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The question of whether confining effects are visible in correlation functions is a long-standing one.
Complementing investigations on the propagators of fundamental and adjoint scalar matter particles here
the quenched scalar-gluon vertex is investigated. For this purpose a multitude of lattice setups in two, three,
and four dimensions are analyzed in quenched SU(2) lattice gauge theory. Though both cases are
quantitatively different, neither a qualitative difference nor any singularities are observed.
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I. INTRODUCTION

It is a long-standing question whether any effects of
confinement manifest themselves in correlation functions
involving a finite number of fields. In particular, whether
the differences between fundamental matter, associated
with the Wilson confinement criterion, and adjoint matter,
which is always affected by string breaking, should be
visible [1]. At various times, this has been associated with
anything from nontrivial analytic structures to various types
of singularities, both of propagators and vertices; see [2–9]
for reviews.
Particularly interesting in this respect are quenched

SUðNÞ gauge theories, where fundamental and adjoint
matter manifestly differ. To disentangle confining effects
from those of chiral symmetry it is furthermore useful to
switch to scalar matter, as it is not expected that this will
change this question.
At the level of the propagators, this has been studied in

[10–18]. No qualitative distinction between the fundamen-
tal and the adjoint case has been found, though quantita-
tively both differ substantially. However, in both cases
dynamical mass, or at least scale, generation was observed,
which is often associated with a gaping of the degrees of
freedom. Finally, both cases showed substantial indications
for violations of positivity, which at least guarantees their
absence as physical degrees of freedom. Unfortunately, also
no indication of singularities or other obvious qualitatively
remarkable features was observed, which could be asso-
ciated to a confining force, however it is defined.
On the other hand, it has been argued that confinement

may be an interaction effect, e.g., due to singularities in the

vertex interaction, and not manifest in the propagators
themselves [10,19–22]. This motivates the present study,
where the quenched scalar-gluon vertex for SU(2) is
studied in two, three, and four dimensions. The advantage,
in comparison to the quark-gluon vertex [9,20,21,23–25], is
that there is only a single form factor involved, and again
chiral symmetry is not an issue. Studying lower dimen-
sions, besides allowing one to reach much deeper into the
infrared, allows one to compare to cases were geometric
Wilson confinement already in QED arises, and where no
dynamics occur in the gauge sector. This allows one to
systematically switch on and off various contributions.
The technical setup of the employed lattice calculations

is discussed in Sec. II and Appendix A. It follows closely
[17,18,26], utilizing that the scalar-gluon vertex is quite
similar to the comparatively well-studied ghost-gluon
vertex [26–32]. Renormalization is discussed in Sec. III.
In this context also the discretization artifacts need to be
discussed in more detail, as they are, quite similarly to the
propagator case [17,18], much stronger for the adjoint case
than for the fundamental case.
The results are finally presented in Sec. IV. Unfor-

tunately, as is emphasized in the concluding Sec. V, no
qualitative distinction is found for the fundamental and the
adjoint case. Though quantitatively both cases are quite
distinct, with the larger modifications compared to the tree-
level case for the adjoint scalar. This is just as for the
propagators [17,18]. Also, no singular behavior is found for
any of the momentum configurations studied here.
Some preliminary results were available in [33], and are

superseded by the present work.

II. TECHNICAL SETUP

The calculations follow closely the one for the ghost-
gluon vertex in [26], as both vertices are very similar in a
technical respect. The quenched gauge-fixed configurations
are obtained as described in [26], i.e., using the Wilson
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gauge action and creating decorrelated configurations using
a mix of heat bath and over-relaxation sweeps. A full list of
the lattice settings and number of configurations can be
found in Table I in Appendix A.
The decorrelated configurations are then gauge fixed to

minimal Landau gauge using an adaptive stochastic over-
relaxation method [26]. Minimal Landau gauge corre-
sponds to an average with flat weight over all Gribov
copies in the first Gribov region, i.e., those Gribov copies
with positive semidefinite Faddeev-Popov operator [3]. The
employed algorithms appear to implement this prescription
faithfully, as far as has been investigated [34]. However, at
least the fundamental scalar propagator in the unquenched
theory shows essentially no dependence on how Gribov
copies are treated, in contrast to the gauge propagators [35].
In addition, the only vertex which has been investigated
with respect to the influence of Gribov copies, the ghost-
gluon vertex [31], did not show a stronger dependence than
the corresponding propagators. It thus seems to be plausible
that the treatment of Gribov copies has only a minor, or
even negligible, impact on the results presented here.
The scalar-gluon vertex has, just like the ghost-gluon

vertex, only a single transverse form factor for SU(2). Any
longitudinal form factor is inaccessible on the lattice,
because only nonamputated correlation functions can be
determined. Following [15,26,29], the corresponding form
factor is extracted by

