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In this work we perform an investigation of the flux tube between two static color sources in four
dimensional SUð3Þ Yang-Mills theory, using the so-called connected correlator. Contrary to most previous
studies we do not use any smoothing algorithm to facilitate the evaluation of the correlator, that is
performed using only stochastically exact techniques. We first examine the renormalization properties of
the connected operator, then we present our numerical data for the longitudinal chromoelectric component
of the flux tube, that are used to extract the dual superconductivity parameters.
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I. INTRODUCTION

The investigation of the color flux tubes connecting
static sources in non-Abelian gauge theories has become
a standard tool to study color confinement [1–13].
Indeed, in lattice simulations, color sources are seen to
be connected by tube-like structures for all the values of
the coupling constant (at zero temperature). This is a
strong indication that the mechanism responsible for
color confinement is the same at weak and at strong
coupling, in which limit color flux tubes naturally emerge
[14], and the area-law of the Wilson loops can be
analytically proven [15].
To study flux tubes on the lattice we need an observable

whose average value will provide us information about the
flux tube details: more specifically the value of this
observable has to be related to that of the field strength
in the background of a couple of static color sources.
A quantity that satisfies this requirement can be built by
using the correlator of a Polyakov loops pair with a
plaquette: the pair of Polyakov loops represents a couple
of static color charges (a Wilson loop is also often used for
this purpose) while the plaquette probes the field strength in
the background of the static charges.
This general idea is common to all numerical imple-

mentations, however in the literature two different ways of

defining the basic correlator are present: the first possibility
is to use the expression [1]

ρdisc ¼
hTrðPrÞTrðP†

r0 ÞTrðUpÞi
hTrðPrÞTrðP†

r0 ÞÞi
− hTrðUpÞi; ð1Þ

where Pr stands for the Polyakov loop at spatial position r
and Up for the plaquette operator; this is known as the
“disconnected” correlator. Another possibility is to use the
definition [5,6]

ρconn ¼
hTrðPrLUpL†ÞTrðP†

r0 Þi
hTrðPrÞTrðP†

r0 Þi

−
1

Nc

hTrðPrÞTrðP†
r0 ÞTrðUpÞi

hTrðPrÞTrðP†
r0 Þi

; ð2Þ

where Nc is the number of colors and L is the parallel
transporter associated to the path shown in Fig. 1; ρconn is
known as the “connected” correlator and L is often called
the “Schwinger line” in the literature. Both ρdisc and ρconn
are related to color flux tubes but they are not equivalent; in
fact they are associated to different physical observables.
This can be readily understood by looking at their naive
continuum limit, in which the plaquette operator Up is
expanded in powers of the lattice spacing a: ρdisc scales to
the continuum as a4 and gives access to1 TrðF2

μνÞ (we are
assuming Up oriented in the μν plane), ρconn scales to the
continuum as a2 and it is linear in Fμν (see e.g., [5,6] for
more details).
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1We assume the gauge group to be SUðNcÞ. The case of
Abelian groups is somehow exceptional in the present context,
since ρdisc is linear in the field strength for Abelian groups.
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Since ρdisc and ρconn do not provide equivalent physical
information, the choice of the operator to be used requires
some discussion. Two arguments that have been adopted in
the past to advocate the use of one operator or the other are
the following: on one hand the operator ρdisc is theoretically
better understood, since it can be easily shown to be
multiplicatively renormalizable (see the discussion in
Sec. II), and the renormalization constant needed to cancel
logarithmic divergences can be fixed by using a lattice sum
rule (see e.g., [7]). On the other hand ρdisc is noisier than
ρconn, and noise reduction was the original motivation for
the introduction of the connected correlator in [5,6]: since
ρdisc probes the square of the field-strength it is more
sensitive to ultraviolet (UV) fluctuations.
The choice of the operator to be used was thus largely

