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We prove a lower bound for the modulus of the amplitude for a two-body process at large scattering
angles. This is based on the interplay of the analyticity of the amplitude and the positivity properties of its
absorptive part. The assumptions are minimal, namely, those of local quantum field theory (in the case
when dispersion relations hold). In the Appendix A, lower bounds for the forward particle-particle and
particle-antiparticle amplitudes are obtained. This is of independent interest.
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I. INTRODUCTION

In 1963, Cérulus and one of us (A.M.) obtained a lower
bound on the scattering amplitude at large angles [1]. It is
not exactly a lower bound at a given angle because it is
impossible to prevent the scattering amplitude from van-
ishing at a given point. What we obtained is a lower bound
on the maximum of the modulus of the amplitude in some
finite angular interval. The assumption made was the
validity of the Mandelstam representation with a finite
number of subtractions [2]. Another assumption was that
the forward scattering amplitude cannot decrease faster
than a power of s, the square of the c.m. energy. However,
this assumption was removed by Jin and Martin in 1964 [3]
since, at least for ππ, pπ, Kπ scattering, the forward
amplitude cannot decrease faster than 1=s2 because of
the positivity of the absorptive part in the forward direction.
More exactly, there is at least a sequence of energies going
to infinity for which this is true. The lower bound was

C exp ð− ffiffiffi
s

p
ln sÞ

where s is the square of the center-of-mass energy. At the
time, it was a rather good surprise because experiments done
by the Cornell group indicated that the large angle proton-
proton scattering amplitude behaved like C exp ð− ffiffiffi

s
p Þ [4].

Thus, we disagreed with experiment only by a factor ln s in
the exponential.
It so happens that this lower bound is violated by the

Veneziano amplitude [5]. This is not astonishing because
the Veneziano amplitude implies linearly rising Regge

trajectories which means an infinite number of subtractions.
Thus, Veneziano asked if there exists a “rigorous lower
bound” (in the sense previously given) on the large angle
scattering amplitude. After the work of one of us on the
enlargement of the domain of analyticity in local field theory
by using positivity properties of the absorptive part [6] and
also the obtention of a lower bound of the forward absorptive
part [7], this turned out to be possible, but the problem was
left unsolved for about 50 years. In the present work we give
an answer, probably the best possible one, but this answer
is unfortunately an extremely small lower bound; thus, we
publish our results rather as a matter of principle.
The strategy is the following:
(1) From [6] the absorptive part of the scattering

amplitude is analytic in an ellipse in the cos θ
variable with foci at �1 and a right extremity at
cos θ ¼ 1þ 2m2

π=k2, k being the c.m. momentum.
The modulus of the absorptive part is maximum at
the right extremity of the ellipse, and morally the
absorptive part is bounded by s2 in the ellipse.
Morally means that we only know from [6] that the
integral of the absorptive part, divided by s3, over s,
is convergent for fixed momentum transfer, t ¼
4m2

π − ε, ε > 0 arbitrarily small. In the special
case of ππ scattering this integral is completely
under control from the absolute bounds obtained
previously ([8–10]).

(2) As we said before, the forward scattering amplitude
has a moral lower bound 1=s2; since the diffraction
peak cannot be arbitrarily small because of the size
of the ellipse, the elastic cross.section has a lower
bound, and hence the forward absorptive part has a
lower bound which is 1=s5ðlog sÞ2 [7].

(3) If we have an upper bound on some angular interval
of −a < cos θ < þa and also an upper bound on
the border of the ellipse, we can interpolate between
these two bounds because the logarithm of the
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modulus of the absorptive part is a subharmonic
function (of cos θ), and we can get an upper bound
anywhere inside the ellipse, in particular, at
cos θ ¼ 1, i.e., the forward direction. If the postu-
lated bound on the interval ð−a;þaÞ is too low, we
will get a contradiction with the lower bound that
we have in the forward direction. So the postulated
upper bound on ð−a;þaÞ cannot be arbitrarily
small.

However, things are not as simple as that because the
lower bound on the scattering amplitude is only for discrete
values of the energy; also, even if we assume that every-
thing is continuous, we do not know if, precisely, for these
discrete values, the absorptive part in the ellipse is bounded
by s2. To overcome this problem we replace the scattering
amplitude by an average over some energy interval. The
average has all the nice properties we want, but, as we shall
see, we lose 1 power of s in the bound on the absorptive
part; however, this is unimportant. The next section is
devoted to this averaging. The following section explains
the interpolation described in (3) and gives the results.
Details are given in the appendixes.

II. NECESSITY OF AN AVERAGING OF THE
SCATTERING AMPLITUDE

ON THE ENERGY

As stressed by Common [11] and Yndurain [12],
we only know from [6] that the integral over the absorptive
part As, Z

∞

ðM1þM2Þ2
Asðs; t ¼ 4m2

π − εÞ
s3

ds; ð2:1Þ

is convergent. This does not mean that As is less than s2.
In fact As can be very large or even infinite for isolated
values of s.
Since the forward scattering has a positive imaginary

part for s > 0 and a negative imaginary part for s < 0, it
has been shown [3], for a crossing-symmetric amplitude,
that lim sup s2jFðs; 0Þj > 0. This means that there is
a sequence of values of s, fsig, going to infinity, for
which limi→þ∞ s2i jFðsi; 0Þ > 0. In fact, in all nonreal
directions, lim s2jFðs; 0Þj > 0. For non-crossing-symmet-
ric amplitudes, such as πþp → πþp and π−p → π−p, we
show in the present paper that lim s2þϵjFðs; 0Þj > 0, ϵ > 0
arbitrarily small, both for s → þ∞ and s → −∞ (i.e.,
u → þ∞). This will be proved in Appendix A. Thus, our
results also hold for a nonsymmetric amplitude. The
presence of ϵ is inessential.
Concerning the absorptive part, we have, from the

optical theorem, Asðs; 0Þ > sσtotal > sσelastic, and we need
a lower bound on σelastic. Assume provisionally that,
for t ¼ 4m2

