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We analyze within the framework of resonance chiral theory the hSAμAνi and hSVμVνi three-point Green
functions, where S, Aμ and Vμ are short for scalar, axial-vector and vector SUð3Þ hadronic currents. We
construct the necessary Lagrangian such that the Green functions fulfill the asymptotic constraints, at large
momenta, imposed by QCD at leading order. We study the implications of our results on the spectrum of
scalars in the large-NC limit, and analyze their decays.
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I. INTRODUCTION

Green functions of quantum fields convey all the dynam-
ics of a quantum field theory describing a system of many
interacting particles. Their consistent construction in the
hadronic low-energy region (typically E ≪ 1 GeV), driven
by nonperturbative quantum chromodynamics (QCD), can
be thoroughly carried out within the model-independent
framework of chiral perturbation theory (ChPT) [1,2]. The
predictability of this theory is however spoiled atOðp4Þ and
higher due to our poor knowledge of the chiral low-energy
constants. At higher energies, in the hadronic resonances
populated domain (1 GeV≲ E≲ 2.5 GeV), the construc-
tion of the Green functions has been addressed only under
several specific model-dependent assumptions, such as the
extended Nambu-Jona-Lasinio model [3–5] and related
ones [6]. Different implementations of large-NC [7–9]:
minimal hadronic ansatz [10–12] and resonance chiral
theory (RChT) [13–24], have also been explored in the last
decades. At even higher energies (2.5 GeV≲ E), except
where very narrow hadronic resonances arise, perturbative
QCD starts to provide a correct description.
It is clear that QCD should rule the dynamics of those

Green functions. However, our lack of knowledge of
nonperturbative QCD makes that task very difficult
and the use of models of QCD becomes necessary.

The construction of those models should include chiral
symmetry as a feature to be fulfilled in its low-energy
domain. The properties of the model at high-energies are
more difficult to implement due to hadronization and hence
they are not obvious from a Lagrangian point of view.
Several works have addressed this problem within RChT
[13], which provides a framework for the evaluation of the
Green functions in the intermediate energy region. This is a
Lagrangian setting in terms of pseudo-Goldstone bosons
and resonances (as matter fields) that, by construction,
respect the chiral symmetry. As in ChPT, this symmetry
provides the structure of the operators but gives no infor-
mation on the coupling constants. However, due to the
presence of resonance fields, the Lagrangian has no obvious
counting that controls the number of operators and, con-
sequently, some extra features are needed in its application.
On one side Green functions are computed using large-NC
premises [25]; this translates, essentially, in a loop expansion
generated by the Lagrangian. This is not enough to limit the
number of operators and, in addition, gives no information
on the coupling constants. The extra help comes from the
assumption that the correlation functions, as given by RChT
(ΠRChT), can be matched, at large momenta, with the known
asymptotic behavior of Green functions and form factors on
QCD grounds (ΠQCD). This sounds feasible as the RChT
result (at tree level) and the operator product expansion
(OPE), atOðα0SÞ, generate an expansion in inverse powers of
momenta. The method was originally applied to two-point
Green functions in Ref. [14] and later to three-point
functions [15,16] as:

lim
λ→∞

Πα0S
QCDðλqÞ ¼ lim

λ→∞
Πtree

RChTðλqÞ: ð1Þ

Short-distance constraints are also imposed on vertex func-
tions (form factors) by considering their Brodsky-Lepage
[26] asymptotic behavior, using parton dynamics [14,27].
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These approaches can provide valuable information on the
structure of the operators and their coupling constants.
Moreover, as the latter do not depend on the masses of
the pseudo-Goldstone bosons, the procedure can be carried
out in the chiral limit. The question of the feasibility of this
matching was discussed in Ref. [6].
The above-mentioned procedure is particularly trans-

