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Recent high-precision measurements of nuclear deep inelastic scattering at high x and moderate
6 < Q2 < 9 GeV2 give a rare opportunity to reach the quark distributions in the superfast region, in which
the momentum fraction of the nucleon carried by its constituent quark is larger than the total fraction of
the nucleon at rest, x > 1. We derive the leading-order QCD evolution equation for such quarks with the
goal of relating the moderate-Q2 data to the two earlier measurements of superfast quark distributions at
large 60 < Q2 < 200 GeV2. Since the high-Q2 measurements gave strongly contradictory estimates of the
nuclear effects that generate superfast quarks, relating them to the high-precision, moderate-Q2 data
through QCD evolution allows us to clarify this long-standing issue. Our calculations indicate that the
moderate-Q2 data at x≲ 1.05 are in better agreement with the high-Q2 data measured in (anti)neutrino-
nuclear reactions which require substantial high-momentum nuclear effects in the generation of superfast
quarks. Our prediction for the high-Q2 and x > 1.1 region is somewhat in the middle of the neutrino-
nuclear and muon-nuclear scattering data.
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I. INTRODUCTION

With the operation of the Large Hadron Collider (LHC),
the high-energy upgrade of Jefferson Lab (JLab), and the
anticipation of the future electron-ion collider (EIC), the
issue of understanding the partonic structure of nuclei is
currently a very important topic. Several collaborations are
working on the development of comprehensive parametri-
zations for nuclear partonic distributions (nPDFs) covering
the widest possible range of invariant momentum transfer
Q2 and Bjorken variable x (see. e.g., Refs. [1–3]).
From the viewpoint of nuclear physics, partons in nuclei

present a very interesting dynamical construction as they
are constrained to be in nucleons, which represent the
apparent degrees of freedom (d.o.f.) in nuclei. Due to the
large difference between the excitation energy scales of
the nucleon (100s of MeV) and the nucleus (10s of MeV),
it was initially believed that the nuclear medium should
play a nonessential role in the partonic dynamics of bound
nucleons. Studies during the last several decades, however,
discovered a host of effects which are genuinely related
to nuclear dynamics interfering with the QCD dynamics
of partonic distributions in bound nucleons. The most

prominent of these effects is the suppression of nPDFs
in the 0.4 < x < 0.7 region (EMC effect) [4–6], nuclear
antishadowing at 0.1 < x < 0.3 [7–9], and finally, the
shadowing effects observed at x < 0.1 [5,7,10].
While there have been significant experimental and

theoretical efforts in understanding the above mentioned
effects, one effect which is less explored is the dynamics of
superfast quarks. Superfast quarks are quarks in nuclei

possessing momentum fractions x ¼ AQ2

2MAq0
> 1 and re-

present one of the most elusive d.o.f. in nuclei. Here MA

is the mass of the nucleus A, and −Q2 and q0 are the square
of invariant momentum transfer and the energy transferred
to the nucleus in its rest frame. Since no such quark can be
produced by QCD dynamics confined to a single nucleon
without internucleon interactions, probing superfast
quarks requires direct interplay between QCD and nuclear
dynamics. One of the earliest theoretical studies of super-
fast quarks [5] showed that the nuclear dynamics respon-
sible for the generation of such quarks is significantly
short-range, thus opening a new window into the high-
density realm of nuclear forces. Such dynamics include
multinucleon short-range correlations [5,11–13], explicit
quark d.o.f. such as 6-quark clusters [14,15], or single-
quark momentum exchanges between strongly correlated
nucleons [16].
One way of probing superfast quarks experimentally is

the extraction of the nuclear structure function F2Aðx;Q2Þ
in deep inelastic scattering (DIS) from a nuclei at x > 1
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[5,11,14]. Such studies are part of the physics program of
the 12 GeV energy upgraded Jefferson Lab [17]. Superfast
quarks can also be probed in more unconventional proc-
esses such as semi-inclusive nuclear DIS processes with
tagged spectator nucleons [18–20], DIS production in the
forward direction with xF > 1, or large transverse momen-
tum dijet production in pþ A → dijetþ X reactions at
LHC kinematics [12]. All such processes will probe QCD
dynamics in extreme nuclear conditions with the potential
of opening up uncharted territory for nuclear QCD.
So far only three experiments have attempted to probe

