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We present a detailed study of the helicity-dependent and helicity-independent collinear parton
distribution functions (PDFs) of the nucleon, using the quasi-PDF approach. The lattice QCD computation
is performed employing twisted mass fermions with a physical value of the light quark mass. We give a
systematic and in-depth account of the salient features entering in the evaluation of quasi-PDFs and their
relation to the light-cone PDFs. In particular, we give details for the computation of the matrix elements,
including the study of the various sources of systematic uncertainties, such as excited-states contamination.
In addition, we discuss the nonperturbative renormalization scheme used here and its systematics, effects of
truncating the Fourier transform and different matching prescriptions. Finally, we show improved results
for the PDFs and discuss future directions, challenges and prospects for evaluating precisely PDFs from
lattice QCD with fully quantified uncertainties.
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I. INTRODUCTION

Quantum chromodynamics (QCD), being the fundamen-
tal theory of the strong interactions, describes the inter-
actions among quarks and gluons both in the perturbative
regime, as well as in the nonperturbative regime with the
emergence of complex structures like hadrons. As the latter
requires a nonperturbative approach, the use of a discre-
tized Euclidean spacetime to numerically solve QCD has
been proven to be extremely successful in the computation
of physical properties of hadrons, such as their masses and
decay constants. The rich and diverse structure of hadrons
is described in terms of observables like various kinds of
form factors, revealing different structural aspects, such as
the average distribution of electric charge or parton (quark
and gluon) momentum and spin inside the hadron. Even
more information is contained in distribution functions,
such as parton distribution functions (PDFs), generalized

parton distributions and transverse-momentum-dependent
PDFs, which decompose the aggregate observables into
probability densities for partons with specific longitudinal
momentum, transverse momentum and momentum transfer
within a scattering event. The simplest of these are the
PDFs, which have been studied intensively and continu-
ously in experimental facilities over the last few decades,
most notably for the proton, and also provide input in
collider experiments. It is well established that the main
source of information on PDFs are global QCD analyses,
providing accurate results due to theoretical advances and
new data emerging from accelerators, covering different
kinematical regions (see e.g., Refs. [1–12]). Such analyses
rely on the factorization framework, in which scattering
cross sections, generally obtaining contributions from all
energy scales, are written as convolutions of perturbatively
computable coefficient functions describing the high-
energy scales, and the low-energy PDFs. Despite the
tremendous progress in phenomenological parametriza-
tions of PDFs, the procedures are not without ambiguities
[7], as there are still kinematical regions that are not easily
accessible experimentally, e.g., the large Bjorken-x region.
Uncertainties on the PDFs in the large-x range propagate to
smaller-x regions when QCD evolution is applied.
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A calculation of PDFs from first principles is a valuable
addition to the global fitting analyses and of crucial
importance for the deeper understanding of the inner
structure of hadrons. Apart from providing a fundamental
framework for the study of these quantities, it can also serve
as input for experimental analyses in collision experiments.
The nonperturbative nature of PDFs makes lattice QCD an
ideal ab initio formulation to determine them, utilizing
large-scale simulations. A novel method to extract parton
distribution functions from lattice QCD was proposed five
years ago by Ji [13]. It is based on considering matrix
elements probing purely spatial correlations, making them
accessible in Euclidean lattice QCD.
The first studies on quasi-PDFs within lattice QCD

[14–16] appeared soon after their proposal by Ji. These
papers and the follow-up ones [17,18] focused mainly on
the feasibility of the approach where only the bare nucleon
matrix elements of boosted nucleons are calculated for
nonsinglet operators. The first computations that utilized a
proper procedure for renormalization and matching to MS
light-cone PDFs and using simulations with physical
pion masses were published in Ref. [19] for the unpolarized
isovector PDFs, uðxÞ − dðxÞ, and helicity PDF, ΔuðxÞ −
ΔdðxÞ and in Ref. [20] for the isovector transversity PDF,
hu1ðxÞ − hd1ðxÞ. These works were published in shorter
letters, where many of the technical and methodological
details of the calculations needed to be left out.
It is the purpose of this paper to fill this gap and provide

the above-mentioned details in a comprehensive way, give
the present understanding and control of systematics effects
appearing in the computations and to present the status of
the calculations of PDFs for our twisted mass setup. In
particular, we extend the work of Refs. [19,20] and give a
systematic and in-depth account of the salient features
entering in the evaluation of quasi-PDFs and their relation
to the light-cone PDFs. We explain in detail the compu-
tation of the matrix elements including the study of
the various sources of systematic uncertainties, such as
excited-states contamination. An improved renormalization
procedure is presented using three ensembles for the
nonperturbative extraction of the renormalization func-
tions, allowing to take the chiral limit, as well as an
investigation of other sources of systematic uncertainties
related to the renormalization, such as the finite volume and
scale dependence. In addition, different prescriptions for
applying the Fourier transform and the matching prescrip-
tion are employed and critically compared.
On the physics side, in order to compare with existing

phenomenological estimates, we convert our results in the
RI0 scheme into the MS scheme following the procedure
given in Ref. [21]. We then apply appropriate matching to
relate quasi-PDFs in the MS scheme to light-cone PDFs
extracted from global fits. With the detailed analysis of
systematic effects, as described in this work, having
a physical value of the pion mass and the improved

renormalization and matching prescriptions, we are finally
in a position to indeed make contact with the phenomeno-
logical analyses of PDFs and we present final results of our
lattice PDF calculations in Sec. VI below. In addition to our
work, results on the quasidistribution approach were
reported in Refs. [22–32] that include, besides the nucleon
PDFs, exploratory studies of pion distribution amplitudes
and PDFs as well as of gluon PDFs. For complete
references and an overview of the theoretical and numerical
developments, see Ref. [33].
On more general grounds, it is very important to realize

that quasi-PDFs and light-cone PDFs have been shown to
share the same infrared physics [34–37], which is the
fundamental observation that allows one to relate both
quantities using perturbation theory, provided that the
hadron is moving with a large, although necessarily finite,
momentum in a chosen spatial direction. It has also been
proven that quasi-PDFs can be extracted from lattice QCD
in Euclidean spacetime [36] and that they do not suffer
from power-divergent mixings with lower-dimensional
operators [38–40]. A factorization formula makes it pos-
sible to extract the PDFs from the quasi-PDFs, an operation
called matching [19,20,29,31,34,35,37,41–45]. In general,
this procedure is based on a newly developed large-
momentum effective theory [46], and it is renormalizable
to all orders in perturbation theory [47–50]. Other
approaches for a direct computation of the x dependence
of PDFs include the hadronic tensor [51–53], fictitious
heavy quark [54], auxiliary light quark [55], good lattice
cross sections [35,37] (closely related to the auxiliary light
quark method), “OPE without OPE” [56] and pseudo-PDFs
[57–60], where the latter can be seen as a generalization of
PDFs off the light cone. These alternative approaches have
been explored in lattice QCD, and recent results can be
found in Refs. [40,56,61–68]. The new formulation and its
successful implementation within lattice QCD has also led
to a wider interest in phenomenological studies using
models and toy theories of QCD [57,58,69–76]. A detailed
overview of the current status of lattice QCD calculations
of PDFs and other partonic distributions can be found in the
recent reviews of Refs. [33,77].
The remainder of the paper is organized as follows. In

Sec. II, we provide the general theoretical aspects, lattice
QCD action and parameters. We discuss the computation of
the bare matrix elements, along with the lattice techniques
necessary to attain high statistical accuracy. In Sec. III, we
present our results on bare matrix elements, together with
various analysis methods that are required to control
excited-states contamination. Section IV describes in detail
the nonperturbative renormalization program, which inves-
tigates pion mass dependence, volume effects and renorm-
alization scale dependence. The matching procedure is
presented in Sec. Vand we demonstrate that a modified MS
scheme is preferable. Different prescriptions are presented
and we compare the effect on the final PDFs. Section Valso
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includes an investigation of systematic uncertainties result-
ing from the Fourier transform. In Sec. VI, we present our
final results with a discussion on the systematic uncertain-
ties, while in Sec. VII we conclude.

II. METHODOLOGY

A. From PDF to quasi-PDF

The original definition of the quark momentum distri-
bution within a hadron can be derived from the operator
product expansion (OPE) of hadronic deep-inelastic scat-
tering and is given by

qðxÞ¼
Z þ∞

−∞
dξ−e−ixP

þξ−hNjψ̄ðξ−ÞΓWðξ−;0Þψð0ÞjNi; ð1Þ

where x is the momentum fraction of the quark, jNi is
the hadron state at rest (assumed to be the nucleon),
the momentum Pþ ¼ ðP0 þ P3Þ= ffiffiffi

2
p ¼ M=

ffiffiffi
2

p
, ξ− ¼

ðξ0 − ξ3Þ= ffiffiffi
2

p
, Wðξ−; 0Þ is the Wilson line connecting ξ−

and 0, and Γ is a Dirac matrix whose structure defines the
momentum distributions of quarks having spin parallel or
perpendicular to the nucleon momentum. The factorization
scale is implicit. Equation (1) is light-cone dominated,
as it receives contributions only in the region where
ξ2 ¼ t2 − r⃗2 ¼ 0. Consequently, a direct implementation
of this equation is impossible on the lattice, where only a
single point can satisfy the Euclidean light-cone condition
ξ2 ¼ t2 þ r⃗2 ¼ 0. The alternative approach proposed by Ji
overcomes this difficulty by reconstructing light-cone
distributions from correlation functions where the bilinear
fermionic fields, ψ and ψ̄ , are separated by a purely spatial
distance z and the nucleon is boosted with a finite
momentum. Quasi-PDFs are defined as

q̃ðx;P3Þ¼
Z þzmax

−zmax

dz
4π

e−ixP3zhNjψ̄ð0;zÞΓWðz;0Þψð0;0ÞjNi;

ð2Þ

where jNi represents a nucleon, which is boosted in the z
direction with momentum P ¼ ðP0; 0; 0; P3Þ. On the lat-
tice, quasi-PDFs are thus computed using matrix elements
of nonlocal operators containing a straight Wilson line of
finite length z, that varies from 0 to some maximum value,
zmax. This aspect will be further discussed in the following
sections. The standard light-cone PDFs can be recovered
from quasi-PDFs using the large momentum effective
theory [46], developed specifically for these operators.
Eventually, quasi-PDFs are matched to the physical PDFs
through the factorization

qðx;μÞ¼
Z

∞

−∞

dξ
jξjC

�
ξ;

μ

P3

�
q̃

�
x
ξ
;μ;P3

�
þO

�
m2

N

P2
3

;
Λ2
QCD

P2
3

�
;

ð3Þ

where qðx; μÞ is the light-cone PDF at the scale μ and we
follow the usual choice of common factorization and
renormalization scales, μF ¼ μR ≡ μ. C is the matching
kernel, which can be computed perturbatively and has so
far been evaluated to the one-loop level. For sufficiently
large momenta, ideally much larger than the nucleon mass,
mN , andΛQCD, higher-order corrections in αs are very small
and the extraction of quark distributions is fully robust.
Presently, such a situation cannot be accomplished and it is
part of this paper to investigate whether practically reach-
able momenta are sufficient.

B. Lattice gauge ensemble

The analysis is performed using a gauge ensemble of two
dynamical degenerate light quarks (Nf ¼ 2), generated by
the ETM1 Collaboration [78]. The light quark mass has
been tuned to reproduce the physical value of the pion
mass, henceforth referred to as the physical point.
The lattice volume is 483 × 96, the lattice spacing a ¼
0.0938ð2Þð3Þ fm [79], the spatial lattice extent L ≈ 4.5 fm
and mπL ¼ 2.98. Based on a model prediction of excited-
states effects in certain hadron structure quantities [80], the
dependence on mπL is mild (see, e.g., Fig. 3 of Ref. [81]).
The complete list of parameters of this ensemble is reported
in Table I.
The gauge configurations were generated with the

Iwasaki-improved gauge action [82]. In the fermionic
sector, the twisted mass fermion action [83,84] with a
clover term [85] was employed. The fermion action is
given by

SF½χ; χ̄;U�¼
X
x

χ̄ðxÞ
�
DW ½U�þ iμlγ5τ3þ

i
4
cSWσμνF μν½U�

�

× χðxÞ; ð4Þ

where DW is the Wilson-Dirac operator, μl is the bare
twisted mass for the light quarks, τ3 ¼ diagð1;−1Þ is the
third Pauli matrix in flavor space and the last term includes
the field-strength tensorF μν½U�weighted by cSW, known as
the Sheikoleslami-Wohlert (clover) coefficient. In the
gauge ensemble used in this work, the clover parameter
is taken to be cSW ¼ 1.57551 [86]. In Eq. (4) χðxÞ ¼
ðu; dÞT denotes the light quark doublet in the “twisted
basis” at maximal twist. The fermion fields in the “physical
basis,” denoted by ψðxÞ, are recovered by the following
chiral rotation:

ψðxÞ≡ ei
α
2
γ5τ3 χðxÞ; ψ̄ðxÞ≡ χ̄ðxÞeiα2γ5τ3 ; ð5Þ

1Effective as of this year, the European Twisted Mass Col-
laboration has officially changed its name to the Extended
Twisted Mass Collaboration, as now it also comprises members
from non-European institutions. Along with the name change,
there is also a new logo.
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where α ¼ π=2 at maximal twist. In the next sections of this
paper, the interpolating fields and the nucleon matrix
elements have to be understood with quark fields in the
physical basis, unless otherwise specified.
The introduction of the twisted mass term in the lattice

action has a series of advantages in hadron structure
calculations, such as excluding zero eigenvalues from the
spectrum of the Wilson-Dirac operator allowing a speed-up
in the numerical simulations. Moreover, it also simplifies
renormalization properties of operators [84,87–89] and at
maximal twist it provides an automatic OðaÞ improvement.
However, the isospin symmetry breaking of the twistedmass
formulation could lead to instabilities when simulations are
carried out at light quark masses close to the physical value.
The isospin breaking, which manifests itself in the neutral
pion being lighter than the charged one, is reduced with the
addition of the clover term in the fermion action [78].

C. Nucleon bare matrix elements

In this work, we evaluate the unpolarized, helicity
and transversity quasi-PDFs using three values for the
nucleon momentum, that is, P3 ¼ 6π=L, P3 ¼ 8π=L and
P3 ¼ 10π=L, corresponding in physical units to 0.83, 1.11
and 1.38 GeV, respectively. The matrix element of interest
is given by

hΓðP3; zÞ ¼ hNjψ̄ð0; zÞΓWðz; 0Þψð0; 0ÞjNi; ð6Þ

for a straight Wilson line, W, with varying length from
z ¼ 0, corresponding to the standard ultralocal operators,
up to half of the spatial extension, L=2. Γ is the Dirac
structure leading to different types of PDFs, as discussed
below. The matrix elements of Eq. (6) are extracted from a
ratio of two- and three-point functions, averaged over the
gauge field ensemble. The two-point and three-point
functions are given by

C2ptðP; t; 0Þ ¼ Pαβ

X
x

e−iP·xh0jNαðx; tÞN̄βð0; 0Þj0i; ð7Þ

C3ptðP; z; ts; τ; 0Þ ¼ P̃αβ

X
x;y

e−iP·xh0jNαðx; tsÞ

×Oðy; τ; zÞN̄βð0; 0Þj0i; ð8Þ

where NαðxÞ is the proton interpolating field, t (ts) is the
time separation of the sink relative to the source in the two-
point (three-point) function,2 τ is the insertion time of theO
operator and Pαβ, P̃αβ are the parity projectors for the two-
and three-point functions, respectively. For the two-point
functions, we use the plus and minus parity projectors

P� ¼ 1�γ0

2
and average over the forward and backward

correlators. The projector P̃αβ depends on the operator
under study. The operator Oðy; τ; zÞ has the following
form:

Oðy; τ; zÞ ¼ ψ̄ðy þ z; τÞΓWðy þ z; yÞψðy; τÞ; ð9Þ

where the Wilson line is aligned in the direction of the
nucleon momentum and ψ is the fermion doublet of flavors
ðu; dÞ. We compute the isovector combination u − d,
inserting a τ3 in flavor space. With this choice, the
disconnected diagrams cancel and the total contribution
is obtained from the connected diagram shown in Fig. 1.
As mentioned in Sec. II A, the choice for the Dirac

structure in the operator of Eq. (1) gives access to different
quark distribution functions. In fact, to extract a given PDF,
different Γ matrices may be used, such as γ3 (parallel to the
Wilson line direction) or γ0 (temporal direction) for the
unpolarized PDF. However, some choices are preferable
(e.g., γ0) as they avoid finite mixing under renormalization,
which was found to be allowed in lattice regularization
[21]. In the absence of mixing, the operators renormalize
multiplicatively, and one avoids systematic uncertainties
related to the elimination of mixing. In this work, we
compute matrix elements of the operators with
(1) Γ ¼ γ3, γ0 for the unpolarized distribution,

q̃ðxÞ ¼ q̃ðxÞ↑ þ q̃↓ðxÞ,
(2) Γ ¼ γ5γ3 for the helicity distribution,

Δq̃ðxÞ ¼ q̃↑ðxÞ − q̃↓ðxÞ, and
(3) Γ ¼ σ3j for the transversity distribution,

δq̃ðxÞ ¼ q̃⊥ðxÞ þ q̃⊤ðxÞ.

FIG. 1. Schematic representation of the nucleon two- (left) and
three-point (right) functions. The creation point of the nucleon is
at ð0; 0Þ, while the annihilation is at ðx; tsÞ and ðx; tsÞ for the two-
and three-point functions, respectively. The solid lines represent
the quark propagators and the curly line denotes the Wilson line
of length z.

TABLE I. Parameters of the ensemble used in this work. The
nucleon mass (mN), the pion mass (mπ) and the lattice spacing (a)
have been determined in Ref. [79].

β¼2.10, cSW¼1.57751, a¼0.0938ð3Þð2Þ fm, r0=a¼5.32ð5Þ
483 × 96, L ≈ 4.5 fm aμ ¼ 0.0009

mπ ¼ 0.1304ð4Þ GeV
mπL ¼ 2.98
mN ¼ 0.932ð4Þ GeV

2We use different symbols to emphasize that the three-point
function is computed only for selected values of the source-sink
separation, ts=a ¼ 8, 9, 10, 12 in this work, while the two-point
function is evaluated for the full range of time separations to
constrain more precisely the gap between the ground state and the
first excited state in two-state fits; see Sec. III C.
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q↑ (q↓) and q⊥ (q⊤) indicate quarks with helicity aligned
(antialigned) with that of a longitudinally and transversely
polarized proton, respectively. The index j entering the
matrix element of the transversity distribution is purely
spatial and denotes the direction of the quark spin, which is
orthogonal to the proton momentum. Each choice of an
operator requires an appropriate parity projector P̃αβ, that

is, 1þγ0

2
for the unpolarized, iγ3γ5 1þγ0

2
for the helicity, and

iγk 1þγ0

2
for the transversity PDF. The desired matrix

elements of Eq. (6) are finally extracted from fitting the
ratio of three-point and two-point functions to isolate
the ground state. One choice is a constant fit as a function
of the time insertion of the operator over which the ratio is
time independent (plateau region). Other choices are two-
state fits that take into account the first excited-states
contributions, as discussed in Sec. III with a comparison
among them. Thus, the desired matrix element in the
plateau fit is given by

hΓðp; zÞ ¼0≪τ≪tsK
hC3ptðp; z; ts; τ; 0ÞiG
hC2ptðp; ts; 0ÞiG

; ð10Þ

where K is a kinematic factor equal to K ¼ iE=p (with
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ p2
p

) for the vector current γ3, whereas K ¼ 1

for all other choices of the Dirac structure used. A gauge
average (h� � �iG) is performed on the two- and three-point
functions prior to taking the ratio.