based on the importance attributed to fluctuations. Some-
times UV fluctuations have a prominent role in the physical
phenomenon to be studied, a prototypical example being the
fluctuation-induced broadening of flux tubes [16]. In these
cases the choice of the disconnected operator is mandatory,
and specific stochastically exact noise-reduction techniques
have been typically adopted to measure it [17–22].
When fluctuations were not expected to be important for

the physical problem studied, the operator ρconn has been
the most common choice [23–27], supplemented by the use
of smoothing algorithms to reduce UV noise. In studies
performed with dynamical fermions only ρconn has been
used so far [28,29], since the accessible statistics are much
lower than in the pure glue case, and stochastically exact
error reduction techniques (see [30]) are not easily appli-
cable and still not widely used.

An important point to be noted is that smoothing has
always been used to reduce the effect of UV fluctuations in
ρconn, however this standard procedure can a priori also
induce systematical errors in the flux tube measure. Indeed
in [29] a worrisome dependence of the physical results on
the amount of smoothing adopted was noted (see also [24]
for the case of Yang-Mills theory).
The aim of this work is to study ρconn without using any

smoothing algorithm, in order to understand if the con-
nected operator can be used in a coherent field-theoretical
setup to extract physical quantities related to flux tubes. For
this purpose we evaluate the connected correlator ρconn in
four dimensional SUð3Þ Yang-Mills theory using only
stochastically exact techniques (i.e., multihit [31] and
multilevel [32] algorithms). To physically interpret these
data we need to study the renormalization of the connected
correlator ρconn: in our data the singularities related to the
continuum limit (that are usually hidden by the use of
smoothing) are clearly visible and we need to take care of
them. The renormalization of ρconn is far less trivial than
that of ρdisc, however we will show that ρconn renormalizes
multiplicatively, and it can be used to extract physically
relevant information.
The paper is organized as follows: in Sec. II we discuss

the issues related to the renormalization of ρconn, using
arguments largely based on [33,34], where the renormal-
ization of cyclic Wilson loops was addressed. In Sec. III we
introduce the numerical setup adopted, we present the
results obtained for the longitudinal chromoelectric field,
and we discuss the physical implications of these results for
the dual superconductor model of the vacuum. Finally, in
Sec. IV we draw our conclusions.

II. RENORMALIZATION OF ρconn

In order to discuss the renormalization of ρconn it seems
appropriate to start by briefly recalling some general facts
about the renomalization of loop operators.
A loop operator is a generalized Wilson loop, which in

the continuum can be written as

WC ¼ Tr

�
P exp

�
i
I
C
Aμdxμ

��
; ð3Þ

where C is a closed curve and P stands for path-ordered.
The systematic study of the divergences associated to these
operators in four dimensional gauge theory was initiated in
[35], where it was suggested that WC is multiplicatively
renormalizable if C is piecewise smooth and not self-
intersecting. From a one loop computation with cutoff
regularization two sources of divergences were identified in
[35]: logarithmic divergences originate from the points at
which C is not differentiable, while linear divergences are
always present, they exponentiate and globally contribute
with a term of the form expðcLðCÞ=aÞ, where LðCÞ is the
length of the curve, a is the UV cutoff and c is a constant.

FIG. 1. Graphical representation of the numerator of the first
term of Eq. (2). Ellipses denote the Polyakov loops (at distance
d from each other) and the string L connects one Polyakov loop
with the plaquette, first reaching the midpoint between the
Polyakov loops at d=2, then moving in the transverse direction
for a distance dt. The plaquette is drawn parallel to the plane
identified by the two Polyakov loops since this is the case that
will be studied in this paper, but its orientation can a priori be
generic.
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If C is smooth it was shown in [36] thatWC is finite at all
orders of perturbation theory, after the usual charge
renormalization is performed. The case of a nonsmooth
curve was studied in [37], where it was proven that to each
cusp with angle γ a multiplicative renormalization constant
has to be associated, whose value depends just on γ. The
case of self-intersecting curves was also studied in [37]: in
this case operator mixing between operators corresponding
to different color contractions at the crossing points has also
to be taken into account. The final result is the following:
if r intersection points (corresponding to the sets of
intersection angles fθ1g;…; fθrg) and s cusps (corre-
sponding to the angles γ1;…; γs) are present, then renorm-
alization matrices and renormalization constants exist such
that every color contraction Wi1;…;ir