Gu ¼
Γtl
μaijhAa

μΔ−1
ij i

Γtl
μbklD

bc
μνDkmDlnΓtl

νcmn
; ð1Þ

where Γtl is the lattice tree-level vertex [15],1

Γtl
μaijðk; p; qÞ ¼

iga
6

τaij sin

�
π

N
ðP −QÞμ

�

× cos

�
π

N
ðPþQÞμ

�
;

where P and Q are the integer-valued lattice momenta and
N is the extension of the lattice. The gluon propagator Dμν

and corresponding respective scalar fundamental and
adjoint propagators D appear to amputate the correlation
function to end up with the final unrenormalized vertex
form factor Gu.
The appearing inverse covariant LaplacianΔ in (1) arises

from integrating out the scalar field in the quenched case.
Just as in [17,18], the simplest lattice discretizations [36]
ΔL of the fundamental

−Δ2
L ¼ −

X
μ

ðUμðxÞδyðxþeμÞ þ U†
μðx − μÞδyðx−eμÞ − 2δxyÞ

þm2
0δxy; ð2Þ

and adjoint

−Δ2
L ¼ −

X
μ

ðUa
μðxÞδyðxþeμÞ þ Ua†

μ ðx − μÞδyðx−eμÞ − 2δxyÞ

þm2
0δxy

Ua
μbc ¼

1

2
trðτbU†

μτcUμÞ; ð3Þ

Laplacians are used. Their inversion is performed, as
for the propagators [17,18,35], using a conjugate gradient
algorithm with explicit exclusion of the zero momen-
tum case.
At any rate, both zero and maximal lattice momenta yield

a vanishing denominator in (1), and are thus inaccessible in
the present calculation. The parameterm0 provides the tree-
level mass of the scalars in lattice units. Here, the cases
m ¼ m0=a ¼ 0, 0.1, 1, and 10 GeV are investigated.
The form factor is a function of three momenta,

Guðp2; q2; k2Þ, where p2 is the gluon momentum, q2 is
the first scalar momentum, and k2 the second one. For the
fundamental case it is the one of the antiscalar. Following
the setup for other vertices from [26], three different
momentum configurations are investigated: The soft gluon
or back-to-back case p2 ¼ 0 with q2 ¼ k2, the equal or
symmetric case p2 ¼ q2 ¼ k2, and the orthogonal case
p2 ¼ q2 and pq ¼ 0 implying k2 ¼ ðpþ qÞ2 ¼ p2 þ q2.
These are implemented for the integer lattice momenta,
which implies that for the symmetric case the three
momenta cannot be arranged within two dimensions,
and therefore this configuration is impossible in two
dimensions. All results are given in terms of the physical
momenta rather than lattice momenta.
Note that an inversion is necessary for every scalar

momentum, and thus for these momentum configurations
in total 2N for each field configuration. The computation
time for the inversions scales at least like N5, and thus the
total computation time at least like 2N6. In addition, quite
precise data are needed to see the systematic trends, and
thus a substantial amount of statistics. This gives as a lower
bound to the computation time of 2 × 103N6 in units of the
time necessary for the smallest possible lattice, substan-
tially limiting the accessible lattice volumes.