D. Lattice techniques

To evaluate the correlation functions of Eqs. (7)
and (8), a state with the same quantum numbers as
the nucleon is created at the source and annihilated at
the sink. In our calculation, we employ point sources
generated with the proton interpolating field NαðxÞ ¼
ϵabcuaαðxÞðdbT ðxÞCγ5ucðxÞÞ, where C ¼ γ0γ2 is the
charge-conjugation matrix. In general, the overlap of
the states generated with such interpolating fields with
the desired ground state is improved by employing smear-
ing. Gaussian smearing [90,91] of quark fields at the source
and the sink, used in combination with APE smearing on
the gauge field, is a very effective approach to improve
ground-state dominance. For nucleon states at rest, pre-
vious studies [92] performed on the gauge ensemble
employed in this work, have extracted the optimal param-
eters for both Gaussian and APE smearing, tuned to
approximately reproduce a nucleon state with an rms
radius of about 0.5 fm and maximize the overlap with
the ground state. These parameters are ðNG; αGÞ ¼ ð50; 4Þ
for Gaussian smearing and ðNAPE; αAPE ¼ 0.5Þ for APE
smearing.
However, in the computation of PDFs, we need to

optimize the overlap to a boosted nucleon state while
keeping the statistical noise minimal. We, thus, modify the
standard Gaussian smearing by using momentum-smeared

interpolating fields [93]. This has proven extremely advan-
tageous when the nucleon is boosted with a large momen-
tum, as is the case for quasi-PDFs. The momentum
smearing modifies the standard Gaussian smearing func-
tion by including a complex phase factor that affects only
the gauge links along the direction of the boost, namely

Smom ¼ 1

1þ 6αG

�
ψðxÞ þ αG

X
j

UjðxÞeiξP·jψðxþ ĵÞ
�
;

ð11Þ

where Uj denotes a gauge link in the j direction. The value
of the free momentum smearing parameter ξ depends, in
general, on the parameters of the gauge ensemble and on
the nucleon momentum. The tuning of ξ is necessary in
order to improve the overlap of our interpolator with the
boosted proton. We, thus, have optimized the parameter ξ
for each value of the momentum employed by minimizing
the statistical errors of the nucleon two-point functions.
In Fig. 2, we demonstrate the effect of the momentum
smearing, by plotting the scaling of the error of the two-
point correlator and the effective energy. The results shown
have been extracted using 100 measurements for the
nucleon boost P3 ¼ 8π=L. For comparison, we include
also the results using the standard Gaussian smearing
(ξ ¼ 0). As can be seen, the errors in the correlation
functions reduce dramatically as the value of ξ increases
and convergence is observed in the range ξ ∈ ½0.6–0.75�.
Thus, any value of ξ in this window of values leads to a
similar signal-to-noise ratio. The tuning procedure for the
other two momenta, P3 ¼ 6π=L and P3 ¼ 10π=L, leads
to the same conclusions and we fix ξ ¼ 0.6 throughout
this work.
The three-point functions are computed using the

sequential method [94], which has the advantage of
summing automatically the sink spatial volume to produce
the sequential propagator for all insertion points. Compared
to the stochastic method [95], the sequential method does
not introduce stochastic noise, but has the drawback that
new inversions of the Dirac matrix have to be carried out for
different source-sink separations and nucleon momenta.
For details on the comparison between the stochastic
method (with pure Gaussian smearing) and the sequential
method (with and without momentum smearing), we refer
to Refs. [15,18]. In addition, the sequential method is
preferable when the momentum smearing technique on the
quark fields is employed.
To increase the number of measurements of the three-

point functions, we use multiple source positions (Nsrc) for
each configuration. To confirm that the data extracted from
different source positions on the same configuration are
statistically independent, we study the scaling of the
statistical error with the increase of Nsrc. In Fig. 3 (left),
we show the error on the matrix elements for z ¼ 0,
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obtained from the analysis of a sample of gauge configu-
rations for a nucleon boost of 6π=L. For comparison
purposes, the absolute error is normalized to the one
obtained using only one source position per configuration.
As can be seen, the errors for the three choices of Γ
structure decrease approximately as 1=

ffiffiffiffiffiffiffiffi
Nsrc

p
, which is the

scaling expected if the measurements are not correlated.
To further decrease the statistical uncertainties, we boost

the nucleon along different spatial directions and orienta-
tions, that is, �x, �y and �z, with the Wilson line taken
always along the axis in which the spatial component of the
momentum is nonzero. The correlation functions obtained
from these Ndir ¼ 6 possible directions lead to the same
physical results due to the spatial rotational symmetry on
the lattice, and therefore can be averaged within each
configuration. The statistical error reduction is close to the

ideal behavior 1=
ffiffiffiffiffiffiffiffi
Ndir

p
, as shown in the right panel

of Fig. 3.
Despite the use of the momentum and APE smearing, the

exponential decrease of the signal-to-noise ratio persists as
the nucleon momentum and source-sink separation
increase. To increase statistics at a reduced cost, we employ,
together with the momentum and APE smearing, the
covariant approximation averaging (CAA) [96] that
belongs to the class of truncated solver methods with a
bias correction. For each configuration, NLP low-precision
(LP) inversions of the Dirac matrix are carried out from a
set of random source positions fXsrcg and the bias from the
measurements is removed using a small number NHP of
high-precision (HP) inversions. Denoting with CLP and
CHP the correlation functions produced with low and
high precision of the solver, respectively, the improved
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FIG. 3. Scaling of the statistical errors of the matrix elements, for the operator with z ¼ 0, varying the number of source positions on
each configuration (left) and averaging over the directions of the nucleon boost (right). The absolute errors for the unpolarized, helicity
and transversity matrix elements (red circles, blue squares, and yellow triangles, respectively) are normalized to the one obtained from
only one point source or one boost direction. The results are compared with the ideal scaling (dashed line in both figures) expected for
uncorrelated measurements.
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FIG. 2. Left: Relative error of the nucleon two-point correlator as a function of the Euclidean time t=a, for P3 ¼ 8π=L and different
values of the momentum smearing parameter ξ. The value ξ ¼ 0 (black points) corresponds to the standard Gaussian smearing. Right:
Effective energy of the nucleon with boost P3 ¼ 8π=L for different values of ξ.
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correlation functions Cimp for each configuration are
defined by

Cimp ¼ 1

NLP

XNLP

i¼1

Ci;LP þ 1

NHP

XNHP

i¼1

ðCi;HP − Ci;LPÞ; ð12Þ

where, in the second sum, CLP and CHP are computed at the
same source position, as otherwise the bias cannot be
corrected. The error for a given observable scales with the
ratio NHP=NLP as

error ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − rcÞ þ

NHP

NLP

s
; ð13Þ

where rc is the correlation coefficient among nucleon
correlators computed at high and low precision. A com-
promise is needed to have rc ≃ 1, while keeping the
inversions as fast as possible and NLP ≫ NHP. Thus, a
tuning of the precision of the solver has to be carried out. To
invert the Dirac operator, we use the adaptive multigrid
solver with twisted mass fermion support [97] and require
the residual to be rHP ¼ 10−10 for HP inversions. After
testing different values of the residual for LP inversions, we
find that the stopping criterion

rLP ≡ jresiduejLP
jsourcej ¼ 2 × 10−3 ð14Þ

guarantees a correlation coefficient rc ≥ 0.999 with a
considerable speed-up in the inversion time. Moreover,
taking 15 HP inversions as the reference setup, a compari-
son of the HP and CAA estimates for the two- and three-
point correlators verified that the bias introduced from LP
inversions is negligible compared to the gauge noise of our
measurements when one HP inversion for each configura-
tion is performed. Thus, to extract the nucleon matrix
elements for quasi-PDFs at momenta 8π=L and 10π=L, we
use the CAA setup with ðNHP; NLPÞ ¼ ð1; 16Þ.
The quasi-PDFs are computed at different source-sink

time separations ts in order to investigate excited-states

effects. In particular, we use ts=a ¼ 8, 9, 10, 12 for the
unpolarized and ts=a ¼ 8, 10, 12 for the helicity and
transversity cases. For a detailed discussion on the
excited-states effects, we refer to Sec. III C. In the remain-
ing part of this section and unless otherwise stated, we
focus on the results extracted from ts ¼ 12a, which is the
one where excited states are found to be suppressed for all
three PDFs when the statistical precision is around 10%.
The number of configurations and the total statistics for
each operator and momentum are reported in Table II. In
the number of total measurements, we include a factor of 6,
coming from the average over correlators computed from
the boost aligned along the �x, �y, �z directions, and a
factor of 16 (15) from the source positions for P3 ¼ 6π=L
(P3 ¼ ½8; 10�π=L). This translates into an additional factor
of 96 for P3 ¼ 6π=L and 90 for P3 ¼ 8, 10π=L, where the
CAA is employed. Moreover, we note that only for
the transversity PDF at P3 ¼ 6π=L, we have averaged
over the matrix elements computed for the two possible
choices of Dirac matrices (for example, σ31 and σ32 for a
boost in the z direction). This contributes an additional
factor of 2 to the total number of measurements at this
momentum, as well as to the computational cost (due to the
different parity projectors needed for σ31 and σ32).
Although large nucleon momenta are needed to approach

light-cone PDFs, high values of the momentum on a
Euclidean lattice may lead to substantial cutoff effects if
the condition P3 ≪ 1=a is not satisfied. One possible check
of cutoff effects is via the computation of the dispersion
relation. To this end, we compute the nucleon energies for
the momenta f0; 2; 4; 6; 8; 10gπ=L using the momentum
smearing method, and check whether the relativistic
dispersion relation E2 ¼ m2

Nc
4 þ P2

3c
2 is satisfied for our

results. As can be seen in Fig. 4, no deviations from the
continuum energy-momentum relation are observed for the
values employed in this work (up to 1.38 GeV), which is
well below the inverse lattice spacing (10π=L ≈ 0.65=a).
Moreover, by performing a two-parameter fit to the
lattice data, we obtain c2 ¼ 1.00ð3Þ for the squared
speed of light and a2m2

Nc
4 ¼ 0.207ð4Þ for the nucleon

mass in lattice units, which is compatible with the value

TABLE II. The statistics of our calculation at a source-sink separation of ts ¼ 12a, for each current insertion and each momentum.
Nconf is the number of gauge configurations, NHP (NLP) is the number of high- (low-)precision measurements, and Nmeas is the total
number of measurements. A factor of 6 is included in the total measurements due to the averaging of data with the Wilson line and
momentum boost in the �x, �y, �z directions. An additional factor of 2 compared to all other cases is included for the transversity at
P3 ¼ 6π

L to take into account the averages over the two possible Dirac structures, as explained in the text.

P3 ¼ 6π
L P3 ¼ 8π

L P3 ¼ 10π
L

Ins. Nconf NHP Nmeas Ins. Nconf NHP NLP Nmeas Ins. Nconf NHP NLP Nmeas

γ3 100 16 9600 γ3 425 1 16 38 250 γ3 811 1 16 72 990
γ0 50 16 4800 γ0 425 1 16 38 250 γ0 811 1 16 72 990
γ5γ3 65 16 6240 γ5γ3 425 1 16 38 250 γ5γ3 811 1 16 72 990
σ3j 50 16 9600 σ3j 425 1 16 38 250 σ3j 811 1 16 72 990
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amN ¼ 0.4436ð11Þ extracted at zero momentum [79].
Whether this finding of only small cutoff effects in the
dispersion relation also holds in the case of the PDFs we are
interested in, can eventually only be answered when results
at several lattice spacings are available.

III. TECHNIQUES FOR THE EVALUATION
OF BARE QUASI-PDF NUCLEON MATRIX

ELEMENTS IN LATTICE QCD

In this section, we discuss crucial aspects related to the
lattice QCD computation of bare quasi-PDF nucleon matrix
elements, such as dependence on the number of stout
smearing iterations used in the operator, the choice of
the Dirac structure and identification of excited-states
contamination.

A. Stout smearing

We apply three-dimensional stout smearing to the gauge
links of the Wilson line of the operator, following the
prescription of Ref. [98]. This reduces the power diver-
gence that is present in the matrix elements of fermion
operators with Wilson lines (see, e.g., Refs. [99,100], as
well as Ref. [33] for a review of recent investigations of the
power divergence). The application of smearing was
especially crucial in the first calculations of quasi-PDFs
[14,16–18] when the renormalization procedure was not yet
developed. Even though the complete renormalization
procedure was developed recently [101], a few iterations
of stout smearing are still useful for noise reduction in the
renormalized matrix elements. In Fig. 5, we show examples
of the effect of stout smearing for the case of the bare
matrix elements of the unpolarized (insertion γ0), helicity
and transversity quasi-PDFs for a nucleon momentum of

P3 ¼ 8π=L without stout smearing, using 0, 5, 10 and 15
stout steps. As expected, the stout smearing modifies the
matrix elements, increasing the values of the real and
imaginary parts at each z. We find convergence of the
matrix elements after a few iterations of stout smearing and,
thus, in what follows we discuss in detail results obtained
with 5 stout steps. The renormalized matrix elements are
expected to no longer show any dependence on the
smearing. We discuss the details of the renormalization
in Sec. IV.

B. Choice of the Dirac structure

Although the natural choice to extract the unpolarized
PDF would be γþ ¼ ðγ0 þ γ3Þ= ffiffiffi

2
p

, a recent study [21] has
revealed that the matrix element with γ3 exhibits mixing
with the twist-3 scalar operator (later confirmed by sym-
metry properties [23]) and the computation of a mixing
renormalization matrix is required [101]. However, the
twisted mass formulation has the advantage that the mixing
is between the vector and pseudoscalar operators. The latter
vanishes in the continuum limit and only contributes as a
discretization effect that increases the gauge noise.
Consequently, it may be neglected in the first approxima-
tion, since eventually one is interested in the results for
a → 0. In this work, we compute both matrix elements, but
use the data for γ0 to extract our final results for the
unpolarized quasi-PDF. Even though the mixing is a purely
lattice artifact for twisted mass fermions, we expect
increased noise contamination for the case of γ3, which
is clearly visible in the lattice data, as shown in Fig. 6. This
behavior is momentum independent and we compare the
matrix elements for the two γ structures at a momentum of
8π=L. The statistical errors for γ3 are twice as large
compared to the ones for γ0 with the same number of
measurements. We, thus, conclude that the insertions γ3 or
γþ are not optimal for extracting the unpolarized PDFs
within a lattice QCD calculation.
We compute the matrix elements for the three values of

the nucleon momentum given in Table II with the asso-
ciated number of measurements. The momentum depend-
ence of the resulting matrix elements is shown in Fig. 7 for
the three operators considered in this work. We find that
with increasing momentum, the matrix elements decay to
zero faster and, for the highest momentum employed, both
the real and imaginary parts are compatible with zero
for z ≥ 11a ≃ 1.03 fm.

C. Excited states contamination

Identification of the nucleon state is crucial in order to
extract the correct nucleon matrix elements from lattice
QCD measurements. This requires a careful analysis of
excited states. An additional challenge is the need to boost
the nucleon with a relatively large momentum, something
that it is not needed in e.g., studies of nucleon charges and
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FIG. 4. Nucleon energy as a function of the momentum in
lattice units. From the fit of the continuum dispersion relation,
E2 ¼ m2

Nc
4 þ P2

3c
2, to the lattice data (red squares), we find a

value of the squared speed of light equal to c2 ¼ 1.00ð3Þ, and the
nucleon mass in lattice units a2m2

Nc
4 ¼ 0.207ð4Þ, which is also

in agreement with the estimate given in Ref. [79].
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form factors. Requiring a large nucleon momentum in
combination with using simulations at the physical point
leads to a more severe contamination due to the excited
states, since the spectrum is denser. Therefore, a thorough
assessment of the excited states is even more essential for
the reliable extraction of PDFs. We extend the study of
excited states first presented in Ref. [102] in order to
eliminate, as much as possible, one of the major systematic

uncertainties in the evaluation of nucleon matrix elements
from which the PDFs are extracted within lattice QCD. In
what follows, we review the analysis methods that we
employ to isolate the ground state. As will be discussed in
this subsection, the excited-states contributions are milder
for the matrix elements of the unpolarized operator as
compared to the matrix elements of the helicity and
transversity operators.
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FIG. 5. Real and imaginary parts of the bare matrix elements for 0, 5, 10, and 15 steps of stout smearing at a nucleon momentum of
P3 ¼ 8π=L. From top to bottom: The bare nucleon matrix element for the unpolarized, helicity and transversity operators.
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To extract the ground-state contribution in the correlation
functions, we employ three analysis methods, briefly
described below.
(1) Plateau method (single-state fit): In this method, one

looks for a region where the ratio of Eq. (10)
becomes independent of the insertion time, τ, which
indicates a (possibly partial) suppression of excited
states. The ratio in this region is fitted to a constant

value, yielding the matrix element of the ground
state. Indeed, inserting into the two- and three-point
functions two sets of complete eigenstates of the
QCD Hamiltonian (jnðP3Þi and jn0ðP3Þi, where we
indicated that the states are momentum dependent,
but we keep this dependence implicit below to
simplify the notation) with quantum numbers of
the nucleon, the ratio of Eq. (10) can be written as3

C3ptðP3; z; ts; τÞ
C2ptðP3; tsÞ

¼
P

n;n0 hNjn0ihnjNihn0jOjnie−En0 ðts−τÞe−EnτP
njhNjnij2e−Ents

; ð15Þ

where jNi is the nucleon state, En;n0 are energies of the eigenstates jni, jn0i (where j0i is the ground state, j1i is the first
excited state, etc.) and the time slice of the source is set to zero. Isolating in the ratio the contribution of the ground state and
expanding the sum up to the first excited state, Eq. (15) reads

C3ptðP3; z; ts; τÞ
C2ptðP3; tsÞ

¼ h0jOj0i þ f10h1jOj0ie−ΔEðts−τÞ þ f†10h0jOj1ie−ΔEτ þ jf10j2h1jOj1ie−ΔEts þ…

1þ jf10j2e−ΔEts þ…
; ð16Þ

where we introduced the constant f10 ¼ hNj1i=hNj0i and
ΔE ¼ E1 − E0. As can be seen, the excited-states contri-
butions fall off exponentially and for ΔEts ≫ 0, ΔEτ ≫ 0
and ΔEðts − τÞ ≫ 0, the first time-independent term
dominates, yielding the matrix element of the nucleon
state, h0jOj0i. Thus, fitting the ratio within the plateau
region to a constant value yields the desired nucleon
matrix element. Since statistical errors grow exponentially
with ts, the challenge is to identify the smallest value of ts
that suppresses the contributions of excited states in the
ratio to a level negligible as compared to the statistical
accuracy.

(2) Summation method: This method was introduced in
Ref. [103] and entails the sum of the ratio of Eq. (16)
over the insertion time τ, excluding the time slices of
the source and the sink. The sum is a geometric
series in the terms involving the excited-states
contributions and yields the expression

RðP3; z; tsÞ≡
Xts−a
τ¼a

C3ptðP3; z; ts; τÞ
C2ptðP3; tsÞ

¼ CþMts þOðe−ΔEtsÞ; ð17Þ

where C is a constant and the desired matrix element
M ¼ h0jOj0i can be extracted from a linear two-
parameter fit. As a consequence, this procedure
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FIG. 6. Comparison of the spatial γ3 (cyan circles) and temporal γ0 (purple diamonds) unpolarized bare matrix elements for 5 stout
steps and momentum 8π=L.

3All correlation functions in this section should be understood
as averaged over the gauge field configurations ensemble.
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yields, in general, results with larger uncertainties as
compared to the plateau method, but has the advan-
tage of suppressing the excited-states contamination
by a faster-decaying factor e−ΔEts, as compared to
the leading exponential factors in Eq. (16).

(3) Two-state fits: In this method, one retains the first
excited-states contributions in the two-point and
three-point correlation functions. We use two types
of fits: (a) a fit to the two-point correlator followed

by a fit to the three-point function, and (b) a
simultaneous fit to both the two- and three-point
correlators.

We refer to the type (a) fit as a sequential fit and
parametrize the nucleon two-point function with momen-
tum P3 as

C2ptðP3; tÞ ¼ jA0j2e−E0tð1þ jf10j2e−ΔEtÞ; ð18Þ
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FIG. 7. Bare matrix elements for momenta 6π=L (green circles), 8π=L (red diamonds), and 10π=L (blue stars), extracted at a source-
sink separation of ts ¼ 12a ≃ 1.13 fm. From top to bottom: Matrix elements of the unpolarized, helicity and transversity operators.
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with the fit parameters being the ground-state amplitude,
jA0j2 ¼ jhNj0ij2, the ground-state energy E0, jf10j2 and
ΔE. The three-point correlator can be written as

C3ptðP3; z; ts; τÞ ¼ jA0j2e−E0tsðh0jOj0i
þ f10h1jOj0ie−ΔEðts−τÞ
þ f†10h0jOj1ie−ΔEτ
þ jf10j2h1jOj1ie−ΔEtsÞ: ð19Þ

The amplitudes jA0j2 and jf10j2 and energies E0 andΔE are
determined from first fitting the two-point function in
Eq. (18) and used as inputs into the three-point function,
which is fitted separately for the real and imaginary parts.
The fit parameters are Reh0jOj0i, Ref̃10 ≡ Ref10h1jOj0i,
Ref̃01 ≡ Ref†10h0jOj1i, Reh1jOj1i and Imh0jOj0i, Imf̃10,
Imf̃01, Imh1jOj1i, respectively. Through this fitting pro-
cedure that entails four fit parameters for the two-point
function fit and an additional four parameters for the
three-point function, we extract the desired matrix element,
h0jOj0i.
The call the type (b) fit simultaneous and it is a combined

fit to Eqs. (18) and (19), using all eight parameters. We
expect that both fit types will lead to very similar results.
Proper analysis requires the evaluation of two- and three-
point correlation functions on exactly the same gauge field
configurations and for the same set of source positions.
Only in such a case can the correlations among the fit
parameters be probed in a fully consistent manner. In
practice, this is a severe problem for the observables we are
interested in, which is due to the exponential increase of the
noise with increasing source-sink time separation. When
the time separation grows by one lattice spacing, the
necessary statistics to suppress noise to the same level
as before increases by a factor of 2–3 in our data. Thus,
small source-sink time separations yield a precise signal
already forOð103Þmeasurements, while correlators at ts ¼
12a require Oð105Þ measurements to reach a similar
precision. For a given amount of computational resources,
one, therefore, has to make a choice between using the
same statistics for all ts values and thus obtaining very
precise data at small values of ts and considerably less
precise ones for larger values of ts, or using different
statistics and achieving similar precision for all values of ts.
The severe drawback of the former choice is that the two-
state fits are dominated by the precise results at small ts that
can lead to biased results for the ground-state matrix
element. This bias becomes more severe as the boost
increases due to the denser spectrum prohibiting the robust
identification of the effects of excited states.

