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We present a lattice calculation of the leading-order electromagnetic and strong isospin-breaking
corrections to the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of
the muon. We employ the gauge configurations generated by the European Twisted Mass Collaboration
with Nf ¼ 2þ 1þ 1 dynamical quarks at three values of the lattice spacing (a ≃ 0.062; 0.082; 0.089 fm)
with pion masses between ≃210 and ≃450 MeV. The results are obtained by adopting the RM123
approach in the quenched-QED approximation, which neglects the charges of the sea quarks.
Quark disconnected diagrams are not included. After the extrapolations to the physical pion
mass and to the continuum and infinite-volume limits the contributions of the light, strange, and charm
quarks are, respectively, equal to δaHVPμ ðudÞ ¼ 7.1ð2.5Þ × 10−10, δaHVPμ ðsÞ ¼ −0.0053ð33Þ × 10−10,

and δaHVPμ ðcÞ ¼ 0.0182ð36Þ × 10−10. At leading order in αem and ðmd −muÞ=ΛQCD we obtain

δaHVPμ ðudscÞ ¼ 7.1ð2.9Þ × 10−10, which is currently the most accurate determination of the isospin-

breaking corrections to aHVPμ .

DOI: 10.1103/PhysRevD.99.114502

I. INTRODUCTION

The muon anomalous magnetic moment aμ ≡ ðg − 2Þ=2
is one of the most precisely determined quantities in
particle physics. It is experimentally known with an
accuracy of 0.54 ppm [1] (BNL E821), and the current
precision of the Standard Model (SM) prediction is at the
level of 0.4 ppm [2]. The discrepancy between the
experimental value, aexpμ , and the SM prediction, aSMμ ,
corresponds to ≃3.5–4 standard deviations, namely aexpμ −
aSMμ ¼ 31.3ð7.7Þ × 10−10 [3], aexpμ − aSMμ ¼ 26.8ð7.6Þ ×
10−10 [4], and aexpμ − aSMμ ¼ 27.1ð7.3Þ × 10−10 [5].

Since the above tension may be an exciting indication of
new physics (NP) beyond the SM, an intense research
program is currently underway in order to achieve a
significant improvement of the uncertainties. The forth-
coming g − 2 experiments at Fermilab (E989) [6] and
J-PARC (E34) [7] aim at reducing the experimental
uncertainty by a factor of 4, down to 0.14 ppm, making
the comparison of the experimental value aexpμ with the
theoretical prediction aSMμ one of the most stringent tests
of the SM in the quest of NP effects. On the theoretical side,
the main uncertainty on aSMμ comes from hadronic con-
tributions, related to the hadronic vacuum polarization
(HVP) and light-by-light terms [3,8]. With the planned
reduction of the experimental error, the uncertainty of the
hadronic corrections will soon become the main limitation
of this SM test.
The theoretical predictions for the hadronic contribution

aHVPμ have been traditionally obtained from experimental
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data using dispersion relations for relating the HVP
function to the experimental cross section data for eþe−
annihilation into hadrons [9,10]. An alternative approach,
proposed in Refs. [11–13], is to compute aHVPμ in lattice
QCD from the Euclidean correlation function of two
electromagnetic (em) currents. In this respect impressive
progress in the lattice determinations of aHVPμ , which at
leading order in αem is a quantity of orderOðα2emÞ, has been
achieved in the past few years [14–25].
With the increasing precision of the lattice calculations,

it becomes necessary to include strong and em isospin-
breaking (IB) corrections, which contribute to the HVP at
order Oðα2emðmd −muÞ=ΛQCDÞ and Oðα3emÞ, respectively.
In Ref. [21] a lattice calculation of the IB corrections to
the HVP contributions due to strange and charm quarks,
δaHVPμ ðsÞ and δaHVPμ ðcÞ,1 was carried out using the RM123
approach [26,27], which is based on the expansion of the
path integral in powers of the mass difference (md −mu)
and of the em coupling αem. The quenched QED (qQED)
approximation, which neglects the effects of sea-quark
charges, was adopted and quark disconnected contractions
were not included because of the large statistical fluctua-
tions of the corresponding signals. The dominant source of
uncertainty in the results of Ref. [21] was related to the em
corrections to the renormalization constant (RC) of the
local vector current, computed through the axial Ward-
Takahashi identity derived in the QCDþ QED theory.
In this work we present our determination of the IB

corrections to the HVP contribution due to the light u- and
d-quarks, δaHVPμ ðudÞ, using the same methods and lattice
setup adopted in Ref. [21] in the case of the strange and
charm contributions. A preliminary result for δaHVPμ ðudÞ
was presented in Ref. [28]. Thanks to a recent nonpertur-
bative evaluation of QCDþ QED effects on the RCs of
bilinear operators performed in Ref. [29] we can update the
determinations of δaHVPμ ðsÞ and δaHVPμ ðcÞ made in
Ref. [21], obtaining a drastic improvement of the uncer-
tainty by a factor of ≈3 and ≈3.5, respectively.
Within the qQED approximation and neglecting

quark-disconnected diagrams the main results of the
present study are

δaHVPμ ðudÞ¼ 7.1ð1.1Þstatþfitð1.3Þinputð1.2Þchirð1.2ÞFVE
× ð0.6Þa2 ×10−10

¼ 7.1ð2.5Þ×10−10; ð1Þ

δaHVPμ ðsÞ ¼ −0.0053ð30Þstatþfitð13Þinputð2Þchirð2ÞFVEð1Þa2
× 10−10

¼ −0.0053ð33Þ × 10−10; ð2Þ

δaHVPμ ðcÞ ¼ 0.0182ð35Þstatþfitð5Þinputð1Þchir
× ð3ÞFVEð1Þa2 × 10−10

¼ 0.0182ð36Þ × 10−10; ð3Þ

where the errors come from (statisticsþ fitting procedure)
input parameters, chiral extrapolation, finite-volume, and
discretization effects. Thus, we confirm that the em
corrections δaHVPμ ðsÞ and δaHVPμ ðcÞ turn out to be negligible
with respect to the current uncertainties of the correspond-
ing lowest-order terms aHVPμ ðsÞ ¼ 53.1ð2.5Þ × 10−10 and
aHVPμ ðcÞ ¼ 14.75ð0.56Þ × 10−10 determined in Ref. [21]. In
the case of the u- and d-quarks our finding (1) corresponds
to about 1.2% of the lowest-order value aHVPμ ðudÞ ¼
619ð17.8Þ × 10−10 obtained recently in Ref. [25].
Recent calculations of the IB corrections to the

