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We study the SUð2Þ gauge-Higgs model in two Euclidean dimensions using the tensor renormalization
group (TRG) approach. We derive a tensor formulation for this model in the unitary gauge and compare the
expectation values of different observables between TRG and Monte Carlo simulations finding excellent
agreement between the two methods. In practice we find the TRG method to be far superior to Monte Carlo
simulation for calculations of the Polyakov loop correlation function which is used to extract the static
quark potential.
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I. INTRODUCTION

It is usually very difficult to extract the emergent, long
distance properties of quantum field theories or many-body
systems from the underlying partition function. A powerful
approach pioneered by Wilson known as the real-space
renormalization group attempts to replace the elementary
degrees of freedom by new averaged–or block–variables at
larger scales. In order to maintain the correct long distance
behavior under one such blocking requires a change in the
effective coupling constants of the theory. If this procedure
is applied recursively one generates a description of the
theory at longer and longer length scales accompanied by a
corresponding flow in the effective couplings.
In the original scheme due to Wilson and Kadanoff, this

coarse graining procedure was carried out on the original
fields and their corresponding Hamiltonian or action.
However, in recent years it has been appreciated that it is
sometimes more efficient to carry out this operation on
alternative representations of the partition function called
tensor networks. Algorithms that attempt to compute the
partition function (or low lying states in a Hamiltonian
formulation) by a recursive blocking of these tensors are
called tensor renormalization group (TRG) methods. In the
last decade there have been many such proposals [1–4]
and intriguing connections have been drawn between
tensor networks such as MERA (multiscale entanglement

renormalization ansatz) [5] which was designed to capture
the behavior of critical systems and the AdS/CFT corre-
spondence [6,7]. Tensor networks have also been used to
study gauge theories and their real-time dynamics [8–12].
The implication of gauge symmetry in one such tensor
network—the matrix product state (MPS)—applied to the
Schwinger model was discussed and used to calculate the
confining potential in Refs. [13,14]. In addition, the mass
gap of a continuum theorywas computed in theHamiltonian
formulation for several models—the Schwinger model in
Refs. [13,15] and the SUð2Þ model in 1þ 1 dimensions in
Ref. [16]. General gauge invariant formulations of tensor
networks in two dimensions have been introduced in
Refs. [17,18]. The Hamiltonian formulation and its con-
nection to a possible quantum simulation, has also been
discussed for some models, including fermionic matter
coupled to a SUð2Þ gauge field [19,20].
In this paper, we will derive an explicit tensor network

representation of a two-dimensional non-Abelian gauge
theory coupled to matter and show how a particular TRG
method—the higher-order tensor renormalization group
(HOTRG) algorithm [3]—can be used to efficiently cal-
culate the free energy and other observables in the theory.We
will compare these results with conventional Monte Carlo
(MC) calculations to test the validity of our tensor renorm-
alization group procedure. A similar study was carried out
for the Abelian version of this model in Refs. [21,22],
along with a study of the Schwinger model in Ref. [23].
Reformulations of models using similar discrete variables
offer an alternative starting point for other samplingmethods
such as worm algorithms, e.g., Refs. [24,25].
Our results indicate that the tensor methods are typically

much more efficient than the Monte Carlo method for
the computation of observables in such theories. As an
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example, for the lattices in this paper, volumes were
typically ∼Oð1002Þ lattice sites. For a single data point
found in the figures in this paper the computational time
was Oð1Þ second using the HOTRG, indicating entire data
sets containing hundreds of data point were generated in a
matter of minutes. This is in contrast to Monte Carlo
simulations where calculations of a single data point on
lattice volumes containing ∼1002 lattice sites can take
∼Oð1000Þ seconds. The computational time being quoted
here is from a modern laptop. Furthermore, tensor networks
are also promising for studying theories with a sign
problem, where the Monte Carlo methods cannot be
applied.
The paper is organized as follows: In Sec. II, we

introduce the model studied in this paper and define
notations. In Sec. III, we outline the tensor formulation
for the model. In Sec. IV we review some analytic limits of
the model and use this to check the formulation and
numerical results. In Sec. V, we compute several observ-
ables and compare them to the our Monte Carlo results.
Finally, in Sec. VI we give concluding remarks and discuss
future directions for this work.

II. THE MODEL

We consider the non-Abelian gauge-Higgs model with
the group SUð2Þ in two Euclidean dimensions. This model
was studied in Ref. [26] using Monte Carlo methods and in
Ref. [27] with scalar matter in the adjoint representation.
In the continuum the action contains both a Yang-Mills and
a scalar kinetic term. For the pure Yang-Mills term we have,

Sg ¼ −
β̃

2

Z
d2xTrðFμνFμνÞ ð1Þ

with Fμν the field strength tensor in the fundamental
representation and β̃ ¼ 1=g2 the inverse coupling. For
the scalar kinetic term we have,

SΦ ¼ κ

4

Z
d2xðDμΦÞ† · ðDμΦÞ ð2Þ

with Dμ ¼ ∂μ þ Aμ the covariant derivative and Φ a
complex doublet scalar field. The scalar potential for this
field is given by