1. Two-point correlator

Before we compare different analysis methods for the
extraction of quasi-PDF matrix elements, we discuss the

two-state fit of the two-point correlator at our largest
momentum, using Eq. (18). We obtain the boosted nucleon
ground-state energy of aE2-state

0 ¼ 0.773ð18Þ, which is
in line with a single-state fit, leading to a value
aE1-state

0 ¼ 0.788ð9Þ. These values are illustrated in the left
panel of Fig. 8. As we showed in Fig. 4, the obtained
ground-state energy satisfies the continuum dispersion
relation. The energy difference between the ground state
and the first excited state is aΔE ¼ 0.36ð7Þ, which in
physical units is 0.76(15) GeV. This can be compared with
the expectation from the approximation of noninteracting
stable hadrons in a box, which leads, at our volume and the
physical pion mass (mπL ≈ 3), to the following splittings
(for Nππ, Nπ, Nππππ, Nπππ) with respect to the ground
state (N): ≈0.27, 0.36, 0.54, and 0.63 GeV, respectively.
The above values hold for a nucleon at rest, whereas the
spectrum becomes denser with increasing nucleon momen-
tum. In the interacting case, the spectrum obviously
changes, but its general features are unchanged; for a
comprehensive discussion on the spectrum of excitations,
we refer to the recent review of Ref. [81].
The energy extracted for the first excited state does not

match the energy expected for the two- and three-particle
states lying below. Furthermore, it is known that a two-state
fit will model, in one exponential, all the states above the
ground state that have an overlap with the interpolating
field. Thus, one expects a bias in the determination of the
first excited state. Consequently, the conclusions from two-
state fits need to be checked against the plateau values or
three-state fits, if the accuracy of the data allows for this. If
consistency is found, this indicates ground-state dominance
up to the achieved statistical precision.

2. Matrix elements of the unpolarized PDF

We first present the analysis of excited states in the
nucleon matrix elements for the unpolarized operator using
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FIG. 8. Effective mass together with the extracted values of the
ground-state energy from one-state (blue band) and two-state fits
(orange band). The length of the bands indicates the fit range. The
nucleon is boosted with 10π=L ≃ 1.38 GeV.
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the γ0 structure and the largest momentum, P3 ¼ 10π=L,
where excited-states effects are expected to be most severe.
We use four values of the source-sink time separation,
namely ts=a ¼ 8, 9, 10, 12 or in physical units ts ≃ 0.75,
0.84, 0.94, 1.13 fm. We opt to increase the number of
measurements as we increase ts, to have statistical errors
that are approximately the same for consequent values of ts.
This enables us to perform a reliable analysis at each value
of ts. We use the same CAA setup for all separations, as
explained above. In Table III, we collect the statistics for
each value of ts.
The plateau method is employed to analyze the data from

each ts value and the results are shown in Fig. 9. For
ts ¼ 8a, the real part of the matrix element shifts towards
smaller values at each z=a compared to larger ts, while the
effect in the imaginary part is less prominent. Within
statistical uncertainties, a convergence between the results
at ts ¼ 10a and ts ¼ 12a is observed in both the real and
imaginary parts. Comparing the data for the four ts values,
we observe signs of a nonmonotonic behavior that affects
the real and imaginary parts differently, depending on the
value of z. This can introduce a complicated effect in
the determination of the PDF. Ideally, one must compute
the matrix elements for several large enough values of ts
with equally small statistical errors and demonstrate con-
vergence to one value. However, the exponential increase of
the noise-to-signal ratio seen in Fig. 2 and the need for new
sets of sequential inversions for each ts, require computa-
tional resources beyond what is currently available, placing

limitations on the maximum value of ts. Nevertheless, if
consistency can be found between the converged plateau
values of the single-state fits and other methods, ground-
state dominance can be reliably established.
We apply the summation method for two sets of ts

values, namely (a) ts ¼ 8a, 9a, 10a, 12a and (b) ts ¼ 9a,
10a, 12a, with the results shown in Fig. 10. The first set
yields results that, although consistent with those from the
second fit, are systematically higher. Furthermore, for large
values of z=a, the slope obtained using the (b) set is
significantly larger than that from the (a) set and
χ2=d:o:f: > 2 for z=a ≈ 10–15, indicating that the (a) fits
do not provide a good description of the data. This is a
consequence of the ratio at ts ¼ 8a being considerably
below the ones at other source-sink separations. Figure 11
shows examples of summation fits for our data. In the right
panel, only the (b) fit yields an acceptable χ2=d:o:f: of
around 0.16, while the full fit to all ts values has
χ2=d:o:f: ≈ 2.4. Thus, the fitting ansatz of Eq. (17) does
not provide a correct description of the data and the large-z
values in Fig. 10 for ts ¼ ½8a–12a� are not reliable. The
effect is visible also for small z=a (see the left panel of
Fig. 11 for z=a ¼ 0 fits) and may result in overestimating
the real part of the matrix elements. At z=a ¼ 0, the
extracted value of the matrix element is 1.21(16) for the
(a) set and 1.02(24) for the (b) set, after applying in both
cases the renormalization factor ZV ¼ 0.7565 [104]. We
note that the matrix element should be equal to 1 upon
renormalization, which is satisfied only by the set (b), while
the value from the summation method that includes the
smallest ts in the fit is considerably larger. All of the above
points lead to the conclusion that using too small source-
sink separations gives incorrect results. We will thus omit
ts ¼ 8a in our summation method analysis, and take fits
(b) as our final estimates from the summation method. All
of these fits, both in the real and imaginary parts, have
χ2=d:o:f:≲ 1, indicating that the exponential contributions

TABLE III. Numbers of measurements of the matrix element
for the unpolarized operator (γ0) at each source-sink separation
and P3 ¼ 10π=L.

P3 ¼ 10π=L ts ¼ 8a ts ¼ 9a ts ¼ 10a ts ¼ 12a

Nconf 48 98 100 811
Nmeas 4320 8820 9000 72 990
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FIG. 9. Real (left) and imaginary (right) parts of the matrix element for the unpolarized PDF, at a source-sink separation of
8a (red stars), 9a (blue circles), 10a (green diamonds) and 12a (yellow squares). The nucleon is boosted with 10π=L ≃ 1.38 GeV.
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from higher excited states in Eq. (17) are sufficiently
suppressed, yielding a good estimate of the ground-state
matrix element M. However, the precision of the summa-
tion method estimates is much worse than the one from the
plateau or two-state fits (see below).
We present now the two-state fits and compare results

from the sequential and simultaneous two-state fits. In
addition, we check the robustness of these fits by using
three or four values of ts. The fits using only two ts values
lead to considerably larger errors (with compatible central
values) and hence, we do not show them. The different
choices of fits with three ts values lead to very similar
results in terms of the central values and their errors. Thus,
in Fig. 12, we present results from one choice of three
source-sink separations, namely ts ¼ 8a, 9a, 10a, and from
the fit to all ts ¼ 8a, 9a, 10a, 12a. We conclude that the
simultaneous and sequential fits lead to statistically

identical results for both sets of ts values. Including the
results for the largest ts yields consistent fits, but with errors
that are slightly smaller (up to 10–15%) for most z values.
This is visible particularly for the simultaneous fits at all z
and for sequential fits at small z values in the real part. Note
that the central values are essentially the same, suggesting
that excited states are sufficiently suppressed.
In Fig. 13, we collect the results of the analyses using the

three aforementioned procedures, for all z=a values, and in
Fig. 14 we present part of the same data for two selected
values of theWilson line length, z=a ¼ 5 and z=a ¼ 10, for
better visibility. Excited states effects are clearly visible for
ts ¼ 8a, especially in the real part when using the plateau
method. For ts ¼ 9a and 10a, we observe a small tension in
the imaginary part: the plateau values are consistently lower
for ts ¼ 9a and consistently higher for ts ¼ 10a, with
respect to the two-state fits. We note that, in particular, there

0 5 10 15 20

0

0.5

1

1.5

2

0 5 10 15 20

-0.6

-0.4

-0.2

0

FIG. 10. Real (left) and imaginary (right) parts of the matrix element for the unpolarized PDF from the summation method, using
source-sink separations 8a–12a (red circles) and 9a–12a (blue squares). The nucleon is boosted with momentum 10π=L ≃ 1.38 GeV.
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FIG. 11. Summation fits for the real part of the matrix element for the unpolarized PDF, for z=a ¼ 0 (left) and z=a ¼ 12 (right). In
both cases, the (a) fits to all source-sink separations and the (b) fits to the three largest separations are shown. The nucleon boost is
10π=L ≃ 1.38 GeV.
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is tension between the two-state fit using ts ¼ 8a–10a and
the plateau values for ts ¼ 10a, at z=a ≈ 10, which fails to
satisfy our criterion of consistency between two-state fits
and plateau fits. Hence, data at source-sink separations
below 12a are likely still contaminated by excited states,
although statistical fluctuation as the source of the trend
cannot be excluded. We find that the results extracted from
the plateau method using ts ¼ 10a and ts ¼ 12a are in
agreement with each other and the ones from ts ¼ 12a are
compatible with those extracted using the all-ts two-state
fits for all values of z=a and for both the real and imaginary
parts. The errors in the summation method are too large to
draw any meaningful conclusions. Given that this inves-
tigation is carried out for the largest value of the momen-
tum, we can take as our final value for the nucleon matrix
elements of the unpolarized operator the data at ts ¼ 12a

for all the momentum values. We note that increasing the
nucleon boost would need a similarly thorough reanalysis
of the effects of the excited states. Likewise, increased
statistical precision could reveal excited-states contamina-
tion even at this nucleon momentum. Thus, we emphasize
that the attained conclusion about ground-state dominance
is valid only within the present statistical uncertainties
of Oð10Þ%.

3. Matrix elements of the helicity
and transversity PDFs

In this subsection, we discuss the excited-states effects
for the two other Dirac structures used in our work—axial
and tensor—associated with the helicity and transversity
PDFs, respectively. We perform a similar analysis as for the
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FIG. 12. Real (left) and imaginary (right) parts of the matrix element for the unpolarized PDF from two-state fits, using source-sink
separations 8a–12a (circles) and 8a–10a (squares). The sequential fit (filled symbols) is also compared to the simultaneous fit (open
symbols). The nucleon is boosted with 10π=L ≃ 1.38 GeV.
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FIG. 13. Real (left) and imaginary (right) parts of the matrix element for the unpolarized PDF from the plateau method (points labeled
with appropriate ts), the summation method (using ts ≥ 9a) and sequential two-state fits (to ts ¼ 8a, 9a, 10a and to all ts). The nucleon
is boosted with 10π=L ≃ 1.38 GeV.
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unpolarized case at the largest momentum, P3 ¼ 10π=L,
and again use four values of the source-sink separation,
namely ts=a ¼ 8, 9, 10, 12, or in physical units
ts ≃ f0.75; 0.84; 0.94; 1.13g fm. The numbers of measure-
ments are listed in Table IV. The methodology of our
investigation is the same as for the unpolarized case, i.e., for
each ts value, we perform single-state fits within a plateau
region, and we combine data at different ts using the
summation method approach, as well as two-state sequen-
tial and simultaneous fits.
In Figs. 15 and 16, we plot the full z dependence of

bare matrix elements for helicity and transversity PDFs,
respectively. Figure 17 displays a zoom-in for two selected
values of z=a, i.e., z=a ¼ 5 and z=a ¼ 10. In this case, the
fits using the summation method have good quality
( χ2=d:o:f:≲ 1) even when including ts ¼ 8a and hence,
we use all source-sink separations for this approach. For the
real part, the two-state fits and the summation method yield
results compatible with plateau fits for ts ¼ 12a. The only
observed tensions in the real part are rather small, possibly
statistical fluctuations, and are visible for the plateau fits
using ts=a ¼ 8, 9 versus the summation method, for
intermediate and large z=a in the helicity case. However,
for the imaginary part, we consistently observe a rather
strong dependence of the plateau values extracted when

using ts ¼ 12a as compared to those from ts=a ¼ 8, 9, 10,
with 2σ to 3σ tensions. The latter are also incompatible with
the results extracted using two-state fits to all ts and the
summation method, both of which are consistent with the
plateau results for ts ¼ 12a. Moreover, the two-state fits
using ts=a ¼ 8, 9, 10 are incompatible with plateau fits for
ts ¼ 10a (see right panel of Fig. 15), which again violates
our criterion for consistency, necessitating the use of
ts ¼ 12a. This behavior reinforces the conclusion reached
in the case of the bare matrix elements for the unpolarized
quasi-PDF, namely that the tensions observed between
results from source-sink separations below 1 fm are indeed
manifestations of excited-states contamination and ground-
state dominance is achieved, to around 10% statistical
accuracy, only at ts ¼ 12a. Hence, to extract PDFs, we take
the plateau results for ts ¼ 12a as our preferred ones, since
they are more precisely determined as compared to both the
results extracted using the two-state and the summation
approaches, but show full consistency with them. The more
severe excited-states effects observed in the cases of
helicity and transversity are in accordance with observa-
tions connected to the extraction of the nucleon axial and
tensor charges, where excited-states contamination is more
significant as compared to the case of the vector operator.
Thus, studies that aim at a higher precision in the
determination of quasi-PDF at increasing values of the
nucleon boost would need large statistics to account for
the increased errors resulting from having a nucleon state
with large boost, but also for investigating excited states.

4. Remarks and computational costs

This concludes our investigation of excited-states effects.
We emphasize that the spectrum of nucleon excitations is

TABLE IV. Statistics used in the study of excited states for the
polarized cases (γ5γ3: helicity; σ3j: transversity) at P3 ¼ 10π=L.

P3 ¼ 10π=L ts ¼ 8a ts ¼ 9a ts ¼ 10a ts ¼ 12a

Nconf 36 50 88 811
Nmeas 3240 4500 7920 72 990
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FIG. 14. Real (left) and imaginary (right) parts of the matrix element for the unpolarized PDF at fixed z=a ¼ 5 (upper) and z=a ¼ 10
(lower). We compare results from the plateau method, the summation method (using ts ≥ 9a) and sequential two-state fits (to ts ¼ 8a,
9a, 10a and to all ts). The final value that we use for extracting PDFs is indicated with an open symbol. The nucleon is boosted with
10π=L ≃ 1.38 GeV.
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rich, particularly for a boosted nucleon with quarks with
physical masses. Thus, one method of extracting bare
matrix elements can be misleading, as the fitted energy
gap between the ground state and the explicitly modeled
first excited state suggests that there are tens of excited
states. In such a situation, excited states need to be
suppressed by going to large enough source-sink separa-
tions and robust statements can be made only when they are
based on compatible results between different methods—in
our case the plateau fits at the largest source-sink separation
of around 1.1 fm, the two-state fits and the summation
method. We note that the largest ts ¼ 12a is crucially
needed to establish this compatibility. Having only ts ¼ 8a,
9a, 10a in the two-state fits and comparing to plateau
fits at ts ¼ 10a, one would conclude that there is significant
tension between the former and the latter. This is best
illustrated in the imaginary part of the bare matrix
elements for the helicity quasi-PDF; see the right panels
of Fig. 15.

Finally, we would like to make some remarks on the
computational resources that gowell beyondwhat one needs
for typical hadron structure calculations. The quasi-PDFs
will reproduce the light-cone PDFs in the limit of large
boosts. How large the boost should be, needs further
investigation.Within the lattice QCD formulation, as already
explained, one cannot increase themomentumof the nucleon
to arbitrarily large values. The reasons are as follows:
(1) As the momentum increases, the signal-to-noise

ratio rapidly deteriorates, despite the utilization
of special methods, such as smearing techniques
that reduce the noise. We find that to increase the
momentum from 6π=L ≈ 0.83 to 8π=L ≈ 1.11 GeV,
we need to increase the statistics by a factor of
around 3.7 (for unpolarized PDFs) or around 6 (for
helicity and transversity PDFs) and to increase to
10π=L ≈ 1.38 GeV by an additional factor of 3.7 or
6, respectively, in order to keep the statistical error
approximately the same at ts ¼ 12a.
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FIG. 15. Real (left) and imaginary (right) parts of the matrix element for the helicity PDF from the plateau method (points labeled with
appropriate ts), the summation method (using all ts) and sequential two-state fits (to ts ¼ 8a, 9a, 10a and to all ts). The nucleon is
boosted with 10π=L ≃ 1.38 GeV.
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FIG. 16. Real (left) and imaginary (right) parts of the matrix element for the transversity PDF from the plateau method (points labeled
with appropriate ts), the summation method (using all ts) and sequential two-state fits (to ts ¼ 8a, 9a, 10a and to all ts). The nucleon is
boosted with 10π=L ≃ 1.38 GeV.
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(2) A careful study of excited states must be carried out
and becomes increasingly more difficult as the mo-
mentum increases, because of the denser spectrum.As
the source-sink separation increases, the statistical
errors grow exponentially, e.g., for ts ¼ 12a, we
needed a factor of about 10–12 (similar for all Dirac
structures) more statistics for the same error as for
ts ¼ 10a (at the largest boost). It is imperative to have
large enough source-sink separations for at least three
values of ts with comparable errors to perform a
reliable analysis of excited-states effects and extract
the ground-state matrix element.

Therefore, in order to reach a nucleon momentum of
e.g., 2 GeVat ts ¼ 12a, for unpolarized PDFs, we estimate
that one would need Oð100Þ million core hours (Mch)
on a typical supercomputer, as compared to Oð5Þ Mch at

P3 ≈ 1.38 GeV studied in this work and for a momentum
of 3 GeV, wewould needOð10 000ÞMch. For the polarized
PDFs, the projected estimate for P3 ≈ 3 GeV is Oð106Þ
Mch. In addition, one may have to increase the source-sink
separation to account for the increased excited-states
contamination. If ts ¼ 14a is used, then the computa-
tional resources for a boost of 3 GeV would be
Oð105Þ=Oð107Þ million core hours for the unpolarized/
polarized case, which is prohibitively expensive, given
currently available computers. These requirements may be
alleviated with the possible development of better algo-
rithms, enhancing the signal-to-noise ratio at large nucleon
boosts and large source-sink separations. Another way to
milden the need for huge computational resources is
the derivation of two-loop matching and conversion
factors, which is foreseen in the near future. In this way,

0.2

0.4

0.6

0.8

1

6 8 10 12

0

0.2

0.4

0.6

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

6 8 10 12

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

-0.1

0

0.1

0.2

6 8 10 12

-0.2

-0.1

0

0.1

0.2

-0.3

-0.2

-0.1

0

0.1

6 8 10 12

-0.3

-0.2

-0.1

0

0.1

FIG. 17. Real (left) and imaginary (right) parts of the matrix element for the helicity and transversity PDFs at fixed z=a ¼ 5 (upper)
and z=a ¼ 10 (lower). We compare results from the plateau method, the summation method (using all ts) and sequential two-state fits (to
ts ¼ 8a, 9a, 10a and to all ts). The final value that we use for extracting PDFs is indicated with an open symbol. The nucleon is boosted
with 10π=L ≃ 1.38 GeV.

CONSTANTIA ALEXANDROU et al. PHYS. REV. D 99, 114504 (2019)

114504-18



quasi-PDFs may be robustly connected to light-cone PDFs
already at lower momenta.
We emphasize that the appropriate strategy is to not

increase the nucleon boost uncontrollably, and to rely on
precise data only at low source-sink separations. Failing to
keep the statistical errors approximately constant as one
increases ts may introduce uncontrolled systematic errors,
since the fits will be determined mostly by the more
accurate data at small ts. As we have shown, it is essential
that all source-sink separations have approximately equal
errors for a reliable extraction of the matrix elements
and this is the criterion we adopt. Unlike other studies
[26,28,31], we do not rely solely on two-state fits of data
from source-sink separations with widely varied errors,
which are thus dominated by the precise data at the small
values of ts. Such an approach can be uncontrolled and lead
to a systematic bias in the final results.