HVP are δaHVPμ ðudÞ ¼ 9.0ð4.5Þ × 10−10 from FNAL/
HPQCD/MILC [22], which includes only strong IB effects,
and δaHVPμ ðudÞ ¼ 9.5ð10.2Þ × 10−10 from RBC/UKQCD
[24], which includes also one disconnected QED diagram.
In Ref. [23] the BMW Collaboration has estimated
the value δaHVPμ ðudÞ ¼ 7.8ð5.1Þ × 10−10 from results of the
dispersive analysis of eþe− data [3]. In the case of the
strange contribution δaHVPμ ðsÞ RBC/UKQCD has recently
obtained the result δaHVPμ ðsÞ ¼ −0.0149ð32Þ × 10−10 [24],
which confirms the smallness of such a contribution though
it differs slightly from our finding (2).
Summing up the three contributions (1)–(3) and adding a

further ≈15% uncertainty related to the qQED approxima-
tion and to the neglect of quark-disconnected diagrams (see
Sec. III), we get

δaHVPμ ðudscÞ ¼ 7.1ð2.6Þð1.2ÞqQEDþdisc × 10−10

¼ 7.1ð2.9Þ × 10−10; ð4Þ

which represents the most accurate determination of the IB
corrections to aHVPμ to date.
The paper is organized as follows. In Sec. II we

describe the evaluation of the em and strong IB corrections
to the light-quark HVP contribution at order Oðα2emðmd −
muÞ=ΛQCDÞ and Oðα3emÞ using the RM123 approach
[26,27]. Details of the lattice simulations are collected in
Appendix. In Sec. III we describe the extrapolation to the
physical pion mass and to the continuum and infinite
volume limits. Finally, Sec. IV contains our conclusions
and outlooks for future developments.

II. ISOSPIN-BREAKING CORRECTIONS IN THE
RM123 APPROACH

We adopt the time-momentum representation for the
evaluation of the HVP contribution aHVPμ to the muon
(g − 2), namely [30]

1In the strange and charm sectors the strong IB corrections are
absent at leading order in (md −mu).
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aHVPμ ¼ 4α2em

Z
∞

0

dtKμðtÞVðtÞ; ð5Þ

where the kernel function KμðtÞ is given by

KμðtÞ ¼
4

m2
μ

Z
∞

0

dω
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ ω2
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ω2

p
− ωffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ ω2
p

þ ω

�2

×

�
cosðωmμtÞ − 1

ω2
þ 1

2
m2

μt2
�

ð6Þ

with mμ being the muon mass. In Eq. (5) the quantity VðtÞ
is the vector current-current Euclidean correlator defined as

VðtÞ≡ −
1

3

X
i¼1;2;3

Z
dx⃗hJiðx⃗; tÞJið0Þi; ð7Þ

where

JμðxÞ≡
X

f¼u;d;s;c;…

JfμðxÞ ¼
X

f¼u;d;s;c;…

qfψ̄fðxÞγμψfðxÞ ð8Þ

is the em current operator with qf being the electric charge
of the quark with flavor f in units of the electron charge e,
while h� � �i means the average of the T-product over gluon
and quark fields.
We will limit ourselves to the HVP contribution of the

light u and d quarks, indicated by aHVPμ ðudÞ, neglecting off-
diagonal flavor terms (i.e., including quark-connected
diagrams only). In this case each quark flavor f contributes
separately

aHVPμ ðudÞ ¼
X
f¼u;d

½aHVPμ ðfÞ�ðconnÞ: ð9Þ

For the sake of simplicity we drop the suffix (conn), but it is
understood that in the following we refer always to quark-
connected contractions only.
In the RM123 method of Refs. [26,27] the vector

correlator VðtÞ is expanded into a lowest-order contribution
VudðtÞ, evaluated in isospin symmetric QCD (i.e.,mu ¼ md

and αem ¼ 0), and a correction δVudðtÞ computed at leading
order in the small parameters ðmd −muÞ=ΛQCD and αem:

VðtÞ ¼ VudðtÞ þ δVudðtÞ þ � � � ; ð10Þ

where the ellipses stand for higher order terms in
ðmd −muÞ=ΛQCD and αem.
The separation between the isosymmetric QCD and the

IB contributions, VudðtÞ and δVudðtÞ, is prescription
dependent. In this work we follow Ref. [21] and we
impose the matching condition in which the renormalized
coupling and quark masses in the full theory, αs and mf,

and in isosymmetric QCD, αð0Þs and mð0Þ
f , coincide in the

MS scheme at a scale of 2 GeV. Such a prescription is
known as the Gasser-Rusetsky-Scimemi (GRS) one [31].
The calculation of the IB correlator δVudðtÞ requires the

evaluation of the self-energy, exchange, tadpole, pseudo-
scalar, and scalar insertion diagrams depicted in Fig. 1.
More specifically one has

δVudðtÞ≡ δVJðtÞ þ δVTðtÞ þ δVPSðtÞ þ δVSðtÞ
þ δVSIBðtÞ þ δVZAðtÞ; ð11Þ

where δVZAðtÞ will be described later in this section and

δVJðtÞ ¼ 4παem
3

X
f¼u;d

X
i¼1;2;3

1

2

X
x⃗;y1;y2

h0jTf½Jfi ðx⃗; tÞ�†J f
μðy1ÞJ f

νðy2ÞJfi ð0Þgj0iΔμνðy1; y2Þ; ð12Þ

δVTðtÞ ¼ 4παem
3

X
f¼u;d

X
i¼1;2;3

X
x⃗;y

h0jTf½Jfi ðx⃗; tÞ�†T f
νðyÞJfi ð0Þgj0iΔννðy; yÞ; ð13Þ

FIG. 1. Fermionic connected diagrams contributing to the IB corrections to aHVPμ ðudÞ: (a) self-energy, (b) exchange, (c) tadpole,
(d) pseudoscalar, and (e) scalar insertions. Solid lines represent light-quark propagators in isosymmetric QCD.
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δVPSðtÞ ¼ 4παem
3