WðΦÞ ¼
Z

d2xðΦ2 þ λðΦ2 − 1Þ2Þ: ð3Þ

The different terms in the continuum action map
straightforwardly to their lattice analogs. Here we work
on a lattice with dimensions Ns × Nτ ¼ V, with Ns, Nτ the
number of lattice sites in the spatial and temporal direc-
tions, respectively. For the pure Yang-Mills term we use the
standard Wilson action,

Sg ¼ −
β

2

X
x

Tr½Ux;1Uxþ1̂;2U
†
xþ2̂;1

U†
x;2� ð4Þ

where one takes a product of the gauge fields associated
with the links around an elementary square (plaquette) for
each square of the lattice. Each link variable is defined as
Ux;μ ¼ e−aAx;μ with a the lattice spacing, Ax;μ ¼ −igAi

x;μTi

the vector potential with the SUð2Þ generators in the
fundamental representation, and x, μ ¼ 1, 2 the lattice
coordinate and vector direction, respectively. In Eq. (4)
β ¼ β̃=a2 is the dimensionless coupling. For the gauge-
matter coupling term we have,

SΦ ¼ −
κ

2

X
x

X2
μ¼1

Φ†
xþμ̂Ux;μΦx: ð5Þ

The Φ field can be reexpressed in terms of a 2 × 2 matrix
[28] and the gauge-matter term becomes,

SΦ ¼ −
κ

2

X
x

X2
μ¼1

Tr½ϕ†
xþμ̂Ux;μϕx�; ð6Þ

where ϕ is now a 2 × 2 Hermitian matrix. Since
ϕ†
xϕx ¼ ρ2x1, ϕx can be written as ϕx ¼ ρxαx with

ρx ∈ R, ρx ≥ 0, and αx ∈ SUð2Þ. This expresses ϕx in
terms of the Higgs (ρx) and Goldstone (αx) modes,
respectively. This allows the gauge-matter term to be again
rewritten as,

SΦ ¼ −
κ

2

X
x

X2
μ¼1

ρxþμ̂ρxTr½α†xþμ̂Ux;μαx�: ð7Þ

Because the potential forΦx only couples same-site fields it
only involves the Higgs mode,

W ¼
X
x

ρ2x þ λðρ2x − 1Þ2: ð8Þ

The partition function for this model is then,

Z ¼
Z

D½U�D½ρ�D½α�e−Sg−SΦ−W ð9Þ

where the integration over U and α is the SUð2Þ Haar
measure, and the integration measure over ρ is given by
ρ3xdρx over [0,∞).

III. TENSOR CONSTRUCTION

Starting with the lattice action composed from
Eqs. (4), (7), and (8),
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S ¼ Sg½Upl� þ
X
x

�
ρ2x þ λðρ2x − 1Þ2

−
κ

2

X2
μ¼1

ρxþμρxTr½α†xþμUxμαx�
�

ð10Þ

we work in the limit λ → ∞, which forces ρ → 1 leaving
only the Goldstone modes. At this exploratory stage of
studying a non-Abelian gauge model using TRG, this limit
simplifies the formulation. Keeping λ finite allows the
Higgs field to fluctuate far from one. The tensor formu-
lations with noncompact variables have been explored in
Refs. [29–31]. The action can be simplified and the
Goldstone modes removed by making a gauge transforma-
tion. We choose the transformation

Uxμ → U0
xμ ¼ α†xþμUxμαx ð11Þ

which only changes the κ term. It now has the form

κ

2

X2
μ¼1

Tr½α†xþμUxμαx� →
κ

2

X2
μ¼1

Tr½Uxμ� ð12Þ

where the prime has been removed for convenience.
Each term in the action is a class function and we can

expand the partition function in terms of characters of the
gauge group. In general

fðXTr½V�Þ ¼
X∞
r¼0

FrðXÞχrðVÞ ð13Þ

where Fr are coefficients of the orthogonal characters of the
group, χr, and r labels the irreducible representations of the
group. This is the analog of a Fourier series representation
when the group isOð2Þ orUð1Þ. The reason this is useful is
that the trace of the matrix representation of the product of
group elements, is equal to the trace of a product of matrix
representations of group elements, i.e.,

χrðU1U2U3…UnÞ ¼ Dr
nnðU1U2U3…UnÞ

¼ Dr
abðU1ÞDr

bcðU2Þ…Dr
zaðUnÞ ð14Þ

withDr
mnðgÞ the matrix representation of the group element

U in the irreducible representation r, and a sum over
repeated indices.
Then the next step is to expand the Boltzmann weights in

terms of characters [32],

e−Sg ¼ exp

�
β

2

X
x

Tr½Ux;1Uxþ1̂;2U
†
xþ2̂;1

U†
x;2�

�

¼
Y
x

X
r

FrðβÞχrðUx;1Uxþ1̂;2U
†
xþ2̂;1

U†
x;2Þ ð15Þ

and

e−SΦ ¼ exp

�
κ

2

X
x

X2
μ¼1

Tr½Ux;μ�
�

¼
Y
x;μ

X
r

FrðκÞχrðUx;μÞ ð16Þ

with

FrðzÞ ¼ 2dr
I2rþ1ðzÞ

z
; dr ¼ 2rþ 1: ð17Þ

Now, the character of the product can be broken up into the
trace of the product of the matrix representations of the
individual elements,