III. RENORMALIZATION

Just like the other three-point vertices in Landau gauge
the scalar-gluon vertex does renormalize trivially, though a
finite renormalization is possible. It is important to note that
this statement applies to the form factor. Thus, even though
the scalar propagator renormalizes nontrivially in (1) the

1Note that in the dynamical calculations of [15], care had to be
taken because of the unbroken custodial symmetry, which would
yield a vanishing naive vertex. In the present quenched case this is
not necessary.
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unrenormalized scalar propagators need to be used to
remove the external propagators from the full correlation
function. Thus, at most a multiplicative renormalization of
Gu is necessary, at least perturbatively. Just like for the
propagators [17,18], it is found that the perturbative
renormalization is sufficient also nonperturbatively. In
addition, lattice spacing effects, vanishing for a → 0, can

affect the form factor. If these are momentum independent,
they can also be counteracted by renormalization.
Thus, a multiplicative renormalization condition is

applied to the form factor

Gðμ2; μ2; 4μ2Þ ¼ ZGGuðμ2; μ2; 2μ2Þ ¼ 1; ð4Þ
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FIG. 1. The discretization dependence of the vertex in the back-to-back configuration at fixed volume (left panels) and ZG (right
panels) for m ¼ 0.1 GeV in two (top panels), three (middle panels), and four (bottom panels) dimension.
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with μ ¼ 1.5 GeV, ZG being the corresponding renormal-
ization constant, and G the renormalized form factor. This
choice allows the same condition in two, three, and four
dimensions, and for all lattice spacings equally. Using the
more conventional symmetric configuration would have
required a different treatment in two dimensions. Using
alternatively the back-to-back momentum configuration
was not done because of possible infrared singularities
[10], though none were ultimately encountered. The
relatively low value of μ was chosen to have even on
the coarsest lattice still the same renormalization point and
being not too close to the largest momenta. The actual value
of ZG was obtained by linear interpolation between the two
momenta closest to μ, and the error in its determination
propagated to the renormalized form factor.
In the fundamental case, the value of ZG is always

within about 2σ statistical error, independent of the lattice
spacing, and within a few percent of ZG ¼ 1. Though some
systematic trend seems to be present, this would require

probably 1 to 2 orders of magnitude more configurations to
clarify by obtaining ZG at the per mille level. For the
present purpose, ZG can thus be assumed to be essentially
independent of the lattice spacing, though the results shown
in Sec. V are still enormalized according to (4).
The situation is different in the adjoint case. This is

because the vertex is more strongly affected by momentum-
dependent discretization artifacts than in the fundamental
case, just as for the propagator [18]. These discretization
artifacts mix in with the renormalization. This behavior is
exemplified in Fig. 1, where the vertex is shown for
different discretizations at fixed volume alongside ZG for
m ¼ 0.1 GeV. In two and three dimensions it is seen how
in the ultraviolet the results start to agree above roughly
a−1 ¼ 1.75 GeV. The differences in the infrared stay even
above this discretization in three dimensions, and even at
a−1 ¼ 2.4 GeV no convergence is visible. The situation is
even worse in four dimensions, where even for a−1 >
2.7 GeV no convergence is seen in the ultraviolet. Instead,
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FIG. 2. The fundamental-scalar gluon vertex in two dimensions. Top panels show m ¼ 0 GeV and bottom panels m ¼ 1 GeV. The
right panels show the results of the largest volume for all orthogonal momentum configurations, while the left panels show the back-to-
back configuration.
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there appears now to be convergence in the infrared. Still,
the effect should not be overstated, as it does affect the
results substantially, but rather at the ten percent level.
Nonetheless, this gives reason enough to study the adjoint
vertex below at fixed discretizations, and not just compare
different volumes at the finest available discretizations, as is
possible in the fundamental case.

IV. RESULTS

One result, which is almost independent of dimension-
ality and representation, is that the vertex for a tree-level
mass of m ¼ 10 GeV is compatible within errors with 1;
i.e., it remains tree-level-like within errors. The only
exception is the four-dimensional adjoint case. There, a
slight modification of a few percent is visible, barely above
the statistical precision. This behavior is a strongly attenu-
ated version of what is seen in the 1 GeV case, a slight

increase at large momenta. Furthermore, the results for the
vertices for tree-level masses m ¼ 0 GeV and m ¼
0.1 GeV are, within statistical errors, identical. Thus, in
the following only results for tree-level massesm ¼ 0 GeV
and m ¼ 1 GeV are shown explicitly.