X
f¼u;d

δmcrit
f

X
i¼1;2;3

X
x⃗;y

h0jTf½Jfi ðx⃗; tÞ�†iψ̄fðyÞγ5ψfðyÞJfi ð0Þgj0i; ð14Þ

δVSðtÞ ¼ −
4παem
3

X
f¼u;d

Zm

Zm
mð0Þ

f

X
i¼1;2;3

X
x⃗;y

h0jTf½Jfi ðx⃗; tÞ�†ψ̄fðyÞψfðyÞJfi ð0Þgj0i; ð15Þ

δVSIBðtÞ ¼ −
1

3

X
f¼u;d

1

Zm
½mf −mð0Þ

f �
X

i¼1;2;3

X
x⃗;y

h0jTf½Jfi ðx⃗; tÞ�†ψ̄fðyÞψfðyÞJfi ð0Þgj0i ð16Þ

with J f
μðyÞ and T f

νðyÞ being the lattice conserved
current and the tadpole operator for the quark flavor f,
respectively,2

J f
μðyÞ ¼ qf

i
2
½ψ̄fðyÞðiτ3γ5 − γμÞUμðyÞψfðyþ aμ̂Þ

− ψ̄fðyþ aμ̂Þðiτ3γ5 þ γμÞU†
μðyÞψfðyÞ�; ð17Þ

T f
νðyÞ ¼ q2f

1

2
½ψ̄fðyÞðiτ3γ5 − γνÞUνðyÞψfðyþ aν̂Þ

þ ψ̄fðyþ aν̂Þðiτ3γ5 þ γνÞU†
νðyÞψfðyÞ�; ð18Þ

while Δμνðy1; y2Þ is the photon propagator. In Eq. (14)
δmcrit

f is the em shift of the critical mass for the quark flavor
f. In Eq. (15) the quantity Zm is related to the em
corrections to the mass RC in QCDþ QED, ZQCDþQED

m , as

ZQCDþQED
m ¼ Zmð1 − 4παemZmÞ þOðαmemαns Þ

ðm > 1; n ≥ 0Þ; ð19Þ

where Zm is the mass RC in QCD only and the product
ZmZm encodes the corrections at first order in αem. The
quantity Zm can be written as

Zm ¼ Zð1Þ
m · Zfact

m ; ð20Þ

where Zð1Þ
m is the pure QED contribution at leading order in

αem, given in the MS scheme at the renormalization scale μ
by [32,33]

Zð1Þ
m ¼ q2f

16π2
½6 lnðaμÞ − 22.5954�; ð21Þ

while Zfact
m accounts for the corrections of order Oðαns Þ

with n ≥ 1 to Eq. (20). It represents the QCD correction

to the “naive factorization” approximation Zm ¼ Zð1Þ
m

(i.e., Zfact
m ¼ 1) adopted in Ref. [21]. Finally, Eq. (16)

corresponds to the strong IB (SIB) effect (in the GRS

prescription) with mð0Þ
u ¼ mð0Þ

d ¼ mð0Þ
ud being the renormal-

ized light-quark mass in isosymmetric QCD.
In the numerical evaluation of the photon propagator,

performed in the Feynman gauge, the photon zero mode has
been removed according to the QEDL prescription [34]; i.e.,
the photon field Aμ satisfies Aμðk0; k⃗ ¼ 0⃗Þ≡ 0 for all k0.
In this work we make use of the same isosymmetric

QCD gauge ensembles used in Ref. [21], i.e., those
generated by the European Twisted Mass Collaboration
(ETMC) with Nf ¼ 2þ 1þ 1 dynamical quarks, which
include in the sea, besides two light mass-degenerate
quarks, also the strange and the charm quarks with masses
close to their physical values [35,36]. For earlier inves-
tigations of finite volume effects (FVEs) the ETMC
produced three dedicated ensembles, A40.20, A40.24,
and A40.32 (see Appendix for details), which share the
same light-quark mass and lattice spacing and differ only in
the lattice size L. To improve such an investigation a further
gauge ensemble, A40.40, has been generated at a larger
value of the lattice size L.
For our maximally twisted-mass setup δmcrit

f has been
determined in Ref. [37], while 1=Zm ¼ ZP, where ZP is
the RC of the pseudoscalar density evaluated in Ref. [38].
The coefficientZfact

m has been recently computed in Ref. [29]
in a nonperturbative framework within the RI0-MOM
scheme [39].
Within the qQED approximation, which treats the

dynamical quarks as electrically neutral particles, the
correlator δVJðtÞ corresponds to the sum of Figs. 1(a)
and 1(b), while the correlators δVTðtÞ and δVPSðtÞ re-
present the contributions of Figs. 1(c) and 1(d), respec-
tively. Figure 1(e) contributes to both δVSðtÞ and δVSIBðtÞ.
In our numerical simulations we have adopted the

following local version of the vector current:

JμðxÞ ¼ ZAqfψ̄f0 ðxÞγμψfðxÞ; ð22Þ

where ψ̄f0 and ψf represent two quarks with the same mass,
charge, and flavor, but regularized with opposite values of
the Wilson r-parameter (i.e., rf0 ¼ −rf). Being at maximal
twist the current (22) renormalizes multiplicatively with
the RC ZA of the axial current. By construction the

2In Eqs. (17) and (18) the matrix iτ3γ5 appears because in the
twisted-mass action the Wilson term is twisted (in the so-called
physical basis at maximal twist). In the case of standard Wilson
fermions the matrix iτ3γ5 should be replaced by the unit one.
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local current (22) does not generate quark-disconnected
diagrams.
As discussed in Ref. [21], the properties of the kernel

function KμðtÞ, given by Eq. (6), guarantee that the contact
terms, generated in the HVP tensor by a local vector current,
do not contribute to both aHVPμ and its IB correction.
Since we have adopted the renormalized vector current

(22), the contribution δVZAðtÞ, appearing in Eq. (11),
takes into account the em corrections to the RC ZA in
QCDþ QED, namely

ZQCDþQED
A ¼ ZAð1þ 4παemZAÞ þOðαmemαns Þ

ðm > 1; n ≥ 0Þ; ð23Þ

where ZA is the RC of the axial current in pure QCD
(determined in Ref. [38]), while the product ZAZA encodes
the corrections at first order in αem. The quantity ZA can be
written as

ZA ¼ Zð1Þ
A · Zfact

A ; ð24Þ

where Zð1Þ
A is the pure QED correction at leading order in

αem, given by [32,33]

Zð1Þ
A ¼ −15.7963

q2f
16π2

; ð25Þ

and Zfact
A takes into account QCD corrections of order

Oðαns Þ with n ≥ 1 to Eq. (24). In this work we make use of
the nonperturbative determination obtained in Ref. [29]
within the RI0-MOM scheme, which improves significantly
the value Zfact

A ¼ 0.9ð1Þ obtained through the axial Ward-
Takahashi identity in Ref. [21]. The values adopted for the
coefficients Zfact

m and Zfact
A are collected in Table V of

Appendix.