nuclear quark distributions at x > 1. The first was carried out
by the BCDMScollaboration at CERN [21], whichmeasured
the inclusive deep-inelastic scattering cross section on 12C at
52 ≤ Q2 ≤ 200 GeV2. The second experiment was per-
formed by the CCFR Collaboration at Fermi Lab [22],
measuring neutrino and antineutrino charged current inter-
actions from a 56Fe target at hQ2i ¼ 125 GeV2. Finally, the
third experiment was performed more recently at Jefferson
Lab [23], where the inclusive Aðe; e0ÞX scattering cross
sectionwasmeasured atmoderatevalues of6≤Q2≤9GeV2.
With the data of these experiments available, the main

motivation of our work is to investigate how these three
results are related to each other through the QCD evolution
equation of nuclear partonic distribution functions. To carry
out this study, we derive the QCD evolution equation
for the nuclear structure function F2A and calculate the
evolution of the Jefferson Lab data up to theQ2 range of the
BCDMS and CCFR experiments.
The outline of the paper is as follows: in Sec. II we first

give a brief description of the available experiments and
quantify the existing discrepancy between the BCDMS and
CCFR data. Since the JLab data was taken at moderate
values ofQ2, an important issue in the analysis in the high-x
region is the accounting of finite target mass (TM) and
higher twist (HT) effects. Therefore, the TM and HT
corrections procedure adopted by the JLab experiment is
also described in Sec. II. In Sec. III, we present the deriva-
tion of the QCD evolution equation for nuclear targets and
obtain the self-consistent integro-differential equation for
the nuclear structure function of F2A. Then in Sec. IV, the
numerical solution of the evolution equation is obtained for
the structure function parametrization obtained in Ref. [23]
from the JLab data. In Sec. V, we return to the issue of TM
and HT corrections presenting a different approach in
accounting for these effects and presenting a new fit for
the JLab F2A structure function. Our new fit indicates
surprisingly small HT effects which we attribute to quark-
hadron duality effects amplified by the Fermi motion of
bound nucleons in the nucleus. Our new fit does not alter the
conclusion we obtained in Sec. IV using the parametrization
from Ref. [23]. However, it provides an improved descrip-
tion of the experimental data for 0.55 < x < 1.25 over a
wideQ2 range. For practical purposes in Sec. VI we present
a simple parametrization of the F2A parameters that allows

estimation of the structure function over a wide range of Q2

relevant to LHC and EIC kinematics. In Sec. VII, we check
the accuracy of our calculations against next-to-leading order
corrections, and finally Sec. VIII states the summary and
conclusion of our work.

II. EXPERIMENTAL EVIDENCE FOR
SUPERFAST QUARKS

The first attempt to probe superfast quarks was made by
the BCDMS Collaboration [21] in measuring the nuclear
structure function F2A in deep-inelastic scattering of
200 GeV muons from a 12C target. The experiment covered
the region of 52 ≤ Q2 ≤ 200 GeV2 and x ≤ 1.3, for the
first time extracting the F2A structure function for hQ2i
values of 61, 85 and 150 GeV2 at x ¼ 0.85, 0.95, 1.05,
1.15, and 1.30. For these regions the per-nucleon F2A was
fit to the form

F2Aðx;Q2Þ ¼ F2Aðx0 ¼ 0.75; Q2Þe−sðx−0.75Þ; ð1Þ
obtaining s ¼ 16.5� 0.6 for the slope factor. Such an
exponent required a larger strength in the high momentum
distribution of nucleons in nuclei than the simple mean-
field Fermi momentum distribution can provide. However
the amount of short-range correlations (that generate the
high momentum strength) needed to agree with the data
was very marginal.
The second experiment was done by the CCFR