parent for Green functions that are order parameters of the
spontaneous breaking of the chiral symmetry, i.e., those
that do not receive contributions of perturbative QCD, in
the chiral limit, at large momentum transfers and, therefore,
show a rather smooth behavior. Several works along this
line have been produced [16–22,24] with noticeable results.
One of the key issues in order to carry out the matching
procedure in Eq. (1) lies in the construction of the
appropriate operators in the RChT Lagrangian that make
the matching possible. The procedure may not always be
feasible [6], but most of the time it is just a matter of
looking for the suitable operators. In Ref. [28] it was
pointed out the difficulty involved in the matching for the
hSVμVνi Green function (where S and Vμ are short for
scalar and vector QCD currents, respectively) using a Proca
representation for the vector resonance fields in RChT. As
expected, the authors satisfied the matching by including a
higher order (in derivatives) RChT operator that was
needed to enforce the QCD short-distance behavior even
though it was nonleading at low energies. In this article we
perform a systematic analysis of the hSVμVνi and hSAμAνi
Green functions (Aμ is short for axial-vector QCD current)
using an antisymmetric representation for the spin-1
resonances in the RChT framework. We will fulfill the
matching indicated by Eq. (1) for both Green functions by
constructing a minimal set of RChT operators that provide
the correct short-distance behavior. We consider tree-level
diagrams only and, accordingly, work in theNC → ∞ limit.
Moreover, we restrict our large-NC description to only one
multiplet for each hadron type: scalars, vectors and axial-
vectors. As a final result we obtain several relations
between the relevant coupling constants of the Lagrangian.
The description, classification and dynamics of hadronic

scalar meson resonances, with masses MS ≲ 2 GeV, has a
long story of successes and failures (see the corresponding
note in Ref. [29]). The light-quark spectrum of meson
resonances is populated by many scalar states whose
identification as SUð3Þ octets/nonets is far from clear and
that are, probably, an admixture of exotic states that involve
tetraquarks or even glueballs. The unsolved nonperturbative
dynamics does not allow us to identify the nature of the
bound states generated by QCD. Experimentally one
observes a number of JP ¼ 0þ states that could fit into
two Uð3Þ nonets constituted by quarks. Our present knowl-
edge points out to usual ½q̄q� states but also tetraquark ones
½q̄q�½q̄q� [30]. The existence of a glueball (with JP ¼ 0þ and
of similar properties to the quark resonances) with mass in
the upper part of our spectrum (∼2 GeV) was also pointed

out some time ago by the lattice [31,32]. Hence it is expected
that all the scalar resonances in this energy region could be
an admixture of all these basic states.
By construction, the leading multiplets of resonances

described by RChT should correspond to those remaining
in theNC → ∞ limit. However, while this identification does
not create discussion for vector, axial-vector and pseudoscalar
resonances, the scalar case ismuchmore complex. InRef. [33]
a studywithinRChT in the large-NC framework identified the
preferred lightest scalar nonet as the one constituted by
S∞ ¼ ff0ð980Þ;K�

0ð1430Þ; a0ð1450Þ; f0ð1500Þg, assuming
that the a0ð980Þ is dynamically generated and making an
octet together with f0ð500Þ and K�

0ð700Þ as a subleading
spectrum. In Ref. [34], a new method to study the large-NC
behavior of the final states interactions (FSI) within the
dispersive approach was proposed. The NC trajectories of
the poles suggest that f0ð980Þ and f0ð1370Þ should have
the ½q̄q� component. This is further confirmed in Ref. [35],
by studying the semilocal duality in the large-NC limit.
Finally, there is also a broad consensus that S∞ corresponds
to the ½q̄q� structurewhile the lightest nonet of resonances is
constituted by ½q̄q�½q̄q� [30,36] (and references therein),
with a possible largemixing between them. Even thoughwe
basically agree with this description, we will modify it
slightly in order to include the f0ð1370Þ and the f0ð1710Þ,
aiming to account for the glueball in our framework.
Although the experimental situation of the scalar decays