Thus, the IB term δVZAðtÞ is simply given by

δVZAðtÞ≡ −0.20014παemðq4=q2ÞZfact
A VudðtÞ; ð26Þ

where q4=q2 ≡P
f¼u;dq

4
f=
P

f¼u;dq
2
f ¼ 17=45 and VudðtÞ

is the lowest-order contribution of the light quarks to the
vector correlator, calculated for our lattice setup in Ref. [25].
To sum up, the IB corrections δVudðtÞ can be written as

the sum of two (prescription dependent) contributions as

δVudðtÞ ¼ δVQEDðtÞ þ δVSIBðtÞ; ð27Þ
where

δVQEDðtÞ¼ δVJðtÞþδVTðtÞþδVPSðtÞþδVSðtÞþδVZAðtÞ
ð28Þ

and δVSIBðtÞ is given by Eq. (16).
Within the qQED approximation, where the shift δmcrit

f is
proportional to q2f [37], and neglecting quark-disconnected
diagrams the QED correlator δVQEDðtÞ is proportional to
q4 ≡P

f¼u;dq
4
f ¼ 17=81. Instead, the SIB correlator

δVSIBðtÞ is proportional to
P

f¼u;dq
2
fðmð0Þ

f −mfÞ ¼
ð1=6Þðmd −muÞ. Using as inputs the experimental
charged- and neutral-kaon masses the value md −mu ¼
2.38ð18Þ MeV was determined in Ref. [37] at the physical
point in the MSð2 GeVÞ scheme. Such a value is adopted in
Eq. (16) for all gauge ensembles.
In Fig. 2 we show the dependence of both δVQEDðtÞ and

δVSIBðtÞ on the time distance t in the case of the ETMC
gauge ensemble D20.48 (see Appendix).

III. RESULTS

A convenient procedure [19,21,25] consists in splitting
Eq. (5) into two contributions corresponding to 0 ≤ t ≤
Tdata and t > Tdata, respectively. In the first contribution the

FIG. 2. Left panel: time dependence of the IB contribution δVQEDðtÞ [see Eq. (28)] in lattice units in the case of the gauge ensemble
D20.48 (see Appendix). Right panel: the same as in the left panel, but for the SIB term δVSIBðtÞ [see Eq. (16)]. The simulated pion mass
is Mπ ≃ 260 MeV and the lattice spacing is equal to a ≃ 0.06 fm.
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vector correlator is numerically evaluated on the lattice,
while for the second contribution an analytic representation
is required. If Tdata is large enough that the ground-state
contribution is dominant for t > Tdata and smaller than T=2
in order to avoid backward signals, the IB corrections
δaHVPμ ðudÞ can be written as

δaHVPμ ðudÞ≡ δaHVPμ ð<Þ þ δaHVPμ ð>Þ ð29Þ

with

δaHVPμ ð<Þ ¼ 4α2em
XTdata

t¼0

KμðtÞδVudðtÞ; ð30Þ

δaHVPμ ð>Þ ¼ 4α2em
X∞

t¼Tdataþa

KμðtÞδ
�
Zud
V

2Mud
V
e−M

ud
V t

�

¼ 4α2em
X∞

t¼Tdataþa

KμðtÞ
Zud
V

2Mud
V
e−M

ud
V t

×

�
δZud

V

Zud
V

−
δMud

V

Mud
V

ð1þMud
V tÞ

�
; ð31Þ

where Mud
V is the ground-state mass of the lowest-order

correlatorVudðtÞ andZud
V is the squaredmatrix element of the

vector current between the ground state jVi and the vacuum:

Zud
V ≡ð1=3ÞPi¼x;y;z

P
f¼u;dq

2
f jh0jψ̄fð0Þγiψfð0ÞjVij2. In

Ref. [25] the ground-state masses Mud
V and the matrix

elements Zud
V have been determined from a single

exponential fit of VudðtÞ using appropriate time intervals
tmin ≤ t ≤ tmax,where theground state is dominating. For the
reader’s convenience the values chosen in Ref. [25] for tmin
and tmax at eachvalue ofβ and of the latticevolume are shown
in Table I.
In Ref. [25] for each ETMC gauge ensemble the lowest-

order correlator VudðtÞ was fitted at large time distances
using also the two-pion finite volume spectrum. It turned
out that the first two-pion energy level Eππ

n¼1 is always close
to Mud

V within the uncertainties. This is reassuring that the
use of a single exponential fit in Eq. (31) reproduces
properly the tail of the correlator beyond Tdata. To illustrate
this point we have collected in Table II the values of Mud

V
and Eππ

n¼1 for the three ensembles A30.32, B25.32, and
D20.48, corresponding to quite similar values of the pion
mass (Mπ ≈ 265 MeV) and to values ofMπL ranging from
3.0 to 3.9 (see Table IV).
In Eq. (31) the quantities δMud

V and δZud
V can be

extracted, respectively, from the “slope” and the “intercept”
of the ratio δVudðtÞ=VudðtÞ at large time distances (see
Refs. [21,26,27,37]), namely

δVudðtÞ
VudðtÞ t ≫ a; ðT − tÞ ≫ a

������������! δZud
V

Zud
V

þ δMud
V

Mud
V

fudðtÞ; ð32Þ

where

fudðtÞ≡Mud
V

�
T
2
− t

�
e−M

ud
V t − e−M

ud
V ðT−tÞ

e−M
ud
V t þ e−M

ud
V ðT−tÞ

− 1 −Mud
V
T
2
≈ −ð1þMud

V tÞ ð33Þ

is almost a linear function of the Euclidean time t. This
procedure is shown in Fig. 3 in the case of the gauge
ensemble D20.48.
The time dependencies of the integrand functions

KμðtÞδVQEDðtÞ and KμðtÞδVSIBðtÞ are shown in Fig. 4 in
the case of the ETMC gauge ensemble B55.32 (see
Appendix). After summation over the time distance t,
the SIB contribution dominates over the QED one.
The results for the separate contributions δaHVPμ ð<Þ and