Collaboration [22] using neutrino and antineutrino beams
and measured the per nucleon F2A structure function for
56Fe in the charged current sector for hQ2i ¼ 125 GeV2

and 0.6 ≤ x ≤ 1.2. The experiment did not measure the
absolute magnitudes of F2A, but obtained the slope of the x
distribution in the form of Eq. (1), with the exponent being
evaluated as s ¼ 8.3� 0.7� 0.7. This result was in clear
contradiction with the BCDMS result, requiring a much
larger high-momentum component in the wave function of
the 56Fe nucleus. The required high-momentum component
was much larger than the one deduced from quasielastic
electroproduction in the x > 1 region [24–29].
Recently, at JLab, the structure function F2A has been

measured for a set of nuclei (2H, 3He, 4He, 9Be, 12C, 63Cu,
and 197Au) over a wide range of x (including x > 1) andQ2

(2–9 GeV2) [23]. The F2A extracted for the highest Q2

(6–9 GeV2) data for the 12C target in these measurements
were used to check their relation to the BCDMS and CCFR
structure functions. For this, in Ref. [23] the extracted per
nucleon F2Aðx;Q2Þ was corrected for target mass (TM)
effects using the relation [30],

F2Aðx;Q2Þ ¼ x2

ξ2r3
Fð0Þ
2A ðξ; Q2Þ þ 6M2x3

Q2r4
h2ðξ; Q2Þ

þ 12M4x4

Q4r5
g2ðξ; Q2Þ; ð2Þ

FREESE, COSYN, and SARGSIAN PHYS. REV. D 99, 114019 (2019)

114019-2



where h2ðξ; Q2Þ ¼ R
A
ξ u−2Fð0Þ

2A ðu;Q2Þdu and g2ðξ; Q2Þ ¼
R
A
ξ v−2ðv − ξÞFð0Þ

2A ðv;Q2Þdv, with the Nachtmann variable

ξ ¼ 2x=ð1þ rÞ and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2=ν2

p
. Here, Fð0Þ

2A ðξ; Q2Þ
is the corrected structure function for which the Q2-
dependence within the partonic model should come from
the evolution equation. The h2 and g2 factors have been

evaluated assuming a common Q2 dependence of Fð0Þ
2 for

all nuclei and simple fit for Fð0Þ
2 ðξ; Q2

0Þ at Q2
0 ¼ 7 GeV2.

To relate the extracted Fð0Þ
2A ðξ; Q2Þ at large ξ to

the BCDMS and CCFR results, in Ref. [23] the Q2-

dependence of Fð0Þ
2A was fit to the world data, including

JLab’s high-Q2 ≥ 6 GeV2 data, at several values of ξ. The
functional form of the fit was chosen to have a logQ2 term
to be consistent with QCD evolution. Then, using this fit,

the extracted Fð0Þ
2A ðξ; Q2

0Þ at Q2
0 ¼ 7 GeV2 was extrapolated

to the BCDMS and CCFR kinematics at large ξ.
This extrapolation [23] resulted in the slope factor of s ¼
15� 0.5 for the 12C target indicating that the JLab data are
consistent with the BCDMS results, with the latter showing
only marginal strength of high-momentum component in
the nuclear wave function [21] (see above discussion).
However, to have the final answer on the relation of the

JLab structure functions to the higher-Q2 BCDMS and
CCFR data, one needs a full account of QCD evolution. To
do so, we derive in the following section the QCD evolution
equation for superfast quarks in leading order approxima-

tion and apply it to Fð0Þ
2A ðξ; Q2

0Þ, to evolve it to BCDMS and
CCFR kinematics.

III. EVOLUTION EQUATION

We start with the leading order evolution equation for
quarks in nuclei,

dqi;Aðx;Q2Þ
d logQ2

¼ αs
2π

ZA

x

dy
y
ðqi;Aðy;Q2ÞPqq

�
x
y

�

þ gAðy;Q2ÞPqg

�
x
y

��

; ð3Þ

with the goal of calculating the evolution for the per
nucleon structure function F2A, defined at leading order as

F2Aðx;Q2Þ ¼ 1

A

X

i

e2i xqi;Aðx;Q2Þ; ð4Þ

where one sums over the flavors of active (anti)quarks.
Note that in Eq. (3) the upper limit of the integration is A,
and thus the integrand in the range of y > 1 accounts for the
contribution of the superfast quarks to the evolution of the
partonic distribution qi;A probed at a given ðx;Q2Þ.