χrðUx;1Uxþ1̂;2U
†
xþ2̂;1

U†
x;2Þ

¼ Dr
abðUx;1ÞDr

bcðUxþ1̂;2ÞDr†
cdðUxþ2̂;1ÞDr†

daðUx;2Þ
¼ Dr

abðUx;1ÞDr
bcðUxþ1̂;2ÞDr�

dcðUxþ2̂;1ÞDr�
adðUx;2Þ ð18Þ

where summation is meant for repeated indices here, and

χrðUx;μÞ ¼
Xσ
n¼−σ

Dr
nnðUx;μÞ: ð19Þ

With the partition function now written in terms of matrices
which are located on the links of the lattice and are
completely factorized, we can gather all of the link
variables that are associated with the same link and perform
the Haar integration over all of the original group element
variables. In two dimensions, there are two plaquettes
associated with a single link, as well as the additional
link variable coming from the gauge-matter coupling term.
Thus there are a total of three matrices associated with each
link on the lattice, and the integral over each link has the
form [33]

Xσ
n¼−σ

Z
dUDr1

m1n1ðUÞDr2†
m2n2ðUÞDσ

nnðUÞ

¼
Xσ
n¼−σ

1

dr2
Cr2n2
r1m1σnC

r2m2
r1n1σn: ð20Þ

Here Cjm
j1m1j2m2

are Clebsch-Gordan coefficients. For com-
plete clarity we work this out for both the horizontal
(spatial) case and the vertical (temporal) case. We use a, b,
l, r for “above,” “below,” “left,” and “right” respectively to
denote the index location with respect to the link the tensor
is attached to. For a horizontal (spatial) link we find,

Xσ
n¼−σ

Z
dUDra

malmarðUÞDrb†
mbrmblðUÞDσ

nnðUÞ

¼
Xσ
n¼−σ

1

drb
Crbmbl
ramalσnC

rbmbr
ramarσn; ð21Þ

while for a vertical (temporal) link we find,
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Xσ
n¼−σ

Z
dUDrl

mlbmlaðUÞDrr†
mramrbðUÞDσ

nnðUÞ

¼
Xσ
n¼−σ

1

drr
Crrmrb
rlmlbσnC

rrmra
rlmlaσn: ð22Þ

Instead of a simple flux rule connecting the link and its
two neighboring plaquettes, we have the Clebsch-Gordan
coefficients connecting the three representations, which are
weighted by FrðκÞ. A tensor at the link would then have
the form

AðsÞ
ðramalmarÞðrbmblmbrÞðκÞ

¼ 1

drb

X∞
σ¼0

Xσ
n¼−σ

FσðκÞCrbmbl
ramalσnC

rbmbr
ramarσn ð23Þ

on the spatial links, and

AðτÞ
ðrlmlamlbÞðrrmramrbÞðκÞ

¼ 1

drr

X∞
σ¼0

Xσ
n¼−σ

FσðκÞCrrmrb
rlmlbσnC

rrmra
rlmlaσn ð24Þ

on the temporal links. Here the notation ðrmm0Þ is defined
as the product state r ⊗ m ⊗ m0. The Clebsch-Gordan
coefficients enforce that mrb −mlb ¼ n ¼ mra −mla
which enables us to sum over n. In addition, by the triangle
inequalities on r1, r2, and σ, we can rewrite this as

AðsÞ
ðramalmarÞðrbmblmbrÞðκÞ

¼ 1

drb

Xrbþra

σ¼jrb−raj
FσðκÞCrbmbl

ramalσðmbl−malÞ × Crbmbr
ramarσðmbl−malÞ ð25Þ

and

AðτÞ
ðrlmlamlbÞðrrmramrbÞðκÞ

¼ 1

drr

Xrrþrl

σ¼jrr−rlj
FσðκÞCrrmrb

rlmlbσðmrb−mlbÞ×Crrmra
rlmlaσðmrb−mlbÞ: ð26Þ

In this construction, the conventions we are using based on
the Wigner D-matrices is the following: For Cjm

j1m1j2m2
, left

and above correspond to subscript 1, and right and below
correspond to no subscript. These conventions match the
Abelian case [21], and give a charge mright −mleft and
mbelow −mabove. A visual representation of these tensors
can be seen in Fig. 1.
Similar to the Abelian case [21,22], at each plaquette we

have a factor of FrðβÞ which demands that the incoming
representations all are the same. However, in addition the
magnetic quantum numbers (the matrix indices) must be
closed around the plaquette as they were in the original
formulation. Then, not only is there a demand that all four
incoming representations are the same, but that neighboring
magnetic quantum numbers are the same. On the plaquette
we have the tensor,

BðrlmlamlbÞðrrmramrbÞðramalmarÞðrbmblmbrÞ ¼
�
FrðβÞδmla;mal

δmar;mra
δmrb;mbr

δmbl;mlb
if rl ¼ rr ¼ ra ¼ rb ¼ r

0 else:
ð27Þ

This tensor forces the surrounding tensors to share a
common irreducible representation at that plaquette, and
directs the magnetic quantum numbers around the plaquette
loop. Here the subscripts “a,” “b,” “l,” and “r” are with
respect to the center of the plaquette. This tensor can be
seen in Fig. 2, where the Kronecker deltas enforce the same
trace as in Eq. (18).