IV. RENORMALIZATION

Renormalization is needed in order to relate the bare
lattice QCD matrix elements to physical results. This is
achieved by removing ultraviolet divergences, as well as
finite dependence on the lattice action.4 In the case of quasi-
PDFs, one needs to also eliminate additional divergences
arising due to the utilization of operators with a finite
Wilson line. Renormalization of Wilson loops was
addressed a long time ago using dimensional regularization
(DR) for smooth contours [99], as well as for contours
containing singular points [100]. Based on arguments valid
to all orders in perturbation theory, it was demonstrated that
smooth Wilson loops in DR are finite functions of the
renormalized coupling, while the presence of cusps and
self-intersections introduces logarithmically divergent
multiplicative renormalization factors, referred to as Z
factors. More importantly, it was shown that other regu-
larization schemes are expected to lead to further Z factors,
which are power-law divergent with respect to the dimen-
sionful ultraviolet cutoff. This also appears in the lattice
formulation, where a divergence arises as a function of the
lattice spacing, that increases exponentially with the length
of the Wilson line as ∼ez=a. Such a divergence must be
removed prior to the extrapolation to the continuum limit.
We describe in this section our renormalization program
that includes the removal of the exponential divergence. A
recent work on the perturbative renormalization of Wilson-
line fermion operators of the type given in Eq. (9) has
identified the mixing pattern among nonlocal straight
Wilson-line operators, and led to the development of an
appropriate renormalization prescription for both the multi-
plicative renormalization and the mixing coefficient [21].
The nonperturbative renormalization program that we

developed is a generalization of the RI0 scheme [105],
which is appropriate for operators that contain a Wilson line
[101].5 The Z factors are extracted by imposing the
following conditions:

ZRI0
O ðz;μ0;mπÞ
ZRI0
q ðμ0;mπÞ

1

12
Tr½Vðz;p;mπÞðVBornðz;pÞÞ−1�

���
p2¼μ2

0

¼ 1;

ð20Þ

ZRI0
q ðμ0;mπÞ

1

12
Tr½ðSðp;mπÞÞ−1SBornðpÞ�

���
p2¼μ2

0

¼ 1: ð21Þ

We use the general notation ZO and considerO ¼ V0, A, T
corresponding to the unpolarized, helicity and transversity
operators, respectively. ZO and Zq are the renormalization
functions of the operator and the quark field, respectively.
Both ZO and Zq are scheme and scale dependent, and are
expected to have some dependence on the pion mass. Also,
ZO is a function of the length of the Wilson line, z. V is the
amputated vertex function of the operator and S is the
fermion propagator, while VBorn and SBorn are the corre-
sponding tree-level values. Note that this condition is
applied independently for each value of z. The RI0
renormalization scale, μ0, is chosen to be democratic in
the spatial directions, that is aμ0 ¼ 2π

Ls
ðnt þ π

2
; n; n; nÞ,

which minimizes the ratio P4≡P
iμ

4
i =ð

P
iμ

2
i Þ2 and sup-

presses discretization effects [104,107].
For the calculation of renormalization functions, we

employ the momentum source method [104,108] that
has the advantage of yielding results of high statistical
accuracy. This method requires new inversions for each
momentum used, but significant reduction in the gauge
noise is observed, which by far outweighs the additional
computational cost. Data are produced using the three
Nf ¼ 2 ensembles given in Table V that have a different
value of the pion mass. The twisted mass parameters of the
light quarks in the sea and valence sectors have been set
equal (isospin limit and unitary setup). Even though the
ensemble simulated with the smallest value of the pion
mass has a larger volume, the Z factors are obtained at the
same values of ðaμ0Þ2 and P4. In the current work, we
improve our previous analysis on the Z factors of one-
derivative operators [101] by performing the following:
(1) A chiral extrapolation using the three ensembles at

different values of the pion mass.
(2) A fit on the chiral data to eliminate residual

dependence on the RI0 scale. We use several values
of the RI0 scale that cover the range ðaμ0Þ2 ∈ ½1–4�.
An extensive study on the choice of the renormal-
ization scale and the corresponding systematic un-
certainties can be found in Ref. [101].

4Elimination of residual dependence on the lattice formulation
requires continuum extrapolation.

5For alternative approaches, using, e.g., an auxiliary field
method [106], see the recent review of Ref. [33].
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A. Pion mass dependence

The pion mass dependence for the Z factors for operators
with a finite Wilson line has never been explored, and it is
expected that small values of zwill have a weak dependence
on mπ , as observed in the case of local operators computed
within the same setup. However, it is not known how the Z
factors will behave when the length of the Wilson line is
large. Toobtain theZ factors in the chiral limit, we fit the data
from the three ensembles at each value of z. This fit is applied
to the real and imaginary parts independently. The data for
ZRI0
O are expected to have a quadratic dependence on the pion

mass (equivalently linear with respect to the twisted mass
parameter) and are fitted using

ZRI0
O ðz; μ0; mπÞ ¼ ZRI0

O;0ðz; μ0Þ þm2
πZRI0

O;1ðz; μ0Þ: ð22Þ

The chirally extrapolated value is given by the fit parameter
ZRI0
O;0ðz; μ0Þ. Since the fitted data are obtained on different

ensembles, we use the super-jackknife method (see, e.g.,
Ref. [109]) to correctly calculate the statistical error. This
method is applicable to both correlated and uncorre-
lated data.
In Fig. 18, we show the pion mass dependence of the real

and imaginary parts of the Z factors for all three operators.
For a clear presentation, we focus on z=a ¼ 1, 5 and we
plot against m2

π for the scale ðaμ0Þ2 ¼ 2.5. We find that the
dependence is almost constant inm2

π and the chiral fit yields
a slope consistent with zero for both the real and imaginary
parts for small values of z (see, e.g., z=a ¼ 1). As z
increases, a nonzero slope is observed, with the dependence
being linear, as expected. The dashed line corresponds to
the chiral fit of Eq. (22), and the open symbols are the
extrapolated values ZRI0

O;0ðz; μ0Þ.

B. Volume effects

Another source of systematic uncertainty entering the
determination of matrix elements is due to the finite lattice
extent. Finite-volume effects are expected to be suppressed
as expð−mπLÞ and based on empirical studies, mπL ≥ 4 is
considered sufficient in most applications. However, most
lattice QCD studies deal with matrix elements of local
operators, and as discussed in Ref. [110], the length of the
Wilson line entering the operator may enhance finite-
volume effects. To date, this systematic uncertainty has
not been investigated due to the absence of lattice QCD
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FIG. 18. Real (left) and imaginary (right) parts of the Z factor ZRI0
O ðz; μ0; mπÞ for the unpolarized (blue circles), helicity (red squares)

and transversity (orange diamonds) PDFs as a function of m2
π of the ensemble used. The scale is ðaμ0Þ2 ¼ 2.5. The upper and lower

panels show the results for z=a ¼ 1 and z=a ¼ 5, respectively. The dashed line corresponds to the chiral fit of Eq. (22), and the open
symbols are the extrapolated values, ZRI0

O;0ðz; μ0Þ.

TABLE V. Parameters of the ensembles used to compute the Z
factors extracted in this work. For details, see Ref. [79].

β ¼ 2.10, cSW ¼ 1.57751, a ¼ 0.0938ð3Þð2Þ fm
483 × 96 aμ ¼ 0.0009 mπ ¼ 130 MeV
243 × 48 aμ ¼ 0.003 mπ ¼ 235 MeV
243 × 48 aμ ¼ 0.006 mπ ¼ 340 MeV
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computations using ensembles with different volumes,
while keeping the rest of the parameters constant. Such
a study requires significant computational resources and is
one of our future goals. Volume effects in the renormaliza-
tion functions can be easily examined due to the reduced
computational resources compared to the matrix elements.
Therefore, we compute the Z factors using the 483 × 96

ensemble of Table V and a 643 × 128 ensemble with the
same pion mass. In Fig. 19, we plot the ratios

ROðzÞ≡ Re½ZRI0
O;64ðz; μ0; mπÞ�

Re½ZRI0
O;48ðz; μ0; mπÞ�

;

IOðzÞ≡ Im½ZRI0
O;64ðz; μ0; mπÞ�

Im½ZRI0
O;48Oðz; μ0; mπÞ�

; ð23Þ

as a function of the length of the Wilson line, for all three
types of operators. The ratios are defined at the pion mass
mπ ¼ 130 MeV and a renormalization scale ðaμ0Þ2 ¼ 2.5.
The additional subscripts 64 and 48 indicate the lattice
volume. We find that both the real and imaginary parts do
not show a statistically significant dependence on the
volume, as the ratios take maximum values of 1.02 and
1.03, respectively, for z=a up to 15, which is well within the
range of interest. In addition, we find an almost linear
increase of ROðzÞ, while IOðzÞ has an oscillatory depend-
ence on the volume.
Hence, we conclude that volume effects in the Z factors

are small and have little effect on the renormalized matrix
elements. This partly results from the fact that the bare
matrix elements go to zero in the large-z region. In
determining the final values for the Z factors, we do not
include the 643 × 128 ensemble, because the ratio P4 is
large for most of the scales ðaμ0Þ2 ∈ ½1–4� compared to the
smaller volumes, leading to contamination from finite-a

effects, as seen in Ref. [104]. However, for ðaμ0Þ2 ¼ 2.5
which was used in the comparison, P4 is the same as the
one obtained from the smaller volumes, which allows one
to isolate the volume effects. Finite-a effects are in fact
under investigation for this class of nonlocal operators in
lattice perturbation theory [111].

C. Conversion to the standard
and modified MS schemes

In order to compare renormalized lattice QCD matrix
elements with phenomenological results extracted from
global analyses, the Z factors must be converted to the same
scheme and evolved to the same scale as those used in
the phenomenological analyses. Traditionally, the chosen
scheme is the MS scheme and the scale μ̄ is typically set to
2 GeV. The appropriate conversion factors for the nonlocal
operators with a straight Wilson line are taken from
Ref. [21], where a calculation was carried out to one-loop
level in perturbation theory, using dimensional regulariza-
tion. Technical complications related to the nonlocality of
the operators under study make it very hard to extend such a
calculation to higher loops, as done for local operators,
which are usually known to three and four loops. As a
consequence, it is expected that the Z factors will have a
residual dependence on the initial RI0 scale μ0. Thus, one
typically computes the Z factors at several values of the RI0
scale, as set by Eq. (20), and then uses an appropriate

conversion to bring each ZRI0
O;0ðz; μ0Þ to ZMS

O;0ðz; 2 GeVÞ.
The remaining dependence on μ0 can be studied with a
linear fit in ðaμ0Þ2, which is the leading order of a more
complicated scale dependence. The final values are
obtained by taking ðaμ0Þ2 → 0 using

ZMS
O ðz; μ̄; μ0Þ ¼ ZMS

O;0ðz; μ̄Þ þ ðaμ0Þ2ZMS
O;1ðz; μ̄Þ: ð24Þ
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FIG. 19. Plots of ROðzÞ and IOðzÞ to study volume effects between the ensembles 483 × 96 and 643 × 128, for the unpolarized
(circles), helicity (diamonds) and transversity (squares) operators as a function of the length of the Wilson line, z=a. The RI0 scale is
ðaμ0Þ2 ¼ 2.5 and the pion mass is 130 MeV.
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For ZMS
O ðz; μ̄; μ0Þ, we use the chirally extrapolated Z factors

converted to MS at the scale μ̄ ¼ 2 GeV. For simplicity, in
the notation we dropped the subscript “0” appearing in the
fit of Eq. (22). The desired quantity is the fit param-

eter ZMS
O;0ðz; μ̄Þ.

Our renormalization program entails a new element,
namely the use of a modified MS scheme (MMS). The
development of such a scheme was motivated by the fact
that the existing matching formulas do not satisfy particle
number conservation (e.g. Ref. [45]). The matching using
the MMS scheme was already presented in our recent work
[19,20]. Here we complement the previous analyses by
giving the appropriate conversion of the Z factors to the
MMS scheme, instead of MS. We find that the resulting
modification is numerically very small, but moves the final

values of the PDFs towards the phenomenological ones; see
Sec. VA for details of the MMS scheme and Sec. V B for
numerical effects when applied to our data. In a nutshell, an

additional conversion factor is needed to bringZMS
O;0ðz; μ̄Þ to

ZMMS
O;0 ðz; μ̄Þ via

ZMMS
O;0 ðz; μ̄Þ ¼ ZMS

O;0ðz; μ̄ÞCMS;MMS; ð25Þ

which has been computed perturbatively in dimensional
regularization to the one-loop level and is presented in the

next section. The expression for the conversion CMS;MMS
O is

different for each operator under study and its general form
is given by

CMS;MMS
O ¼ 1þ CFg2

16π2

�
eð1ÞO þ eð2ÞO ln

�
μ̄2

4μ2F

�
þ eð3ÞO

�
iπjμFzj
2μFz

− lnðjμFzjÞ − CiðμFzÞ − iSiðμFzÞ þ lnðμFzÞ
�

þ eð4ÞO ðeiμFzð2Eið−iμFzÞ þ iπsgnðμFzÞ − lnð−iμFzÞ þ lnðiμFzÞÞÞ
�
; ð26Þ

whereμF is the factorizationscale that is taken equal to theMS
scale, that is, μF ¼ μ̄ ¼ 2 GeV. The expression also contains
the special functionsCi (cosine integral), Si (sine integral) and
Ei (exponential integral), as well as the sign function (sgn).

The coefficients eðiÞO depend on the operator and their
numerical values are given in Table VI.
In Fig. 20, we show ZMMS

O;0 ðz; μ̄Þ after multiplying

ZMS
O;0ðz; μ̄Þ with the conversion factor given in Eq. (25).

The data are shown against ðaμ0Þ2 to demonstrate the
dependence of the Z factors on the initial RI0 scale. As done
for the previous figures, we choose representative values of
the length of the Wilson line, namely z=a ¼ 1 and z=a ¼ 5.
We find that the imaginary part has a stronger dependence
on the μ0 value. Note, however, that the imaginary part is an
order of magnitude smaller than the real part of the matrix
element and thus this dependence is still suppressed in
the total matrix element, especially in the region
ðaμ0Þ2 ∈ ½1–2�, which is an indication of nonperturbative
effects. Such behavior is also observed in local operators
for ðaμ0Þ2 < 1. This tendency seems to affect the region

ðaμ0Þ2 < 2 for nonlocal operators with z=a ≥ 5. Since we
are using perturbative expressions for the conversion to the
MMS scheme, it is important to choose a region where
perturbation theory is valid, and thus, we choose the values
obtained from ðaμ0Þ2 ∈ ½2–4� for both the real and imagi-
nary parts. There is a systematic uncertainty attached to the
Z factor due to the choice of the fit range, and here we used
the ranges ðaμ0Þ2 ∈ ½1−3�, [1–4], [2–3], [2–4] to estimate
the systematic uncertainty. Even though the real and
imaginary parts of the Z factors do have mild dependence
on the range, the final values are consistent. Therefore, we
do not give any systematic uncertainty from the ðaμ0Þ2 → 0
extrapolation. In the same figure, we also show the
improvement of the nonperturbative results when sub-
tracting Oðg2a∞Þ effects computed perturbatively in
Ref. [104] on the same ensembles. They are obtained by
replacing Eq. (20) with

ZRI0
O ðz; μ0; mπÞ

ZRI0
q ðμ0; mπÞ − A∞

q ðμ0Þ

×
1

12
Tr½Vðz; p;mπÞðVBornðz; pÞÞ−1�

���
p2¼μ2

0

¼ 1; ð27Þ

where the denominator has been modified by subtracting
the Oðg2a∞Þ artifacts in Zq, denoted by A∞

q ðμ0Þ. As
expected, the differences between the subtracted results
of Eq. (27) and the unsubtracted results of Eq. (20) are
small, and mostly affect the real part of the Z factors. In
addition, subtraction of the artifacts in Zq is not sufficient to

TABLE VI. Numerical values for the coefficients eðiÞO appearing
in the conversion function from MS to MMS in Eq. (26).

O eð1ÞO eð2ÞO eð3ÞO eð4ÞO

V −5 −3 þ3 −3=2
A −7 −3 þ3 −3=2
T −4 −4 þ4 −4=2
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eliminate the dependence on aμ0. For the latter to be
achieved, subtraction of the artifacts in Vðz; p;mπÞ is
crucial, as has been discussed in Ref. [104] for the local
operators. Such a computation for the nonlocal operators is
not only more technically complicated, but also requires
the addition of stout smearing in the links of the
operator resulting in lengthy expressions. This calculation

is under way and will be presented in a separate
publication [111].
The final values for the Z factors are given in the MMS

scheme upon a linear fit in ðaμ0Þ2 → 0. In the region
ðaμ0Þ2 ∈ ½2–4� [Eq. (24)]. They are shown in Fig. 21 for
the vector operator. As can be seen, the statistical errors of
the Z factors are much smaller as compared to those of the
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FIG. 20. Real (left) and imaginary (right) parts of ZMMS
O ðz; μ̄; μ0Þ for the unpolarized (squares), helicity (circles) and transversity

(diamonds) operators as a function of the initial RI0 scale. The upper (lower) panel corresponds to z=a ¼ 1 (z=a ¼ 5). The dashed line

corresponds to the fit of Eq. (24), and the open symbols are the extrapolated valuesZMMS
O;0 . We show results for all Z factors with ZV0

and
ZT shifted vertically for clarity of the presentation. The darker colored filled symbols correspond to the purely nonperturbative estimates,
while the corresponding lighter colored open symbols have been partly improved using the perturbative results of the finite lattice
spacing effects to Oðg2a∞Þ computed in Ref. [104] on the same ensembles.
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FIG. 21. Final values of the Z factors in the MMS scheme for the vector operator upon chiral and ðaμ0Þ2 extrapolation. The real and
imaginary parts are shown in the left and right panels, respectively.
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matrix elements, because of the momentum source method
used in the calculation of the vertex functions. The real part
increases significantly with z, which is due to the power-
law divergence of the Wilson line. Note that for z=a > 10,
the bare matrix elements decay to zero, and thus, the
renormalized matrix elements, given by the complex
multiplication

hMMS
Γ ðP3; z; μ̄Þ ¼ hbareΓ ðP3; zÞ · ZMMS

Γ;0 ðz; μ̄Þ; ð28Þ

are also zero but with large statistical uncertainty originat-
ing from the large values of the real part of the Z factors.
Both the matrix elements and the renormalization func-

tions of a given operator share similar properties with
respect to z (symmetric real part and antisymmetric
imaginary part), with the difference that the Z factor
decreases when a smearing technique is applied to the
Wilson line, while the matrix element increases. Of course,
the dependence in the smearing is nonmonotonic due to the
complex nature of the matrix elements and Z factors, but
the stout smearing dependence is expected to cancel out in
the renormalized matrix elements. This is demonstrated in
Fig. 22, where we compare the renormalized matrix
elements for the helicity operator extracted using 0, 5,
10 and 15 stout smearing steps, in the MS scheme at 2 GeV
and for a momentum of 6π

L . This confirms that the
elimination of the power divergences is correctly realized
via the renormalization program, yielding compatible
results for the renormalized matrix elements for different
stout iterations. We find that this holds also for the
renormalized matrix elements of the unpolarized and
transversity operators and therefore any stout step may
be used without changing the final physical result. It is
worth mentioning that the agreement is more striking upon
the ðaμ0Þ2 → 0 extrapolation of the Z factors, as the central
values of the data from different stout steps are very close to

each other. Nevertheless, a similar comparison using a
specific value of ðaμ0Þ2 shows that the agreement still holds
within statistical uncertainties.

V. MATCHING TO LIGHT-CONE PDFs

A. Derivation of the matching formulas

In this section, we discuss, in detail, the matching
procedure that relates the quasi-PDFs, renormalized in
some scheme, to light-cone PDFs in the same or another
renormalization scheme, typically chosen to be the MS
scheme. We derive new matching formulas that relate MS-
renormalized quasi-PDFs to MS-renormalized light-cone
PDFs and conserve the particle number. To satisfy this
condition, we introduce a modification of the MS scheme,
i.e., the MMS scheme, which was already partially dis-
cussed in the previous section, as it is a procedure applied
also on the conversion factors.
Quasi-PDFs can be obtained as a Fourier transform (FT)

of renormalized matrix elements, hΓðP3; zÞ,

q̃ðx; P3Þ ¼
2P3

4π

Xzmax

z¼−zmax

e−ixP3zhΓðP3; zÞ: ð29Þ

To relate the quasi-PDFs q̃ðx; P3Þ to light-cone PDFs, one
relies on a perturbative matching procedure [34,43–46]. To
one-loop order, and in the Feynman gauge, one needs to
compute self-energy corrections, which include the usual
self-energy plus the virtual “sail” and “tadpole” diagrams,
and the vertex corrections, with the corresponding real
“sail” and “tadpole” diagrams (see Fig. 23). We use
operators with four Dirac structures, namely γ0 and γ3

for the unpolarized distribution, γ3γ5 for the helicity, and
γ3γj, j ¼ 1, 2 for the transversity case.
Since the extraction of the matching formula follows a

similar process for all four operators, we use the γ0 structure
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FIG. 22. Real (left) and imaginary (right) parts of renormalized matrix elements for the axial operator (helicity PDF) for a momentum
of 6π

L , as a function of the length of the Wilson line. Green stars/blue circles/red diamonds/orange stars correspond to 0=5=10=15
iterations of stout smearing.
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as an example and we only present the final results for
the other cases. As already mentioned, we take the nucleon
momentum in the third direction, P ¼ ðP0; 0; 0; P3Þ.
It is assumed that, before gluon emission, the quark
momentum p is collinear to the nucleon momentum,
i.e. p ¼ ðp0; 0; 0; p3Þ. It also obeys the Dirac equation
puðpÞ ¼ 0, and carries a fraction of the momentum y of
the parent hadron. After gluon emission, the quark has
momentum ξp3 ¼ ξyP3. When the bare quark distributions
are dressed by taking the p3 → ∞ limit, we have the usual
quark distributions in the infinite-momentum frame or,
equivalently, on the light cone. Defining x≡ ξy, the non-
singlet quark distribution at one loop is given by

qγ0ðx;ΛÞ ¼ qbareðxÞ þ
αs
2π

Z
1

x

dy
y

�
Πγ0ðΛÞδ

�
1 −

x
y

�

þ Γγ0

�
x
y
;Λ

��
qbareðyÞ; ð30Þ

where Πγ0 denotes the self-energy corrections, Γγ0 repre-
sents the vertex corrections, andΛ stands for the IR and UV
regulators in any given scheme. Using DR to regulate both
the IR and UV divergences, the resulting one-loop correc-
tion for 0 < ξ < 1 in the MS scheme is

ΓMS
γ0

�
ξ;

μ̄

μF

�
¼ 1þ ξ2

1 − ξ

�
−

1

ϵIR
þ ln

�
μ̄2

μ2F

��
; ð31Þ

where the pole from the UV divergence has already been
subtracted, and μ̄ is the corresponding renormalization
scale in the MS scheme. The pole from the soft IR,
1=ϵIR, can be absorbed into the bare distribution, at the
factorization scale μF, but it is explicitly written in Eq. (31),
as it must cancel a similar pole arising in the one-loop
correction to the quasi-PDF. The fact that the poles in 1=ϵIR
are the same for the light-cone PDF and the quasi-PDF, is a
crucial observation that allows one to match them using
perturbation theory. There are remaining IR divergences,
which are located at ξ ¼ 1 and have their origin in the
emission of soft gluons. However, they cancel between the
vertex and self-energy one-loop corrections, which are
related by Πγ0ðΛÞ ¼ −

R
1
0 dξΓγ0ðξ;ΛÞ.