Above, the qi;A functions are the i-flavor quark and
antiquark distributions in nuclei, while gA represents the
nuclear gluon distribution. The splitting functions are

PqqðxÞ ¼ C2

�

ð1þ x2Þ
�

1

1 − x

�

þ
þ 3

2
δð1 − xÞ

�

PqgðxÞ ¼ T½ð1 − xÞ2 þ x2�; ð5Þ
with C2 ¼ 4

3
and T ¼ 1

2
. Here the þ denominator is the

Altarelli-Parisi function, defined as [31]

Z1

0

dz
fðzÞ

ð1 − zÞþ
¼

Z1

0

fðzÞ − fð0Þ
1 − z

: ð6Þ

We proceed by changing the integration variable in
Eq. (3) to z ¼ x

y which yields

dqi;Aðx;Q2Þ
d logQ2

¼ αs
2π

Z1

x=A

dz
z

�

qi;A

�
x
z
;Q2

�

PqqðzÞ

þ gA

�
x
z
;Q2

�

PqgðzÞ
�

: ð7Þ

Substituting the splitting functions of Eq. (5) into the above
equation results in

dqi;Aðx;Q2Þ
d logQ2

¼ αs
2π

�

2qi;Aðx;Q2Þ þ 4

3

Z1

0

dz
fðzÞ

ð1 − zÞþ

þ
Z1

x=A

dz
ð1 − zÞ2 þ z2

2z
gA

�
x
z
;Q2

��

; ð8Þ

where

fðzÞ ¼ 1þ z2

z
qi;A

�
x
z
;Q2

�

θ

�

z −
x
A

�

: ð9Þ

Applying the rule of Eq. (6) into the second integral of
Eq. (8), one obtains the final expression for the evolution
equation of quarks in the nucleus in the form,

dqi;Aðx;Q2Þ
d logQ2

¼ αs
2π

�

2

�

1þ 4

3
log

�

1 −
x
A

��

qi;Aðx;Q2Þ

þ 4

3

Z1

x=A

dz
1 − z

�
1þ z2

z
qi;A

�
x
z
;Q2

�

− 2qi;Aðx;Q2Þ
�

þ
Z1

x=A

dz
ð1 − zÞ2 þ z2

2z
gA

�
x
z
;Q2

��

: ð10Þ
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This equation can be used to obtain the evolution equation
for the structure function F2A defined according to Eq. (4).
Multiplying both sides above by e2i x and summing by
contribution of all (anti)quarks one obtains the evolution
equation for the nuclear structure function F2A in the form

dF2Aðx;Q2Þ
d logQ2

¼ αs
2π

�

2

�

1þ 4

3
log

�

1 −
x
A

��

F2;Aðx;Q2Þ

þ 4

3

Z1

x=A

dz
1 − z

�

ð1þ z2ÞF2A

�
x
z
;Q2

�

− 2F2Aðx;Q2Þ
�

þ fQ
2

Z1

x=A

dz½ð1 − zÞ2 þ z2� x
z
GA

�
x
z
;Q2

��

; ð11Þ

where fQ ¼ P
iðe2i þ ē2i Þ and GAðx;Q2Þ ¼ xgAðx;Q2Þ=A.

One interesting property of the above equation which has
a nuclear origin is the factor logð1 − x

AÞ which introduces
a nontrivial A dependence into the evolution equation.
The effect of this term can be observed for light nuclei at
large x kinematics.

IV. EVOLUTION OF F2A FROM
MODERATE TO HIGH Q2

At large x > 0.1, we can safely neglect the gluonic
distribution GA in Eq. (11), after which the evolution of the
structure function F2A at given (x,Q2) will be defined by the
same structure function at x0 ≥ x and some initial Q2