A. Fundamental case

The results for the fundamental scalar-gluon vertex are
shown in Figs. 2–6. All of them show a qualitatively very
similar behavior, interpolating between two (slightly)
different values at low momentum and high momentum.
The transition between both values occurs in the range
between a few hundred MeVand 2 GeV. This also occurs at
zero gluon momentum, indicating that the scalar momen-
tum is the relevant quantity.
The ratio of the ultraviolet to the infrared constant

depends on the mass, and is larger the smaller the mass.
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FIG. 3. The fundamental-scalar gluon vertex in three dimensions form ¼ 0 GeV. The bottom-right panel shows the full dependence in
the orthogonal configuration for the largest volume. The top-right panel shows the back-to-back configuration and the top-left panel the
orthogonal equal configuration for all volumes at the finest discretization. The lower-left panel shows the symmetric momentum
configuration.
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However, with increasing dimensionality the ratio becomes
less and less dependent on the mass, until in four dimen-
sions the results at m ¼ 0 GeV and m ¼ 1 GeV cannot be
distinguished by the naked eye, and are, in fact, smaller
than the statistical error.
The at first slight different behavior between zero gluon

momentum and nonzero gluon momentum, especially the
apparent correlation of the form factor at zero gluon
momentum, has a simple2 explanation. The scalar field
is quenched, and the inversion of the Laplacian occurs for
all momenta on the same field configurations. At zero
gluon momentum this leads to highly correlated results at a
different momentum, because there always the same
Fourier mode of the gluon field enters, and thus only the

ordinary Laplacian in (2) changes from momentum to
momentum. This is not the case for any other momentum
configuration, as there always different Fourier modes of
the gluon fields enter, leading to less correlated results. As a
consequence, this leads to the apparent shifts in the back-to-
back configuration. Because the fluctuations are correlated,
any fluctuation above or below the renormalized value is
the same for all momenta. Thus, the nonzero gluon
momentum cases give a much better idea of the actual
scattering of the data around the true form factor, especially
as the renormalization is performed according to (4). If the
renormalization would have been performed at zero gluon
momentum, no correlated shifts would be present. Note
that this also applies to the adjoint case in Sec. V B.
These results are consistent with the dynamical case,

where in the QCD-like case an essentially constant gluon-
scalar form factor is found [15]. However, the statistical
errors in [15] were too large to detect the slight drop when
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FIG. 4. The fundamental-scalar gluon vertex in three dimensions form ¼ 1 GeV. The bottom-right panel shows the full dependence in
the orthogonal configuration for the largest volume. The top-right panel shows the back-to-back configuration and the top-left panel the
orthogonal equal configuration for all volumes at the finest discretization. The lower-left panel shows the symmetric momentum
configuration.

2Of course, there may be other effects relevant as well. Without
having all momentum configurations available, this cannot be
excluded.

AXEL MAAS PHYS. REV. D 99, 114503 (2019)

114503-6



going from the ultraviolet to the infrared. Still, this
indicates that unquenching effects are likely small for this
vertex. Note that also in the Brout-Englert-Higgs region of
this theory the scalar-gluon vertex is not substantially
modified to the present quenched case [15].
Thus, in total the fundamental scalar-gluon vertex does

not show any significant deviation from the tree-level
behavior. In fact, it is even less affected than the ghost-
gluon vertex, which showed hitherto the smallest deviations
from tree level [26–31].

B. Adjoint case

As noted already in Sec. III, the adjoint vertex is, as the
adjoint propagator [18], much stronger affected by discre-
tization artifacts. To better assess them, the vertex is shown
at various fixed discretizations for two, three, and four
dimensions in Figs. 7–9, respectively. For this purpose, the
situation at m ¼ 0 is considered exclusively, as its largest

deviation from tree-level enhances all effects most.
Likewise, the angular dependence of the discretization
artifacts is small, and thus it is sufficient to look at two
particular momentum settings.
The results in two dimensions in Fig. 7 show very little