C can be renormalized
by using

Wi1;…;ir
C jR ¼ Zðγ1Þ � � �ZðγsÞ

× Zi1j1ðfθ1gÞ � � �ZirjrðfθrgÞWj1;…;jr
C ; ð4Þ

where the exponentials associated to linear divergences are
implied. In [37] the possibility for different color contrac-
tions to have different lengths was however not considered,
and this could seem to be a source of problems for the
renormalization of ρconn.
Let us start by studying the renormalization of ρconn in a

scheme in which no power-law divergences are present
(like e.g., minimal subtraction), so that we can use Eq. (4)
without worrying of the complications related to linear
divergences. In this case Polyakov loops do not need any
renormalization, since they are associated to smooth con-
tours, and the denominator hTrðPrÞTrðP†

r0 Þi of Eq. (2) is
finite once charge renormalization is performed. For the
same reason the term TrðP†

r0 Þ in the numerator is also
harmless and we can just concentrate on the term

O1 ¼ TrðPrLUpL†Þ: ð5Þ

The path associated to O1 is not smooth at three point: the
point at which L and L† connects to Pr, the point at which
they connects to Up and the corner point of L and L†. All
the rest of the contour contributes only to linear divergen-
ces, that we are neglecting for the moment.
In studying the renormalization of O1 we have to take

into account the mixing with all the operators that can be
build from O1 using different color contractions at the
crossing points. Eight color contractions can be built
(2 different contractions for each crossing point), however
it is easy to realize, using LL† ¼ 1 and analogous relations,
that all the contractions that are not equal toO1 are equal to

O2 ¼
1

Nc
TrðPrÞTrðUpÞ; ð6Þ

where the 1=Nc factor is needed to keep the same
normalization of Eq. (5). From the previous general
discussion it follows immediately that O2 is multiplica-
tively renormalizable, a fact that will be used soon.
Equation (4) implies that we have to consider in general

an 8 × 8 mixing matrix, which is the tensor product of the
three basic 2 × 2 mixing matrices, however very stringent
constraints are imposed on this 8 × 8matrix by the fact that
only two color contractions are different from each other,
and by the fact that O2 is multiplicatively renormalizable.
Let us discuss explicitly the case dt ¼ 0 (see Fig. 1), in

which we have just the tensor product of two 2 × 2 mixing
matrices and 4 color contractions. Denoting the two 2 × 2

mixing matrices by ZA and ZB we thus have2

0
BBBBB@

OðRÞ
1

OðRÞ
2

OðRÞ
2

OðRÞ
2

1
CCCCCA ¼

�
ZA
00Z

B ZA
01Z

B

ZA
10Z

B ZA
11Z

B

�0BBB@
O1

O2

O2

O2

1
CCCA; ð7Þ

where the apex (R) stands for “renormalized” and

ZB ¼
�
ZB
00 ZB

01

ZB
10 ZB

11

�
: ð8Þ

SinceO2 renormalizes multiplicatively, the coefficients ZA
10

and ZB
10 have to vanish, otherwise OðRÞ

2 would depend also
on O1. If we use ZA

10 ¼ ZB
10 ¼ 0 we see that the last three

lines of Eq. (7) are consistent with each other only if

ZA
00 þ ZA

01 ¼ ZA
11; ZB

00 þ ZB
01 ¼ ZA

11: ð9Þ

It is then simple to verify that Eq. (7) collapses to

�
OðRÞ

1

OðRÞ
2

�
¼

�
Z1 Z2 − Z1

0 Z2

��
O1

O2

�
; ð10Þ

where

Z1 ¼ ZA
00Z

B
00; Z2 ¼ ZA

11Z
B
11: ð11Þ

As a consequence we finally have

OðRÞ
1 −OðRÞ

2 ¼ Z1ðO1 −O2Þ ð12Þ

which means that ρconn renormalizes multiplicatively.
The same argument (which is an adaptation of the one