0. Such
a situation allows us to relate the F2A structure functions
at high Q2 (BCDMS and CCFR) kinematics to the same
structure function at moderate-Q2 (JLab) kinematics using
Eq. (11), without requiring the knowledge of the nuclear
gluonic distribution GA.
To do so, first, we use as an input to Eq. (11) the same

parametrization of Fð0Þ
2A ðξ; Q2

0Þ at Q2
0 ¼ 7 GeV2 [32] for the

12C nucleus that was used in the high-ξ and high-Q2

extrapolation of Ref. [23] (referred to hereafter as QCD
evolution with F-A fit). With this input, Eq. (11) is solved
numerically, covering the Q2 range of 2–300 GeV2. The

TM-uncorrected F2A is then obtained from Fð0Þ
2A by rein-

troducing target mass effects according to Eq. (2).
The result of the calculations is given by the dashed

curves in Figs. 1 and 2, along with experimental data and
SLAC “pseudodata.” The JLab [23] and BCDMS [21,33]
data are measurements of the structure function per
nucleon, whereas the SLAC pseudodata are obtained
according to Ref. [23] by multiplying deuteron F2 mea-
surements [34] by the EMC ratio measured in Ref. [35].
The CCFR data at x > 0.75 were given without an absolute
normalization [22], so in Fig. 1 the x ¼ 0.75 point was

normalized to the previous CCFR measurement at
x ≤ 0.75, for which the absolute values have been mea-
sured [36]. Note that the discrepancy between the dashed
curves in Fig. 1 and the low-Q2 JLab data is due to the fact
that F-A parametrization is fitted in the 6 ≤ Q2 ≤ 9 GeV2

region only.
As the figure shows, the F-A parametrization extended to

the high-Q2 domain of the CCFR and BCDMS experi-
ments (Q2 ∼ 125 GeV2) through QCD evolution does not
prefer the BCDMS data as the phenomenological Q2

extrapolation of Ref. [23] had indicated. In fact, QCD
evolution of JLab data shows better agreement with the
CCFR data at x ≤ 1.05, and results in a slope factor
s ¼ 13� 0.4 for the range of 0.75 ≤ x < 1.25.

V. THE ξ PARAMETER FITTING OF JLAB DATA

Even though QCD evolution of the F-A parametrization
predicts a softer x dependence for F2AðxÞ atQ2¼125GeV2

than the extrapolation quoted in Ref. [23] (s ¼ 13� 0.4,

FIG. 1. Comparison of evolution equation results for the per
nucleon F2A of 12C to experimental measurements. The structure
function is multiplied by 10−ix in order to separate the curves; the
values of ix for each x value are given in the plot. The solid curves
incorporate evolution in the fit (see Sec. V), the dashed curves are
the result of QCD evolution in which as an input we used the fit of
Ref. [23] (see discussion in Sec. IV).
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compared to s ¼ 15� 0.5), it overestimates the F2A data at
x ≤ 0.75 and Q2 ≥ 20 GeV2 where structure functions are
reliably measured (see the three data sets and the dashed
curves in the upper part of Fig. 1). Additionally the QCD
evolution underestimates the F2A data at higher x ≥ 0.85
andQ2 ≤ 5 GeV2 (see dashed curves in Fig. 1). In the latter
case, the underestimation at low Q2 is due to the fact that
only Q2 ≥ 6 GeV2 data have been used to fit the extracted

structure function Fð0Þ
2 in the F-A parametrization. The other

discrepancies can be attributed to the specific model of target
mass corrections adopted in Ref. [23] [cf. Eq. (2), as well as
Ref. [30] ]. As was discussed in the previous section, after

applying QCD evolution to the Fð0Þ
2A structure function the

target mass effects are reapplied to compare the evolved
results with the empirical data. We find that the Q2 depen-
dence introduced by the factor of x2=ðξ2r3Þ in Eq. (2) par-
tially cancels out the Q2 dependence introduced by evolu-
tion, thus giving the final result a softer Q2 dependence.
To address the problem of these discrepancies we

consider a different approach to target mass corrections.
In the new approach the Nachtmann variable ξ is treated as
a scaling parameter, representing the light cone momentum
fraction variable instead of xB. Within such an approach, ξ
enters into the QCD evolution equations, and no additional
target mass corrections are applied to the data. It is worth
mentioning that such an approach is justified at leading
order, where ξ-scaling corresponds to the target mass
correction in the collinear approximation [37]. That such
an approach is justified follows also from the empirical
observation in Ref. [23] that the raw (uncorrected) F2A data
plotted as a function of ξ exhibit better scaling properties
than the data corrected according to Eq. (2).
Within such an approach we analyzed the uncorrected