is rather poor and uncertain [29], we intend to analyze the
two-pseudoscalar decays of the spectrumof scalars inRChT,
i.e., the S → PP decays of the leadingmultiplet in theNC →
∞ limit. In doing so, wewill use theminimal set of operators
in this framework. We will conclude that meanwhile the
short-distance matching procedure of the three-point Green
functions requires higher derivative operators in some cases,
and we do not need to introduce subleading operators (in the
large-NC counting) to fulfill the matching. On the contrary,
the experimental data on the S → PP decays will require to
break manifestly that counting by introducing subleading
operators. Hence we conclude that the scalar related cou-
plings in the matching of the Green functions are not given
by the NC → ∞ limit.
In Sec. II we recall the RChT framework within our

large-NC model, leaving for Sec. III the matching procedure
for the hSAμAνi and hSVμVνi three-point Green functions.
Section IV is devoted to explain the features of our scalar
resonance sector and the results of their decays into two
pseudoscalarmesons.Weestablish our conclusions in Sec.V.
The chiral notation and several analytical expressions on the
decays of scalars are given in the Appendices.

II. THE LARGE-NC SETTING:
RESONANCE CHIRAL THEORY

RChT is a Lagrangian framework that includes the
interaction between the chiral pseudoscalar octet of mesons
in ChPT, and the hadron resonances in the energy region up
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to ∼2 GeV. The symmetries driving the operators are both
the chiral [SUðNÞL ⊗ SUðNÞR and flavor SUðNÞ] sym-
metries, for light flavors, N ¼ 2, 3 [13,14,20]. By con-
struction the RChT method matches the chiral symmetric
results at low energies. Here we only recall the content
needed for our present work. We will only consider scalar,
vector and axial-vector resonances, and the case with
N ¼ 3 flavors. For a detailed account and notation we
refer the reader to Refs. [20,25] and Appendix A.
The RChT framework starts with the leading chiral

Lagrangian involving only the octet of pseudoscalar
Goldstone bosons (GB) and external currents. It is
given by:

LGB
ð2Þ ¼ LChPT

ð2Þ ¼ F2

4
huμuμ þ χþi; ð2Þ

where F is the decay constant of the pion in the chiral
limit, and the symbol h·i stands for the trace in flavor
space. This term collects the information on the sponta-
neous symmetry breaking of the chiral symmetry and
coincides with the same order Lagrangian of ChPT.
RChT has no defined parameter (in the Lagrangian) on

which to build a qualified counting to establish a classi-
fication for the operators. As the integration of the reso-
nances should provide, generically, the ChPT Lagrangian of
OðpnÞ, forn > 2, it has been customary to classify theRChT
operators by the order inmomenta of theChPToperators that
theywere producing upon integration. Therefore the general
structure of the operators isO ∼ hR1R2…RpχðpnÞi, withRa

a Uð3Þ nonet of resonance fields, namely Vμν (vector), Aμν

(axial-vector) and S (scalar). Notice that we will use the
antisymmetric representation for the spin-1 fields [37], given
its relevance in the chiral framework [1,14]. In addition,
χðpnÞ is a tensor (constructed with chiral invariants in terms
of the pseudoscalar Goldstone fields and external currents of
ChPT) of n chiral order (see Appendix A). The operators
giving the Oðp4Þ terms in the chiral Lagrangian are of the
type hRaχðp2Þi:

LV
ð2Þ ¼

FV

2
ffiffiffi
2

p hVμνfþμνi þ i
GVffiffiffi
2

p hVμνuμuνi;

LA
ð2Þ ¼

FA

2
ffiffiffi
2

p hAμνf−μνi;

LS
ð2Þ ¼ cdhSuμuμi þ cmhSχþi; ð3Þ

where the real couplings:FV ,GV ,FA, cd andcm are,a priori,
unknown. Those generating the Oðp6Þ chiral Lagrangian
have been studied in Ref. [20] and have the general
structures: hRaχðp4Þi, hRaRbχðp2Þi and hRaRbRci. Wewill
collect those of interest for our study in the next section.
It would also be possible to classify the operators into

sets that provide the correct asymptotic behavior of definite
n-point Green function of QCD currents, that is, the relation

in Eq. (1). As has been concluded in previous studies of
these Green functions, one starts with the two-point Green
function (and related form factors) and determines the
appropriate set of operators and relations between cou-
plings. For instance the study of two-point Green functions,
with only one multiplet of resonances (single resonance
approximation), gives [14,38–42]:

FVGV ¼ F2; F2
V − F2

A ¼ F2; F2
VM

2
V ¼ F2

AM
2
A;

4cdcm ¼ F2; cd ¼ cm; ð4Þ

for the couplings in Eqs. (2) and (3). Here MV and MA are
the masses of the vector and axial-vector nonet, respec-
tively. When the study is extended to three-point Green
functions one may determine an extended set of operators
and the initial relations between couplings could be
modified [15–22,24], and so on.
A comment on the nature of the resonances described in

the Lagrangian of RChT is needed. This framework is
embedded in a large-NC setting. Accordingly, the spectrum
described in the Lagrangian corresponds to states that stay
in the NC → ∞ limit. Thus our framework cannot contain
resonances that are generated by the Lagrangian (for
instance on accounts of unitarity) because these are sub-
leading in the 1=NC expansion. A clear case is the f0ð500Þ,
generated by (or coincident with) a strong ππ wide S-wave.
Together with LGB

ð2Þ in Eq. (2) and the Lagrangian
involving resonances, RChT requires the addition of oper-
ators with the same structure as the ones in the ChPT
Lagrangian at Oðp4Þ [2], Oðp6Þ [43], and so on, although
with different couplings. It is well known that the low-
energy couplings in ChPT are, at least at Oðp4Þ, mostly
saturated by the contribution of the lightest multiplets of
resonances [14]. At Oðp6Þ the situation is less clear.
Since the couplings are different from their ChPT counter-
parts, we will denote them as L̂i and Ĉi (for LGB

ð4Þ and LGB
ð6Þ ,

respectively):

LGB
ð4Þ ¼

X
i

L̂iOi
ð4Þ; LGB

ð6Þ ¼
X
i

ĈiOi
ð6Þ: ð5Þ

Notice that the dimension of the couplings are ½L̂i� ¼ E0

and ½Ĉi� ¼ E−2.
In this article we intend to analyze the three-point Green

functions hSVμVνi and hSAμAνi, imposing the asymptotic
behavior in Eq. (1), at leading order in the 1=NC expansion.
In practice this means that we will evaluate the three-point
Green functions in RChT with tree-level diagrams only.
For consistency, we should include in our computations
an infinite set of resonances. We do not know how to do this
in a model-independent way. However, there are good
phenomenological reasons that indicate that the lowest
mass states (surviving in the NC → ∞ limit) contribute
dominantly, as has been shown for instance in the
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determinations of the Oðp4Þ low-energy couplings [13].
This is in agreement with the usual decoupling of effective
field theories where the contributions from heavy mass
states to the low-energy theory is suppressed by powers of
E=M, with E the energy scale of the effective theory andM
the mass of the decoupled state. Accordingly, we model our
NC → ∞ setting by including only the lightest multiplet of
resonances for each hadron type.
The identification of the nonets in Eq. (3) is simple for

vector states [29]: Vμνð1−Þ ¼ fρð770Þ; K�ð892Þ;ωð782Þ;
ϕð1020Þg. For axial-vector mesons the situation is slightly
more complicated [33]: Aμνð1þÞ¼fa0ð1260Þ;K1ð1270Þ;
f1ð1285Þ;f1ð1420Þg, since the strange doublet could
also be K1ð1400Þ or an admixture of both. The common
feature of these two multiplets is that they correspond
to the lightest states (experimentally identified) with those
quantum numbers. For the scalar resonance case (and
the glueball) the identification of the lightest nonet,
surviving at NC → ∞, seems not to concur with the lightest
nonet but with one of higher mass. We delay this discussion
to Sec. IV.