volume dependence at fixed discretization. Generically,
there is a transition between two constant regimes between
about 300 MeV to about 3 GeV. This is a relatively slow
transition. The appearance of the high-momentum constant
behavior is only clearly visible when correspondingly large
momenta above 3 GeV can be reached. The drop towards
the infrared depends on the discretization, getting slightly
smaller on finer lattices, but amounts to at most about 40%.
Thus, by and large, the scalar-gluon vertex is only weakly
deviating from tree level, but still substantially more so than
the fundamental one.
The situation in three dimensions, shown in Fig. 8, is

quite similar. There is no pronounced volume dependence
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FIG. 5. The fundamental-scalar gluon vertex in four dimensions form ¼ 0 GeV. The bottom-right panel shows the full dependence in
the orthogonal configuration for the largest volume. The top-right panel shows the back-to-back configuration and the top-left panel the
orthogonal equal configuration for all volumes at the finest discretization. The lower-left panel shows the symmetric momentum
configuration.
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at fixed discretization. However, because only a smaller
separation of scales can be achieved in the more expensive
three-dimensional setting the reaching of the ultraviolet
plateau becomes only visible at the finest discretization in
the symmetric momentum regime. The drop between both
plateaus is slightly larger than in two dimensions, about
50%, and the ultraviolet plateau seems to form only
around 4 GeV, but with the infrared one already at
400 MeV.
The picture repeats itself in four dimensions, shown in

Fig. 9, without a strong volume dependence at fixed
discretization. The ultraviolet plateau is once more reached
later, now at about 5 GeV, and the infrared at about
500 MeV. However, because again the maximal scale
separation is smaller, this now only indicates itself. The
drop itself is of the same order as in three dimensions.
In total, volume effects therefore tend to increase the

infrared value slightly, while discretization leads to a

flattening at large momenta. The transition region between
the asymptotic regimes is about 1 order of magnitude in
momentum. The transition starts at the same typical scale
already observed for the properties of the propagators, a
few hundred MeV [17,18]. Note that the actual infrared
value itself is not significant. By altering the renormaliza-
tion prescription it would have been possible to fix the
infrared value for all lattice setups to the same value, e.g., 1.
Then all effects would have become ultraviolet effects in
the form of a flattening towards an asymptotic value from
above at finer and finer discretization, with virtually no
volume dependence.
Keeping this in mind, Figs. 10–12 show the adjoint form

factor for all momentum configurations at the finest
discretizations for all volumes, but now for m ¼ 1 GeV
to study also the mass dependence.
The two-dimensional case in Fig. 10 shows the general

behavior quite nicely. The form factor gets squeezed
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with decreasing lattice spacing, keeping its value at the
largest momenta, more or less, and increases the infrared
plateau. Studying the full momentum dependence shows
that the transition is driven essentially by the scalar
momentum, while the result is relatively independent of
the gluon momentum. In comparison to the zero mass case
in Fig. 7 the drop gets smaller, which is mainly pushed
into the infrared as a consequence of the renormalization
condition. As noted above, this continues for increasing
mass, until for the 10 GeV case the form factor is
essentially flat. Thus, the mass dependence is merely that
the lighter the mass the larger the drop, though the drop
remains limited. There is no visible sign of any singular
behavior, neither at the actual momenta measured nor as
tendency towards the thermodynamic limit.
The situation is quite similar in three dimensions, shown

in Fig. 11. Interestingly, the lattice artifacts are stronger for
the orthogonal configuration than for the symmetric

configuration, even at finite gluon momentum. Still, the
qualitative behavior is as in two dimensions. At sufficiently
fine discretization there is again a drop, which is slightly
smaller than in the zero-mass case. Also, the scalar
momentum seems to be the driver of this behavior, as it
appears in the orthogonal configuration quite independ-
ently of the gluon momentum.
Unsurprisingly, the same pattern emerges in four dimen-

sions as in lower dimensions, as shown in Fig. 12, just with
slightly different scales.