π − ε, the absorptive part is bounded by sN.
We know that we cannot really assume that, but it will be

corrected later by averaging. Then, using Schwarz’s
inequality, we have

����X∞
l¼0

ð2lþ 1Þfl
���� ≤

����XL
l¼0

ð2lþ 1Þfl
����þ

���� X∞
l¼Lþ1

ð2lþ 1Þfl
����

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�XL
l¼0

ð2lþ 1Þjflj2
�vuut × ðLþ 1Þ þ

���� X∞
l¼Lþ1

ð2lþ 1Þfl
����

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�XL
l¼0

ð2lþ 1ÞImfl

�vuut × ðLþ 1Þ þ
���� X∞
l¼Lþ1

ð2lþ 1Þfl
����;

ð2:2Þ

where L will be chosen later. If the absorptive part is
bounded by sN for T < 4m2

π,����Xð2lþ 1ÞImflPl

�
1þ T

2k2

����� < sN; ð2:3Þ

so by Schwarz’s inequality

����X∞
Lþ1

ð2lþ 1Þfl
����2 ≤ X∞

Lþ1

2lþ 1

Plð1þ T
2k2Þ

X∞
0

ð2lþ 1ÞPl Im fl:

ð2:4Þ

The second factor in (2.4) is bounded by sN. The first factor
can be calculated by using the inequality

PlðxÞ >
1

3

�
xþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p �
l

for x > 1 ð2:5Þ

which follows from the integral representation of Legendre
polynomials. We get, choosing L ¼ P

ffiffiffi
s

p
log s, an asymp-

totic upper bound

s−P
ffiffi
T

p
2
ffiffi
2

p
×
3Ps log sffiffiffi

T
p : ð2:6Þ

Choosing P large enough compared to N, the second term
in (2.2) is negligible, and we get

jFðs; 0Þj2 < P2sðlog sÞ2Asðs; 0Þ: ð2:7Þ

If

jFðs; 0Þj > 1

s2�ε ; ð2:8Þ

we get

As > C
1

s5�2εðlog sÞ2 : ð2:9Þ
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Unfortunately we cannot assume Asðs; TÞ < sN , but this
will be remedied now by averaging the amplitude over an
energy interval.
To solve the problem we propose making an average

over energies. We define

fðs; cos θÞ ¼ Fðs; t; uÞ;
cos θ ¼ 1þ t

2k2
: ð2:10Þ

Now we average f over an energy interval Δ:

fΔðs; cos θÞ ¼
1

Δ

Z
s

s−Δ
fðs0; cos θÞds0: ð2:11Þ

This averaging is mainly interesting for s physical.
However, in the special case of cos θ ¼ 1, it remains
meaningful for s < 0, i.e., for the u channel. We take Δ
smaller than the interval between the left cut and the right
cut, and it follows that

lim sup
s→þ∞

jfΔðs; 1Þjs2þε > 0 ð2:12Þ

as in the case of f.
The reason why we take this averaging is that unitarity of

the partial waves survives:

fΔlðsÞ ¼
1

Δ

Z
s

s−Δ
flðs0Þds0: ð2:13Þ

Now

Im fΔlðsÞ ¼
1

Δ

Z
s

s−Δ
Im flðs0Þds0 >

1

Δ

Z
s

s−Δ
jflðs0Þj2ds0:

ð2:14Þ

But by Schwarz’s inequality

1

Δ

Z
s

s−Δ
jflðs0Þj2ds0 ≥

1

Δ2

����
Z

s

s−Δ
jflðs0Þjds0

����2; ð2:15Þ

so

Im fΔlðsÞ > jfΔlðsÞj2: ð2:16Þ

The absorptive part is then averaged as

aΔðs; cos θÞ ¼
X∞
l¼0

Im fΔlðsÞPlðcos θÞ; ð2:17Þ

aΔðs; cos θÞ ¼
1

Δ

Z
s

s−Δ
Asðs0; t ¼ ðcos θ − 1Þ2k02Þds0:

ð2:18Þ

For cos θ > 1 we see that in the integrand Asðs0; t ¼
ðcos θ − 1Þ2k02Þ is less than Asðs0; t ¼ ðcos θ − 1Þ2k2Þ
since, in the interval 0 ≤ t < 4m2

π , As increases because
the Legendre polynomial expansion converges.
Now remember that, according to [6],

Z
∞

ðMAþMBÞ2
Asðs0; tÞ

s03
ds0 converges for t < 4m2

π: ð2:19Þ

Hence, for fixed s ≥ ðMA þMBÞ2 þ Δ and t < 4m2
π ,

aΔ

�
s; cos θ ¼ 1þ t

2k2

�
≤

1

Δ

Z
s

s−Δ
Asðs0; tÞds0

≤
s3

Δ

Z
∞

ðMAþMBÞ2
Asðs0; tÞ

s03
ds0: ð2:20Þ

We conclude that

aΔ

�
s; cos θ ¼ 1þ t

2k2

�
< Cs3 for t < 4m2

π: ð2:21Þ

Thus, the previous argument, applied to As with the
assumption Aðs; tÞ < sN for t < 4m2

π, applies also to aΔ
with N ¼ 3. We realize that we are losing one power of s,
but this is unimportant. We conclude that

aΔðsi; cos θ ¼ 1Þ > C

s5þ2ε
i ðlog siÞ2

ð2:22Þ

where si belongs to the sequence where jfΔðs; cos θ ¼
1Þjs2þε approaches infinity.