To obtain the quasi-PDF, the quark is dressed with finite
p3. To simplify notation, we write the one-loop correction
for positive x only, that is

q̃γ0ðx; P3;ΛÞ ¼ qbareðxÞ þ
αs
2π

Z
1

0

dy
y

�
Π̃γ0ðp3;ΛÞδ

�
1 −

x
y

�

þ Γ̃γ0

�
x
y
; p3;Λ

��
qbareðyÞ: ð32Þ

Because Γ̃γ0 ≠ 0 for ξ > 1, the lower limit of integration in
Eq. (32) goes to zero, and the quasi-PDF has support for
x > 1. Using DR to perform the integrals, the one-loop
correction to the vertex is given by

Γ̃γ0

�
ξ;
p3

μF

�
¼

8>>>>><
>>>>>:

1þξ2

1−ξ ln
�

ξ
ξ−1

	
þ 1; ξ > 1;

1þξ2

1−ξ

�
− 1

ϵIR
þ ln

�
4ξð1−ξÞðp3Þ2

μ2F

		
− 2ξ

1−ξ þ ξ; 0 < ξ < 1;

1þξ2

1−ξ ln
�
ξ−1
ξ

	
− 1; ξ < 0.

ð33Þ

Note that the vertex corrections have no poles when DR is
used, but they are nonzero outside the physical region
0 < ξ < 1, a behavior that is different from the one-loop
correction to the light-cone PDF. Thus, in addition to the IR
divergences at ξ ¼ 1, there are UV divergences associated
with the ξ → �∞ limits when Eq. (33) is integrated. So far,
these UV divergences have not been subtracted, and this is
reflected by the Λ dependence in the functional form of

Π̃γ0ðΛ; p3=μFÞ. DR is again used to isolate the poles, in
which case dξ → dξðξp3Þd−1ðμ̄2eγE=4πÞ1=2−d=2. For the
region ξ > 1, the self-energy is

Π̃γ0ðϵ; ξ > 1Þ ¼
Z

∞

1

dξξd−1ðp3=μ̄Þd−1ðeγE=4πÞ1=2−d=2

×

�
1þ ξ2

1 − ξ
ln

�
ξ − 1

ξ

�
− 1

�
; ð34Þ

FIG. 23. One-loop diagrams entering the perturbative calculation for the matching between quasi-PDFs and light-cone PDFs.
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where d ¼ 1–2ϵ, with ϵ > 0. Using the plus prescription for the collinear divergence at ξ ¼ 1, Eq. (34) can be written as

Π̃γ0ðϵ; ξ > 1Þ ¼ 7

4
−
3

4
ln

�
p2
3

μ̄2

�
þ 3

4

�
1

ϵ
þ γE − lnð4πÞ

�
: ð35Þ

Similar computations can be done for the other regions, and the renormalized one-loop self-energy in the MS scheme for the
quasi-PDF is given by

Π̃MS
γ0

�
ξ;
p3

μF
;
μF
μ̄

�
¼ 5

2
þ 3

2
ln

�
μ2F
4μ̄2

�
−
Z

dξ

8>>>>><
>>>>>:

1þξ2

1−ξ ln
�

ξ
ξ−1

	
þ 1 − 3

2ξ ; ξ > 1;

1þξ2

1−ξ

�
− 1

ϵIR
þ ln

�
4ξð1−ξÞðp3Þ2

μ2F

		
− 2ξ

1−ξ þ ξ; 0 < ξ < 1;

1þξ2

1−ξ ln
�
ξ−1
ξ

	
− 1 − 3

2ð1−ξÞ ; ξ < 0;

ð36Þ

with the corresponding renormalization function, Z̃MS
Π ¼

1þ αs
2πCF

3
2
ð1ϵ þ γE − lnð4πÞÞ. Upon integration of Eq. (33)

and employing the MS scheme, the Ward identity of the
resulting local current is naturally respected.
For the computation of the x dependence of the dis-

tributions, however, the convolution involving the vertex
correction prevents the aforementioned cancellation from
occurring, and one needs to impose a prescription to ensure
conservation of the quark number for the nonsinglet
distributions. From the equations for the quark distribu-
tions, Eq. (30), and quasidistributions, Eq. (32), and
including the negative x regions we have to one loop

qγ0ðx; μ̄Þ¼
Z þ∞

−∞

dy
jyjC

MS
γ0

�
x
y
;
μ̄

p3

;
μ̄

μF

�
q̃γ0ðy;P3; μ̄Þ; ð37Þ

where CMS
γ0

ðξÞ ¼ δð1 − ξÞ − αsCF½ðΠ̃MS
γ0

− ΠMS
γ0

Þδð1 − ξÞþ
Γ̃γ0ðξÞ − ΓMS

γ0
ðξÞ�=2π. The dependence on p3, μ̄, and μF is

implicit in CMSðξÞ. Γ̃ðξÞ is the bare function, hence the
absence of an MS superscript. The poles of 1=ϵIR, on the

other hand, automatically cancel in CMS
γ0

, which is explicitly

written as

CMS
γ0

�
ξ;

μ̄

p3

;
μ̄

μF

�
¼ δð1 − ξÞ þ αsCF

2π

8>>>>>><
>>>>>>:

�
1þξ2

1−ξ ln
�

ξ
ξ−1

	
þ 1þ 3

2ξ

	
þð1Þ

− 3
2ξ ; ξ > 1�

1þξ2

1−ξ

h
ln
�
p2
3

μ̄2

	
þ lnð4ξð1 − ξÞÞ

i
− ξð1þξÞ

1−ξ

	
þð1Þ

; 0 < ξ < 1�
− 1þξ2

1−ξ ln
�

−ξ
1−ξ

	
− 1þ 3

2ð1−ξÞ
	
þð1Þ

− 3
2ð1−ξÞ ; ξ < 0

þ αsCF

2π
δð1 − ξÞ

�
3

2
ln

�
μ2F
4μ̄2

�
þ 5

2

�
: ð38Þ

For the rest of this paper, we will employ the usual choice
of renormalization and factorization scales, μF ¼ μ̄. Equa-
tion (38) has an imbalance when integrated, because Γ̃γ0

outside the physical region picks up a logarithmic diver-
gence in the momentum fraction as ξ → �∞, while this
divergence has already been removed from the self-energy
part in Eq. (36). This implies an anomalous nonconserva-
tion of the quark number, even if the classical current is

conserved. In Ref. [45], CMS
γ0

has also been computed and a

plus prescription at infinity was used to cancel the UV
divergences between the vertex and self-energy corrections.
This explains the source of the difference between our
result in Eq. (38) and that in Eq. (68) of Ref. [45]. Namely,

in our case, the term proportional to the Dirac δ function
depends on the ratio of the factorization and renormaliza-
tion scales, while in the case of Ref. [45], it depends on the
quark momentum p3. Both prescriptions, however, do not
conserve quark number.
To treat the unbalanced divergence, we introduce a

modified MS scheme (MMS), which has already been
discussed in the previous section and used in our previous
work [19,20]. In this scheme, an extra subtraction is made
outside the physical region of the unintegrated vertex
corrections, which, in practice, renormalizes the ξ depend-
ence for ξ > 1 and ξ < 0 and removes the potential
divergences,
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Z̃MMS
Γγ0

ðξÞ ¼ 1 −
αs
2π

CF
3

2

�
−
1

ξ
θðξ − 1Þ − 1

1 − ξ
θð−ξÞ

�

−
αsCF

2π
δð1 − ξÞ

�
3

2
ln

�
1

4

�
þ 5

2

�
: ð39Þ

One can write Eq. (39) in z space, noticing that ξ outside the
physical region is now renormalized, at the scale μ̄. The
inverse Fourier transform is then from ξ to zμ̄, and the extra
subtraction in z space is written as

ZMMS
Γγ0

ðzμ̄Þ ¼ 1 −
αs
2π

CF

�
3

2
ln

�
1

4

�
þ 5

2

�

þ 3

2

αs
2π

CF

�
iπ

jzμ̄j
2zμ̄

− Ciðzμ̄Þ þ lnðzμ̄Þ − lnðjzμ̄jÞ − iSiðzμ̄Þ
�

−
3

2

αs
2π

CFeizμ̄
�
2Eið−izμ̄Þ − lnð−izμ̄Þ þ lnðizμ̄Þ þ iπsgnðzμ̄Þ

2

�
: ð40Þ

For consistency, Eq. (40) has been also applied to the
renormalization functions to bring them to the MMS
scheme, as described in Sec. IV C. Thus, these renormal-
ization functions are obtained as follows: the Z factors
calculated in the RI0 scheme are converted to the MS
scheme according to the perturbative formulas of Ref. [21]
and then multiplied by the factor given in Eq. (26) to
convert them to the MMS scheme. An important self-
consistency check is that the expression of Eq. (40) must
cancel the z → 0 divergence in lnðz2Þ present in the MS
scheme [21,47]. Indeed, in the limit z → 0, one has

ZMMS
Γγ0

ðz → 0Þ ¼ 1 −
αsCF

2π

�
3

2
ln

�
μ̄2z2e2γE

4

�
þ 5

2

�
¼ Zratio

Γγ0
ðzμ̄Þ; ð41Þ

i.e., the Z factor of the vertex corrections at z ¼ 0 is the
same in our scheme and in the “ratio” scheme introduced in
Ref. [45] and both cancel the divergence. The latter scheme
was proposed as an alternative to our solution of the current
conservation problem when using the pure MS expression
of Eq. (68) of Ref. [45]. The “ratio” scheme is another
modification of the MS scheme that also needs an addi-
tional conversion factor in order to bring the renormaliza-
tion functions in the MS scheme into the “ratio” scheme.

The difference with respect to our solution is that the form

of the matching kernel [or of Zratio
Γγ0

ðzμ̄Þ ¼ R dξ
2π e

iξzμ̄Z̃MMS
Γγ0

ðξÞ
after doing the Fourier transform to z space] implies that the
ξ dependence of the matching equation in the physical
region is also renormalized, while our approach does not
modify this region. Thus, the “ratio” scheme can induce
potentially large modifications to the matched PDF, as we
show below numerically.
We apply Z̃MMS

Γ
γ0

ðξÞ to Eq. (38) to obtain a matching
kernel that keeps the norm of the nonsinglet distributions
unchanged. We also include the results for the γ3 and γ3γ5

Dirac structures. Because quarks are taken to be massless,
the one-loop corrections are the same for the γ3 and γ3γ5

cases. Compared to the γ0 case, a shift of þ2ð1 − ξÞ inside
the plus prescription in the physical region of Eq. (38) is
needed, and also, the factor of 5=2 in the last line of
Eq. (38) becomes 7=2. The matching equation is then
written as

qMSðx; μ̄Þ¼
Z þ∞

−∞

dy
jyjC

MMS

�
x
y
;
μ̄

p3

�
q̃MMSðy;P3; μ̄Þ; ð42Þ

with the matching kernels, for the different Dirac structures,
given by

CMMS
γ0;γ3;γ3γ5

�
ξ;

μ̄

p3

�
¼ δð1 − ξÞ þ αsCF

2π

8>>>>>><
>>>>>>:

�
1þξ2

1−ξ ln
�

ξ
ξ−1

	
þ 1þ 3

2ξ

	
þð1Þ

; ξ > 1;�
1þξ2

1−ξ

h
ln
�
p2
3

μ̄2

	
þ lnð4ξð1 − ξÞÞ

i
− ξð1þξÞ

1−ξ þ 2ιð1 − ξÞ
	
þð1Þ

; 0 < ξ < 1;�
− 1þξ2

1−ξ ln
�

−ξ
1−ξ

	
− 1þ 3

2ð1−ξÞ
	
þð1Þ

; ξ < 0;

ð43Þ

where ι ¼ 0 for γ0, and ι ¼ 1 for γ3 and γ3γ5. We note that an
alternative procedure to get MS-renormalized light-cone
PDFs is to directly match to them from RI-renormalized

quasi-PDFs. The relevant formulas for this were derived in
Ref. [44] for the operators with Dirac structures γ3 and γ3γ5

and in Ref. [29] for γ0. Such a procedure is equivalent, to
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one-loop order, to the one described above, but with different
higher-order effects. This choice is investigated numerically
below, by comparing the directmatching fromavariant of the
RI scheme to the MS scheme with a two-step procedure that
first brings the renormalization functions to the MMS
scheme and then performs the MMS-to-MS matching.
For the transversity case, the computation (albeit

simpler) is similar because the usual one-loop vertex

correction is zero in the Feynman gauge. The quark
self-energy is not zero, but the unbalanced terms cancel
each other in the matching equation, since they are

the same for Πγ3γj and Π̃γ3γj . Thus, Z
MMS
Γ
γ3γj

ðzμ̄Þ is given

by the same functional form as Eq. (40), with the
replacement of the numerical factors 3=2 and 5=2 by 2.

CMMS
γ3γj

is given by

CMMS
γ3γj

�
ξ;

μ̄

p3

�
¼ δð1 − ξÞ þ αs

2π
CF

8>>>>>><
>>>>>>:

h
2ξ
1−ξ ln

�
ξ

ξ−1

	
þ 2

ξ

i
þð1Þ

; ξ > 1;h
2ξ
1−ξ

�
ln
�
p2
3

μ̄2

	
þ lnð4ξð1 − ξÞÞ

	
− 2ξ

1−ξ

i
þð1Þ

; 0 < ξ < 1;h
− 2ξ

1−ξ ln
�

ξ
ξ−1

	
þ 2

1−ξ

i
þð1Þ

; ξ < 0.

ð44Þ

The matching kernel for the transversity has been calcu-
lated previously, with a hard cutoff and a quark mass to
regularize the UV and the IR divergences, respectively, but
without renormalization [34]. More recently, following the
idea of Ref. [44] to match directly from RI-renormalized
quasi-PDFs to light-cone PDFs in the MS scheme, the
matching for the transversity was also derived in Ref. [31].

B. Comparison of matching in the MS, MMS
and ratio schemes

Our choice for the matching to extract the light-cone
PDFs from quasi-PDFs is to use a minimal modification of
the MS scheme that ensures current conservation. Thus, the
matching formula is applied on a quasi-PDF renormalized
in a modified MS scheme, the MMS scheme, to yield the
corresponding light-cone PDF in the pure MS scheme. The
difference between the MS and MMS schemes was also
taken into account at the level of the renormalization
functions in Sec. IV. Note that in our previous work
[19,20], we did not modify the conversion and, thus, our
quasi-PDFs were renormalized in the standard MS scheme.
The formulas for the conversion modification, derived in
the current paper, were not available at the time of our
previous work and we argued that the numerical effect of
the modification is subleading with respect to other
uncertainties (as the modification in the MS is minimal
and only in the unphysical regions). Moreover, it disap-
pears in the infinite-momentum limit. Having now derived
the relevant formulas to convert renormalization functions
from the MS scheme to MMS, we test this and validate that
it is indeed a small effect.
In Fig. 24, we compare matched PDFs obtained from

quasi-PDFs renormalized in the MS scheme, where the
additional conversion of Eq. (26) is not included, and in the
modified MMS scheme. As anticipated, the numerical

effect is very small, particularly in the unpolarized case.
Nevertheless, it is important to take the conversion modi-
fication into account to have a self-consistent procedure.
We note that the modification brings the matched PDFs
slightly towards phenomenological extractions, which is
reassuring.
Another possibility to obtain a matching formula with

current conservation is to use the procedure proposed in
Ref. [45], the so-called “ratio” scheme, already mentioned
in Sec. VA. It consists in a different way of changing the
MS scheme to achieve current conservation, including a
modification of the physical region. Thus, the effect on the
matched PDFs is expected to be larger numerically than
when using the MMS scheme. We show the comparison of
the matching from our previous procedure and from the
“ratio” scheme in Fig. 25. Indeed, the “ratio” scheme has a
noticeable effect on the matched PDF, which is particularly
large in the small-x region. Theoretically, both the “ratio”
and MMS schemes are valid modifications of the MS
scheme. Obviously, they are equivalent at the one-loop
level, but they have significantly different higher-order
effects. Hence, they can both be used to match quasi-PDFs
to light-cone PDFs and the difference between them can
serve as an estimate of truncation effects at one loop. For
the remainder of the paper, we use the MMS scheme, as the
one for which the higher-order effects are likely to be
smaller, since this scheme is a milder modification of the
MS scheme, i.e., one that does not affect the physical region
in the matching.

C. Comparison of MS → MS and
RI → MS matching

As we discussed above, our renormalization and match-
ing procedure proceeds in two steps. First, the renormal-
ization functions computed in the RI0 scheme are converted
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to the MMS scheme and evolved to a chosen scale,
μ̄ ¼ 2 GeV, using one-loop perturbative formulas derived
in Ref. [21], and including the additional conversion from
the MS scheme to the MMS scheme, derived in this work.
The resulting MMS Z factors are used to renormalize the
bare matrix elements, which are then Fourier transformed
from z space to x space, yielding the renormalized quasi-
PDF in the MMS scheme. In the second step, a matching
procedure is applied that brings the MMS-renormalized
quasi-PDF to the light-cone PDF in the MS scheme, at
the same renormalization scale μ̄. We will refer to this
procedure as a two-step procedure.
In Ref. [44], a one-step procedure was proposed. It

consists in applying the renormalization functions com-
puted in the RI scheme to the bare matrix elements and
taking the Fourier transform of RI-renormalized matrix
elements to obtain a quasi-PDF renormalized in the RI
scheme. The matching procedure then serves to simulta-
neously bring the quasi-PDFs to the light-cone PDFs and to
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FIG. 25. Comparison of matched PDFs from quasi-PDFs
renormalized in the MMS scheme (green band) and in the “ratio”
scheme (cyan band) for the unpolarized case. The nucleon
momentum is P3 ¼ 10π=L.
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FIG. 24. Comparison of matched PDFs from quasi-PDFs renormalized in the MS (red band) scheme and in the MMS (cyan band)
scheme, for the unpolarized (top left panel), helicity (top right panel) and transversity (bottom panel) cases and for a nucleon momentum
of P3 ¼ 10π=L.
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convert from the RI scheme to the MS scheme, evolving
them from the given RI scale to the reference scale of
2 GeV. For this procedure, we use the formulas derived in
Ref. [29] and consider the operator with the γ0 Dirac
structure. We choose the variant with the p projection that
differs from the projection that we used in our variant of the
RI0 scheme. We refer to this choice of the projection as RIp.
The comparison of the one-step and two-step procedures

is presented in Fig. 26. In the left panel, we show our quasi-
PDFs, renormalized in the RIp scheme and in the MMS
scheme. The corresponding renormalization functions are
applied to the same lattice data for bare matrix elements.
The results of applying the one-step and two-step proce-
dures are given in the right panel. We observe that the
results of both procedures are fully compatible for small
positive and negative x. For large positive x, the two-
step procedure gives a PDF that goes to zero more slowly,
while the PDF from the one-step procedure crosses
zero at x ≈ 0.6 and remains negative until x ≈ 1 (reaching
a minimum of around −0.16 at x ≈ 0.8). In the large
negative-x region, the situation is analogous: the one-step
(two-step) procedure leads to the PDF approaching zero
from below (above).
Both the one-step and two-step procedures use a one-

loop computation in continuum perturbation theory.
Obviously, both contain higher-order contributions that
cannot be quantified unless the two-loop formulas are
available. Hence, neither of them can be considered to be
the preferred one. It might happen that one of the
procedures evinces smaller higher-loop effects without
any theoretical arguments to support this, but it is not
possible to say which one. The comparison between them
is, thus, useful, as it reveals systematic effects due to
higher-order terms, which may differ for different x

regions. The present study suggests that the large-jxj
regions suffer more from such higher-order effects. As
Fig. 26 indicates, there may be significant two-loop effects
in the conversion/evolution/matching procedures. Thus, a
two-loop computation is indeed necessary. The two-step
procedure allows for separating the conversion, the evolu-
tion and the matching and hence, a two-loop computation
even for one of these, which is simpler than the full
computation of the one-step procedure, can provide some
insight.