V. CONCLUSIONS

The presented investigation of the vertices shows, as for
the propagators [17,18], unfortunately no obvious sign of
how confinement in the Wilson sense acts differently on the
fundamental and adjoint charges. In fact, the form factors
do not show any substantial deviations from the tree level at
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all, similarly to the ghost-gluon vertex [9,26–32], but very
different from the three-gluon vertex [9,24,27,28,37,38].
Especially, no singularities are observed. However,

singularities are mainly expected within a so-called scaling
behavior of the propagators [10,19–22], while a finite
behavior is associated with a screening (or decoupling)
behavior [10]. The propagator in the presently used gauge
is of the latter type [3], and for this infrared finite vertices
are expected [10]. Thus, one could interpret this as a
consistent behavior. However, in two dimensions a scaling
behavior prevails [3], and still no singularities are observed.
Such a combination has also been speculated about [10],
and thus seems to be also realizable.
The results are also substantially different from those of

the quark-gluon vertex, where stronger deviations from the
tree-level case are seen [9,20,21,23–25,39]. If one assumes
that confinement for scalars and fermions works in the
same way, it should manifest itself in the same way in their
vertices. Any differences in the vertices should then be due
to differences between fermions and scalars, which is
mainly chiral symmetry. This suggests the speculation that
the deviations of the quark-gluon vertex from tree level are
more related to chiral symmetry breaking than confine-
ment, though this is not a necessary consequence.
Taking a different perspective on this result, the agree-

ment between two and higher dimensions could also be
interpreted differently. After all, confinement in two
dimensions cannot be due to dynamics, as the gauge sector
is nondynamical. Any results in the quenched theory are
therefore necessarily due to the gauge structure only.
Especially, confinement cannot arise due to a dynamical
effect, but must be structural in origin. As the interactions
with the scalars in two and higher dimensions are the same,
this suggests that to be also true in higher dimensions,
provided the vertices even without singularities encode how
confinement operates. Such a structural origin of confine-
ment would concur with equating confinement entirely
with gauge invariance when taking the Gribov-Singer
ambiguity fully into account [40,41].
Considering the form factor as an entity independent of

this question, it shows, however, a behavior quite different
from what one would expect for a physical particle [42].
First, for a physical, charged particle it is expected that,
when probed by a current coupling to this charge, it has an
increasing form factor, not a decreasing one as the one seen
here. This is also a characteristic feature shown by many
other gauge-dependent particles [3,43], especially gluons.
Another feature is that the derivative of the form factor at
zero momentum can be interpreted as a radius [42]. For the
scalar-gluon vertex here the intercept is essentially con-
stant. This would make the scalars indeed pointlike, a
feature which is also observed in the unquenched case [15].
This is very different from gluons, which seem to have a
dramatically large (imaginary) radius [3,9,24,27,28,37,38],
but very similar to ghosts [3,9,26–32].

Thus, the picture which emerges is that scalar particles
are essentially pointlike objects embedded into a back-
ground of extended gluons. Since their propagators show
a mass scale, in contrast to the ghosts [3], they also are
not mediating any long-range correlations. Hence, scalar
matter behaves truly as essentially inert objects, with
properties driven by the gauge dynamics.
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APPENDIX: LATTICE SETUPS

The various lattice setups are listed in Table I. The
determination of the lattice spacings has been performed as
in [45].

TABLE I. Number and parameters of the configurations used,
ordered by dimension, lattice spacing, and physical volume. In all
cases 2ð10N þ 100ðd − 1ÞÞ thermalization sweeps and 2ðN þ
10ðd − 1ÞÞ decorrelation sweeps of mixed updates [26] have been
performed, and autocorrelation times of local observables have
been monitored to be at or below one sweep. The number of
configurations were selected such as to have a reasonable small
statistical error for the renormalization constants determined in
Sec. III. The value m0 denotes the value of the mass parameter in
(2)–(3) to yield a tree-level mass of 1 GeV. The other tree-level
masses are obtained by multiplying or dividing this number by
10, or setting it to 0 for tree-level mass 0.

d N β a [fm] a−1 [GeV] L [fm] m0 Config.