The final partition function is now written as

Zðβ; κÞ ¼ Tr

��Y
x

BðxÞðβÞ
��Y

x;μ

Aðx;μÞðκÞ
��

ð28Þ

where the product over B tensors is over each plaquette
associated with a site, and the product over A tensors is

FIG. 1. An illustration of two A tensors. Here the dashed lines
represent the original links of the lattice. The A tensors have two
indices, each of which is a product state of three indices. The
subscripts “a,” “b,” “l,” and “r” denote the relative position of the
index to the link the tensor is attached to, corresponding to
“above,” “below,” “left,” and “right.”
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over every link. The trace is over all tensor indices, which
have been suppressed. This can be further simplified by
defining a single local tensor built from the A and B tensors.
Since the A tensor has two product-state indices, it can be
interpreted as amatrix. Thismatrix allows for a factorization
of the form A ¼ LLT . Since each plaquette is bounded by
four links, and each link is associated with a single A tensor,
we can assign fourLmatrices to a singleB tensor throughout
the lattice, and define a fundamental tensor T,

Tijklðβ; κÞ ¼
X
α;β;γ;δ

BαβγδðβÞLαiLβjLγkLδlðκÞ: ð29Þ

A graphical representation of this fundamental tensor, along
with the decomposition of theA tensor, can be seen in Fig. 3.
By contracting the T tensor with itself repeatedly in the
shape of a square lattice, we reproduce the partition function
from Eq. (28). The partition function can now be written as,

Zðβ; κÞ ¼ Tr

�Y
x

TðxÞðβ; κÞ
�

ð30Þ

where again the trace is over all tensor indices.
From this point on we use normalized coefficients,

unless otherwise stated, of the form frðzÞ ¼ FrðzÞ=
F0ðzÞ. For this model, these functions have the following
large, and small argument behavior,

frðzÞ ¼ dr

�
1 −

2rð2rþ 2Þ
2z

�
þOðz−2Þ as z → ∞

¼ dr

�
1 −

λrðλr þ 2Þ
2z

�
þOðz−2Þ ð31Þ

with λr ¼ 2r, and

frðzÞ ¼ zλr
4−rdr

Γðλr þ 2Þ þOðzλrþ2Þ as z → 0: ð32Þ

Looking at the large argument behavior we see that the
leading order is just the eigenvalue for the quadratic
Casimir operator for SUð2Þ.

IV. THE CONTINUUM LIMIT, β = 0, AND κ= 0

In this section we discuss how the continuum limit is
approached from the lattice model, as well as some limiting
cases for the model. By looking at the continuum action for
the pure Yang-Mills case, Eq. (1), we see that β̃ must have
dimensions of length squared. This indicates that the
important ratio is β̃=Vphys. Thus the continuum, fixed
physical volume limit is set when β̃=Vphys ¼ c, with c
some constant, and Vphys a dimensionful spacetime
volume. This limit can be calculated on the lattice if we
take β=V ¼ c with β → ∞ and Ns, Nτ → ∞. In this limit,
the gauge coupling, g, becomes arbitrarily weak as the
lattice volume is taken infinitely large.

A. β= 0 limit

In this limit the partition function becomes a product of
one-link integrals,

FIG. 2. An illustration of a B tensor. The black lines on the
outside are Kronecker deltas, and the brown cross is a diagonal
tensor which forces all four rs to be identical. The dashed lines
are the original links of the lattice. The subscripts “a,” “b,” “l,”
and “r” denote the relative position of the index with respect to
the center of the plaquette, corresponding to “above,” “below,”
“left,” and “right.”

FIG. 3. Left: A graphical interpretation of the matrix factori-
zation of the A tensor into the product of two identical matrices,
A ¼ LLT . The dashed line in between represents an intermediate
sum over states. Right: The fundamental tensor Tijkl is built by
contracting four L matrices together with a single B tensor at a
plaquette. Forming this tensor sums over all the r andm variables
on the lattice, and instead one is left with the sums over the
intermediate indices from the Lmatrices. See Eq. (29) for details.
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Z ¼
Z

D½U�eκ
2

P
x;μχ

1
2ðUx;μÞ

¼
Y
x;μ

Z
dUx;μe

κ
2
χ
1
2ðUx;μÞ

¼
Y
x;μ

1

π

Z
2π

0

dθx;μsin2
�
θx;μ
2

�
exp

�
κ sin θx;μ

2 sinðθx;μ=2Þ
�

¼
Y
x;μ

�
2
I1ðκÞ
κ

�
¼

�
2I1ðκÞ

κ

�
2V

¼ ðF0ðκÞÞ2V: ð33Þ

By setting β ¼ 0 in the tensor formulation, the B tensors
immediately imply that the only nonzero contributions to
the partition function will be the r ¼ 0 representation on
each plaquette. This enforces that the link tensors also
simplify to the σ ¼ 0 representation. This immediately
gives Eq. (33).