used in [33]) can be repeated without changes also when

2For the sake of the simplicity we do not show explicitly the
cusp renormalization factors Zðγ1Þ;…; ZðγsÞ, that multiplies all
the lines of the right-hand side of the following equation.

COLOR FLUX TUBES IN SUð3Þ YANG-MILLS THEORY: … PHYS. REV. D 99, 114501 (2019)

114501-3



dt > 0, in which case we have to start from the tensor
product of three 2 × 2 mixing matrices. Since the renorm-
alization constants only depend on the set of intersection
angles, the value of Z1 is the same for all the positive dt
values, but it differs from the one at dt ¼ 0, due to the
presence of new logarithmic divergences for dt > 0.
Let us now consider a renormalization scheme in which

linear divergences are present. The argument to show that
ρconn is multiplicatively renormalizable also in this case is
exactly the same that was used for cyclic Wilson loops in
[34], to which we refer for further details and some
enlightening examples. Here we will just briefly sketch
some basic steps of the proof for the benefit of the reader
and to fix the notation. The main ingredient that is needed is
the relation between an operator acting in the fundamental
representation of SUðNcÞ (that we will denote by U) and
the corresponding operator acting in the adjoint represen-
tation (that we will denote by Uadj), which is

Uadj
ab ¼ 2TrðU†TaUTbÞ; ð13Þ

where Ta are the SUðNcÞ generators, with the normaliza-
tion TrðTaTbÞ ¼ 1

2
δab.

By writing Pr and Up in the base f1; Tag and using
Eq. (13) it is simple to show that

O1 −O2 ¼ TrðPrLUpL†Þ − 1

Nc
TrðUpÞTrðPrÞ

¼ 2
X
ab

TrðPrTaÞLadj
abTrðUpTbÞ: ð14Þ

We thus see that O1 −O2 can be written as a single
generalized loop function in which traces in different
representations are present: two traces in the fundamental
representation (explicitly denoted by Tr) and a trace in the
adjoint representation (the summation on a, b).
This expression is particularly convenient since it was

shown in [34] (using the exponentiation theorems of
[38,39]) that linear divergences factorize also in untraced
loop operators, and they can be cancelled by multiplicative
factors of the form expð−crLðCrÞ=aÞ, where cr is a
representation dependent coefficient, a is the UV cutoff,
and LðCrÞ is the length in physical units of the curve Cr
associated to the representation r.
Applying this result to the operator O1 −O2 we get

½O1 −O2�ðRÞ ¼ exp

�
−
ca
a

�
d
2
þ dt

��

× exp

�
−
cf
a
Lt − 4cf

�
Z1½O1 −O2�; ð15Þ

where cf and ca are the constants associated to the
fundamental and adjoint representations, d

2
þ dt is the

length of the contour in the adjoint representation (see

Fig. 1) and Lt is the temporal extent of the lattice in
physical units. Z1 is the renormalization constant associ-
ated to logarithmic divergences that was previously intro-
duced in Eq. (11), while the term 4cf is associated to the
plaquette, that has length 4a, does not generate linear
divergences in the continuum and can be safely neglected.
Since a factor e−cfLt=a is associated to each Polyakov loop,
we finally have

ρðRÞconn ¼ exp

�
−
ca
a

�
d
2
þ dt

��
Z1ða; dtÞρconn; ð16Þ

where Z1 is independent of d and assumes two different
values for dt ¼ 0 or dt ≠ 0.