III. THE LEAST UPPER BOUND FOR j cos θj ≤ a

Now we have all the ingredients to find a least upper
bound of the scattering amplitude in an angular interval
j cos θj ≤ a, for instance, j cos θj ≤ 1

2
:

aΔðsi; cos θ ¼ 1Þ > C

s5þ2ε
i ðlog siÞ2

; ð3:1Þ

aΔ

�
s; cos θ ¼ 4m2

π − η

2k2

�
< Cs3: ð3:2Þ

This bound, because of the positivity of the Im fΔl’s, holds
in the whole ellipse with foci at cos θ ¼ �1 and extremity

at cos θ ¼ 1þ 4m2
π−η

2k2 , with η positive arbitrarily small.
To interpolate between the bounds (3.1) and (3.2) we use

the following fact (proved in Appendix B): let f be a
function that is holomorphic in the domain DL bounded
by the ellipse EL with foci �1 and semi-major axis chðLÞ,
L > 0,
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EL ¼ fz ∶ z ¼ cosðθ þ iLÞ; θ ∈ Rg;
DL ¼ fz ∶ z ¼ cosðθ þ iyÞ; θ ∈ R; y ∈ R; jyj < Lg:

ð3:3Þ

We suppose that jfj ≤ M on DL and jfðzÞj ≤ m∀ z ∈
½−a; a�, where 0 < m < M and a ¼ cosðbÞ, 0 < b < π=2.
Then

jfð1Þj < M1−αmα; ð3:4Þ

where, for very small L,

α ¼ 4

π
exp

�
−πb
2L

�
ð3:5Þ

[α is the quantity denoted 1 −Hð1Þ in Appendix B].
We can rewrite (3.4) in the form

m ≥ M

�jfð1Þj
M

�1
α

: ð3:6Þ

We apply this to the case when z ¼ cosðθÞ,
fðzÞ ¼ aΔðs; cosðθÞÞ, and s belongs to a certain real
sequence tending to infinity such that (3.1) holds.
We suppose, for simplicity, that all masses are equal to 1.
We choose a ¼ 1

2
⇒ b ¼ π=3. The semi-major axis of the

ellipse is chðLÞ,

chðLÞ ¼ 1þ 4

2k2
; k2 ¼ s

4
− 1;

L2

2
∼
8

s
;

L ∼
4ffiffiffi
s

p : ð3:7Þ

Hence

α ¼ 4

π
exp

�
−π2

ffiffiffi
s

p
24

�
: ð3:8Þ

According to (3.2), we can take M ¼ C1s3. On the other
hand, by (3.1),

jfð1Þj ¼ jaΔðs; cosðθÞ ¼ 1Þj > C2

s5 logðsÞ2 : ð3:9Þ

Therefore [using (3.6)]

m ¼ sup
j cosðθÞj<1

2

jaΔðs; cosðθÞj

≥ C3s3½C4s8 logðsÞ2�−π
4
expðπ2

ffiffi
s

p
24

Þ: ð3:10Þ

This clearly implies similar lower bounds for Asðs; tÞ
and Fðs; tÞ.

This result is rather disappointing but, as a matter of
principle, we see that it is not zero. For different values of a
we get the same qualitative behavior. For a nonsymmetric
amplitude, like πþπ− → πþπ−, we can get a lower bound
for −1 ≤ cos θ ≤ −a, 0 ≤ a < 1. Spin complications can
be overcome. Following Mahoux and Martin [13] we can
take as the amplitude the sum of all diagonal helicity
amplitudes, which, in both the s channel and the u channel,
has the right positivity properties of the absorptive parts.

APPENDIX A: LOWER BOUNDS FOR
THE PARTICLE-PARTICLE AND

PARTICLE-ANTIPARTICLE FORWARD
SCATTERING AMPLITUDES

In [3] a lower bound for a crossing-symmetric forward
scattering amplitude was obtained. This is the case for,
for instance, the π0p → π0p scattering amplitude. If the
scattering amplitude is not crossing-symmetric, we can
always symmetrize it, but then one gets a lower bound
only on the average, say 1

2
½AB → ABþ AB̄ → AB̄�; we can

only say that it applies to one of the amplitudes, but one
does not know which one. Here, at the price of a very small
weakening of the lower bound, we get lower bounds
separately for AB → AB and AB̄ → AB̄.
We assume that the forward scattering amplitude satisfies a

dispersion relation with a finite number of subtractions N.
Above the right-hand cut ImFAB→ABðsÞ > 0. On the left-
hand cut ImFAB̄→AB̄ðuÞ > 0, with u ¼ 2ðM2

A þM2
BÞ − s,

which means that, above the left-hand cut, the imaginary
part is negative.
First we study a function GðzÞ ¼ Gðz̄Þ with a positive

imaginary part above both cuts, with a finite number of
subtractions N. We may suppose N even (otherwise we use
N þ 1). ImGðzÞ vanishes in an open interval containing 0.

GðzÞ ¼
XN−1

n¼0

cnzn þ
zN

π

Z þ∞

−∞

ImGðz0Þdz0
ðz0 − zÞz0N ;

ImGðzÞ ≥ 0 for real z: ðA1Þ

First we shall prove that GðiyÞ
yN → 0 when y → þ∞.