B. κ= 0 limit

In this limit the partition function becomes that of pure
SUð2Þ gauge theory. This model is also solvable and the
simplest way to see this is using the character expansion
from before. Since the matter-gauge coupling is turned off,
there are only two link variables to integrate per link. The
integral associated with each link has the form,

Z
dUx;μDr

mnðUÞDr0†
m0n0 ðUÞ ¼ 1

dr
δrr0δmn0δnm0 ; ð34Þ

which is Eq. (20) without the additional Wigner D-matrix
from the matter-gauge term. This forces each irreducible
representation of SUð2Þ on each plaquette to be the same
across the whole lattice, and for each representation there is
a degeneracy of dr. The partition function takes the form,

Z ¼ ðF0ðβÞÞV
X
r

�
frðβÞ
dr

�
V
: ð35Þ

In the tensor language when κ ¼ 0, the only contribution
from the A tensors is the σ ¼ 0 representation. This forces
the Clebsch-Gordan coefficients to simplify into Kronecker
deltas, reproducing the integral from Eq. (34).
It is useful to consider the physical interpretation of the

half-integer r numbers. Notice that the r fields are asso-
ciated with the plaquettes of the original lattice and seem to
naturally play the role of dual variables. In fact, looking
at the A tensors from Eqs. (25), and (26), the σ field is
summed-out of the partition function, leaving only a model
in terms of the plaquette variables, and the m variables.
To further understand the r fields, consider the limit of

β → ∞, which is similar to the continuum limit. In this
limit the partition function becomes,

Z ≈ ðF0ðβÞÞV
X
r

�
1 −

λrðλr þ 2Þ
2β

�
V
: ð36Þ

If we further consider that only the leading order is
important, we can rewrite the partition function as,

Z ≈ ðF0ðβÞÞV
X
r

exp

�
−a

U
2

XNs

i¼1

λr;iðλr;i þ 2Þ
�Nτ

; ð37Þ

withU≡ 1=aβ where a is the lattice spacing. We see this is
nothing more than the Hamiltonian for the pure Yang-Mills
case. The Hamiltonian in this case is

H ¼ U
2

XNs

i¼1

C2i ¼
U
2

XNs

i¼1

E⃗i · E⃗i ð38Þ

with C2 the quadratic Casimir operator for SUð2Þ and E⃗ the
electric field. Therefore we see that the r fields on the lattice
are the discrete quantum numbers of the electric field of the
non-Abelian gauge field.
Note that since there is only one direction to travel in

space, the electric field is the same everywhere, and so the
quadratic Casimir element only takes on one value across
all of spacetime. The energy density then takes simple
values,

Er

Ns
¼ U

2
hrjC2jri

¼ U
2
λrðλr þ 2Þ

¼ U
2
ð0; 3; 8;…Þ for r ¼ 0;

1

2
; 1;…: ð39Þ

C. The mass gap

Using the tensor construction from Sec. III one can
construct a transfer matrix, T , by contracting tensors only
along a time-slice. Here we use the HOTRG to approximate
the tensor contractions [3]. By blocking along a time slice
and constructing an approximate transfer matrix, we can
diagonalize this matrix and extract the relative eigenvalues
of the Hamiltonian through the relation,

T ¼ e−aH; ð40Þ

where a is the temporal lattice spacing, and H is the
Hamiltonian. This allows us to calculate the mass gap, M,
in units of U in the continuum from,

M
U

¼ β ln
�
λ1
λ0

�
¼ E1 − E0

U
ð41Þ

where λn are the eigenvalues of the transfer matrix ordered
from largest to smallest as λ0; λ1;… This can be seen for the
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mass gap as a function of κ in Fig. 4. Looking at the κ → 0
limit in Fig. 4, in units of U, this matches Eq. (39) for the
first excited state. This figure shows the progression to the
continuum limit as the size of the lattice increases, keeping
the ratio β=N2

s fixed to a constant, 0.01.
This is a pleasant property of the TRG. One is able to

calculate approximate, relative eigenvalues of the transfer
matrix, and hence of the Hamiltonian for the system.
Typically the eigenvalue spectrum must be calculated in
other ways in sampling methods, e.g., Monte Carlo, while
in the TRG one has direct access to their relative size.