δaHVPμ ð>Þ, as well as their sum δaHVPμ ðudÞ, are obtained by
adopting four choices of Tdata, namely Tdata ¼ ðtmin þ 2aÞ,
ðtmin þ tmaxÞ=2, ðtmax − 2aÞ, and ðT=2 − 4aÞ. These results
are collected in Table III for some of the ETMC gauge
ensembles. We find that the separation between δaHVPμ ð<Þ
and δaHVPμ ð>Þ depends on the specific value of Tdata, as it
should, but their sum δaHVPμ ðudÞ is independent of the
specific choice of the value of Tdata within the statistical

TABLE I. Values of tmin and tmax adopted in Ref. [25] to extract
the ground-state signal from the light-quark vector correlator
VudðtÞ for each value of β and of the lattice volume V=a4 for the
ETMC gauge ensembles adopted in this work (see Table IV of
Appendix).

β V=a4 tmin=a tmax=a

1.90 403 × 80 12 22
323 × 64 12 22
243 × 48 12 20
203 × 48 12 20

1.95 323 × 64 13 22
243 × 48 13 20

2.10 483 × 96 18 30

TABLE II. Values of Mud
V and Eππ

n¼1 (see text) obtained in
Ref. [25] for the three ensembles A30.32, B25.32, and D20.48,
corresponding to quite similar values of the pion mass
(Mπ ≈ 265 MeV) and to different values of MπL (see Table IV
of Appendix).

Ensemble MπL Mud
V [MeV] Eππ

n¼1 [MeV]

A30.32 3.9 843 (26) 846 (31)
B25.32 3.4 868 (25) 848 (29)
D20.48 3.0 877 (26) 839 (23)
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uncertainties. Note that for Tdata ¼ tmax − 2a the contribu-
tion δaHVPμ ð>Þ, which depends on the identification of the
ground-state signal, is still a significant fraction of the total
value δaHVPμ ðudÞ, as it was already observed in the case of
the lowest-order term aHVPμ ðudÞ in Ref. [25].
All four choices of Tdata are employed in the various

branches of our bootstrap analysis. The corresponding
systematics is subdominant with respect to the other
sources of uncertainties, and it will not be given separately
in the final error budget.
We have considered also the ratio of the IB correction

δaHVPμ ðudÞ over the leading-order term aHVPμ ðudÞ, which
was evaluated in Ref. [25] for the same gauge ensembles.
The attractive feature of the ratio δaHVPμ ðudÞ=aHVPμ ðudÞ is
to be less sensitive to some of the systematic effects, in
particular to the uncertainties of the scale setting. The data

for δaHVPμ ðudÞ and the ratio δaHVPμ ðudÞ=aHVPμ ðudÞ are
shown, respectively, in the left and right panels of
Fig. 5. It can be seen that discretization effects play a
minor role, while FVEs are more relevant.
For the separate QED and SIB contributions the FVEs

differ qualitatively and quantitatively. In the case of the
QED data a power-law behavior in terms of the inverse
lattice size 1=L is expected. According to the general
findings of Ref. [40] the universal, structure-independent
FVEs are expected to vanish, since they depend on the
global charge of the meson states appearing in the spectral
decomposition of the vector correlator, while the structure-
dependent (SD) FVEs start at order Oð1=L2Þ. Moreover,
using the effective field theory approach of Ref. [41] one
may argue that in the case of mesons with vanishing charge
radius (as the ones appearing in the vector correlator)

FIG. 4. Time dependence of the integrand functions KμðtÞδVQEDðtÞ (left panel) and KμðtÞδVSIBðtÞ (right panel) for the u- and d-quark
contributions to the IB corrections δaudμ [see Eq. (30)] in the case of the ETMC gauge ensemble B55.32. The simulated pion mass is
Mπ ≃ 375 MeV and the lattice spacing is equal to a ≃ 0.082 fm. In the left panel the labels “self,” “exch,” “T+PS,” “S,” and “ZA”
indicate the QED contributions of Figs. 1(a), 1(b), 1(c)+1(d), and 1(e) and the one generated by the QED corrections to the RC ZA of the
local vector current [see Eq. (26)].

FIG. 3. Ratios δVQEDðtÞ=VudðtÞ (left panel) and δVSIBðtÞ=VudðtÞ (right panel) in the case of the gauge ensemble D20.48 versus the
time distance t. The shaded areas correspond to the time interval where the ground state is dominant (see Table I), together with the
uncertainty (at 1σ level) of a linear fit applied to the data.
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the SD FVEs start at order Oð1=L3Þ (see also Ref. [21]).
In the case of the SIB correlator (16), since a fixed value
md −mu ¼ 2.38ð18Þ MeV [37] is adopted for all gauge
ensembles, an exponential dependence in terms of the
quantity MπL is expected [42].

In Fig. 6 the data for the QED and SIB contributions to
the ratio δaHVPμ ðudÞ=aHVPμ ðudÞ are shown in the case of the
four ensembles A40.XX, which share common values of
the light-quark mass and of the lattice spacing, but differ in
the lattice size L. It can be seen that the theoretical

FIG. 5. Results for δaHVPμ ðudÞ (left panel) and the ratio δaHVPμ ðudÞ=aHVPμ ðudÞ (right panel) versus the renormalized average u=d mass
mud [in the MSð2 GeVÞ scheme]. Errors are the quadrature of the statistical uncertainties and of the error generated by the uncertainties
of the input parameters of the quark mass analysis of Ref. [38] (see Appendix).

TABLE III. Results for the contributions δaHVPμ ð<Þ, δaHVPμ ð>Þ and their sum δaHVPμ ðudÞ, in units of 10−10, obtained adopting in
Eqs. (30) and (31) four different choices of Tdata, namely Tdata ¼ ðtmin þ 2aÞ, ðtmin þ tmaxÞ=2, ðtmax − 2aÞ, and ðT=2 − 4aÞ for the
ETMC gauge ensembles A80.24, A50.32, B55.32, and D30.48 (see Table I for the values of tmin and tmax, and Table IVof Appendix for
the ETMC gauge ensembles).