III. NUMERICAL RESULTS

A. Setup

As anticipated in the introduction, we study ρconn in four
dimensional SUð3Þ Yang-Mills theory, discretized on the
lattice by using the standard Wilson action [40]:

S ¼
X
p

β

�
1 −

1

3
ReTrUp

�
: ð17Þ

The connected correlator defined in Eq. (2) can be
estimated by using a combination of multihit [31] and
multilevel [32] techniques: multihit can be applied to the
links of the Polyakov loops and to a single link of the
plaquette. The multilevel method can be easily adapted to
measure ρconn, since almost all the links entering LUpL†

are associated to a single time slice of the lattice, with the
only possible exception of three links entering Up (if the
plaquette is a temporal one). The time slice identified by L
has been chosen to lay in the bulk of the corresponding
slice of the multilevel algorithm, so that the links entering L
and L† are updated in the multilevel. If a slice of thickness
Δ ¼ 2a was used for the case of a temporal plaquette, the
upper link of the plaquette would thus be fixed during the
multilevel. However for all the cases studied in this work a
single level of the multilevel algorithm was used, with
slices of thickness Δ ¼ 4a, so that all the links of LUpL†

are updated. The number of internal updates of the
multilevel algorithm was optimized by using a technique
analogous to the one discussed in [32].
Simulations were performed on symmetric lattices

(Ns ¼ Nt), and in Table I we report the simulation details.
The plaquette Up which appears in Eq. (2) was always
chosen to be parallel to the plane identified by the two
Polyakov loops, since we are interested in studying the
longitudinal chromoelectric field, which in all previous
studies was shown to be the dominant component of the
flux tube.
The coupling values were chosen in such a way that

d ¼ 4a, 6a and 8a correspond to the same distance in
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physical units; for this purpose the parametrization of aðβÞ
obtained in [41] was used. Parameters in Table I fix the
physical distance between the Polyakov loops to about
0.37 fm (using r0 ≃ 0.5 fm for the Sommer scale [42]), and
the dimensionless lattice size was rescaled in order to have
(almost) constant physical volume. Note that d ≃ 0.37 fm
is quite smaller than the typical values that have been used
in recent works, which range from 0.54 fm to 0.76 fm (see
e.g., [25,26]). Test simulations were also performed on the
lattice 284 with coupling β ¼ 6.0, which excluded the
presence of sizable finite size effects in our data. Data
points corresponding to different values of dt have been
extracted from independent simulations, hence they are
statistically independent from each other.

B. Results for the chromoelectric field

From the naive continuum limit of ρconn in Eq. (2) we can
define the longitudinal (due to our choice of the plaquette
orientation, see Sec. III A) chromoelectric field by using the
expression

ELðd; dtÞ ¼
ffiffiffiffiffiffiffiffi
β=6

p
a2ðβÞ ρconnðd; dtÞ; ð18Þ

where in our simulations d is fixed to about 0.37 fm, and dt
denotes the transverse distance from the center of the flux
tube (see Fig. 1). From the discussion in Sec. II it follows
that we cannot expect EL defined in this way to have a
nontrivial continuum limit. Indeed data shown in Fig. 2
indicate that ELðd; dtÞ converges to zero as the continuum
limit is approached.
To properly define the continuum limit of EL we have to

use Eq. (16) and define

EðRÞ
L ðd; dtÞ ¼ ZLðd; dt; aÞZ1ða; dtÞELðd; dtÞ; ð19Þ

where Z1ða; dtÞ is the renormalization constant associated
to logarithmic divergences (which is different for dt ¼ 0
and dt ≠ 0), and we introduced the shorthand

ZLðd; dt; aÞ ¼ exp

�
−
ca
a

�
d
2
þ dt

��
ð20Þ

to denote the multiplicative factor needed to remove linear
divergences. To completely define ER