V. OBSERVABLES AND COMPARISON WITH
MONTE CARLO

To check the tensor formulation, as well as explore the
model in greater detail, we computed expectation values
of operators using the TRG and Monte Carlo simulations
and compared them. The MC simulations implemented
the Hybrid Monte Carlo algorithm maintaining about
70%–80% acceptance for all the ensembles. The MC runs
were carried out for at least 50000 molecular dynamics time
units (MDTU) while measuring the expectation values
every two MDTU. To compute the averages, we set a
thermalization cut of at least 10000 MDTU (i.e., 5000
measurements) for all ensembles. The resulting sample
average and errors were calculated using the standard
jackknife binning procedure.
The initial truncation on the TRG state space was at

rmax ¼ 1, limiting the local Hilbert space to 14 states (one
from the trivial representation, four from the fundamental
representation, and nine from the adjoint). Changing the
initial truncation to rmax ¼ 1=2 gives valid results for
smaller values of the couplings; however, as κ and β
become larger, higher order terms in the character expan-
sions, Eqs. (15) and (16), become more important, and
r ¼ 1 needs to be included. The final number of states kept
was Dbond ∼ 50. This was typical for the runs in this paper;
however, smaller bond dimensions were considered
(between 20 to 40 states) and tested until a bond dimension

with consistent convergence to the Monte Carlo data
was found.
The observables we consider are the average plaquette,

hpi, the expectation value of the gauge-matter term, hLϕi,
and its susceptibility, χκ, and finally the Polyakov loop, hPi
and its correlation function GPP† . These expressions are
given by

hpi ¼ 1

V
∂ lnZ
∂β ð42Þ

and

hLϕi ¼
1

V
∂ lnZ
∂κ ; ð43Þ

with Lϕ ¼ P
x;μTr½Ux;μ�=2, and

χκ ¼
1

V
∂2 lnZ
∂κ2 ¼ 1

V
hðLϕ − hLϕiÞ2i: ð44Þ

The Polyakov loop and its correlation function are dis-
cussed in the next section.
In Fig. 5 we have computed hLϕi using both MC and the

TRG and compared them while taking the continuum limit.
In this section we have taken β=V ¼ c ¼ 0.01 throughout,
however other c values were tested. Smaller values of c
simply correspond to a slower convergence to the con-
tinuum limit. We see for small κ rapid convergence to the
continuum limit; however, for larger κ there is convergence
to the continuum limit for sufficiently large volumes.
The susceptibility χκ can be seen in Fig. 6 as one takes

the continuum limit. We see the peak does not tend to
diverge but rather settles as the volume gets large, although

FIG. 4. The mass gap density as a function of κ while taking the
continuum limit. Here β=N2

s ¼ 0.01 is held fixed as the volume is
increased. We see the gap approaches the correct κ ¼ 0 value of
3=2 as the continuum limit is taken.

FIG. 5. Calculation of the average trace of a link variable,
Eq. (43), using the TRG and comparing with MC. Here the
continuum limit is approached by keeping the ratio β=V fixed at
0.01 while increasing the volume. The colored markers are from
the TRG calculations which were done with a local state space
truncation at rmax ¼ 1 and Dbond ¼ 50. The Monte Carlo data are
the black hollow markers.
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the TRG data is somewhat noisy for κ ≳ 1.4 for the larger
volumes. This is indicative of a crossover behavior which
matches previous expectations [26]. The small κ regime to
the left of the peak is associated with the confining regime,
with the pure Yang-Mills model in the limit of κ → 0
having confinement. At larger κ to the right of the peak we
are in the Higgs regime.
In Fig. 7 we see the average plaquette as a function of κ

as one takes the continuum limit. The average plaquette
can be computed directly from lnZ by taking a numerical
derivative as in Eq. (42). As can be seen from the figures,
we find good agreement between the two methods.

A. Polyakov loop and its correlation function

The Polyakov loop is defined as,

Px� ≡ Tr

�YNτ−1

n¼0

D
1
2ðUxþn2̂;2Þ

�
; ð45Þ

with the gauge fields, Dr, in the 1=2, or fundamental,
representation and was investigated for the Abelian-Higgs
model using a tensor formulation in Refs. [22]. When
constructing the tensor formulation for the Polyakov loop,
this adds an additional group element on a loop of temporal
links. These links have a special integration different from
the above. We use the Clebsch-Gordan series on the first
and last D-matrices, and then use the series again and
integrate for the three remaining D-matrices,

Xσ
n¼−σ

Z
dUDrl

mlbmlaD
rr†
mramrbD

σ
nnD

1
2

ij

¼
X
r0mm0n

1

drr
Crrmrb
r0mσnC

rrmra
r0m0σnC

r0m
rlmlb

1
2
i
Cr0m0
rlmla

1
2
j
: ð46Þ

If one continues like above and does the n sums at each link
we get,

Xσ
n¼−σ

Z
dUDrl

mlbmlaD
rr†
mramrbD

σ
nnD

1
2

ij

¼
X
r0mm0

1

drr
Crrmrb
r0mσðmrb−mÞC

rrmra
r0m0σðmrb−mÞ

× Cr0m
rlmlb

1
2
i
Cr0m0
rlmla

1
2
j
; ð47Þ

and then doing the m and m0 sums we get

Xσ
n¼−σ

Z
dUDrl

mlbmlaD
rr†
mramrbD

σ
nnD

1
2

ij

¼
X12þrl

r0¼j1
2
−rlj

1

drr
Crrmrb
r0ðmlbþiÞσðmrb−mlb−iÞ

× Crrmra
r0ðmlaþjÞσðmrb−mlb−iÞC

r0ðmlbþiÞ
rlmlb

1
2
i

Cr0ðmlaþjÞ
rlmla

1
2
j

: ð48Þ

With this expression for the integral of four Wigner D-
matrices, we can write down the impure A tensor associated
with those temporal links which contain the Polyakov loop.