D. Truncation of the Fourier transform

We turn now to the investigation of systematic effects
related to the FT that is applied on the renormalized matrix
elements in z space, giving the quasi-PDFs in x space. In
principle, the FT integrates over all Wilson line lengths
from zero to infinity, whereas on the lattice we have
available for a finite number of discrete lengths z=a.
Hence, one needs to decide about the maximum value of
z=a taken in the discretized FT integral. Ideally, it should be
a value for which both the real part and the imaginary part
of the matrix elements have decayed to zero. For unrenor-
malized matrix elements, the choice of such a value poses
no problem. As can be seen in Fig. 27, the bare matrix
elements are zero for any jz=aj≳ 15. However, renormal-
ized matrix elements involve multiplication of the bare ones
by complex Z factors that mix bare real and imaginary
parts, according to

Re½hren� ¼ Re½Z�Re½hbare� − Im½Z�Im½hbare�; ð45Þ

Im½hren� ¼ Re½Z�Im½hbare� þ Im½Z�Re½hbare�: ð46Þ
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FIG. 26. Left panel: Comparison of renormalized quasi-PDFs in the RI scheme with p projection (red band) and the MMS scheme
(green band). Right panel: Matched PDFs obtained from the same bare matrix elements, but with different scheme conversion, evolution
and matching procedures: either one-step (RI → MS) or two-step (RI0 → MMS → MS) (see text for details). This is for the unpolarized
case, with a nucleon momentum of P3 ¼ 10π=L.
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As a result, the real part of the renormalized matrix
elements can be nonzero even if the real part of the bare
matrix elements has already decayed to zero. This stems
from an unphysical truncation effect in the perturbative
conversion between the intermediate RI0 scheme Z factors
and the MS ones. Analogously, the imaginary part
of the renormalized matrix elements gets contaminated
by Im½Z� which multiplies the real part of the bare matrix
elements and leads to nonphysical contributions.
Moreover, the large values of Z factors at large Wilson
line lengths amplify the bare matrix elements and even if

the latter are compatible with zero, this amplification
introduces very large noise to the data, which propagates
through the FT and matching to the final PDFs. These
effects call for a truncation of the renormalized matrix
elements at some justified value of z=a, which we call
zmax=a. In Fig. 28, we illustrate the zmax=a dependence of
the resulting final PDFs for all operators and for our
largest momentum. The smallest (largest) value of
zmax=a is chosen according to where the real (imaginary)
part of the renormalized matrix elements is compatible
with zero.
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FIG. 27. Real (left) and imaginary (right) parts of the bare (filled symbols) and MMS-renormalized (open symbols) matrix elements
for the unpolarized (upper row), helicity (middle row) and transversity PDFs (lower row) (for a nucleon momentum of P3 ¼ 10π=L).
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For the transversity case (lower plot of Fig. 28), we
observe very little dependence on the choice of zmax=a
(apart from increased statistical noise for larger values of
zmax=a) and we choose zmax=a ¼ 12 as the value for our
final plots. In this case, both the real and imaginary parts of
the renormalized matrix elements are compatible with zero.
Hence, the unphysical effects of truncating the Fourier
transform at finite zmax=a are minimal. For the unpolarized
case, a value of zmax=a where Re½hren� and Im½hren� are both
zero does not exist. Hence, we observe that the variation of
zmax=a leads to a visible effect in the upper left plot of
Fig. 28. However, matched PDFs from all considered
values of the cutoff are compatible with one another. In
the end, we choose the middle value, zmax=a ¼ 10, as the
final one. In this way, the unphysical effect of truncation is
split between the real and imaginary parts. For the former,
the matched PDF gets a contribution from unphysical
negative values of Re½hren� (resulting from the imaginary
part of Z factors being nonzero due to the truncation of the
perturbative conversion between renormalization schemes).
In turn, for the latter, part of the contribution from the
imaginary part of the renormalized matrix elements is

missing. In the helicity case, Re½hren� decays to zero at a
similar value of z=a as for the other cases and, contrary to
the unpolarized matrix elements, does not go below zero.
However, jIm½hren�j, reaches a minimum around z=a ≈
12–13 and then increases again, to become compatible with
zero at z=a ≈ 17–18, within huge errors. For our preferred
value of the cutoff, we choose zmax=a ¼ 12, where the real
part is compatible with zero and the absolute value of the
imaginary part is locally minimal. Varying zmax=a (upper
right plot of Fig. 28) leads to changes in the matched
helicity PDF that are statistically insignificant.
Apart from the nonphysical effects appearing when the

renormalized matrix elements are not compatible with
zero at zmax=a, further nonphysical effects are introduced
by the FT if the decay of hren is not fast enough. Namely,
the periodicity of the Fourier transform leads to unphys-
ical oscillations in the quasi-PDFs and finally in the
matched PDFs. This effect is visible in all of our final
distributions as a distorted approach of PDFs to zero for x
between 0.5 and 1, as a mild oscillatory behavior for large
negative x, and as an unphysical minimum in the anti-
quark part at −x ≈ 0.1–0.2. We note that these symptoms
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FIG. 28. Matched unpolarized PDF (upper right), helicity PDF (lower left) and transversity PDF (lower right) for different values of
the cutoff zmax=a ¼ 10 (red), 12 (blue), 14 (green). Our final choice is always the middle value of zmax=a from the ones shown. The
nucleon momentum is P3 ¼ 10π=L for all plots.
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are interconnected, e.g., vector current conservation
implies that a too large integral of the quark part, caused
by the FT truncation effects, must lead to a too low value
of the integral in the antiquark part, signaled by the
negative value of d̄ − ū for low negative x. Decomposing
the FT into cosine and sine transforms, one can observe
that the quasi-PDF is bound to be negative if the matrix
elements entering the transforms do not decay to zero fast
enough. The rate of decay of these matrix elements
depends on the nucleon boost, as was demonstrated in
Fig. 7. For larger momenta, the decay becomes faster, i.e.,
zero is reached at a smaller value of z=a, for both the real
and imaginary parts. Thus, the unphysical oscillations that
we observe in the data clearly depend on the nucleon
boost. However, as argued in a study performed in parallel
to our work [112], the issue is more general and profound.
They showed that the problem of reconstructing a dis-
tribution from a naively discretized and truncated Fourier
transform, i.e., with only a few available values of the
matrix elements (corresponding to integer values of z=a)
extending to a finite Wilson line length (up to some
zmax=a), is mathematically ill defined. They advocated the
use of advanced reconstruction techniques that can
improve the situation considerably. Among such tech-
niques that were tested in that paper are the Backus-
Gilbert method, a neural-network reconstruction and
Bayesian methods. Applying them to our current data
is beyond the scope of this work, but will be pursued by us
in the future.
We also remark that the FT problem is aggravated in the

process of renormalization. In Fig. 29, we display the
results for the unpolarized quasi-PDF for zmax ¼ 10a,
comparing the bare, RI0 and MMS renormalized cases.
As can be seen, the oscillations do not emerge when Fourier
transforming bare matrix elements that decay to zero faster.
The amplification of the matrix elements by the Z factors is
responsible for their relatively slow decay, which enhances
the reconstruction problem. At this stage, one needs to
remember that the Z factors, as calculated now, are subject
to two kinds of nonphysical effects: lattice artifacts in their
nonperturbative evaluation on a hypercubic lattice in
the RI0 scheme, and truncation effects in the perturbative
conversion to the MMS scheme and evolution to the
reference scale of 2 GeV. After curing these effects, by
computing the higher-order conversion formula and by
subtracting lattice artifacts computed in lattice perturbation
theory [111], we expect that the oscillatory behavior may
be considerably less prominent, but we do not expect that
the final PDFs will be devoid of it. This is supported also by
the behavior observed for the quasi-PDF renormalized
using the RI0 scheme, which has no conversion truncation
effects, where we find that the oscillation is reduced with
respect to the MMS-renormalized quasi-PDF, as seen in
Fig. 29. However, even in the RI0 scheme, the bare matrix
elements are still amplified by the Z factors, whose real part

is exponentially increasing due to the presence of the power
divergence related to the Wilson line.
An approach that may address nonphysical oscillations

was proposed in Ref. [24]. The idea is to rewrite the FT that
yields the quasi-PDF, using integration by parts as follows:

q̃ðxÞ ¼ hðzÞ e
ixzP3

2πix

����zmax

−zmax

−
Z

zmax

−zmax

dz
2π

eixzP3

ix
h0ðzÞ; ð47Þ

where h0ðzÞ is the derivative of the matrix elements with
respect to the Wilson line length z. We note that the
difference between the standard FT and the “derivative”
method vanishes if hðjzj ≥ zmaxÞ ¼ 0. The integration-by-
parts step is exact; however, the proposed approximation is
to neglect the surface term, even if it is nonvanishing. The
latter happens when the matrix elements have not decayed
to zero at z ¼ zmax. The resulting FT, given by the second
term of Eq. (47), thus, involves the derivatives of renor-
malized matrix elements, which decay to zero faster than
the matrix elements themselves. As argued above, a fast
enough decay of the transformed matrix elements is
important to avoid oscillations. In this so-called “deriva-
tive” method, the oscillations are effectively transferred to
the neglected surface term. We note, however, that this
procedure is dangerous, due to the 1=x factor of the surface
term, which leads to an uncontrolled effect for small values
of x, where also the exponential of the surface term has a
large real part. This aspect is illustrated in Fig. 30 for all
three types of PDFs. The explicit 1=x factor amplifies the
final PDF for small jxj, leading to its huge values,
particularly in the small positive-x region. This is very
visible in the case of the unpolarized PDF, where the results
are statistically the most precise. In the polarized cases, in
the small-jxj regions, one observes that the statistical errors
are significantly enhanced by the “derivative” method. All
three final PDFs evince divergences to −∞ as x → 0 in the
antiquark part, in contradiction with the behavior observed
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FIG. 29. The unpolarized quasi-PDFs for P3 ¼ 10π=L. We
show the bare matrix element (purple), RI0 (yellow) and MS
(cyan) quasi-PDFs for zmax ¼ 10a.
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in phenomenological PDF extractions. Furthermore, the
oscillatory behavior is very mildly affected, undermining
the very aim of using the “derivative” procedure.
The “derivative” method was also analyzed by the

authors of Ref. [112], who showed that this method does
not alter the ill-conditioned behavior encountered for a
naive truncated FT limited to Oð10Þ values of z=a. Thus, it
does not offer a genuine solution to the FT issue. We are led
to conclude that the problem does not disappear, since the
Fourier transform that defines the quasi-PDF is still
truncated and part of the truncation encoded in the surface
term may be hiding physical information relevant for
reconstructing the full PDF. In other words, for a fully
reliable extraction of PDFs, the surface term has to go to
zero when applying actual lattice QCD data, and not by
setting it to zero by hand. Another disadvantage of using
the “derivative” method is that it introduces additional
discretization effects, which need to be controlled. For all
the above reasons, we opt not to use the “derivative”

method and treat the residual oscillations as an indication
that advanced reconstruction methods need to be used
instead of the naive approaches. Moreover, this aspect may
be improved with a nucleon boost that is increased in a
controlled manner (by bare matrix elements that decay to
zero faster) and by refinements of the renormalization
procedure. All of these are important directions for further
study and we plan to explore these ideas in the future.

VI. FINAL RESULTS AND DISCUSSION

In this section, we present our final results for the
collinear nonsinglet quark PDFs, whose determination
was guided by the extensive investigation of several
systematic effects presented in the previous sections.
Although it is not possible to quantify all of the systematics,
this investigation clearly points to the steps that one must
follow in the future in order to arrive at precise extractions
of PDFs from lattice QCD, with systematic uncertainties

-1 -0.5 0 0.5 1

0

2

4

6

-1 -0.5 0 0.5 1

0

2

4

6

-1 -0.5 0 0.5 1

0

2

4

6

FIG. 30. Comparison of matched PDFs obtained from the same renormalized matrix elements, but with different Fourier transform
definitions: the standard one (green band) or the “derivative” one (red band). The matching procedure is the same for both and proceeds
via the MMS scheme. We show the unpolarized (upper left), helicity (upper right) and transversity cases (lower). The nucleon
momentum is P3 ¼ 10π=L.
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under control. We will be discussing these steps together
with the presentation of the final results.
In Fig. 31, we show the quasi-PDFs, the matched PDFs

and the final PDFs that take into account the nucleon mass
corrections (NMCs) for the largest value of the momentum.
The nucleon mass corrections are performed according to
the formulas of Ref. [17]. They are Oðm2

N=P
2
3Þ corrections

to the PDF resulting from the finite mass of the nucleon and
they can be derived in a closed form to all orders. We note
that the one-loop matching that connects the quasi-PDFs to
the light-cone PDFs is still relatively large for our largest
nucleon boost. Increasing the nucleon boost while excited-
states contamination is fully under control is one aspect that
has to be addressed in future computations. Another is the
two-loop perturbative conversion between renormalization
schemes and evolution to the chosen reference scale. This
will further reduce the dependence on the initial RI0 scale,
and may be used to quantify truncation effects in the
conversion factor. NMCs, on the other hand, are very small
and negligible in most regions of x and thus not expected to
contribute to large systematic effects.

In Fig. 32 we show the dependence of the final PDFs on
the nucleon boost. For the unpolarized PDF, we observe a
strong effect when increasing the momentum from 6π=L to
8π=L, which seems to converge after that yielding values
that are compatible with those obtained for a nucleon boost
of 10π=L over almost the whole range of x. In addition,
the oscillatory behavior (at the level of both quasi-PDFs
and matched PDFs) becomes milder as the momentum
increases. In particular, there is an additional minimum of
the final PDFs for the smallest considered momentum, at
x ≈ 0.5 in the unpolarized case (see the upper left plot of
Fig. 32), which disappears with momentum increase. As we
discussed above, this behavior results from the fact that for
larger boosts, both bare and renormalized matrix elements
become consistent with zero at smaller Wilson line lengths
z; see Fig. 7. For example, the real (imaginary) part of the
bare matrix elements corresponding to the unpolarized case
becomes compatible with zero for z=a ¼ 8 (13) at P3 ¼
10π=L and for z=a ¼ 13 (18) for P3 ¼ 6π=L, the latter
aggravating the truncation problem, as discussed in the
previous section. Moreover, the reconstruction of the
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FIG. 31. Effect of matching and nucleon mass corrections in the unpolarized PDF (upper left), helicity PDF (upper right) and
transversity PDF (lower). The nucleon momentum is P3 ¼ 10π=L for all plots.
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x-dependent distributions is more problematic with renor-
malized data, as again argued in Sec. V D. Also, the decay
of the matched PDF to zero at x ¼ �1 is best achieved at
the largest momentum. For the helicity PDF, on the other
hand, increasing the momentum from 6π=L to 8π=L is a
minor effect, i.e., the final PDFs are compatible with each
other for both of these momenta, over almost the whole
range of x. However, when increasing the momentum from
8π=L to 10π=L, a significant shift is observed, especially
for small values of x. Thus, it is likely that higher-twist
effects are more pronounced for the helicity PDF. The
oscillatory behavior is also milder in this case as the
momentum increases, and the final PDF is compatible
with zero at x ¼ 1, which is not the case for the two smaller
momenta. For the transversity PDF, the momentum
dependence is the mildest and results using momenta of
8π=L and 10π=L are compatible over a wide range of x
values. Similarly to the unpolarized and helicity PDFs, the
unphysical oscillations are significantly reduced and the
transversity PDF vanishes at x ¼ 1 for a momentum
of 10π=L.

In Fig. 33, we analyze the momentum dependence of the
final matched PDFs more closely. In the unpolarized case,
we observe compatibility between the data for the largest
two momenta for all values of x illustrated in the upper
panel. This is in accordance with theoretical expectations:
the higher-twist effects (HTEs) are suppressed by
OðΛ2

QCD=P
2
3Þ, which amounts to Oð5%Þ, Oð7%Þ and

Oð13%Þ, for P3 ¼ 10π=L, P3 ¼ 8π=L and P3 ¼ 6π=L,
respectively. With our statistical precision, around 10% for
most ranges of x, HTEs are expected to be hidden within
statistical uncertainties when considering the two largest
momenta. Obviously, the prefactor of OðΛ2

QCD=P
2
3Þ terms

is unknown and can also depend on x, but the lattice data
seem to favor Oð1Þ values (or smaller) in the unpolarized
case. For the helicity PDF (middle panel of Fig. 33), we
observe larger deviations between P3 ¼ 10π=L and
P3 ¼ 8π=L, particularly for intermediate values of x,
i.e., x ≈ 0.3. The central value for the largest momentum
is approximately 25% lower than the one for P3 ¼ 8π=L.
This can indicate enhanced HTEs [a prefactor of
OðΛ2

QCD=P
2
3Þ larger than one] or a statistical fluctuation.
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FIG. 32. Nucleon boost dependence for the unpolarized PDF (upper left), helicity PDF (upper right) and transversity PDF (lower),
using P3 ¼ 6π=L (green curve), P3 ¼ 8π=L (red curve) and P3 ¼ 10π=L (blue curve).
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The latter interpretation may be more favored, given the
fact that the results are compatible for the other illustrated
values of x. Moreover, HTEs are typically expected to be
enhanced for low and high x, as concluded e.g., in
Ref. [113]. Even though the results of that paper are not
directly applicable to our setup, since the renormalization is
performed by forming suitable ratios that have canceled
divergences, this generic feature of HTE enhancement is
very likely to hold. Nevertheless, the behavior that we
obtained for the helicity PDF at intermediate x needs to be
checked in future studies. In the transversity case (lower
panel of Fig. 33), we observe compatible results for all x
values and for all three momenta. This suggests, again,
rather small HTEs. All of this corroborates the expectation
that HTEs are not the dominant systematic effect in the
extracted PDFs, i.e., they are, most likely, hidden in the
Oð10%Þ statistical uncertainties if the nucleon boost is
1.1–1.4 GeV.
We compare our final PDFs at the largest momentumwith

the phenomenologically extracted ones in Fig. 34. For the
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FIG. 33. Dependence of the unpolarized PDF (upper), helicity
PDF (middle) and transversity PDF (lower) on the nucleon
momentum for six selected values of x.
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FIG. 34. Final results for the unpolarized PDF (upper left), helicity PDF (upper right) and transversity PDF (lower), using the largest
momentum P3 ¼ 10π=L (blue curve). The global fits of Refs. [114–116] (unpolarized), Refs. [117–119] (helicity), and Refs. [120]
(transversity) are shown for qualitative comparison.
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phenomenological results, we use the ones fromCJ15 [114],
ABMP16 [115] and NNPDF3.1 [116] for the unpolarized
PDF, the ones from DSSV08 [117], NNPDF1.1pol [118]
and JAM17 [119] for the helicity PDF and two parametri-
zations for the transversity PDF: one extracted from exper-
imental semi-inclusive deep-inelastic scattering data and
one where the tensor charge computed in lattice QCD was
used as input in the phenomenological analysis [120]. We
stress that the comparison with phenomenological PDFs is
intended to be qualitative, since we only include statistical
uncertainties. The unpolarized PDFhas a similar slope to the
phenomenological PDFs, but lies above them in the positive-
x region. Increasing the momentum should bring the PDF
closer to the phenomenological values. In Fig. 32,we choose
not to show the phenomenological curves for clarity of the
plots, but looking at the position of these curves in Fig. 34, it
is clear that a larger boost indeedmoves the lattice-extracted
PDFs in the direction of the phenomenological PDFs. Our
results for the helicity PDF are compatible with phenom-
enological ones for x≲ 0.4–0.5. While this may indicate
faster convergence of the quasi-PDF, it can also be the result
of different systematic effects, with some of them possibly
canceling out. Likewise, our result for the transversity PDF
is in agreement with both the phenomenologically extracted
one, as well as the one using the lattice determination of the
tensor charge as input, for x≲ 0.4–0.5. An interesting
feature is that the precision of our results is better than in
both phenomenological determinations. Thus, lattice QCD
holds the prospect of significantly impacting our knowledge
of the transversity PDF, in particular because we expect that
in the next generation of lattice QCD computations of PDFs
a better control of the systematic effects will be achieved.
The errors shown in the above figures are statistical, and

significant effort is needed to properly quantify the sys-
tematic uncertainties present in the various steps of the
analysis. Currently, these constitute the dominant source of
uncertainty, and addressing them will allow one to draw
final conclusions from the lattice results. Based on the
current studies, it is not possible to quantify and hierarchize
them. Typical systematics related to the lattice calculation
include discretization effects, finite-volume effects and the
role of the pion mass value. The pion mass of the ensemble
used here is already at its physical value and hence, there is
no need for a chiral extrapolation. The latter would be an
important source of uncertainty, as the fit function is not
known. We remark that, in practice, the effect of a
nonphysical pion mass can be large, as we demonstrated
in Ref. [19], comparing the physical pion mass PDF with
one at mπ ≈ 375 MeV.
The parameters of the ensembles are expected to satisfy

certain criteria for the range of values of the pion mass, the
volume and the lattice spacing, to study the following
uncertainties.
(1) Cutoff effects: A reliable control of cutoff effects

requires at least three values of the lattice spacing

smaller than 0.1 fm. Normally, cutoff effects are
found to be relatively small in lattice hadron struc-
ture calculations. In the quasi-PDF computation, the
nucleon is boosted to momenta for which P3

becomes significant in comparison to the inverse
lattice spacing and this may lead to increased cutoff
effects. We note that for our largest momentum, we
have aP3 ¼ 0.65 which is below the lattice cutoff
(unlike Refs. [26,28,31] where the employed nu-
cleon momenta are significantly above the lattice
cutoff), and the continuum dispersion relation is still
satisfied, as shown in Fig. 4. Still, it is unclear to
what extent the good quality of the dispersion
relation translates into discretization effects of the
matrix elements considered here.

(2) Finite-volume effects: Similarly to discretization
effects, finite-volume effects are also usually found
to be rather small in hadron structure observables.
The situation with quasi-PDFs is likely to be some-
what more complicated, since we use operators with
Wilson lines of significant length. The volume
behavior of such extended operators was consi-
dered by Briceño et al. [110] within a model
using current-current correlators in a scalar theory.
Despite the fact that the model is not directly
applicable to our investigation, it does provide a
warning that the suppression of finite-volume effects
for matrix elements of spatially extended operators
may change from the standard expð−mπLÞ to
ðLm=jL − zjnÞ expð−mNðL − zÞÞ, where m and n
are undetermined exponents, which may become
dominant for large z. Thus, finite-volume effects
may turn out to be a significant source of systematics
and their investigation will be crucial in the future.