Tdata ðtmin þ 2aÞ ðtmin þ tmaxÞ=2 ðtmax − 2aÞ ðT=2 − 4aÞ
Ensemble A80.24

δaHVPμ ð<Þ 0.83 (5) 1.00 (4) 1.13 (5) 1.26 (7)
δaHVPμ ð>Þ 0.61 (12) 0.43 (10) 0.30 (8) 0.18 (6)
δaHVPμ ðudÞ 1.44 (12) 1.43 (12) 1.43 (12) 1.44 (12)

Tdata ðtmin þ 2aÞ ðtminþtmaxÞ=2 ðtmax − 2aÞ ðT=2 − 4aÞ
Ensemble A50.32

δaHVPμ ð<Þ 1.07 (8) 1.45 (14) 1.65 (20) 1.62 (28)
δaHVPμ ð>Þ 0.73 (26) 0.39 (19) 0.20 (12) 0.02 (2)
δaHVPμ ðudÞ 1.80 (30) 1.84 (29) 1.85 (29) 1.64 (29)

Tdata ðtmin þ 2aÞ ðtmin þ tmaxÞ=2 ðtmax − 2aÞ ðT=2 − 4aÞ
Ensemble B55.32

δaHVPμ ð<Þ 1.03 (4) 1.31 (6) 1.53 (9) 1.70 (19)
δaHVPμ ð>Þ 0.64 (18) 0.40 (15) 0.20 (10) 0.03 (2)
δaHVPμ ðudÞ 1.67 (20) 1.71 (20) 1.73 (19) 1.73 (21)

Tdata ðtmin þ 2aÞ ðtmin þ tmaxÞ=2 ðtmax − 2aÞ ðT=2 − 4aÞ
Ensemble D30.48

δaHVPμ ð<Þ 1.10 (7) 1.55 (12) 2.05 (18) 2.42 (63)
δaHVPμ ð>Þ 2.01 (30) 1.51 (25) 0.99 (18) 0.09 (2)
δaHVPμ ðudÞ 3.11 (35) 3.06 (34) 3.04 (34) 2.51 (63)
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expectations for the FVEs are consistent with the lattice
data for both the QED and the SIB contributions.3

Since the SIB data dominate over the QED ones, the
FVEs for the ratio δaHVPμ ðudÞ=aHVPμ ðudÞ are expected to be
mainly exponentially suppressed in MπL.
For the combined extrapolations to the physical pion

mass and to the continuum and infinite-volume limits we
adopt the following fit ansatz:

δaHVPμ ðudÞ
aHVPμ ðudÞ ¼ δ0½1þ δ1mud þ δ1lmud lnðmudÞ

þ δ2m2
ud þDa2 þ δFVE�; ð34Þ

where the FVE term is estimated by using alternatively one
of the fitting functions

δFVE ¼ Fe−M̄L or

δFVE ¼ F̂n
M̄2

16π2f20

e−M̄L

ðM̄LÞn
�
n ¼ 1

2
; 1;

3

2
; 2

�
ð35Þ

with B0 and f0 being the leading-order low-energy con-
stants of ChPT and M̄2 ≡ 2B0mud. For the chiral extrapo-
lation we consider either a quadratic (δ1l ¼ 0 and δ2 ≠ 0) or
a logarithmic (δ1l ≠ 0 and δ2 ¼ 0) dependence. Half of the
difference of the corresponding results extrapolated to the
physical pion mass is used to estimate the systematic
uncertainty due to the chiral extrapolation. Discretization

effects are estimated by including (D ≠ 0) or excluding
(D ¼ 0) the term proportional to a2 in Eq. (34). The free
parameters to be determined by the fitting procedure are δ0,
δ1, δ1l (or δ2), D, and F (or F̂n).
In our combined fit (34) the values of the free parameters

are determined by a χ2-minimization procedure adopting an
uncorrelated χ2. The uncertainties on the fitting parameters
do not depend on the χ2-value, because they are obtained
by using the bootstrap samplings of Ref. [38]. This
guarantees that all the correlations among the lattice data
points and among the fitting parameters are properly taken
into account. The quality of our fitting procedure is
illustrated in Fig. 7.
At the physical pion mass and in the continuum and

infinite-volume limits we get

δaHVPμ ðudÞ
aHVPμ ðudÞ ¼ 0.0115ð18Þstatþfitð21Þinputð20Þchir

× ð19ÞFVEð9Þa2 ½41�; ð36Þ

where the errors come in the order from
(statisticsþ fitting procedure), input parameters of the eight
branches of the quark mass analysis of Ref. [38], chiral
extrapolation, finite-volume, and discretization effects. In
Eq. (36) the uncertainty in the square brackets corresponds

FIG. 7. Results for the ratio δaHVPμ ðudÞ=aHVPμ ðudÞ versus the
renormalized average u=d mass mud in the MSð2 GeVÞ scheme.
The empty markers correspond to the raw data, while the full ones
represent the lattice data corrected by the FVEs obtained in
the fitting procedure (34) with δ1l ¼ 0 and δ2 ≠ 0. The solid
lines correspond to the results of the combined fit (34) obtained in
the infinite-volume limit at each value of the lattice spacing. The
black asterisk represents the value of the ratio δaHVPμ ðudÞ=
aHVPμ ðudÞ extrapolated to the physical pion mass, corresponding

to mphys
ud ðMSð2 GeVÞÞ ¼ 3.70 ð17Þ MeV and to the continuum

limit, while the red area indicates the corresponding uncertainty
as a function ofmud at the level of 1 standard deviation. Errors are
statistical only.

FIG. 6. Results for the ratio δaHVPμ ðudÞ=aHVPμ ðudÞ versus the
quantity MπL in the case of the four ensembles A40.XX, which
share common values of the light-quark mass and of the lattice
spacing, but differ in the lattice size L. The empty (full) markers
correspond to the SIB (QED) contribution. The solid line is a fit
of the SIB data using the phenomenological Ansatz Aþ Be−MπL.
The dashed and dotted lines correspond to a fitting function of the
form Āþ B̄=Ln with n ¼ 3 (dashed line) and n ¼ 6 (dotted line)
both applied to the QED data.