JLab data considering the structure function as a function of
ξ and attempting to parametrize it in the form [38],

F2Aðξ; Q2Þ ¼ FLT
2Aðξ; Q2Þ

�

1þ c1ξc2ð1þ c3ξÞ
Q2

�

; ð12Þ

where the “LT” indicates the leading twist contribution to
the structure function, which can be used as an input for the
evolution equation. The latter is parametrized at an initial
scale Q2

0 ¼
ffiffiffiffiffi
18

p
GeV2 as

FLT
2Aðξ; Q2

0Þ ¼ expðp0 þ p1ξþ p2ξ
2Þ ð13Þ

in the range of 0.5 < ξ < 1.3. The value of F2A at other
scales is obtained by applying the evolution equation of
Eq. (11) to Eq. (13). To fit the parameters of Eqs. (12)
and (13), we used all the JLab data with x > 0.5.
We employed three different strategies to perform the

fit. The first was to use differential evolution [39], a
multidimensional optimization method in which a popu-
lation of candidate solutions can mutate and evolve, and

in which the population members with the best “fitness”
(e.g., the lowest χ2 values) are combined to produce new
candidate solutions. In this, we use the χ2 of the fit as the
fitness function. The second strategy was to use the
standard MINUIT2 library functions with a χ2 fit function.
Lastly, the third was a bootstrap method, in which we
generated populations by sampling the data points from a
Gaussian with a center and width determined by their
experimental values and statistical errors. For each of these
populations, a χ2 fit was performed using MINUIT2, and
subsequently the distributions of the fit parameters were
used to determine their averages and standard deviations. In
all three cases, the fitness parameter (χ2) was determined
using only the statistical, and not the systematic, errors of
the data reported in Ref. [23], as the systematic errors are
dominated by beam energy and detector setting uncertain-
ties, and are hence expected to be highly correlated.
Using all three strategies, we first performed fits to the full

six-parameter form of Eq. (12). We then performed fits
without a higher-twist correction, i.e., with the form of
Eq. (13) only. We found with all three strategies that the
six-parameter fit did not yield significant improvement in the
χ2 valuecompared to the three-parameter fit.Moreover, in the
six-parameter fit, the central parameter values varied wildly
withsmallchanges in thedatasetusedfor thefit,butgenerally
preferred small values of c1. On the other hand, the three-
parameter fitwithout theHTfactoryieldedveryrobust results
for the parameters, with central values, standard errors, and
covariances comparable between the three approaches. We
therefore select the three parameter fit as the optimal one.
The results for the parameters for Q2

0 ¼
ffiffiffiffiffi
18

p
GeV2,

along with their standard errors are presented in Table I.
Our observation of the negligible contribution from

the higher twist effects can be understood based on a
combination of quark-hadron duality and Fermi motion
effects which results in a nearly complete cancellation of
the higher-twist effects for the 12C nucleus (see also
Ref. [40]). Usually, quark-hadron duality for the proton
structure function is observed when the structure function
is smeared over some range of final produced massWN (see
e.g., [41]). For a nuclear target, this smearing is inherently
accomplished by the Fermi motion of the nucleons within
the nucleus. To demonstrate this, we compare in Fig. 3
the F2 structure functions for Q2 ¼ 4 GeV2 (which is
close to our choice of Q2

0) for the deuteron, 12C, and a

TABLE I. Parameters found in the three-parameter fit by the
three fitting strategies, along with their standard errors.