(3) Systematic uncertainties in the determination of the
renormalization functions: Uncertainties also arise
in the computation of renormalization functions due
to the breaking of rotational invariance. We have
partly improved our work by subtracting lattice
artifacts in the renormalization factor of the quark
field, computed in lattice perturbation theory (see
Sec. IV). A similar subtraction for the Z factors of
local operators was very successful [104,107,121],
and we intend to perform such a subtraction in the
future [111]. We note that the pion mass dependence
and finite-volume effects in the renormalization
functions studied here were found to be insignificant.

(i) Uncertainties specific to the quasi-PDF approach:
The most significant uncertainty of this type is the
truncation of the Fourier transform and the finite
number of evaluations of the matrix elements, when
going from the z space of the latter to the x space of
partonic distributions. This issue can be alleviated at
larger nucleon boosts, which implies a faster decay
of matrix elements to zero and, thus, mildened
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oscillations. However, according to the findings of
the recent Ref. [112], the problem needs a different
treatment, using advanced reconstruction tech-
niques. Other ad hoc prescriptions, such as the
“derivative” method, do not actually remove the
source of the oscillations. In this technique, it is
unclear how to handle the small-jxj region, since the
ignored surface term contains an explicit 1=x factor.
In addition, the need to discretize the derivative of
the matrix elements introduces additional cutoff
effects. The effects from the finite momentum
are likely to be within the order of magnitude of
their theoretical expectation, OðΛ2

QCD=P
2
3Þ, which

amounts to around 5% at our largest momentum.
Such higher-twist effects can be suppressed by going
to larger boosts or alternatively, by explicitly com-
puted and subtracted. However, the former is diffi-
cult, as the signal is exponentially decaying at larger
momenta and the larger momentum also signifi-
cantly increases excited-states contributions, particu-
larly when using simulations at the physical pion
mass. As we argued, good control over excited states
is necessary for extracting reliable physical results.
Thus, a detailed study is required to maintain
ground-state dominance, following the approach
explained in detail in this work. In this paper, we
showed that excited states are suppressed below
∼10% if the source-sink separation is 1.1 fm at
P3 ≈ 1.4 GeV, as established with a detailed analy-
sis based on three methods. We note that at the
physical pion mass and at small source-sink sepa-
rations, the contamination comes from tens of
excited states, and thus, a one-state or two-state fit
alone is not reliable. Compatibility between one-
state and two-state fits provides a strong argument
that ground-state dominance has been achieved.
Another possibly significant source of systematic
errors are the perturbative truncation effects in the
conversion to the MS scheme, evolution to the
reference scale and matching, all of which are
currently known to the one-loop level. We observed
that the effect of the latter is significant at our largest
momentum and hence two-loop effects are likely to
be substantial. Therefore, a two-loop computation
would lead to better connection to light-cone PDFs
with smaller values of the nucleon momentum.

VII. CONCLUSIONS

In this work we presented a detailed investigation of the
formalism employed to extract x-dependent PDFs within
lattice QCD. The analysis was carried out using one
ensemble of Nf ¼ 2 twisted mass fermions with the quark
mass fixed to its physical value. Results on the collinear
unpolarized, helicity and transversity PDFs were obtained

for the isovector flavor combination. The quasi-PDF
method used here relies on a computation of equal-time
correlators involving boosted nucleons, with themomentum
increased to large enough values, so that the large momen-
tum effective theory is applicable. In this work, we inves-
tigated three values of the momentum, reaching a maximum
of 1.38 GeV. All necessary components to obtain light-cone
PDFs have been considered, namely, the calculation of the
bare nucleon matrix elements, renormalization, matching to
light-cone PDFs and subtraction of finite nucleon mass
corrections. The work presented here is an extension of our
earlier work [19,20], and includes details on technical and
theoretical aspects, as well as improvements in various
aspects of the calculation and examination of systematic
effects. In particular, we provided the lattice techniques used
in the evaluation of the matrix elements, such as momentum
smearing and methods to eliminate (within statistical
accuracy) excited-states contributions. Theoretical develop-
ments associated with the nonperturbative renormalization
were presented, where a chiral extrapolation and a modi-
fication of the conversion to the MMS scheme have been
employed. The latter is a variant of the MS scheme that
ensures particle number conservation in the matching
procedure. Issues related to the Fourier transform as well
as different matching prescriptions were also explored.
Particular attention was given to discussing the role of

systematic effects in the various steps of the analysis. Typical
systematics related to the lattice calculation that are also
common in other hadron structure calculations include
discretization effects and finite-volume effects. These can
be addressed and eliminated by simulations using additional
gauge field configuration ensembles. At present, these are
part of the unquantified uncertainties, that need to be
addressed in future studies. Another typical systematic enters
lattice data if thepionmassof the ensemble is at an unphysical
value. In this work, we used simulations at the physical point
and chiral extrapolation was not needed. Analyses using
nonphysical values of the quark mass would introduce an
important source of uncertainty, as the fit function to
extrapolate the results to the physical point is not known.
Apart from the aforementioned systematics that are

common in other hadron structure investigations, there
are additional ones that are specific to the quasi-PDF
approach. As discussed in the previous sections, significant
effects are caused by the truncated and discretized Fourier
transform. We will explore whether the reconstruction
techniques advocated in Ref. [112] will indeed cure this
problem. Also, increasing the nucleon boost can lead to
further systematic uncertainties. High values of the
momenta reduce the appearance of oscillations, but at
the same time, they increase the number of contributing
excited states. Systematics related to the truncation of the
conversion factor and the matching formula to the one-loop
level are non-negligible. In particular, having a matching
formula to two loops may lead to better convergence to
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light-cone PDFs at smaller nucleon momenta. Hence, a
two-loop computation is strongly desired and would help to
establish a better connection to light-cone PDFs with
smaller values of the nucleon momentum.
Despite these uncertainties, this work demonstrates

tremendous progress in the determination of PDFs from
the quasidistribution approach [33]. Lattice QCD results
confirm the feasibility of extracting PDFs from first-
principle calculations. The success in the quasi-PDF
approach for the nucleon has also resulted in studies of
other hadrons and alternative approaches, as summarized in
Ref. [33]. The theoretical and technical aspects are now
well understood for the nucleon studies and addressing the
systematic uncertainties is the next step that will be enabled
by using the methodology developed, in combination with
the availability of increased computational resources. In
fact, our preliminary results for an Nf ¼ 2þ 1þ 1 twisted
mass ensemble with physical values of the quark masses, a
lattice spacing of 0.082 fm and a larger volume of
643 × 128 have been shown in Ref. [122] and demonstrate
the future direction and progress of such computations.
Furthermore, the production of another ensemble at a finer
lattice spacing is already underway.

ACKNOWLEDGMENTS

We would like to thank all members of ETMC for their
constant and pleasant collaboration. We also thank Y. Zhao

for useful discussions. This work has received funding
from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie
Grant Agreement No. 642069 (HPC-LEAP). K. C. was
supported by National Science Centre (Poland) Grant
SONATA BIS No. 2016/22/E/ST2/00013. F. S. was funded
by DFG Project No. 392578569. M. C. acknowledges
financial support by the U.S. Department of Energy,
Office of Nuclear Physics, within the framework of the
TMD Topical Collaboration, as well as, by the National
Science Foundation under Grant No. PHY-1714407. A. S.
is partly supported by the project COMPLEMENTARY/
0916/0015 funded by the Cyprus Research Promotion
Foundation. This research used computational resources
of the Oak Ridge Leadership Computing Facility (OLCF),
which is a DOE Office of Science User Facility supported
under Contract No. DE-AC05-00OR22725. Additional
computational resources were provided by John-von-
Neumann-Institut für Computing (NIC) for the JURECA
supercomputer (allocation ECY00), the Prometheus super-
computer at the Academic Computing Centre Cyfronet
AGH in Cracow (grant ID quasipdfs), the Eagle super-
computer at the Poznan Supercomputing and Networking
Center (Grant No. 346), and the Okeanos supercomputer
at the Interdisciplinary Centre for Mathematical and
Computational Modelling in Warsaw (Grant IDs gb70-
17, ga71-22).

[1] E. Perez and E. Rizvi, The quark and gluon structure of the
proton, Rep. Prog. Phys. 76, 046201 (2013).

[2] A. De Roeck and R. S. Thorne, Structure functions, Prog.
Part. Nucl. Phys. 66, 727 (2011).

[3] S. Alekhin et al., The PDF4LHC working group interim
report, arXiv:1101.0536.

[4] R. D. Ball et al., Parton distribution benchmarking
with LHC data, J. High Energy Phys. 04 (2013)
125.

[5] C. A. Aidala, S. D. Bass, D. Hasch, and G. K. Mallot, The
spin structure of the nucleon, Rev. Mod. Phys. 85, 655
(2013).

[6] S. Forte and G. Watt, Progress in the determination of the
partonic structure of the proton, Annu. Rev. Nucl. Part. Sci.
63, 291 (2013).

[7] P. Jimenez-Delgado, W. Melnitchouk, and J. F. Owens,
Parton momentum and helicity distributions in the nu-
cleon, J. Phys. G 40, 093102 (2013).

[8] J. Rojo et al., The PDF4LHC report on PDFs and LHC
data: Results from Run I and preparation for Run II,
J. Phys. G 42, 103103 (2015).

[9] J. Butterworth et al., PDF4LHC recommendations for
LHC Run II, J. Phys. G 43, 023001 (2016).

[10] A. Accardi et al., A critical appraisal and evaluation of
modern PDFs, Eur. Phys. J. C 76, 471 (2016).

[11] J. Gao, L. Harland-Lang, and J. Rojo, The structure of the
proton in the LHC precision era, Phys. Rep. 742, 1 (2018).

[12] H.-W. Lin et al., Parton distributions and lattice QCD
calculations: A community white paper, Prog. Part. Nucl.
Phys. 100, 107 (2018).

[13] X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev.
Lett. 110, 262002 (2013).

[14] H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji, Flavor
structure of the nucleon sea from lattice QCD, Phys.
Rev. D 91, 054510 (2015).

[15] C. Alexandrou, K. Cichy, V. Drach, E. Garcia-Ramos, K.
Hadjiyiannakou, K. Jansen, F. Steffens, and C. Wiese, First
results with twisted mass fermions towards the computa-
tion of parton distribution functions on the lattice, Proc.
Sci., LATTICE2014 (2014) 135 [arXiv:1411.0891].

[16] C. Alexandrou, K. Cichy, V. Drach, E. Garcia-Ramos, K.
Hadjiyiannakou, K. Jansen, F. Steffens, and C. Wiese,
Lattice calculation of parton distributions, Phys. Rev. D 92,
014502 (2015).

[17] J.-W. Chen, S. D. Cohen, X. Ji, H.-W. Lin, and
J.-H. Zhang, Nucleon helicity and transversity parton

CONSTANTIA ALEXANDROU et al. PHYS. REV. D 99, 114504 (2019)

114504-40

https://doi.org/10.1088/0034-4885/76/4/046201
https://doi.org/10.1016/j.ppnp.2011.06.001
https://doi.org/10.1016/j.ppnp.2011.06.001
http://arXiv.org/abs/1101.0536
https://doi.org/10.1007/JHEP04(2013)125
https://doi.org/10.1007/JHEP04(2013)125
https://doi.org/10.1103/RevModPhys.85.655
https://doi.org/10.1103/RevModPhys.85.655
https://doi.org/10.1146/annurev-nucl-102212-170607
https://doi.org/10.1146/annurev-nucl-102212-170607
https://doi.org/10.1088/0954-3899/40/9/093102
https://doi.org/10.1088/0954-3899/42/10/103103
https://doi.org/10.1088/0954-3899/43/2/023001
https://doi.org/10.1140/epjc/s10052-016-4285-4
https://doi.org/10.1016/j.physrep.2018.03.002
https://doi.org/10.1016/j.ppnp.2018.01.007
https://doi.org/10.1016/j.ppnp.2018.01.007
https://doi.org/10.1103/PhysRevLett.110.262002
https://doi.org/10.1103/PhysRevLett.110.262002
https://doi.org/10.1103/PhysRevD.91.054510
https://doi.org/10.1103/PhysRevD.91.054510
http://arXiv.org/abs/1411.0891
https://doi.org/10.1103/PhysRevD.92.014502
https://doi.org/10.1103/PhysRevD.92.014502


distributions from lattice QCD, Nucl. Phys. B911, 246
(2016).

[18] C. Alexandrou, K. Cichy, M. Constantinou, K.
Hadjiyiannakou, K. Jansen, F. Steffens, and C. Wiese,
Updated lattice results for parton distributions, Phys. Rev.
D 96, 014513 (2017).

[19] C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A.
Scapellato, and F. Steffens, Light-Cone Parton Distribution
Functions from Lattice QCD, Phys. Rev. Lett. 121, 112001
(2018).

[20] C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A.
Scapellato, and F. Steffens, Transversity parton distribution
functions from lattice QCD, Phys. Rev. D 98, 091503
(2018).

[21] M. Constantinou and H. Panagopoulos, Perturbative re-
normalization of quasi-parton distribution functions, Phys.
Rev. D 96, 054506 (2017).

[22] J.-H. Zhang, J.-W. Chen, X. Ji, L. Jin, and H.-W. Lin, Pion
distribution amplitude from lattice QCD, Phys. Rev. D 95,
094514 (2017).

[23] J.-W. Chen, T. Ishikawa, L. Jin, H.-W. Lin, Y.-B. Yang,
J.-H. Zhang, and Y. Zhao, Parton distribution function with
nonperturbative renormalization from lattice QCD, Phys.
Rev. D 97, 014505 (2018).

[24] H.-W. Lin, J.-W. Chen, T. Ishikawa, and J.-H. Zhang (LP3
Collaboration), Improved parton distribution functions at
the physical pion mass, Phys. Rev. D 98, 054504 (2018).

[25] J.-W. Chen, L. Jin, H.-W. Lin, A. Schäfer, P. Sun, Y.-B.
Yang, J.-H. Zhang, R. Zhang, and Y. Zhao, Kaon distri-
bution amplitude from lattice QCD and the flavor SU(3)
symmetry, Nucl. Phys. B939, 429 (2019).

[26] J.-W. Chen, L. Jin, H.-W. Lin, Y.-S. Liu, Y.-B. Yang, J.-H.
Zhang, and Y. Zhao, Lattice calculation of parton distri-
bution function from LaMET at physical pion mass with
large nucleon momentum, arXiv:1803.04393.

[27] J.-W. Chen, L. Jin, H.-W. Lin, Y.-S. Liu, A. Schäfer, Y.-B.
Yang, J.-H. Zhang, and Y. Zhao, First direct lattice-QCD
calculation of the x-dependence of the pion parton dis-
tribution function, arXiv:1804.01483.

[28] H.-W. Lin, J.-W. Chen, L. Jin, Y.-S. Liu, Y.-B. Yang, J.-H.
Zhang, and Y. Zhao, Proton Isovector Helicity Distribution
on the Lattice at Physical Pion Mass, Phys. Rev. Lett. 121,
242003 (2018).

[29] Y.-S. Liu, J.-W. Chen, L. Jin, H.-W. Lin, Y.-B. Yang, J.-H.
Zhang, and Y. Zhao, Unpolarized quark distribution from
lattice QCD: A systematic analysis of renormalization and
matching, arXiv:1807.06566.

[30] Z.-Y. Fan, Y.-B. Yang, A. Anthony, H.-W. Lin, and K.-F.
Liu, Gluon Quasi-Parton-Distribution Functions from
Lattice QCD, Phys. Rev. Lett. 121, 242001 (2018).

[31] Y.-S. Liu, J.-W. Chen, L. Jin, R. Li, H.-W. Lin, Y.-B. Yang,
J.-H. Zhang, and Y. Zhao, Nucleon transversity distribu-
tion at the physical pion mass from lattice QCD,
arXiv:1810.05043.

[32] P. Petreczky, T. Izubuchi, L. Jin, C. Kallidonis, N. Karthik,
S. Mukherjee, C. Shugert, and S. Syritsyn, Pion structure
from Lattice QCD, arXiv:1812.04334.

[33] K. Cichy andM. Constantinou, A guide to light-cone PDFs
from Lattice QCD: An overview of approaches, techniques
and results, Adv. High Energy Phys. 2019, 3036904 (2019).

[34] X. Xiong, X. Ji, J.-H. Zhang, and Y. Zhao, One-loop
matching for parton distributions: Nonsinglet case, Phys.
Rev. D 90, 014051 (2014).

[35] Y.-Q. Ma and J.-W. Qiu, Extracting parton distribution
functions from lattice QCD calculations, Phys. Rev. D 98,
074021 (2018).

[36] R. A. Briceño, M. T. Hansen, and C. J. Monahan, Role of
the Euclidean signature in lattice calculations of quasidis-
tributions and other nonlocal matrix elements, Phys. Rev.
D 96, 014502 (2017).

[37] Y.-Q. Ma and J.-W. Qiu, Exploring Partonic Structure of
Hadrons using ab initio Lattice QCD Calculations, Phys.
Rev. Lett. 120, 022003 (2018).

[38] X. Ji, J.-H. Zhang, and Y. Zhao, More on large-momentum
effective theory approach to parton physics, Nucl. Phys.
B924, 366 (2017).

[39] A. V. Radyushkin, Structure of parton quasi-distributions
and their moments, Phys. Lett. B 788, 380 (2019).

[40] J. Karpie, K. Orginos, and S. Zafeiropoulos, Moments
of Ioffe time parton distribution functions from non-
local matrix elements, J. High Energy Phys. 11 (2018)
178.

[41] X. Ji, A. Schäfer, X. Xiong, and J.-H. Zhang, One-loop
matching for generalized parton distributions, Phys. Rev. D
92, 014039 (2015).

[42] X. Xiong and J.-H. Zhang, One-loop matching for trans-
versity generalized parton distribution, Phys. Rev. D 92,
054037 (2015).

[43] W. Wang, S. Zhao, and R. Zhu, Gluon quasidistribution
function at one loop, Eur. Phys. J. C 78, 147 (2018).

[44] I. W. Stewart and Y. Zhao, Matching the quasi parton
distribution in a momentum subtraction scheme, Phys.
Rev. D 97, 054512 (2018).

[45] T. Izubuchi, X. Ji, L. Jin, I. W. Stewart, and Y.
Zhao, Factorization theorem relating Euclidean and
light-cone parton distributions, Phys. Rev. D 98, 056004
(2018).

[46] X. Ji, Parton physics from large-momentum effective field
theory, Sci. Chin. Phys. Mech. Astron. 57, 1407 (2014).

[47] T. Ishikawa, Y.-Q. Ma, J.-W. Qiu, and S. Yoshida,
Renormalizability of quasiparton distribution functions,
Phys. Rev. D 96, 094019 (2017).

[48] X. Ji, J.-H. Zhang, and Y. Zhao, Renormalization in Large
Momentum Effective Theory of Parton Physics, Phys. Rev.
Lett. 120, 112001 (2018).

[49] J.-H. Zhang, X. Ji, A. Schäfer, W. Wang, and S. Zhao,
Accessing Gluon Parton Distributions in Large Momen-
tum Effective Theory, Phys. Rev. Lett. 122, 142001 (2019).

[50] Z.-Y. Li, Y.-Q. Ma, and J.-W. Qiu, Multiplicative Renor-
malizability of Operators defining Quasiparton Distribu-
tions, Phys. Rev. Lett. 122, 062002 (2019).

[51] K.-F. Liu and S.-J. Dong, Origin of Difference between
Anti-d and Anti-u Partons in the Nucleon, Phys. Rev. Lett.
72, 1790 (1994).

[52] K. F. Liu, S. J. Dong, T. Draper, D. Leinweber, J. H. Sloan,
W. Wilcox, and R. M. Woloshyn, Valence QCD: Connect-
ing QCD to the quark model, Phys. Rev. D 59, 112001
(1999).

[53] K.-F. Liu, Parton degrees of freedom from the path integral
formalism, Phys. Rev. D 62, 074501 (2000).