GðiyÞ ¼
XN−1

n¼0

cnðiyÞn þ
ðiyÞN
π

Z þ∞

−∞

ImGðz0Þdz0
ðz0 − iyÞz0N : ðA2Þ

jGðiyÞj ≤ Polynomial of degreeN − 1

þ yN

π

Z
−M

−∞

ImGðz0Þdz0
jz0jNþ1

þ yN

π

Z
∞

M

ImGðz0Þdz0
z0Nþ1

þ yN−1

π

Z
M

−M

ImGðz0Þdz0
jz0jN : ðA3Þ
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By taking M large enough, we can make the first two
terms less than εyN . The third term is bounded by

CyN−1 ¼ 1
y Cy

N . So, for y → ∞, j GðiyÞyN j ≤ 3ε; however, ε

can be taken arbitrarily small, so

lim
y→∞

����GðiyÞyN

���� ¼ 0: ðA4Þ

Suppose we have, at the same time,

lim

����GðzÞzN

���� → 0 for jzj → ∞; Arg z ¼ π

2
; ðA5Þ

and

GðzÞjzj1þα → 0 for jzj → ∞; Arg z ¼ 0: ðA6Þ

Then construct H:

HðzÞ ¼ GðzÞ exp
�
ð1þ αÞ log zþ i

π
ðN þ 1þ αÞðlog zÞ2

�
:

ðA7Þ

Then HðzÞ tends to 0 as jzj → ∞ both for Arg z ¼ 0 and
Arg z ¼ π

2
. By the Phragmén-Lindelöf theorem HðzÞ tends

to 0 as jzj → ∞ for 0 ≤ Arg z ≤ π
2
. Thus,

lim
jzj→∞

jGðzÞjjzjð1þα−2
πθð1þαþNÞÞ ¼ 0; θ ¼ Arg z ∈

�
0;
π

2

�
:

ðA8Þ

In particular,

lim
jzj→∞

jGðzÞjjzjð1þα
2
Þ ¼ 0 for 0 ≤ θ ≤ θ0 ¼

π

4

α

1þ αþ N
:

ðA9Þ

In what follows we shall eliminate subtractions by differ-
entiating G N þ 1 times. We need a bound on ð ddzÞNþ1GðzÞ
somewhere in the angle 0 < θ < θ0. We shall take

z0 ¼ jz0jei
θ0
2 . The disk jz − z0j < jz0j sinðθ0=2Þ is con-

tained in the angular interval 0 < θ < θ0 (see Fig. 1).

Using the Cauchy integral for ð ddzÞNþ1GðzÞ at z ¼ z0,
we get

lim
z0→∞

�
jz0j

�
1 − sin

θ0
2

��ð1þα
2
Þ

×
jz0 sinðθ02 ÞjNþ1

ðN þ 1Þ!
�
d
dz

�
Nþ1

Gðz0Þ ¼ 0: ðA10Þ

However, we can also estimate ð ddzÞNþ1GðzÞ from the
dispersion relation�

d
dz

�
Nþ1

GðzÞ ¼ ðN þ 1Þ!
π

Z
∞

−∞

ImGðz0Þdz0
ðz0 − zÞNþ2

: ðA11Þ

We shall find a lower bound for the real part of this quantity.
Here the positivity of ImGðz0Þ in the integral is essential,
and the evenness of N is used.
We suppose 0 < α < 1. If z0 ≤ 1

2
jz0j cos θ02 we have (see

Fig. 1)

0 < Arg ðz0 − z0Þ ≤ θ1 ¼ Arg

�
z0 −

1

2
jz0j cos

θ0
2

�

< θ0 ¼
π

4

α

1þ αþ N
; ðA12Þ

0 < Arg ððz0 − z0ÞNþ2Þ < π

4

ðN þ 2Þα
1þ αþ N

<
απ

2
: ðA13Þ

Therefore

Re

�
d
dz

�
Nþ1

Gðz0Þ ≥
ðN þ 1Þ!

π

Z 1
2
jz0j cosθ02

−∞

×
ImGðz0Þ cosðαπ=2Þdz0

jz0 − z0jNþ2

−
ðN þ 1Þ!

π

Z
∞

1
2
jz0j cosθ02

×
1

jz0 sin θ0
2
jNþ2

ImGðz0Þdz0; ðA14Þ

but ImGðz0Þ < Cjz0j−ð1þαÞ from (A6); thus, the second term
is less than jz0j−ðNþ2þαÞ. The first term is larger than

C
jz0 þMjNþ2

Z
M

−M
ImGðz0Þdz0: ðA15Þ

Thus, for jz0j large, the second term is negligible, but then
(A15) contradicts (A10). The conclusion is that

lim sup
z→∞

jGðzÞjz1þα > 0; α > 0 arbitrarily small:

ðA16Þ

In fact, it reaches infinity.