III. THREE-POINT GREEN FUNCTIONS
FROM RCHT

Similarly to the relations in Eq. (4), based on two-point
Green functions, one can obtain additional constraints
on the RChT couplings by analyzing the three-point
Green functions. A lot of work has already been employed
in their study [6,15–22,24]. Here we focus on the scalar-
involved Green functions hSAμAνi and hSVμVνi. Both of
them are order parameters of the spontaneous chiral
symmetry breaking and, consequently, vanish at Oðα0SÞ
in the chiral limit.
The definition of these Green functions is given by

Πijk
123ðp1; p2Þ ¼ i2

Z
d4xd4yeiðp1·xþp2·yÞ

×

�
0

����T
��

ψ̄Γ1

λi

2
ψ

�
ð0Þ

�
ψ̄Γ2

λj

2
ψ

�
ðxÞ

×

�
ψ̄Γ3

λk

2
ψ

�
ðyÞ

�����0
	
; ð6Þ

where Γi ¼ 2 for the scalar current, Γi ¼ γμ for the vector
current and Γi ¼ γμγ5 for the axial-vector current. Our
conventions for the momenta are defined in Fig. 1. We will
proceed to determine the general structure of those Green
functions as provided by their chiral Ward identities,
SUð3ÞV , parity and time reversal. Then we will obtain
their short-distance behavior at leading order in the
momenta expansion. We also calculate their expressions
using RChTand including the necessary operators such that
we have a perfect matching in the momenta expansion,
following the relation in Eq. (1). A simplifying aspect of the

procedure is that, since the couplings do not depend on the
masses of the pseudoscalar mesons, we can perform this
operation in the chiral limit. Since our Green functions are
order parameters of the chiral symmetry breaking, this
implies that there is no perturbative contribution in the
parton calculation, at least at Oðα0SÞ.

A. hSAμAνi
The hSAμAνi Green function is defined by:

ðΠijk
SAAÞμν ¼ i2

Z
d4xd4yeiðp1·xþp2·yÞ

× h0jTfSið0ÞAj
μðxÞAk

νðyÞgj0i; ð7Þ
where

SiðxÞ ¼ ðq̄λiqÞðxÞ; Ai
μðxÞ ¼

�
q̄γμγ5

λi

2
q

�
ðxÞ; ð8Þ

with qðxÞ ¼ ðu; d; sÞT the quark fields. In SUð3Þ it satisfies
the Ward identities:

pμ
1ðΠijk

SAAÞμν ¼ −2dijkB0F2
ðp2Þν
p2
2

;

pν
2ðΠijk

SAAÞμν ¼ −2dijkB0F2
ðp1Þμ
p2
1

: ð9Þ

Here B0 parametrizes the spontaneous chiral symmetry
breaking and it has been defined in Eq. (A5). The general
structure of the Green function is given by:

FIG. 1. Identification of momenta for the Πijk
123 Green function.

Here q ¼ p1 þ p2.

FIG. 2. Contribution to hSAμAνi from the chiral Lagrangian
LChPT
ð2Þ .

DAI, FUENTES-MARTÍN, and PORTOLÉS PHYS. REV. D 99, 114015 (2019)

114015-4



ðΠijk
SAAÞμν ¼ dijkB0



−2F2

ðp1Þμðp2Þν
p2
1p

2
2

þ FAðp2
1; p

2
2; q

2ÞPμν

þ GAðp2
1; p

2
2; q

2ÞQμν

�
; ð10Þ

with the generic scalar functions FAðp2
1; p

2
2; q

2Þ and
GAðp2

1; p
2
2; q

2Þ, q2 ¼ ðp1 þ p2Þ2, and where Pμν and Qμν

are the two Lorentz structures that vanish upon projection
with the ðp1Þμ and ðp2Þν momenta:

Pμν ¼ ðp2Þμðp1Þν − p1 · p2gμν;