L we thus have to fix
the three constants ca and Z1ða; dtÞ (for dt ¼ 0 and dt ≠ 0).
The numerical value of Z1ða; dtÞ could be computed in

perturbation theory, however some interesting physical
observables can be studied also without a precise knowl-
edge of this renormalization constant. This is due to the fact
that, for dt > 0, Z1 is a multiplicative factor independent of

dt, hence the functional form of EðRÞ
L ðd; dtÞ for dt > 0 is

completely fixed also without any knowledge of Z1.
However, also to study just the functional form of

EðRÞ
L ðd; dtÞ, we need to fix ca.
Since ca is a fundamental property of the discretization

adopted, independent of the specific adjoint loop function
used and of the infrared properties of the theory, we have
the freedom of choosing the simplest numerical setup
available to fix its value. We decided to extract if from
the continuum scaling of the Polyakov loop in the adjoint
representation at finite temperature, which is an observable
that is easily computed to high precision.
For this purpose we performed simulations starting from

a 4 × 163 lattice at β ¼ 5.8 (the deconfinement transition
on Nt ¼ 4 lattices takes place at βc ¼ 5.6925ð2Þ, see [43]),

0 0.2 0.4

dt [fm]

0

2

4

6

8

E
L
(d

, d
t)

 / 
3 

[f
m

-2
]

β=6.0
β=6.2601
β=6.47466

FIG. 2. ELðd; dtÞ computed from Eq. (18) for three values of
the coupling constant and d ≃ 0.37 fm.

TABLE I. Simulation parameters: Ns is the lattice extent in
lattice units, β is the bare coupling constant, aðβÞ is the lattice
spacing, d the distance between the Polyakov loops in lattice
units, and nupd the number of internal updates of the multilevel
algorithm.

Ns β aðβÞ [fm] d nupd

20 6.0 0.0931 4 200
28 6.2601 0.0621 6 1000
36 6.47466 0.0456 8 3000

TABLE II. Simulation points used to fix the value of the
renormalization constant ca.

Nt Ns β

4 16 5.8
5 20 5.91225
6 24 6.01388
7 28 6.10767
8 32 6.19513
9 36 6.27708
10 40 6.35394
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then increasing the value of Nt keeping the physical
temperature constant and the aspect ratio fixed to 4, see
Table II. The average value of the Polyakov loop in the
adjoint representation can be computed by using the
relation

TrPadj ¼ jTrPj2 − 1; ð21Þ

which is an easy consequence of Eq. (13), and from the
discussion in Sec. II if follows that hTrPadji scales to the
continuum as expðcaNtÞ.
Numerical results obtained for hTrPadji are shown in

Fig. 3, in which some deviations from the asymptotic
expðcaNtÞ behavior are also visible. To extract the value of
ca fits of the form

lnhPadji ¼ k0 þ caNt þ
k1
Nt

þ k2
N2

t
ð22Þ

have been performed, and the stability of the fit under
changes of the fit range and of the functional form adopted
(i.e., by setting k2 ¼ 0) has been investigated. As our final
estimate we report the value

ca ¼ −0.45ð2Þ: ð23Þ

Using this value for ca we can remove linear divergences
from ELðd; dtÞ, and in Fig. 4 the values of ZLðd; dt; aÞ ×
ELðd; dtÞ are shown as a function of dt (in physical units).
The lattice spacing dependence of data in Fig. 4 is much
milder than that observed in Fig. 2, however we have to
remember that the renormalization factor Z1ða; dtÞ, needed
to take care of logarithmic divergences, is still missing.
A consequence of this fact is that the scaling to the
continuum of points associated to distances dt ¼ 0 and
dt > 0 is different, as can be seen in Fig. 4 and will be most
clearly evident from the considerations of the next section.