p0 p1 p2

Differential
evolution

0.248� 0.005 4.42� 0.01 −9.15� 0.01

MINUIT2 0.235� 0.006 4.45� 0.02 −9.17� 0.01
Bootstrap 0.235� 0.005 4.45� 0.01 −9.17� 0.01
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phenomenological parametrization of the proton [42].
While one observes resonance structures in the proton
and deuteron F2 structure functions, these effects are
significantly suppressed in the 12C data. We expect that
this effect will be even more significant for heavier nuclei,
which gives a new possibility for quality fitting of nuclear
DIS structure functions at high x.
With the parameters quoted in Table I, we have recon-

structed the leading-twist structure function FLT
2Aðξ; Q2Þ

according to Eq. (13) at Q2
0 ¼

ffiffiffiffiffi
18

p
GeV2 and evolved it to

all other Q2 using the evolution equation (11). With this
procedure, we calculate the F2A structure function at CCFR
and BCDMS kinematics. In Figs. 1 and 2, the solid curves
represent the results of this calculation. The parameter
errors were also propagated into F2A at these kinematics
and included as shaded bands in the plot, but these bands
cannot be seen because they are smaller than the line width
of the curves. (Note the small standard errors quoted in
Table I). As the comparison shows, QCD evolution now

describes the x ¼ 0.55 and 0.65 data at high Q2 very well,
while slightly overestimating the x ¼ 0.75 data at high Q2.
Note that the dashed curves in Figs. 1 and 2 represent the
result of QCD evolution in which as an input we used the
F-A fit at Q2

0 ¼ 7 GeV2 from Ref. [23].
For the slope factor, we obtain s ¼ 13.0� 1.1 for x ≥

0.75 and Q2 ¼ 125 GeV2. This result is practically the
same one obtained from evolution of the F-A parametriza-
tion. Thus one concludes that our overall result for the
nuclear structure function F2ðx;Q2Þ is somewhat between
the CCFR (s ≈ 8.3) and BCDMS (s ≈ 16.5) estimates,
while the absolute magnitude of F2A is closer to the
CCFR data at x ≤ 1.05. Remind that phenomenological
Q2 extrapolation of F − A parametrization [23] resulted in
the slope factor s ¼ 15� 0.5 favoring the BCDMS result.

VI. QCD EVOLUTION BASED FIT OF F2Aðξ;Q2Þ
The success of the QCD evolution equation in describing

the structure function data below and above Q2
0 ¼ffiffiffiffiffi

18
p

GeV2 motivates us in presenting F2A in a parametric
form that covers the whole considered Q2 range starting
Q2 ≥ 2 GeV2 and x > 0.5. Such a fit can be used for
evaluating nuclear DIS cross sections in a wide range of
kinematics relevant for 12 GeV JLab and EIC physics.
In performing such a fit we again used the analytic form

of Eq. (13), where the parameters p0, p1 and p2 are
determined on a per Q2 value basis by fitting the values of
F2A as determined by QCD evolution. Because of the QCD
evolution, these parameters are inherently Q2 dependent,
and we express this dependence in a simple polynomial fit

in the variable t ¼ log Q2

1 GeV2 as follows:

p0ðtÞ ¼ a0 þ b0t

p1ðtÞ ¼ a1 þ b1tþ c1t2

p2ðtÞ ¼ a2 þ b2t: ð14Þ
The central values of the ai and bi parameters are presented
in Table II. Figure 4 also shows both the t dependence
of the p0, p1 and p2 parameters and the results of the
polynomial fit. Here one observes very smooth t depend-
ence consistent with the above observation of negligible
higher twist effect for nuclear F2A. We expect this para-
metrization of F2A to be valid for Q2 up to 400 GeV2, the
maximum value to which we performed QCD evolution,
and it gives a simple way of estimating cross sections for
deep inelastic scattering in the superfast quark region.

FIG. 2. The x dependence of F2A atQ2 ¼ 125 GeV2. The solid
and dashed curves are the same as in Fig. 1.

FIG. 3. World data of F2A for 12C and the deuteron as a function
of Nachtmann variable ξ for 3.5 GeV2 < Q2 < 4.5 GeV2

[23,43–46]. Solid curve shows F2pðξ; Q2 ¼ 4 GeV2Þ using the
parametrization of Ref. [42].