2 92 6.23 0.228 0.863 21 1.159 2848
2 106 6.33 0.226 0.870 24 1.149 2752
2 80 6.40 0.225 0.875 18 1.143 1734
2 58 6.45 0.224 0.879 13 1.138 1734
2 18 6.55 0.222 0.886 4.0 1.129 1910
2 122 6.60 0.221 0.890 27 1.124 2158
2 34 6.64 0.221 0.893 7.5 1.120 1510
2 68 6.64 0.221 0.893 15 1.120 1746
2 10 6.68 0.220 0.895 2.2 1.117 1060
2 50 6.68 0.220 0.895 11 1.117 1774
2 26 6.72 0.219 0.898 5.7 1.113 1680
2 42 6.73 0.219 0.900 9.2 1.112 1880
2 106 8.13 0.198 0.994 21 1.006 2752
2 122 8.24 0.197 1.00 24 0.9990 2158
2 92 8.33 0.196 1.01 18 0.9933 1958

(Table continued)
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TABLE I. (Continued)

d N β a [fm] a−1 [GeV] L [fm] m0 Config.

2 68 8.70 0.191 1.03 13 0.9708 1746
2 58 8.83 0.190 1.04 11 0.9632 1725
2 80 9.03 0.188 1.05 15 0.9519 2208
2 50 9.36 0.184 1.07 9.2 0.9341 1649
2 42 9.91 0.179 1.10 7.5 0.9066 1880
2 122 10.6 0.172 1.14 21 0.8752 2573
2 106 10.9 0.170 1.16 18 0.8625 2752
2 34 11.1 0.168 1.17 5.7 0.8543 1933
2 92 11.7 0.164 1.20 15 0.8312 2848
2 80 11.8 0.163 1.21 13 0.8275 1749
2 68 11.9 0.162 1.21 11 0.8239 1746
2 58 12.4 0.159 1.24 9.2 0.8065 1652
2 26 13.1 0.154 1.28 4.0 0.7838 1680
2 50 13.8 0.150 1.31 7.5 0.7629 1649
2 122 14.3 0.148 1.34 18 0.7490 2656
2 92 15.5 0.142 1.39 13 0.7185 2784
2 106 15.5 0.142 1.39 15 0.7185 3856
2 80 16.3 0.138 1.43 11 0.7001 1749
2 42 16.8 0.136 1.45 5.7 0.6893 1869
2 68 16.9 0.135 1.46 9.2 0.6872 1710
2 58 18.4 0.130 1.52 7.5 0.6578 1652
2 106 20.4 0.123 1.60 13 0.6239 2016
2 18 20.6 0.122 1.61 2.2 0.6208 1981
2 92 21.5 0.120 1.65 11 0.6074 2496
2 34 22.2 0.118 1.67 4.0 0.5974 1510
2 80 23.2 0.115 1.71 9.2 0.5841 1749
2 50 23.6 0.114 1.73 5.7 0.5791 1622
2 68 25.2 0.110 1.79 7.5 0.5600 1710
2 106 28.4 0.104 1.90 11 0.5269 3200
2 92 30.5 0.100 1.97 9.2 0.5082 2088
2 58 31.6 0.0983 2.00 5.7 0.4991 1650
2 42 33.6 0.0953 2.07 4.0 0.4838 1840
2 80 34.7 0.0938 2.10 7.5 0.4759 1749
2 106 40.4 0.0868 2.27 9.2 0.4406 2632
2 26 42.4 0.0847 2.33 2.2 0.4300 1680
2 68 43.2 0.0839 2.35 5.7 0.4260 1664
2 92 45.7 0.0816 2.42 7.5 0.4140 1924
2 50 47.4 0.0801 2.46 4.0 0.4064 1690
2 80 59.7 0.0713 2.76 5.7 0.3618 1800
2 106 60.5 0.0708 2.78 7.5 0.3593 2000
2 58 63.7 0.0690 2.86 4.0 0.3501 1566
2 34 72.3 0.0647 3.04 2.2 0.3285 1840
2 92 78.8 0.0620 3.18 5.7 0.3146 2304
2 122 80 0.03122 3.20 7.5 0.3122 2304
2 68 87.3 0.0589 3.35 4.0 0.2988 1736
2 106 104 0.0539 3.65 5.7 0.2736 1978
2 42 110 0.0524 3.76 2.2 0.2660 1568
2 80 120 0.0502 3.93 4.0 0.02546 1802
2 50 155 0.0441 4.47 2.2 0.2239 1525
2 92 159 0.0436 4.52 4.0 0.2211 1887
2 58 209 0.0380 5.19 2.2 0.1928 1652
2 106 211 0.0378 5.21 4.0 0.1919 2592
2 68 287 0.0324 6.08 2.2 0.1644 1710
2 80 398 0.0275 7.16 2.2 0.1396 1749
2 92 526 0.0239 8.24 2.2 0.1214 2784

(Table continued)

TABLE I. (Continued)

d N β a [fm] a−1 [GeV] L [fm] m0 Config.