C. Dual superconductivity parameters

According to the dual superconductor model of color
confinement [44–46] the vacuum of non-Abelian gauge
theories behaves as a “dual” superconductor, in which
condensation of chromomagnetic degrees of freedom pro-
duces a “dual” Meissner effect, that squeezes the chromo-
electric field lines into flux tubes producing confinement.
The characteristic feature of this model is to provide a
conceptually simple and physically appealing framework to
interpret some nonperturbative aspects of gauge theories.
A generic feature of any superconductor (dual or not) is

the presence of two typical lengths in the infrared effective
theory: the coherence length ξ and the penetration length λ.
The values of these lengths characterize the functional form
of the flux tube profile, with the penetration length being
associated to the exponential decrease of the field far from
the center of the flux tube. In order to determine both ξ and
λ starting from the data presented in the previous section,
we will follow the approach first adopted in [24] (and then
used in [25,26,28,29]).
In this approach the following parametrization of the

longitudinal component of chromoelectric field inside the
flux tube is used:

EðRÞ
L ðdtÞ ¼

ϕ

2π

μ2

α

K0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2d2t þ α2

p
Þ

K1ðαÞ
; ð24Þ

where K0, K1 are modified Bessel functions of the second
kind, and ϕ; α and μ are fit parameters. This is the “dual”
version of the parametrization introduced in [47] for the
longitudinal magnetic field inside a vortex line in type II
superconductors. The parameter μ is just the inverse of the
penetration length, μ ¼ 1=λ, while the relation between the
fit parameters in Eq. (24) and the coherence length is less
direct: it can be shown (see [47]) that the Ginzburg-Landau
parameter κ ¼ λ=ξ is related to α by the relation

0 0.1 0.2 0.3 0.4

dt [fm]

0

5

10

15

20

Z
L
(d

,d
t,a

) 
E

L
(d

, d
t)

 / 
3 

[f
m

-2
]

β=6.0
β=6.2601
β=6.47466

FIG. 4. Continuum scaling of ZLðd; dt; aÞELðd; dtÞ for
dt ≃ 0.37 fm.

4 5 6 7 8 9 10

Nt

-8

-7

-6

-5

-4

-3

ln
 〈 

T
r 

Pad
j
〉

FIG. 3. Continuum scaling of hTrPadji in the high temperature
phase. The continuous line is the result of a fit of the form
k0 þ caNt þ k1=Nt.
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κ ¼
ffiffiffi
2

p

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

K2
0ðαÞ

K2
1ðαÞ

s
: ð25Þ

Values of κ smaller than 1=
ffiffiffi
2

p
correspond to supercon-

ductors of type I, while κ > 1=
ffiffiffi
2

p
for type II super-

conductors (see e.g., [48]).
If we try to fit each of the fixed β data sets shown in

Fig. 4 by using the parametrization in Eq. (24), we
immediately realize that the quality of the fits degrades
as the coupling is increased. This is a consequence of the
previously noted fact that data points at dt ¼ 0 and at
dt > 0 scale to the continuum in different ways, due to the
different logarithmic divergences in the two cases. If on the
other hand we simply discard the point at dt ¼ 0 from each
of our data sets, the precision of our data is not enough
for the fit to provide significant information on α, and
consequently on the Ginzburg-Landau parameter κ.
We thus decided to perform a combined fit of all our data

at dt > 0 keeping three different ϕ parameters, correspond-
ing to the three lattice spacings used, since ϕ is sensitive to

the multiplicative renormalization Z1ða; dÞ. Using ca ¼
−0.45 we obtain the best fit shown in Fig. 5 and the final
results for the superconductivity parameters are

1

λ
¼ μ ¼ 7.4ð6Þ fm−1; α ¼ 0.7ð2Þ; κ ¼ 1.8ð6Þ;

ð26Þ

while the values obtained for the ϕs parameters shown in
Fig. 6. The χ2 test for this fit gives χ2=dof ¼ 16=10 that is
somehow large but still acceptable, and the final results are
almost unchanged also for ca ¼ −0.47 and ca ¼ −0.43,
which means that the uncertainty in ca is not the main
source of error in our final results.