0

z0

|z0| cos (θ0/2)
θ0

(|z0|/2) cos (θ0/2)
θ1

FIG. 1. The point z0.
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1. Application to the scattering amplitude

Note that FðsÞ satisfies a dispersion relation with two
cuts corresponding to the processes AB → AB and
AB̄ → AB̄. Define z ¼ s −M2

A −M2
B. We keep the notation

FðzÞ. Since the imaginary part above the right-hand cut is
positive and the imaginary part above the left-hand cut is
negative, multiply FðzÞ by z:

GðzÞ ¼ zFðzÞ: ðA17Þ

Then the previous results apply, and we have separately

lim sup
s→þ∞

jFðsÞjs2þα > 0; ðA18Þ

α > 0 arbitrarily small, for the reaction AB → AB, and

lim sup
u→þ∞

jFðuÞju2þα > 0; ðA19Þ

for the reaction AB̄ → AB̄.
Notice that these results persist if we convolute F with a

positive function with compact support w:

FwðsÞ ¼
Z

Fðs0Þwðs − s0Þds0: ðA20Þ

APPENDIX B: A PROBLEM OF ESTIMATION

Let f be a function holomorphic on the domain DL
bounded by the ellipse EL with foci �1 and semi-major
axis chðLÞ, L > 0,

EL ¼ fz ∶ z ¼ cosðθ þ iLÞ; θ ∈ Rg;
DL ¼ fz ∶ z ¼ cosðθ þ iyÞ; θ ∈ R; y ∈ R; jyj < Lg: ðB1Þ

We suppose

jfðzÞj ≤ M for all z ∈ DL;

jfðzÞj ≤ m for all z ∈ ½−a; a�; ðB2Þ

where 0 < m < M and a ¼ cosðbÞ, 0 < a < 1, 0 < b <
π=2. We seek an upper bound for jfð1Þj. General theorems
(see e.g., pages 141–145 in [14]) assert the existence and
uniqueness of a function H, harmonic on DLn½−a; a� (i.e.,
DL minus a cut along the segment ½−a; a�) and continuous
at the boundary, and such that H ¼ 1 on EL and H ¼ 0 on
½−a; a�. For every z ∈ DLn½−a; a�, 0 < HðzÞ ¼ Hð−zÞ ¼
Hðz̄Þ < 1 and

log jfðzÞj ≤ HðzÞ logðMÞ þ ½1 −HðzÞ� logðmÞ
∀ z ∈ DL: ðB3Þ

Indeed log jfðzÞj is subharmonic in DLn½−a; a�, and at the
boundary it is majorized by the harmonic function which

appears on the rhs of (B3) (see e.g., pages 16–18 in [15]
and page 132 in [14]). In particular,

log jfð1Þj ≤ Hð1Þ logðMÞ þ ½1 −Hð1Þ� logðmÞ: ðB4Þ

It is possible to give an exact determination of H, but we
give cruder upper and lower bounds for it, which describe
more explicitly its behavior when L tends to 0. We use the
notation

Cþ ¼ −C− ¼ fz ∈ C ∶ Im z > 0g;D ¼ fz ∈ C ∶ jzj < 1g:
ðB5Þ

By a “conformal map” we always mean a holomorphic
injective map.

1. Upper and lower bounds for H

Let hðzÞ ¼ HðcosðzÞÞ. This function is harmonic and
even, and it has period π in the domain

SLn⋃
n∈Z

ðI þ nπÞ; ðB6Þ

SL ¼ fz ∶ jIm zj < Lg; ðB7Þ

I ¼ ½b; b0�; b0 ¼ π − b >
π

2
> b: ðB8Þ

Note that −I ¼ I − π and that ⋃n∈ZðI þ nπÞ ¼
cos−1ð½−a; a�Þ. In the domain (B6), 0 < hðzÞ < 1. The
function h is continuous at the boundary of this domain and
takes the value 1 on the edges of SL, i.e., R� iL, and the
value 0 on the cuts I þ nπ. Note that Hð1Þ ¼ hð0Þ.
Let U be the smaller domain consisting of the strip SL

minus two cuts on ð−∞;−b� and ½b;þ∞Þ. Note that h is
harmonic in U and continuous at its boundary (see Fig. 2).
We can conformally map U onto the upper half-plane by

a map ψ2∘ψ1.
The map ψ1 conformally maps the strip SL ¼ fz ∶

jIm zj < Lg onto the cut plane Cþ ∪ C− ∪ ð−1; 1Þ:

-b’ -b b b’

iL

-iL

U

0

h= 0

h= 0

0 ≤ h < 1

0 ≤ h < 1

h= 0

h= 0

0 ≤ h < 1

0 ≤ h < 1

h= 1 h= 1

h= 1 h= 1

FIG. 2. The domain U and boundary values for h.
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Z ¼ ψ1ðzÞ ⇔ z ¼ L
π
log

�
1þ Z
1 − Z

�
; Z ¼ th

�
πz
2L

�
:

ðB9Þ

It maps the cut strip U pictured in Fig. 2 onto the cut plane
Cþ ∪ C− ∪ ð−c; cÞ, where

c ¼ ψ1ðbÞ ¼ th

�
πb
2L

�
; c0 ¼ ψ1ðb0Þ ¼ th

�
πb0

2L

�
:

ðB10Þ

Recall that b0 ¼ π − b > b so that 1 > c0 > c. Denoting
vðZÞ ¼ hðψ−1

1 ðZÞÞ, the domain and boundary values for v
are pictured in Fig. 3. The points Z ¼ �1 are images of
z ¼ �∞, so v is not continuous there. It is continuous at all
the other boundary points of the cut plane.
The map ψ2 conformally maps the cut plane Cþ ∪ C− ∪

ð−c; cÞ (pictured in Fig. 3) onto the upper half-plane Cþ.