TABLE II. Parameters defining the t dependence of p0ðtÞ,
p1ðtÞ and p2ðtÞ function in Eq. (14).

a0 b0 a1 b1 c1 a2 b2

0.201 0.043 5.504 −0.828 0.051 −9.309 0.137
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VII. NLO CORRECTIONS

To estimate the accuracy of the leading order (LO)
evolution equation presented in Figs. 1 and 2, we have also
evolved the fit of F2A obtained in Sec. V at next-to-leading
order (NLO).
To perform NLO evolution, we make similar approx-

imations to those described in Sec. III. We neglect the gluon
distribution, since this is small at x > 0.2. At NLO, the
quark splitting functions have nondiagonal terms, and the
splitting functions for singlet and nonsinglet mixtures
become different (see, e.g., [47]). We take advantage of
the fact that 12C is isospin symmetric and evolve F2A as a
singlet distribution (within the approximation where gluons
are neglected).
Additionally, at NLO, Eq. (4) is no longer exact, but F2A

must be determined from the quark distributions through a
Mellin convolution with the NLOWilson coefficients. One
can still evolve F2A directly, however, by folding these
Wilson coefficients into the splitting functions. In Ref. [48],
this is described as a “one-step”method. We perform such a
one-step method in our NLO evolution of F2A.
Since we are using NLO evolution primarily to estimate

the accuracy of LO evolution, we present in Fig. 5 the ratio
of NLO-evolved to LO-evolved F2A, with the parametriza-
tion (13) and the parameters in Table II at Q2

c ¼ 9 GeV2 as
a common starting point. The choice of Q2

c is justified by
the fact that it corresponds to the largest Q2 data measured
at JLab experiment and we achieved a reasonable descrip-
tion of the F2ðx;Q2

cÞ extracted from these data. All lines
thus intersect in the figure at Q2 ¼ Q2

c, with a ratio of 1.
One can see from this figure that the amount of evolution
that occurs is enhanced by NLO corrections, and this
enhancement results in a greater suppression of F2Aðx;Q2Þ
for larger xB. In fact, when Q2 ∼ 125 GeV2, NLO correc-
tions are as much as 11%. Such a correction however does

not alter our conclusion that the QCD evolution of JLAB
data results in a F2A that favors CCFR at x ≤ 1.05 and
predicts magnitudes somewhat in the middle of CCFR and
BCDMS data at x ≥ 1.15.
However, NLO corrections can be sizable enough that

they will be necessary to account for to make precision
predictions in larger-Q2 regions relevant to the LHC and
the anticipated EIC kinematics. A detailed study of NLO
evolution to such high-Q2 regimes will be performed in a
future work.

VIII. SUMMARY AND CONCLUSIONS

We derived the evolution equation for superfast quarks in
nuclei in the leading order approximation. For the F2A
structure function at high x, in an approximation in
which the gluon distribution is neglected, QCD evolution
allows high-Q2 values of F2A to be determined by the
same F2A measured at some initial value of Q2

0. Using this
property and the parametrization of F2A at moderate
Q2 ¼ ffiffiffiffiffi

18
p

GeV2, we fit a parametric form to the
Jefferson Lab data and used the evolution equation to
calculate F2A in the range of 60 < Q2 < 200 GeV2, at
which the previous measurements of superfast quark
distributions have been made. Our approach uses the
QCD evolution equation directly to determine nuclear
structure functions F2A at large x. This approach has an
advantage over modeling of nuclear structure functions
based on a convolution of the free nucleon F2N structure
function and nuclear dynamics. In the latter case one deals
with uncertainties inherent to the models, where different
nuclear effects such as Fermi motion of nucleons, medium
modification of nucleon PDFs and possible final state
interactions should be taken into account.
Our calculation demonstrates that the JLab high-

precision, moderate-Q2 measurement of the 12C structure

FIG. 4. The fit of p0, p1 and p2 as a function t ¼ log Q2

1 GeV2.
Dashed curves are the results generated by evolution equation and
solid curves correspond to the polynomial fit of Eq. (14).

FIG. 5. Ratio of F2A calculated for 12C using NLO evolution to
LO evolution.
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function is in better agreement with the CCFR data at
Q2 ¼ 125 GeV2 and x ≤ 1.05 with the slope factor s
indicating a sizable contribution of the high-momentum
nuclear component in the generation of superfast quarks.
Our results at x > 1.05 is somewhat in the middle of CCFR
and BSDMS results of nuclear structure function data.
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