3 48 3.35 0.230 0.858 11 1.166 1854
3 8 3.40 0.225 0.874 1.8 1.144 1500
3 54 3.43 0.223 0.884 12 1.131 3328
3 14 3.44 0.222 0.887 3.1 1.127 1800
3 20 3.46 0.220 0.894 4.4 1.119 1580
3 26 3.47 0.220 0.897 5.7 1.115 1420
3 36 3.47 0.220 0.897 7.9 1.115 1650
3 42 3.47 0.220 0.897 9.2 1.115 3296
3 32 3.48 0.219 0.900 7.0 1.111 1548
3 54 3.68 0.204 0.966 11 1.035 3328
3 36 3.82 0.195 1.01 7.0 0.9883 1650
3 48 3.86 0.192 1.03 9.2 0.9756 1854
3 42 3.92 0.189 1.04 7.9 0.9572 1725
3 32 4.10 0.178 1.10 5.7 0.9058 1458
3 54 4.25 0.171 1.15 9.2 0.8671 3328
3 26 4.28 0.169 1.16 4.4 0.8597 1420
3 42 4.33 0.167 1.18 7.0 0.8477 1725
3 48 4.38 0.165 1.20 7.9 0.8360 2976
3 36 4.52 0.159 1.24 5.7 0.8050 1650
3 20 4.60 0.155 1.27 3.1 0.7883 1580
3 54 4.83 0.147 1.34 7.9 0.7439 1768
3 48 4.84 0.146 1.35 7.0 0.7420 1800
3 32 5.09 0.138 1.43 4.4 0.6993 1522
3 42 5.15 0.136 1.45 5.7 0.6897 1725
3 60 5.29 0.132 1.50 7.9 0.6685 2496
3 54 5.36 0.130 1.52 7.0 0.6583 6512
3 14 5.39 0.129 1.53 1.8 0.6540 1800
3 36 5.64 0.122 1.61 4.4 0.6206 1650
3 66 5.74 0.120 1.64 7.9 0.6081 2178
3 26 5.76 0.119 1.65 3.1 0.6057 1420
3 48 5.78 0.119 1.66 5.7 0.6033 1725
3 54 6.41 0.106 1.87 5.7 0.5361 1976
3 42 6.45 0.105 1.88 4.4 0.5323 1725
3 32 6.91 0.0970 2.03 3.1 0.4925 1522
3 60 7.04 0.0950 2.07 5.7 0.4824 2106
3 48 7.27 0.0917 2.15 4.4 0.4653 3366
3 20 7.39 0.0900 2.19 1.8 0.4569 1580
3 66 7.67 0.0864 2.28 5.7 0.4384 2160
3 36 7.69 0.0861 2.29 3.1 0.4371 1650
3 54 8.08 0.0815 2.42 4.4 0.4139 1955
3 42 8.84 0.0739 2.67 3.1 0.3750 1725
3 26 9.38 0.0692 2.84 1.8 0.3515 1420
3 48 10.0 0.0646 3.05 3.1 0.3280 2046
3 54 11.1 0.0577 3.41 3.1 0.2931 1933
3 32 11.3 0.0566 3.48 1.8 0.2875 1704
3 36 12.7 0.0500 3.94 1.8 0.2539 1782
3 42 14.6 0.0432 4.57 1.8 0.2191 1701
3 48 16.6 0.0377 5.22 1.8 0.1914 1944
3 54 18.6 0.0335 5.88 1.8 0.1700 2624
3 60 20.6 0.0301 6.54 1.8 0.01529 1900

4 14 2.179 0.221 0.889 3.1 1.124 1420
4 10 2.181 0.220 0.894 2.2 1.119 1500
4 26 2.183 0.219 0.898 5.7 1.114 1505
4 22 2.185 0.218 0.902 4.8 1.109 1635

(Table continued)
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