SYSTEMATIC UNCERTAINTIES IN PARTON DISTRIBUTION … PHYS. REV. D 99, 114504 (2019)

114504-41

https://doi.org/10.1016/j.nuclphysb.2016.07.033
https://doi.org/10.1016/j.nuclphysb.2016.07.033
https://doi.org/10.1103/PhysRevD.96.014513
https://doi.org/10.1103/PhysRevD.96.014513
https://doi.org/10.1103/PhysRevLett.121.112001
https://doi.org/10.1103/PhysRevLett.121.112001
https://doi.org/10.1103/PhysRevD.98.091503
https://doi.org/10.1103/PhysRevD.98.091503
https://doi.org/10.1103/PhysRevD.96.054506
https://doi.org/10.1103/PhysRevD.96.054506
https://doi.org/10.1103/PhysRevD.95.094514
https://doi.org/10.1103/PhysRevD.95.094514
https://doi.org/10.1103/PhysRevD.97.014505
https://doi.org/10.1103/PhysRevD.97.014505
https://doi.org/10.1103/PhysRevD.98.054504
https://doi.org/10.1016/j.nuclphysb.2018.12.020
http://arXiv.org/abs/1803.04393
http://arXiv.org/abs/1804.01483
https://doi.org/10.1103/PhysRevLett.121.242003
https://doi.org/10.1103/PhysRevLett.121.242003
http://arXiv.org/abs/1807.06566
https://doi.org/10.1103/PhysRevLett.121.242001
http://arXiv.org/abs/1810.05043
http://arXiv.org/abs/1812.04334
https://doi.org/10.1155/2019/3036904
https://doi.org/10.1103/PhysRevD.90.014051
https://doi.org/10.1103/PhysRevD.90.014051
https://doi.org/10.1103/PhysRevD.98.074021
https://doi.org/10.1103/PhysRevD.98.074021
https://doi.org/10.1103/PhysRevD.96.014502
https://doi.org/10.1103/PhysRevD.96.014502
https://doi.org/10.1103/PhysRevLett.120.022003
https://doi.org/10.1103/PhysRevLett.120.022003
https://doi.org/10.1016/j.nuclphysb.2017.09.001
https://doi.org/10.1016/j.nuclphysb.2017.09.001
https://doi.org/10.1016/j.physletb.2018.11.047
https://doi.org/10.1007/JHEP11(2018)178
https://doi.org/10.1007/JHEP11(2018)178
https://doi.org/10.1103/PhysRevD.92.014039
https://doi.org/10.1103/PhysRevD.92.014039
https://doi.org/10.1103/PhysRevD.92.054037
https://doi.org/10.1103/PhysRevD.92.054037
https://doi.org/10.1140/epjc/s10052-018-5617-3
https://doi.org/10.1103/PhysRevD.97.054512
https://doi.org/10.1103/PhysRevD.97.054512
https://doi.org/10.1103/PhysRevD.98.056004
https://doi.org/10.1103/PhysRevD.98.056004
https://doi.org/10.1007/s11433-014-5492-3
https://doi.org/10.1103/PhysRevD.96.094019
https://doi.org/10.1103/PhysRevLett.120.112001
https://doi.org/10.1103/PhysRevLett.120.112001
https://doi.org/10.1103/PhysRevLett.122.142001
https://doi.org/10.1103/PhysRevLett.122.062002
https://doi.org/10.1103/PhysRevLett.72.1790
https://doi.org/10.1103/PhysRevLett.72.1790
https://doi.org/10.1103/PhysRevD.59.112001
https://doi.org/10.1103/PhysRevD.59.112001
https://doi.org/10.1103/PhysRevD.62.074501


[54] W. Detmold and C. J. D. Lin, Deep-inelastic scattering and
the operator product expansion in lattice QCD, Phys. Rev.
D 73, 014501 (2006).

[55] V. Braun and D. Mueller, Exclusive processes in position
space and the pion distribution amplitude, Eur. Phys. J. C
55, 349 (2008).

[56] A. J. Chambers, R. Horsley, Y. Nakamura, H. Perlt, P. E. L.
Rakow, G. Schierholz, A. Schiller, K. Somfleth, R. D.
Young, and J. M. Zanotti, Nucleon Structure Functions
from Operator Product Expansion on the Lattice, Phys.
Rev. Lett. 118, 242001 (2017).

[57] A. Radyushkin, Nonperturbative evolution of parton quasi-
distributions, Phys. Lett. B 767, 314 (2017).

[58] A. Radyushkin, Target mass effects in parton quasi-
distributions, Phys. Lett. B 770, 514 (2017).

[59] A. V. Radyushkin, Quasi-parton distribution functions,
momentum distributions, and pseudo-parton distribution
functions, Phys. Rev. D 96, 034025 (2017).

[60] A. V. Radyushkin, Quark pseudodistributions at short
distances, Phys. Lett. B 781, 433 (2018).

[61] J. Liang, K.-F. Liu, and Y.-B. Yang, Lattice calculation of
hadronic tensor of the nucleon, EPJ Web Conf. 175, 14014
(2018).

[62] W. Detmold, I. Kanamori, C. J. D. Lin, S. Mondal, and
Y. Zhao, Moments of pion distribution amplitude using
operator product expansion on the lattice, arXiv:
1810.12194.

[63] G. S. Bali et al., Pion distribution amplitude from
Euclidean correlation functions, Eur. Phys. J. C 78, 217
(2018).

[64] G. S. Bali, V. M. Braun, B. Gläßle, M. Göckeler, M.
Gruber, F. Hutzler, P. Korcyl, A. Schäfer, P. Wein, and
J.-H. Zhang, Pion distribution amplitude from Euclidean
correlation functions: Exploring universality and higher
twist effects, Phys. Rev. D 98, 094507 (2018).

[65] K.Orginos, A. Radyushkin, J. Karpie, and S. Zafeiropoulos,
Lattice QCD exploration of parton pseudo-distribution
functions, Phys. Rev. D 96, 094503 (2017).

[66] J. Karpie, K. Orginos, A. Radyushkin, and S. Zafeiropoulos,
Parton distribution functions on the lattice and in the
continuum, EPJ Web Conf. 175, 06032 (2018).

[67] A. Radyushkin, One-loop evolution of parton pseudo-
distribution functions on the lattice, Phys. Rev. D 98,
014019 (2018).

[68] R. S. Sufian, J. Karpie, C. Egerer, K. Orginos, J.-W. Qiu,
and D. G. Richards, Pion valence quark distribution from
matrix element calculated in lattice QCD, Phys. Rev. D 99,
074507 (2019).

[69] L. Gamberg, Z.-B. Kang, I. Vitev, and H. Xing, Quasi-
parton distribution functions: A study in the diquark
spectator model, Phys. Lett. B 743, 112 (2015).

[70] I. Vitev, L. Gamberg, Z. Kang, and H. Xing, A study
of quasi-parton distribution functions in the diquark
spectator model, Proc. Sci., QCDEV2015 (2015) 045
[arXiv:1511.05242].

[71] Y. Jia and X. Xiong, Quasidistribution amplitude of heavy
quarkonia, Phys. Rev. D 94, 094005 (2016).

[72] Y. Jia, S. Liang, X. Xiong, and R. Yu, Partonic quasidis-
tributions in two-dimensional QCD, Phys. Rev. D 98,
054011 (2018).

[73] A. Bacchetta, M. Radici, B. Pasquini, and X. Xiong,
Reconstructing parton densities at large fractional mo-
menta, Phys. Rev. D 95, 014036 (2017).

[74] W. Broniowski and E. Ruiz Arriola, Nonperturbative
partonic quasidistributions of the pion from chiral quark
models, Phys. Lett. B 773, 385 (2017).

[75] W. Broniowski and E. Ruiz Arriola, Partonic quasidistri-
butions of the proton and pion from transverse-momentum
distributions, Phys. Rev. D 97, 034031 (2018).

[76] S. Bhattacharya, C. Cocuzza, and A. Metz, Generalized
quasi parton distributions in a diquark spectator model,
Phys. Lett. B 788, 453 (2019).

[77] C. Monahan, Recent developments in x-dependent
structure calculations, Proc. Sci., LATTICE2018 (2018)
018 [arXiv:1811.00678].

[78] A. Abdel-Rehim et al. (ETM Collaboration), First physics
results at the physical pion mass from Nf ¼ 2 Wilson
twisted mass fermions at maximal twist, Phys. Rev. D 95,
094515 (2017).

[79] C. Alexandrou and C. Kallidonis, Low-lying baryon
masses using Nf ¼ 2 twisted mass clover-improved fer-
mions directly at the physical pion mass, Phys. Rev. D 96,
034511 (2017).

[80] M. T. Hansen and H. B. Meyer, On the effect of excited
states in lattice calculations of the nucleon axial charge,
Nucl. Phys. B923, 558 (2017).

[81] J. Green, Systematics in nucleon matrix element
calculations, Proc. Sci., LATTICE2018 (2018) 016 [arXiv:
1812.10574].

[82] Y. Iwasaki, Renormalization group analysis of lattice
theories and improved lattice action. II. Four-dimensional
non-Abelian SU(N) gauge model, arXiv:1111.7054.

[83] R. Frezzotti, P. A. Grassi, S. Sint, and P. Weisz (Alpha
Collaboration), Lattice QCD with a chirally twisted mass
term, J. High Energy Phys. 08 (2001) 058.

[84] R. Frezzotti and G. C. Rossi, Chirally improving Wilson
fermions. 1. O(a) improvement, J. High Energy Phys. 08
(2004) 007.

[85] B. Sheikholeslami and R. Wohlert, Improved continuum
limit lattice action for QCD with Wilson fermions, Nucl.
Phys. B259, 572 (1985).

[86] S. Aoki et al. (JLQCD, CP-PACS Collaboration), Non-
perturbative O(a) improvement of the Wilson quark action
with the RG-improved gauge action using the Schrodinger
functional method, Phys. Rev. D 73, 034501 (2006).

[87] K. Jansen, C. McNeile, C. Michael, K. Nagai, M.
Papinutto, J. Pickavance, A. Shindler, C. Urbach, and I.
Wetzorke (XLF Collaboration), Flavor breaking effects of
Wilson twisted mass fermions, Phys. Lett. B 624, 334
(2005).

[88] F. Farchioni, R. Frezzotti, K. Jansen, I. Montvay, G. C.
Rossi, E. Scholz, A. Shindler, N. Ukita, C. Urbach, and I.
Wetzorke, Twisted mass quarks and the phase structure of
lattice QCD, Eur. Phys. J. C 39, 421 (2005).

[89] F. Farchioni et al., Numerical simulations with two flavors
of twisted-mass Wilson quarks and DBW2 gauge action,
Eur. Phys. J. C 47, 453 (2006).

[90] S. Gusken, A Study of smearing techniques for hadron
correlation functions, Nucl. Phys. B, Proc. Suppl. 17, 361
(1990).

CONSTANTIA ALEXANDROU et al. PHYS. REV. D 99, 114504 (2019)

114504-42

https://doi.org/10.1103/PhysRevD.73.014501
https://doi.org/10.1103/PhysRevD.73.014501
https://doi.org/10.1140/epjc/s10052-008-0608-4
https://doi.org/10.1140/epjc/s10052-008-0608-4
https://doi.org/10.1103/PhysRevLett.118.242001
https://doi.org/10.1103/PhysRevLett.118.242001
https://doi.org/10.1016/j.physletb.2017.02.019
https://doi.org/10.1016/j.physletb.2017.05.024
https://doi.org/10.1103/PhysRevD.96.034025
https://doi.org/10.1016/j.physletb.2018.04.023
https://doi.org/10.1051/epjconf/201817514014
https://doi.org/10.1051/epjconf/201817514014
http://arXiv.org/abs/1810.12194
http://arXiv.org/abs/1810.12194
https://doi.org/10.1140/epjc/s10052-018-5700-9
https://doi.org/10.1140/epjc/s10052-018-5700-9
https://doi.org/10.1103/PhysRevD.98.094507
https://doi.org/10.1103/PhysRevD.96.094503
https://doi.org/10.1051/epjconf/201817506032
https://doi.org/10.1103/PhysRevD.98.014019
https://doi.org/10.1103/PhysRevD.98.014019
https://doi.org/10.1103/PhysRevD.99.074507
https://doi.org/10.1103/PhysRevD.99.074507
https://doi.org/10.1016/j.physletb.2015.02.021
http://arXiv.org/abs/1511.05242
https://doi.org/10.1103/PhysRevD.94.094005
https://doi.org/10.1103/PhysRevD.98.054011
https://doi.org/10.1103/PhysRevD.98.054011
https://doi.org/10.1103/PhysRevD.95.014036
https://doi.org/10.1016/j.physletb.2017.08.055
https://doi.org/10.1103/PhysRevD.97.034031
https://doi.org/10.1016/j.physletb.2018.09.061
http://arXiv.org/abs/1811.00678
https://doi.org/10.1103/PhysRevD.95.094515
https://doi.org/10.1103/PhysRevD.95.094515
https://doi.org/10.1103/PhysRevD.96.034511
https://doi.org/10.1103/PhysRevD.96.034511
https://doi.org/10.1016/j.nuclphysb.2017.08.017
http://arXiv.org/abs/1812.10574
http://arXiv.org/abs/1812.10574
http://arXiv.org/abs/1111.7054
https://doi.org/10.1088/1126-6708/2001/08/058
https://doi.org/10.1088/1126-6708/2004/08/007
https://doi.org/10.1088/1126-6708/2004/08/007
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1103/PhysRevD.73.034501
https://doi.org/10.1016/j.physletb.2005.08.029
https://doi.org/10.1016/j.physletb.2005.08.029
https://doi.org/10.1140/epjc/s2004-02078-9
https://doi.org/10.1140/epjc/s2006-02549-y
https://doi.org/10.1016/0920-5632(90)90273-W
https://doi.org/10.1016/0920-5632(90)90273-W


[91] C. Alexandrou, S. Gusken, F. Jegerlehner, K. Schilling,
and R. Sommer, The static approximation of heavy—light
quark systems: A systematic lattice study, Nucl. Phys.
B414, 815 (1994).

[92] A. Abdel-Rehim et al., Nucleon and pion structure with
lattice QCD simulations at physical value of the pion mass,
Phys. Rev. D 92, 114513 (2015).

[93] G. S. Bali, B. Lang, B. U. Musch, and A. Schäfer, Novel
quark smearing for hadrons with high momenta in lattice
QCD, Phys. Rev. D 93, 094515 (2016).

[94] G. Martinelli and C. T. Sachrajda, A lattice study of
nucleon structure, Nucl. Phys. B316, 355 (1989).

[95] C. Alexandrou, S. Dinter, V. Drach, K. Jansen, K.
Hadjiyiannakou, and D. B. Renner (ETM Collaboration),
A stochastic method for computing hadronic matrix
elements, Eur. Phys. J. C 74, 2692 (2014).

[96] T. Blum, T. Izubuchi, and E. Shintani, New class of
variance-reduction techniques using lattice symmetries,
Phys. Rev. D 88, 094503 (2013).

[97] C. Alexandrou, S. Bacchio, J. Finkenrath, A. Frommer, K.
Kahl, and M. Rottmann, Adaptive aggregation-based
domain decomposition multigrid for twisted mass fer-
mions, Phys. Rev. D 94, 114509 (2016).

[98] C. Morningstar and M. J. Peardon, Analytic smearing of
SU(3) link variables in lattice QCD, Phys. Rev. D 69,
054501 (2004).

[99] V. S. Dotsenko and S. N. Vergeles, Renormalizability of
phase factors in the nonabelian gauge theory, Nucl. Phys.
B169, 527 (1980).

[100] R. A. Brandt, F. Neri, and M.-a. Sato, Renormalization of
loop functions for all loops, Phys. Rev. D 24, 879 (1981).

[101] C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyian-
nakou, K. Jansen, H. Panagopoulos, and F. Steffens, A
complete non-perturbative renormalization prescription for
quasi-PDFs, Nucl. Phys. B923, 394 (2017).

[102] C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyian-
nakou, K. Jansen, A. Scapellato, and F. Steffens, Light-
cone PDFs from lattice QCD, Proc. Sci., LATTICE2018
(2018) 094 [arXiv:1811.01588].

[103] L. Maiani, G. Martinelli, M. L. Paciello, and B. Taglienti,
Scalar densities andBaryonmass differences in lattice QCD
with Wilson fermions, Nucl. Phys. B293, 420 (1987).

[104] C. Alexandrou, M. Constantinou, and H. Panagopoulos
(ETM Collaboration), Renormalization functions for
Nf ¼ 2 and Nf ¼ 4 twisted mass fermions, Phys. Rev.
D 95, 034505 (2017).

[105] G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa, and A.
Vladikas, A general method for nonperturbative renorm-
alization of lattice operators, Nucl. Phys. B445, 81 (1995).

[106] J. Green, K. Jansen, and F. Steffens, Nonperturbative
Renormalization of Nonlocal Quark Bilinears for Parton
Quasidistribution Functions on the Lattice Using an
Auxiliary Field, Phys. Rev. Lett. 121, 022004 (2018).

[107] M. Constantinou et al. (ETM Collaboration), Non-
perturbative renormalization of quark bilinear operators
with Nf ¼ 2 (tmQCD) Wilson fermions and the tree-level
improved gauge action, J. HighEnergy Phys. 08 (2010) 068.

[108] M. Göckeler, R. Horsley, H. Oelrich, H. Perlt, D.
Petters, P. E. L. Rakow, A. Schäfer, G. Schierholz,
and A. Schiller, Nonperturbative renormalization of
composite operators in lattice QCD, Nucl. Phys. B544,
699 (1999).

[109] A. Ali Khan et al. (CP-PACS Collaboration), Light hadron
spectroscopy with two flavors of dynamical quarks on the
lattice, Phys. Rev. D 65, 054505 (2002); Eratum, Phys.
Rev. D 67, 059901(E) (2003).

[110] R. A. Briceño, J. V. Guerrero, M. T. Hansen, and C. J.
Monahan, Finite-volume effects due to spatially nonlocal
operators, Phys. Rev. D 98, 014511 (2018).

[111] M. Constantinou and H. Panagopoulos, Improvement of
the renormalization functions of non-local operators with
straight Wilson lines (in preparation).

[112] J. Karpie, K. Orginos, A. Rothkopf, and S. Zafeiropoulos,
Reconstructing parton distribution functions from Ioffe
time data: from Bayesian methods to Neural Networks,
J. High Energy Phys. 04 (2019) 057.

[113] V. M. Braun, A. Vladimirov, and J.-H. Zhang, Power
corrections and renormalons in parton quasi-distributions,
Phys. Rev. D 99, 014013 (2019).

[114] A. Accardi, L. T. Brady, W. Melnitchouk, J. F. Owens, and
N. Sato, Constraints on large-x parton distributions from
new weak boson production and deep-inelastic scattering
data, Phys. Rev. D 93, 114017 (2016).

[115] S. Alekhin, J. Blümlein, S. Moch, and R. Placakyte, Parton
distribution functions, αs, and heavy-quark masses for
LHC Run II, Phys. Rev. D 96, 014011 (2017).

[116] R. D. Ball et al. (NNPDF Collaboration), Parton distribu-
tions from high-precision collider data, Eur. Phys. J. C 77,
663 (2017).

[117] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang,
Extraction of spin-dependent parton densities and their
uncertainties, Phys. Rev. D 80, 034030 (2009).

[118] E. R. Nocera, R. D. Ball, S. Forte, G. Ridolfi, and J. Rojo
(NNPDF Collaboration), A first unbiased global determi-
nation of polarized PDFs and their uncertainties, Nucl.
Phys. B887, 276 (2014).

[119] J. J. Ethier, N. Sato, and W. Melnitchouk, First Simulta-
neous Extraction of Spin-Dependent Parton Distributions
and Fragmentation Functions from a Global QCD Analy-
sis, Phys. Rev. Lett. 119, 132001 (2017).

[120] H.-W. Lin, W. Melnitchouk, A. Prokudin, N. Sato, and
H. Shows, First Monte Carlo Global Analysis of Nucleon
Transversity with Lattice QCD Constraints, Phys. Rev.
Lett. 120, 152502 (2018).

[121] M. Constantinou, R. Horsley, H. Panagopoulos, H. Perlt,
P. E. L. Rakow, G. Schierholz, A. Schiller, and J. M.
Zanotti, Renormalization of local quark-bilinear operators
for Nf ¼ 3 flavors of stout link nonperturbative clover
fermions, Phys. Rev. D 91, 014502 (2015).

[122] C. Alexandrou, K. Cichy, M. Constantinou, K.
Hadjiyiannakou, K. Jansen, A. Scapellato, and F.
Steffens, Quasi-PDFs from Twisted mass fermions at
the physical point, Proc. Sci., LATTICE2018 (2018) 095
[arXiv:1811.01589].

SYSTEMATIC UNCERTAINTIES IN PARTON DISTRIBUTION … PHYS. REV. D 99, 114504 (2019)

114504-43

https://doi.org/10.1016/0550-3213(94)90262-3
https://doi.org/10.1016/0550-3213(94)90262-3
https://doi.org/10.1103/PhysRevD.92.114513
https://doi.org/10.1103/PhysRevD.93.094515
https://doi.org/10.1016/0550-3213(89)90035-7
https://doi.org/10.1140/epjc/s10052-013-2692-3
https://doi.org/10.1103/PhysRevD.88.094503
https://doi.org/10.1103/PhysRevD.94.114509
https://doi.org/10.1103/PhysRevD.69.054501
https://doi.org/10.1103/PhysRevD.69.054501
https://doi.org/10.1016/0550-3213(80)90103-0
https://doi.org/10.1016/0550-3213(80)90103-0
https://doi.org/10.1103/PhysRevD.24.879
https://doi.org/10.1016/j.nuclphysb.2017.08.012
http://arXiv.org/abs/1811.01588
https://doi.org/10.1016/0550-3213(87)90078-2
https://doi.org/10.1103/PhysRevD.95.034505
https://doi.org/10.1103/PhysRevD.95.034505
https://doi.org/10.1016/0550-3213(95)00126-D
https://doi.org/10.1103/PhysRevLett.121.022004
https://doi.org/10.1007/JHEP08(2010)068
https://doi.org/10.1016/S0550-3213(99)00036-X
https://doi.org/10.1016/S0550-3213(99)00036-X
https://doi.org/10.1103/PhysRevD.65.054505
https://doi.org/10.1103/PhysRevD.67.059901
https://doi.org/10.1103/PhysRevD.67.059901
https://doi.org/10.1103/PhysRevD.98.014511
https://doi.org/10.1007/JHEP04(2019)057
https://doi.org/10.1103/PhysRevD.99.014013
https://doi.org/10.1103/PhysRevD.93.114017
https://doi.org/10.1103/PhysRevD.96.014011
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1103/PhysRevD.80.034030
https://doi.org/10.1016/j.nuclphysb.2014.08.008
https://doi.org/10.1016/j.nuclphysb.2014.08.008
https://doi.org/10.1103/PhysRevLett.119.132001
https://doi.org/10.1103/PhysRevLett.120.152502
https://doi.org/10.1103/PhysRevLett.120.152502
https://doi.org/10.1103/PhysRevD.91.014502
http://arXiv.org/abs/1811.01589