ζ ¼ ψ2ðZÞ ⇔ Z ¼ c
2

�
ζ þ 1

ζ

�
;

ζ ¼ Z
c
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Z
c

�
2

− 1

s
: ðB11Þ

In this formula the function t ↦
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 1

p
is defined to be

holomorphic with a positive imaginary part in the cut plane
Cþ ∪ C− ∪ ð−1; 1Þ. Hence ψ2ðZ̄Þ ¼ 1=ψ2ðZÞ. If t is real
with t > 1, then

ðtþ i0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtþ i0Þ2 − 1

q
¼ tþ

��� ffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 1

p ���þ i0; ðB12Þ

ðt − i0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − i0Þ2 − 1

q
¼ t−

��� ffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 1

p ���þ i0

¼ 1

tþ j
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 1

p
j
þ i0: ðB13Þ

The image ψ2ðC−Þ of the lower half-plane is D ∩ Cþ,
ψ2ð0Þ ¼ i, and ψ2ð−i∞Þ ¼ 0. Let A0 ¼ ψ2ð1 − i0Þ,
B0 ¼ ψ2ð1þ i0Þ, A ¼ ψ2ðc0 − i0Þ, B ¼ ψ2ðc0 þ i0Þ, i.e.,

B0 ¼
1

c
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

c

�
2

− 1

s
¼ 1

A0

;

B ¼ c0

c
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c0

c

�
2

− 1

s
¼ 1

A
;

A0 < A < 1 < B < B0: ðB14Þ
Let

uðζÞ ¼ vðψ−1
2 ðζÞÞ ¼ hðψ−1

1 ðψ−1
2 ðζÞÞÞ: ðB15Þ

In other words, u is the result of transporting h by the
successive coordinate changes z → Z → ζ. In particular,
uðiÞ ¼ hð0Þ ¼ Hð1Þ. The function u is harmonic in the
upper half-plane Cþ and 0 < uðζÞ < 1 for all ζ ∈ Cþ. The
function 1 − u has the same properties and it is continuous
at the real points except at 0 and �A0 and �B0. Its
boundary values at other points are

1−uðtþ i0Þ¼ 1 for t∈ ½−B;−A�∪ ½A;B�;
1−uðtþ i0Þ¼ 0 for t∈Rnð½−B0;−A0�∪ ½A0;B0�∪ f0gÞ;

0< 1−uðtþ i0Þ≤ 1

for t∈ ð−B0;−BÞ∪ ð−A;−A0Þ∪ ðA0;AÞ∪ ðB;B0Þ:
ðB16Þ

If x1 and x2 are real with x1 < x2, let

χx1;x2ðζÞ ¼ log

�
ζ − x2
ζ − x1

�
ðB17Þ

be defined as holomorphic in Cn½x1; x2�, and mapping Cþ
(resp.C−) into itself. If ζ ∈ Cþ, Im χx1;x2ðζÞ is in ð0; πÞ, and
it is the angle under which the segment ðx1; x2Þ is seen from
the point ζ. It is a harmonic function inCþ, continuous at all
real points except x1 and x2, with boundary values equal to 0
outside of ½x1; x2�, and to π on ðx1; x2Þ. It tends to 0 at infinity
in the closed upper half-plane.
For ζ ∈ Cþ, let uþðζÞ and u−ðζÞ be defined by

1 − uþðζÞ ¼
1

π
Imχ−B;−AðζÞ þ

1

π
ImχA;BðζÞ; ðB18Þ

1 − u−ðζÞ ¼
1

π
Imχ−B0;−A0

ðζÞ þ 1

π
ImχA0;B0

ðζÞ: ðB19Þ

For ζ ∈ Cþ, 1 − u�ðζÞ ∈ ð0; 1Þ since the angles under
which ½−B0;−A0� and ½A0; B0� are seen from ζ add up to
less than π.
In particular, recalling that A ¼ 1=B,

Im χ−B;−AðiÞ ¼ Im χA;BðiÞ ¼ ArctgðBÞ − ArctgðAÞ
¼ 2ArctgðBÞ − π

2
; ðB20Þ

1 − uþðiÞ ¼
4

π
ArctgðBÞ − 1: ðB21Þ

-c’ -c c c’

0

v= 0

v= 0

v= 1

v= 1

v= 0

v= 0

v= 1

v= 1

11-

FIG. 3. Domain and boundary values for v.
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See Fig. 4. Similarly

1 − u−ðiÞ ¼
4

π
ArctgðB0Þ − 1: ðB22Þ

The boundary values of 1 − uþ are (see Fig. 4)

1 − uþðtþ i0Þ ¼ 1 for t ∈ ð−B;−AÞ ∪ ðA;BÞ; ðB23Þ
1 − uþðtþ i0Þ ¼ 0 for t∈½−B;−A� ∪ ½A; B�: ðB24Þ

Those of 1 − u− are

1 − u−ðtþ i0Þ ¼ 1 for t ∈ ð−B0;−A0Þ ∪ ðA0; B0Þ;
ðB25Þ

1 − u−ðtþ i0Þ ¼ 0 for t∈½−B0;−A0� ∪ ½A0; B0�:
ðB26Þ

Thus, except at a finite set of real points, we have

1 − uþðζ þ i0Þ ≤ 1 − uðζ þ i0Þ ≤ 1 − u−ðζ þ i0Þ;
ζ ∈ R: ðB27Þ

In spite of the exceptional points we can still apply the
maximum (or minimum) principle in the form of the
following lemma
Lemma B. 1.—Let g be a continuous function on the

closed upper half-plane with the exception of a finite set F
of real points. We suppose that jgðζÞj < C < ∞ and g
is harmonic in Cþ, and gðζÞ ≥ 0 for all ζ ∈ RnF .
Then gðζÞ ≥ 0 for all ζ ∈ Cþ. If we assume that gðζÞ ¼
0 for all ζ ∈ RnF , then gðζÞ ¼ 0 for all ζ ∈ Cþ.
(The boundedness of jgj is essential as the example of