Qμν ¼ p2
1ðp2Þμðp2Þν þ p2

2ðp1Þμðp1Þν
− p1 · p2ðp1Þμðp2Þν − p2

1p
2
2gμν: ð11Þ

The Ward identities in Eq. (9) are also at the origin of the
first term of the Green function in Eq. (10). This term is
recovered in RChT by the Oðp2Þ ChPT Lagrangian in
Eq. (2) through the diagram in Fig. 2.
The short-distance behavior of the hSAμAνi function, at

leading order in the momenta expansion, is given by:

lim
λ→∞

ðΠijk
SAAÞμνðλp1;λp2Þ

¼−2dijkB0F2
1

λ2
1

p2
1p

2
2q

2
½q2ðp1Þμðp2ÞνþQμν −p1 ·p2Pμν�

þO
�
1

λ3

�
; ð12Þ

lim
λ→∞

ðΠijk
SAAÞμνðλp1; p2Þ

¼ −2dijkB0F2
1

λ

ðp1Þμðp2Þν
p2
1p

2
2

þO
�
1

λ2

�
; ð13Þ

lim
λ→∞

ðΠijk
SAAÞμνðp1; λp2Þ

¼ −2dijkB0F2
1

λ

ðp1Þμðp2Þν
p2
1p

2
2

þO
�
1

λ2

�
; ð14Þ

lim
λ→∞

ðΠijk
SAAÞμνðλp1; q − λp1Þ ¼ O

�
1

λ2

�
: ð15Þ

Let us now compute FA and GA in RChT at tree level.
The content of the Lagrangian, as explained in Sec. II
presents two main parts: the operators with Goldstone
boson fields only (and external currents) and those with
interactions among them and resonance fields. We have:

LSAA ¼ LGB
ð2Þ þ LGB

ð4Þ þ LGB
ð6Þ þ LA

ð2Þ þ LS
ð2Þ þ LA; ð16Þ

where the GB Lagrangians have been defined in Eqs. (2)
and (5). For the reader’s convenience we list the relevant
operators in Table I. Their contribution to the Green
functions are given by the diagrams in Fig. 3.
Next we consider the resonance contributions. The

Lagrangians LA
ð2Þ and LS

ð2Þ are given in Eq. (3) while in
LA we include those operators with resonances, Goldstone
fields and external currents that, upon integration of the
resonances, originate the Oðp6Þ ChPT Lagrangian. They
have been constructed in Ref. [20]. Those contributing to
our Green function are also collected in Table I. They
contribute through the diagrams in Fig. 4. Previous short-
distance constraints already concluded that λS17 ¼ λS18 ¼
λA17 ¼ 0 [20]. We include these couplings in our analysis
and we set them to zero at the very end.
The final result for the FA and GA functions defined in

Eq. (10) is

TABLE I. Couplings and operators in LSAA contributing to the hSAμAνi Green function. Those with resonances are collected from
Ref. [20]. On the left two columns we collect the operators with only Goldstone bosons given by ChPT. On the middle two columns we
collect the operators with one resonance hRχðp4Þi. On the right two columns we list the operators with more than one resonance:
hRRχðp2Þi and hRRRi. Note that the dimensions of these couplings are ½λRi � ¼ E−1, ½λRRi � ¼ E0 and ½λSAA� ¼ E.

Coupling Operator Coupling Operator Coupling Operator

F2=4 huμuμ þ χþi λS12 hSf∇αfμα− ; uμgi λSA1 hf∇μS; Aμνguνi
L̂5

huμuμχþi λS16 hSf−μνfμν− i λSA2 hfS; Aμνgfμν− i
Ĉ12

hhμνhμνχþi λS17 hS∇α∇αðuμuμÞi λAA6 hAμνAμνχþi
Ĉ80

hf−μνfμν− χþi λS18 hS∇μ∇μχþi λSAA hSAμνAμνi
Ĉ85

hf−μνfχμþ; uνgi λA6 hAμν½uμ;∇νχþ�i
λA16 hAμνffμν− ; χþgi
λA17 hAμν∇α∇αfμν− i

FIG. 3. Goldstone boson contributions to the hSAμAνi Green
function from the higher-order GB chiral Lagrangian at Oðp4Þ
and Oðp6Þ.
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FAðp2
1; p