3We remind the reader that the lowest-order term aHVPμ ðudÞ has
non-negligible FVEs, which are exponentially suppressed in
terms of MπL [42] (see Fig. 9 of Ref. [25]).
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to the sum in quadrature of the statistical and systematic
errors.
Using the leading-order result aHVPμ ðudÞ¼619.0ð17.8Þ×

10−10 from Ref. [25], we obtain our determination of the
leading-order IB corrections to aHVPμ ðudÞ, namely

δaHVPμ ðudÞ ¼ 7.1ð1.1Þstatþfitð1.3Þinputð1.2Þchirð1.2ÞFVE
× ð0.6Þa2 × 10−10

¼ 7.1ð2.5Þ × 10−10; ð37Þ

which comes (within the GRS prescription) from the sum
of the QED contribution

½δaHVPμ ðudÞ�ðQEDÞ ¼ 1.1ð1.0Þ × 10−10 ð38Þ

and of the SIB one

½δaHVPμ ðudÞ�ðSIBÞ ¼ 6.0ð2.3Þ × 10−10: ð39Þ

The above results show that the IB correction (37) is
dominated by the strong SUð2Þ-breaking term, which
corresponds roughly to ≈85% of δaHVPμ ðudÞ.
Our determination (37), obtained with Nf ¼ 2þ 1þ 1

dynamical flavors of sea quarks, agrees within the errors
with and is more precise than both the phenomenological
estimate δaHVPμ ðudÞ ¼ 7.8ð5.1Þ × 10−10, obtained by the
BMW Collaboration [23] using results of the dispersive
analysis of eþe− data [3], and the lattice determination
δaHVPμ ðudÞ ¼ 9.5ð10.2Þ × 10−10, obtained by the RBC/
UKQCD Collaboration [24] at Nf ¼ 2þ 1, which includes
also one disconnected QED diagram. Recently, adopting
Nf ¼ 1þ 1þ 1þ 1 simulations, the FNAL/HPQCD/
MILC Collaboration has found for the SIB contribution
the value ½δaHVPμ ðudÞ�ðSIBÞ ¼ 9.0ð4.5Þ × 10−10 [22].
Thanks to the recent nonperturbative evaluation of

QCDþ QED effects on the RCs of bilinear operators
performed in Refs. [29] we can update the determinations
of the strange δaHVPμ ðsÞ and charm δaHVPμ ðcÞ contributions
to the IB effects made in Ref. [21]. We get

δaHVPμ ðsÞ ¼ −0.0053 ð30Þstatþfitð13Þinputð2Þchir
× ð2ÞFVEð1Þa2 × 10−10

¼ −0.0053 ð33Þ × 10−10; ð40Þ
δaHVPμ ðcÞ¼ 0.0182ð35Þstatþfitð5Þinputð1Þchirð3ÞFVE

× ð1Þa2 ×0−10

¼ 0.0182ð36Þ×10−10 ð41Þ

to be compared with δaHVPμ ðsÞ ¼ −0.018 ð11Þ × 10−10 and
δaHVPμ ðcÞ ¼ −0.030 ð13Þ × 10−10 given in Ref. [21]. The
updated results confirm that the em corrections δaHVPμ ðsÞ

and δaHVPμ ðcÞ are negligible with respect to the current
uncertainties of the corresponding lowest-order terms
aHVPμ ðsÞ¼53.1ð2.5Þ×10−10 and aHVPμ ðcÞ ¼ 14.75 ð0.56Þ ×
10−10 [21]. Recently [24] in the case of the strange con-
tribution the RBC/UKQCD Collaboration has found the
result δaHVPμ ðsÞ ¼ −0.0149 ð32Þ × 0−10, which deviates
from our finding (40) by ≈2 standard deviations.
The sum of our three results (37), (40), and (41) yields the

contribution of quark-connected diagrams to δaHVPμ within
the qQED approximation, namely δaHVPμ ðudscÞjconn ¼
7.1ð2.6Þ × 10−10. Recently, in Ref. [24] one QED discon-
nected diagram has been calculated in the case of the u- and
d-quark contribution and found to be of the same order of the
corresponding QED connected term. Thus, we estimate that
the uncertainty related to the qQED approximation and to
the neglect of quark-disconnected diagrams is approxi-
mately equal to our QED contribution (38), obtaining

δaHVPμ ðudscÞ ¼ 7.1ð2.6Þð1.2ÞqQEDþdisc × 10−10

¼ 7.1ð2.9Þ × 10−10; ð42Þ

which represents the most accurate determination of the IB
corrections to aHVPμ to date.
Using the recent ETMC determinations of the lowest-

order contributions of light, strange, and charm quarks,
aHVPμ ðudÞ ¼ 619.0ð17.8Þ × 10−10, aHVPμ ðsÞ ¼ 53.1ð2.5Þ×
10−10, and aHVPμ ðcÞ ¼ 14.75ð0.56Þ × 10−10 [21,25], and
an estimate of the lowest-order quark-disconnected dia-
grams, aHVPμ ðdiscÞ ¼ −12 ð4Þ × 10−10, obtained using the
results of Refs. [23,24], our finding (42) for the IB
corrections leads to an HVP contribution to the muon
(g − 2) equal to

aHVPμ ¼ 682ð19Þ × 10−10; ð43Þ

which agrees within the errors with the recent determi-
nations based on dispersive analyses of the experimental
cross section data for eþe− annihilation into hadrons (see
Ref. [5] and references therein).

IV. CONCLUSIONS

We have presented a lattice calculation of the isospin-
breaking corrections to the HVP contribution of light
quarks to the anomalous magnetic moment of the muon
at order O½α2emðmd −muÞ=ΛQCD� in the light-quark mass
difference and Oðα3emÞ in the em coupling. We have
employed the gauge configurations generated by ETMC
with Nf ¼ 2þ 1þ 1 dynamical quarks at three values of
the lattice spacing ða ≃ 0.062–0.089 fmÞ with pion masses
in the range Mπ ≃ 210–450 MeV and with strange and
charm quark masses tuned at their physical values deter-
mined in Ref. [38].
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The calculation of the IB corrections has been carried out
adopting the RM123 approach of Refs. [26,27], which is
based on the expansion of the lattice path integral in powers
of the small parameters ðmd −muÞ=ΛQCD and αem, which
are both of the order of Oð1%Þ.
In this work we have taken into account only connected

diagrams in which each quark flavor contributes separately.
The leading-order em contributions to the renormalization
constant of the local version of the lattice vector current,
adopted in this work, have been evaluated using a recent
nonperturbative calculation performed within the RI0-
MOM scheme in Refs. [29]. Thanks to that we have
updated also the determinations of the strange δaHVPμ ðsÞ
and charm δaHVPμ ðcÞ IB contributions made in Ref. [21],
obtaining a drastic improvement of the uncertainties.
Within the qQED approximation and neglecting quark-

disconnected diagrams the main results of the present study
are

δaHVPμ ðudÞ ¼ 7.1ð2.5Þ × 10−10; ð44Þ
δaHVPμ ðsÞ ¼ −0.0053ð33Þ × 10−10; ð45Þ

δaHVPμ ðcÞ ¼ 0.0182ð36Þ × 10−10: ð46Þ

Summing up the three contributions (44)–(46) and
adding a further ≈15% uncertainty related to the qQED
approximation and to the neglect of quark-disconnected
diagrams, we get