IV. CONCLUSIONS

In this paper we presented the results of our study of the
longitudinal chromoelectric component of the color flux
tube, performed by using the connected correlator.
Measures were carried out by means of stochastically exact
techniques, without any smoothing, in order to investigate
the possibility of using the connected correlator ρconn in a
coherent field-theoretical setup.
We first investigated the renormalization properties of

ρconn, showing that it is multiplicatively renormalizable,
and reducing the problem of its renormalization to the
determination of three renormalization constants. One of
these constants (denoted by ca) is related to linear diver-
gences, while the other two take care of the logarithmic
divergences in the cases dt ¼ 0 and dt ≠ 0 respectively.
We then fixed the value of ca, by studying the β

dependence (at fixed temperature) of the Polyakov loop
in the adjoint representation. Using the value of ca obtained
in this way [ca ¼ −0.45ð2Þ], we removed linear divergen-
ces from ρconn, obtaining the results shown in Fig. 4. While
it is important to stress that these data are still not
renormalized (since logarithmic divergences have not been
removed), it is possible to extract from them quantities of
direct physical interest.
In particular, starting from the functional form of the

longitudinal chromoelectric field, we evaluated the coher-
ence length ξ and the penetration length λ of the dual
superconductor model. The numerical values of these
quantities, extracted using a flux tube of length d≃
0.37 fm, are reported in Eq. (26). The values of ξ, λ and
κ reported in the literature have been obtained using quite
larger d values, so that a direct comparison cannot be
performed. It is nevertheless interesting to note that our
estimate of the penetration length λ is in good agreement
with previous determinations. Our Ginzburg-Landau
parameter (and consequently our coherence length) is
instead quite different from the one obtained in similar
studies carried out by using smoothing [24,25] (where κ ≈
0.2 was found), being closer to older results suggesting the
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FIG. 5. Same data as in Fig. 4, together with 1σ bands obtained
from the combined fit described in the text.
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FIG. 6. Continuum scaling of the parameters ϕ obtained by
using the combined fit described in the text.
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SUð2Þ vacuum to be at the boundary between type I and
type II superconductivity [49–54].
This result suggests that smoothing could introduce

some systematics in the determination of the flux tube
profile, and we get the following intuitive picture: ξ is the
typical scale of the bulk of the flux tube, which broadens
under smoothing, while λ is related to the large distance
behavior of the tails, which is almost unaffected by
smoothing. As a consequence we expect smoothing to
leave almost unaltered λ and to decrease κ ¼ λ=ξ.
While this picture seems appealing we also have to keep

in mind the limitations of our computation: first of all our
determination of κ has a 30% relative error, so this effect
could just be a statistical fluctuation. Moreover the distance
between the Polyakov loops used to extract ξ and λ was
only about 0.37 fm, which is surely not asymptotically
large; as a consequence a contamination from the Coulomb
component of the flux tube is possible (see [27] for a
discussion on this point).
As noted before, most of the results reported in the

literature adopt quite larger values of d to extract λ and ξ, so
that a fair comparison with our results Eq. (26) is not
possible. However a direct comparison can be made

between Fig. 6 above and Fig. 2 of [25], where the flux
tube profile is reported for the case β ¼ 6.0 and d ¼ 4a
(computed by using a 204 lattice): the half-width at half-
maximum of the flux tube in Fig. 6 (for β ¼ 6.0) is about
0.12 fm, while the corresponding value extracted from
Fig. 2 of [25] is about 0.23 fm. This is consistent with the
possibility that smoothing increases the thickness of the
flux tube.
A more complete investigation of the long distance

structure of the flux tube, performed by using higher
statistics and larger values of the distance between the
Polyakov loops, is surely matter for further studies, just as
the determination of the renormalization constants asso-
ciated to the logarithmic diverges of ρconn.
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