ζ ↦ −Im ζ shows). To prove this lemma, choose a fixed
ζ0 ∈ Cþ. The function φðζÞ ¼ iðζ − ζ0Þ=ðζ − ζ̄0Þ maps
Cþ onto D, the closed upper half-plane onto D̄nfig, and
φðζ0Þ ¼ 0. The function GðzÞ ¼ gðφ−1ðzÞÞ is harmonic in
D and continuous on D̄nF 1 where F 1 is a finite subset
of the unit circle. Wherever defined, jGðzÞj ≤ C. Let
F 2 ¼ fθ ∈ ½0; 2π� ∶ eiθ ∈ F 1g. For sufficiently small κ ∈
ð0; 1Þ there is a compact subset Eκ of ½0; 2π� whose

complement contains F 2 and has measure ≤ 2πκ, and
an rκ ∈ ð0; 1Þ such that jGðeiθÞ −GðrκeiθÞj < κ for all
θ ∈ Eκ. For θ ∈ Eκ, GðeiθÞ ≥ 0. Therefore

Gð0Þ ¼
Z

2π

0

GðrκeiθÞ
dθ
2π

≥
Z
Eκ

GðrκeiθÞ
dθ
2π

− Cκ

≥
Z
Eκ

GðeiθÞ dθ
2π

− κ − Cκ ≥ −ðCþ 1Þκ: ðB28Þ

Letting κ tend to 0 we get Gð0Þ ¼ gðζ0Þ ≥ 0. If we assume
that gðζÞ ¼ 0 for all ζ ∈ RnF , then also −gðζÞ ≥ 0 for all
ζ ∈ Cþ; hence gðζÞ ¼ 0 for all ζ ∈ Cþ.
Applying this to g ¼ uþ − u and to g ¼ u − u−, we find

that u−ðζÞ ≤ uðζÞ ≤ uþðζÞ for all ζ ∈ Cþ. In particular,
1 − uðζÞ tends to 0 if ζ tends to 0 or infinity in the closed
upper half-plane. In fact, the maximum principle implies
that the inequalities are strict, i.e.,

u−ðζÞ < uðζÞ < uþðζÞ ∀ ζ ∈ Cþ: ðB29Þ
Hence

u−ðiÞ ¼ 2 −
4

π
ArctgðB0Þ < uðiÞ ¼ Hð1Þ < uþðiÞ

¼ 2 −
4

π
ArctgðBÞ: ðB30Þ

To study the behavior of u�ðiÞ as L → 0 we recall that,
for real z ≥ 0,

0 ≤
d
dz

Arctgð1þ zÞ ≤ 1

2
;

−
z2

4
≤ Arctgð1þ zÞ − π

4
−
z
2
≤ 0: ðB31Þ

We denote

x ¼ exp

�
−πb
L

�
; x0 ¼ exp

�
−πb0

L

�
;

b0 ¼ π − b > b; x0 < x: ðB32Þ
Note that x0=x → 0 as L → 0. With this notation

1

c
¼ 1þx
1−x

; c0 ¼ 1−x0

1þx0
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

c

�
2

−1

s
¼ 2

ffiffiffi
x

p
ð1−xÞ ;

B0¼
1

c
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

c

�
2

−1

s
¼ 1þ ffiffiffi

x
p

1−
ffiffiffi
x

p ¼ 1þ 2
ffiffiffi
x

p
1−

ffiffiffi
x

p : ðB33Þ

-B -A

i

A B0 11-

ϕ

1-u+ -11 = u+= 11-u+= 01-u+= 0 1-u+= 0

FIG. 4. Domain and boundary values for 1 − uþ; φ ¼
Im χA;BðiÞ. The picture for 1 − u− is the same with A0 and B0

instead of A and B.

-b’ -b b b’

iL

-iL

U

0

h+= 0

h+= 0

h+= 1

h+= 1

h+= 0

h+= 0

h+= 1

h+= 1

h+= 1 h+= 1

h+= 1 h+= 1

-b b

iL

-iL

U

0

h-= 1 h-= 1

h-= 1 h-= 1

h-= 0

h-= 0

h-= 0

h-= 0

FIG. 5. Domain and boundary values for hþ (left) and h−
(right).
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Applying (B31) with z ¼ 2t=ð1 − tÞ, t ¼ ffiffiffi
x

p
gives

−
t3

ð1 − tÞ2 ≤ ArctgðB0Þ −
π

4
− t ≤

t2

1 − t
;

���ArctgðB0Þ −
π

4
− t

��� ≤ t2

ð1 − tÞ2 : ðB34Þ

Hence

����u−ðiÞ − 1þ 4
ffiffiffi
x

p
π

���� ≤ 4x
πð1 − ffiffiffi

x
p Þ2 ; x ¼ exp

�
−πb
L

�
:

ðB35Þ

Further

1

c
−
c0

c
¼ 2x0

cð1þ x0Þ <
2x0

c
;�

1

c

�
2

−
�
c0

c

�
2

¼ 4x0

c2ð1þ x0Þ2 <
4x0

c2
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

c

�
2

− 1

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c0

c

�
2

− 1

s
<

4x0
c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1cÞ2 − 1
q ¼ 2x0ð1þ xÞ

c
ffiffiffi
x

p ;

B0 − B <
2x0

c

�
1þ 1þ xffiffiffi

x
p

�
< 2

ffiffiffiffi
x0

p
½1þ ffiffiffi

x
p þ x�

�
1þ x
1 − x

�
;

ArctgðB0Þ − ArctgðBÞ <
ffiffiffiffi
x0

p
½1þ ffiffiffi

x
p þ x�

�
1þ x
1 − x

�
:

ðB36Þ

Hence

Hð1Þ − u−ðiÞ ≤ uþðiÞ − u−ðiÞ

<
4

ffiffiffiffi
x0

p

π
½1þ ffiffiffi

x
p þ x�

�
1þ x
1 − x

�

¼ 4
ffiffiffiffi
x0

p

π
ð1þOð ffiffiffi

x
p ÞÞ: ðB37Þ

This gives

u�ðiÞ¼ 1−
4

π
exp

�
−πb
2L

�
þo

�
exp

�
−πb
2L

��
ðL→ 0Þ;

ðB38Þ

Hð1Þ¼ 1−
4

π
exp

�
−πb
2L

�
þo

�
exp

�
−πb
2L

��
ðL→ 0Þ:

ðB39Þ

Bounds on the error terms are supplied by the preceding
inequalities. Thus, although some information is lost if
Hð1Þ is replaced by its upper bound uþðiÞ, this becomes
unimportant for very small L.
We also note that if we define h�ðzÞ ¼ u�ðψ2ðψ1ðzÞÞÞ

(see Fig. 5),

h−ðzÞ < hðzÞ < hþðzÞ ∀ z ∈ U: ðB40Þ

The bounds obtained in this section are not useful at
large L. In fact, when L → ∞, ðc0=cÞ → ðb0=bÞ; thus,
uþðiÞ tends to a nonzero limit, while it can be shown that
Hð1Þ tends to 0.

[1] F. A. Cerulus and A. Martin, A lower bound for large-angle
elastic scattering at high energies. Phys. Lett. 8, 80 (1964).

[2] S. Mandelstam, Determination of the pion-nucleon scatter-
ing amplitude from dispersion relations and unitarity.
General theory, Phys. Rev. 112, 1344 (1958); Analytic
properties of transition amplitudes in perturbation theory,
Phys. Rev. 115, 1741 (1959).

[3] Y. S. Jin and A. Martin, Connection between the asymptotic
behavior and the sign of the discontinuity in one-dimensional
dispersion relations, Phys. Rev. 135, B1369 (1964).

[4] W. F. Baker et al., E. W. Jenkins, A. L. Read, G. Cocconi,
V. T. Cocconi, and J. Orear, Elastic p − p Cross Sections at
High-Momentum Transfers, Phys. Rev. Lett. 9, 221 (1962);
W. F. Baker, E. W. Jenkins, A. L. Read, G. Cocconi, V. T.
Cocconi, A. D. Krisch, J. Orear, R. Rubinstein, D. B. Scarl,
and B. T. Ulrich, Large Angle p − p Elastic Scattering at 30
bev, Phys. Rev. Lett. 12, 132 (1964).

[5] G. Veneziano, Construction of a crossing-symmetric, Regge
behaved amplitude for linearly rising trajectories, Nuovo
Cimento A 57, 190 (1968).

[6] A. Martin, Extension of the axiomatic analyticity domain of
scattering amplitudes by unitarity. 1, Nuovo Cimento A 42,
930 (1966).

[7] H. Cornille, Forward lower bounds at high energy, Nuovo
Cimento A 4, 549 (1971).

[8] A. Martin, An absolute upper bound on the pion-pion
scattering amplitude, Stanford preprint ITP.1;1( 1964)
and Qualitative and quantitative consequences of analytic-
ity and unitarity, Proceedings of High Energy Physics and
Elementary Particles, Trieste (IAEA, Vienna, 1965), p. 155.

[9] L. Lukaszuk and A. Martin, Absolute upper bounds for ππ
scattering, Nuovo Cimento A 52, 122 (1967).

[10] C. Lopez and G. Mennessier, A new absolute bound on the
π0π0 S-wave scattering length, Phys. Lett. 58B, 437 (1975);

RIGOROUS LOWER BOUND ON THE SCATTERING … PHYS. REV. D 99, 114025 (2019)

114025-9

https://doi.org/10.1016/0031-9163(64)90807-8
https://doi.org/10.1103/PhysRev.112.1344
https://doi.org/10.1103/PhysRev.115.1741
https://doi.org/10.1103/PhysRev.135.B1369
https://doi.org/10.1103/PhysRevLett.9.221
https://doi.org/10.1103/PhysRevLett.12.132
https://doi.org/10.1007/BF02824451
https://doi.org/10.1007/BF02824451
https://doi.org/10.1007/BF02720568
https://doi.org/10.1007/BF02720568
https://doi.org/10.1007/BF02731371
https://doi.org/10.1007/BF02731371
https://doi.org/10.1007/BF02739279
https://doi.org/10.1016/0370-2693(75)90583-3


B. Bonnier, C. Lopez, and G. Mennessier, Improved
absolute bounds on the π0π0 amplitude, Phys. Lett. 60B,
63 (1975); C. Lopez and G. Mennessier, Bounds on the π0π0

amplitude, Nucl. Phys. B118, 426 (1977).
[11] A. K. Common, Froissart bounds with no arbitrary con-

stants, Nuovo Cimento A 69, 115 (1970).
[12] F. J. Yndurain, Absolute bound on cross-sections at all

energies and without unknown constants, Phys. Lett. 31B,
368 (1970).

[13] G. Mahoux and A. Martin, Extension of axiomatic analy-
ticity properties for particles with spin, and proof of
superconvergence relations, Phys. Rev. 174, 2140 (1968).

[14] A. F. Beardon, A Primer on Riemann Surfaces, London
Mathematical Society Lecture Note Series 78 (Cambridge
University Press, Cambridge, England, 1984).

[15] L. Hörmander, An Introduction to Complex Analysis in
Several Variables, 2nd ed. (North Holland, Amsterdam,
1973).
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