δaHVPμ ðudscÞ ¼ 7.1 ð2.6Þ ð1.2ÞqQEDþdisc × 10−10

¼ 7.1 ð2.9Þ × 10−10; ð47Þ
which represents the most accurate determination of the IB
corrections to aHVPμ to date.
New QCD simulations with Nf ¼ 2þ 1þ 1 dynamical

quarks close to the physical pion point [43] and the
evaluation of quark-disconnected diagrams are in progress.
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APPENDIX: SIMULATION DETAILS

The ETMC gauge ensembles used in this work are the
same as those adopted in Ref. [38] to determine the up-,
down-, strange-, and charm-quark masses in isospin

TABLE IV. Values of the simulated-quark bare masses (in lattice units), of the pion mass (in units of MeV), and of the productMπL for
the 16 ETMC gauge ensembles with Nf ¼ 2þ 1þ 1 dynamical quarks used in this contribution (see Ref. [38]) and for the gauge
ensemble, A40.40 added to improve the investigation of FVEs. The bare twisted masses μσ and μδ describe the strange and charm sea
doublet according to Ref. [51]. The central values and errors of the pion mass are evaluated using the bootstrap events of the eight
branches of the analysis of Ref. [38]. The valence quarks in the pion are regularized with opposite values of the Wilson r-parameter in
order to guarantee that discretization effects on the pion mass are of order Oða2μudΛQCDÞ.
Ensemble β V=a4 aμud aμσ aμδ Ncfg Mπ MπL

A40.40 1.90 403 × 80 0.0040 0.15 0.19 100 317 (12) 5.7
A30.32 323 × 64 0.0030 150 275 (10) 3.9
A40.32 0.0040 100 316 (12) 4.5
A50.32 0.0050 150 350 (13) 5.0
A40.24 243 × 48 0.0040 150 322 (13) 3.5
A60.24 0.0060 150 386 (15) 4.2
A80.24 0.0080 150 442 (17) 4.8
A100.24 0.0100 150 495 (19) 5.3
A40.20 203 × 48 0.0040 150 330 (13) 3.0

B25.32 1.95 323 × 64 0.0025 0.135 0.170 150 259 (9) 3.4
B35.32 0.0035 150 302 (10) 4.0
B55.32 0.0055 150 375 (13) 5.0
B75.32 0.0075 80 436 (15) 5.8
B85.24 243 × 48 0.0085 150 468 (16) 4.6

D15.48 2.10 483 × 96 0.0015 0.1200 0.1385 100 223 (6) 3.4
D20.48 0.0020 100 256 (7) 3.0
D30.48 0.0030 100 312 (8) 4.7

ELECTROMAGNETIC AND STRONG ISOSPIN-BREAKING … PHYS. REV. D 99, 114502 (2019)

114502-11



symmetric QCD. We employ the Iwasaki action [48] for
gluons and the Wilson twisted mass action [49–51] for sea
quarks. Working at maximal twist our setup guarantees an
automatic OðaÞ improvement [50,52].
We consider three values of the inverse bare lattice

coupling β and different lattice volumes, as shown in
Table IV, where the number of configurations analyzed
ðNcfgÞ corresponds to a separation of 20 trajectories. For
earlier investigations of finite volume effects the ETMC had
produced three dedicated ensembles, A40.20, A40.24, and
A40.32, which share the same light-quark mass and lattice
spacing and differ only in the lattice size L. To improve
such an investigation a further gauge ensemble, A40.40,
has been generated at a larger value of the lattice size L.
At each lattice spacing, different values of the sea-

light-quark masses are considered. The valence- and sea-
light-quark masses are always taken to be degenerate.
The values of the lattice spacing in isosymmetric QCD
are a ¼ 0.0885 ð36Þ; 0.0815 ð30Þ, and 0.0619 (18) fm at
β ¼ 1.90, 1.95, and 2.10, respectively.
We made use of the bootstrap samplings elaborated for

the input parameters of the quark mass analysis of
Ref. [38]. There, eight branches of the analysis were
adopted differing in

(i) the continuum extrapolation adopting for the scale
parameter either the Sommer parameter r0 or the
mass of a fictitious pseudoscalar meson made up of
strange(charm)-like quarks;

(ii) the chiral extrapolation performed with fitting func-
tions chosen to be either a polynomial expansion or a
chiral perturbation theory (ChPT) ansatz in the light-
quark mass;

(iii) the choice between methods M1 and M2, which
differ by Oða2Þ effects, used to determine the mass
RC Zm ¼ 1=ZP in the RI0-MOM scheme.

Throughout this work the renormalized average u=d
quark mass mud is given in the MS scheme at a renorm-
alization scale equal to 2 GeV. We recall that, in the
GRS prescription we have chosen, the renormalized

average u=d quark mass in isosymmetric QCD mð0Þ
ud

coincides with the one in QCDþ QED, i.e., mud ¼ mð0Þ
ud ,

in the MSð2 GeVÞ scheme. At the physical pion
mass (Mphys

π ¼ Mπ0 ≃ 135 MeV) the value mphys
ud ¼

3.70 ð17Þ MeV was determined in Ref. [38], using the
PDG value of the pion decay constant [2] for fixing the
lattice scale.
The statistical accuracy of the meson correlator is based

on the use of the so-called “one-end” stochastic method
[53], which includes spatial stochastic sources at a single
time slice chosen randomly. In the case of the light-quark
contribution we have used 160 stochastic sources (diagonal
in the spin variable and dense in the color one) for each
gauge configuration.
Finally, the values evaluated in Ref. [29] for the

coefficients Zfact
m [see Eq. (20)] and Zfact

A [see Eq. (24)]
are collected in Table V.
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