ÃðτÞ
ðrlmlamlbÞðrrmramrbÞijðκÞ

¼ 1

drr

X12þrl

r0¼j1
2
−rlj

Xrrþr0

σ¼jrr−r0j
fσðκÞCrrmrb

r0ðmlbþiÞσðmrb−mlb−iÞ

× Crrmra
r0ðmlaþjÞσðmrb−mlb−iÞC

r0ðmlbþiÞ
rlmlb

1
2
i

Cr0ðmlaþjÞ
rlmla

1
2
j

: ð49Þ

The computation of Ã for P† is done in a similar fashion
using the Clebsch-Gordan series. The i and j indices of this
tensor should be contracted with other Ã tensors along the
temporal direction and then traced over with periodic
boundary conditions.

FIG. 6. The gauge-link susceptibility, Eq. (44), as a function of
κ as one approaches the continuum-limit. Here β=V ¼ 0.01 is
held fixed as the volume is increased. We see convergence as the
volume gets sufficiently large indicating a crossover behavior.
The colored markers are from the TRG calculations which were
done with a local state space truncation at rmax ¼ 1 and
Dbond ¼ 50. The Monte Carlo data are the black hollow markers.

FIG. 7. The average plaquette, Eq. (42), as a function of κ as
one approaches the continuum limit. Here β=V ¼ 0.01 is held
fixed as the volume is increased. The colored markers are from
the TRG calculations which were done with a local state space
truncation at rmax ¼ 1 and Dbond ¼ 50. The Monte Carlo data are
the black hollow markers.
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For the Polyakov loop correlation function, we have

GPP†ðdÞ ¼ hP0P
†
di: ð50Þ

where d is the separation between loops. This involves the
insertion of two Polyakov loops, each winding in different
directions representing a static color and anticolor charged
pair. The calculation of this observable only requires the
impure Ã tensor constructed before. The correlation func-
tion is defined to be related to the static quark potential
through,

GPP†ðdÞ ≃ exp ½−VðdÞ=T� ¼ exp½−aVðdÞNτ�; ð51Þ

where T is the physical temperature. In the confining
regime, one expects a linear potential for V, while in the
Higgs regime one would expect, after some distance, that
the pair breaks and only a constant potential is realized.
An important computational feature is that the correla-

tion function is suppressed exponentially in the temporal
lattice extent. This makes calculations of this quantity using
Monte Carlo methods extremely difficult, since, for even
modest lattices, one loses the signal to the noise unless long
runs are carried out. On the other hand, the TRG at its heart
is simply a multilinear algebra calculation, and while state
truncation introduces systematic errors, in principle such
small numbers are not an issue. However, comparison of
the Polyakov loop and its correlation function in regimes
where both the Monte Carlo and the TRG can be used
(Nτ ≈ 1) indicate that at larger κ values (κ ≳ 1), the TRG is
less quantitatively accurate, but retains correct qualitative
features. In Fig. 8 we show the relative error between a
calculation of G using the TRG and MC at a fixed value of
κ ¼ 2, for a separation of d ¼ 4 on a 8 × 1 lattice. We see

relatively slow, but consistent convergence to the
Monte Carlo number.
In Fig. 9 we have plotted the static charge potential as a

function of lattice separation. Here we take the continuum
limit and keep the ratio β=V ¼ 0.01 fixed while increasing
the size of the lattice. This figure is at a relatively small
value of κ ¼ 0.5, which according to Fig. 6, puts this
run well in the confining regime. Here we see that the string
breaking at small volumes is dominated by a linear
potential in the continuum.
This is to be contrasted with Fig. 10 where data was

collected at a relatively larger κ ¼ 2 value. Again, Fig. 6
puts this kappa value in the Higgs regime. A noticeable
difference in the potential in Fig. 10 is the much earlier
onset of string breaking. We notice that at small volumes,
regardless of κ, string breaking occurs at short distances;

FIG. 8. The relative error of the Polyakov loop correlation
function between the TRG and MC. This is for a larger value of
κ ¼ 2, on a 8 × 1 lattice with a separation of d ¼ 4 between the
two loops. We see the TRG solution converges slowly to the MC
value at larger final bond dimension. The TRG calculations were
done with rmax ¼ 1, and β=V ¼ 0.01 was held fixed.

FIG. 9. The static charge potential, V, from the Polyakov
correlation function in the continuum limit. Here we took β=V ¼
0.01 fixed as we increased the size of the lattice. These runs were
done with the gauge-matter coupling κ ¼ 1=2, which is well in
the confining regime of the model. This is characterized by a
dominant linear potential across the whole system.

FIG. 10. The static charge potential, V, from the Polyakov
correlation function in the continuum limit. Here we took β=V ¼
0.01 fixed and varied the size of the lattice. The gauge-matter
coupling κ is 2, which is in the Higgs regime. This is marked by
string breaking at small distances between the static charges.
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however, as the continuum limit is approached the Higgs
and confining regimes clearly separate.

