role of
the electroweak radiative corrections in the extraction of
jVudj from superallowed β decays, as well as reducing the
error of that CKM matrix element as extracted, not only
from superallowed β decays, but from other sources.
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