1. β= 0

The β ¼ 0 limit is trivial, but provides a simple check.
Looking at Eq. (27) we see that the only surviving
representation on the lattice is the r ¼ 0 representation.
Equation (49) then demands that only the σ ¼ 1=2 con-
tributes to the Ã tensor. The Clebsch-Gordan coefficients
reduce to Kronecker deltas, and Ã is diagonal in i and j,

ÃðτÞ
00ijðκÞ ¼

1

2
f1

2
ðκÞδij: ð52Þ

Then

hPi ¼ 2

Z

�f1
2
ðκÞ
2

�Nτ

¼ 2

�
I2ðκÞ
I1ðκÞ

�
Nτ

; ð53Þ

while,

GPP† ¼ 4

�
I2ðκÞ
I1ðκÞ

�
2Nτ

: ð54Þ

An example of this collapse for the Polyakov loop can be
seen in Fig. 11 across a few system sizes.

2. κ= 0

This limit is only slightly more complicated. In this case,
for periodic boundary conditions, the Polyakov loop must
vanish identically, as we would expect in the pure Yang-
Mills theory. This is because, on either side of the Polyakov
loop, all the representation numbers for each plaquette must

be identical, for the same reasons they were in Sec. IV B.
However, the Polyakov loop inserts a static charge of value
r ¼ 1=2, and looking at Eq. (49) we see that only the σ ¼ 0
representation survives, forcing either rl, or rr to be
incremented (or decremented) by 1=2. Since space closes
in a circle, the representations cannot all be equal, and half
are incremented by 1=2, simultaneously. Therefore, the
Polyakov loop vanishes.
The correlation function on the other hand remains finite.

This is because the Polyakov loop and its adjoint bound a
region were all the constraints are satisfied, even with
periodic boundary conditions. In this limit the Ã tensor
associated with the Polyakov loop only allows for the
σ ¼ 0 representation in the sum. This forces the represen-
tations on the plaquettes separated by the Polyakov loops
to be shifted from each other by 1=2. Similarly, the m
quantum numbers associated with the matrix indices are
forced to conserve their Uð1Þ [or Oð2Þ] charge across the
Polyakov loop boundaries, which will be either �1=2. The
Clebsch-Gordan coefficients reduce to Kronecker deltas.
Because κ ¼ 0, similar to Sec. IV B, all the plaquette
representation numbers in the bounded region must be the
same, just as it must be outside the region as well. However
the two regions can differ by Δr ¼ 1=2. The correlation
function can then be written as

Gðd; βÞ ¼ 1

Z

��
f0ðβÞ
d0

�ðNs−dÞNτ
�f1

2
ðβÞ
d1

2

�dNτ

þ
X∞
r¼1=2

Xrþ1
2

r0¼r−1
2

�
frðβÞ
dr

�ðNs−dÞNτ
�
fr0 ðβÞ
dr0

�
dNτ

�

ð55Þ
for a separation of d between the two Polyakov loops.

VI. CONCLUSIONS

In this paper we have derived a tensor formulation for
the SUð2Þ non-Abelian gauge-Higgs model. Using this
tensor formulation, we have calculated observables using a
renormalization group procedure known as the HOTRG,
compared the results with Monte Carlo calculations and
found good agreement. In addition, we have studied the
Polyakov loop and the correlation function between a
Polyakov loop and its adjoint. The latter yields the static
quark potential in the model. While the system being two
dimensional cannot exhibit a true phase transition the
matter susceptibility, nevertheless, shows signs of a cross-
over around κ ∼ 1.2. The behavior of the correlation
function suggests a confining regime for small κ values,
and a string breaking or Higgs-like phase for larger κ.
We have also calculated the mass gap as a function of the
matter-gauge coupling. This is possible because the
HOTRG method allows for a straightforward construction
of the transfer matrix by blocking only along a time slice.

FIG. 11. The Polyakov loop calculated using the TRG com-
pared with the exact analytic calculation for the case of infinite
gauge coupling (β ¼ 0). The x-axis is the gauge-matter coupling
κ, and the y-axis is the rescaled data compared with the exact
dashed line from Eq. (53), with I1, and I2 being the modified
Bessel functions. A few system sizes are plotted indicating a
complete factorization of the Polyakov loop in this limit as
expected.
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From this approximate transfer matrix, the relative energy
eigenvalues can be obtained. The crossover seen in the
thermodynamics and static potential is also visible in the
mass gap which exhibits different behaviors as κ is varied.
One additional, important point to emphasize is that the

TRG algorithm is able to calculate quantities like the static
quark potential that are essentially impossible to calculate
straightforwardly with Monte Carlo methods over large
ranges of the parameter space because of an exponentially
small signal which is swamped by noise. This problem is
reminiscent of theories with a sign problem and indeed one
of the principle advantages of tensor network methods is
their ability to completely avoid sign problems.
Recasting the non-Abelian gauge-Higgs model in terms

of the irreducible representations of the gauge group could
allow a rotor formulation of the Hamiltonian of this model

in the continuous-time limit. There are already indications
of the final form in Eq. (38) for the kinetic term, although
further work is needed to describe the matter-gauge
coupling term. Such a formulation could provide a straight-
forward, gauge-invariant means to formulate the model for
quantum simulations in the future.
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