2
2; q

2Þ ¼ 32ðĈ12 − Ĉ80 − Ĉ85Þ − 32λS16PS − 16λAA6 PAðp2
1ÞPAðp2

2Þ
þ 8

ffiffiffi
2

p
ð2λA16 − λA6 þ ðλSA1 þ 2λSA2 ÞPSÞðPAðp2

1Þ þ PAðp2
2ÞÞ − 16λSAAPSPAðp2

1ÞPAðp2
2Þ; ð17Þ

and

GAðp2
1; p

2
2; q

2Þ ¼ 8

p2
1p

2
2

ð2L̂5 þ 4Ĉ12ðp2
1 þ p2

2 − q2Þ − 2Ĉ85ðp2
1 þ p2

2Þ þ 2cdPS − 2λS12ðp2
1 þ p2

2ÞPS − 2λS17q
2PS

−
ffiffiffi
2

p
ðλA6 − λSA1 PSÞðp2

1PAðp2
1Þ þ p2

2PAðp2
2ÞÞÞ; ð18Þ

where

PS ¼
cm − λS18q

2

M2
S − q2

; PAðp2Þ ¼ FA − 2
ffiffiffi
2

p
λA17p

2

M2
A − p2

; ð19Þ

and MS and MA are the masses of the nonet of scalars and axial-vector mesons in the Uð3Þ and chiral limits.
We can now expand our RChT results for the FA and GA functions and impose the constraints by Eqs. (12)–(15). We get:

FIG. 4. Diagrams contributing to the hSAμAνi Green function in RChT. Goldstone bosons and resonance states are represented by
single and double lines, respectively.
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L̂5 ¼ Ĉ12 ¼ Ĉ80 ¼ Ĉ85 ¼ 0;

λA6 ¼ λA16 ¼ λS12 ¼ λS16 ¼ 0;

λAA6 ¼ −
F2

16F2
A
;

λSA1 ¼ 1ffiffiffi
2

p
FA

�
cd −

F2

8cm

�
;

λSA2 ¼ −
cd

2
ffiffiffi
2

p
FA

: ð20Þ

It is interesting to observe that the low-energy couplings of
the GB Lagrangians vanish. This strengthens the notion of
resonance dominance of the chiral couplings.

B. hSVμVνi
We proceed analogously with the hSVμVνi Green func-

tion defined by:

ðΠijk
SVVÞμν ¼ i2

Z
d4xd4yeiðp1·xþp2·yÞ

× h0jTfSið0ÞVj
μðxÞVk

νðyÞgj0i; ð21Þ
where

Vi
μðxÞ ¼

�
q̄γμ

λi

2
q

�
ðxÞ; ð22Þ

and the scalar current as defined in Eq. (8). In the SUð3Þ
limit it satisfies the Ward identities:

pμ
1ðΠijk

SVVÞμν ¼ 0;

pν
2ðΠijk

SVVÞμν ¼ 0: ð23Þ
Its general structure is given by:

ðΠijk
SVVÞμν¼ dijkB0½FVðp2

1;p
2
2;q

2ÞPμνþGVðp2
1;p

2
2;q

2ÞQμν�;
ð24Þ

where Pμν and Qμν have been defined in Eq. (11).
The short-distance behavior of the hSVVi function, at

leading order in the momenta expansion, reads1:

lim
λ→∞

ðΠijk
SVVÞμνðλp1; λp2Þ

¼ −dijkB0F2
1

λ2
1

p2
1p

2
2q

2
½2Qμν þ ðp2

1 þ p2
2 þ q2ÞPμν�

þO
�
1

λ3

�
; ð25Þ

lim
λ→∞

ðΠijk
SVVÞμνðλp1;p2Þ¼−2dijk

1

λ

ΠVTðp2
2Þ

p2
1

PμνþO
�
1

λ2

�
;

ð26Þ

lim
λ→∞

ðΠijk
SVVÞμνðp1; λp2Þ ¼ −2dijk

1

λ

ΠVTðp2
1Þ

p2
2

Pμν þO
�
1

λ2

�
;

ð27Þ

lim
λ→∞

ðΠijk
SVVÞμνðλp1; q − λp1Þ ¼ O

�
1

λ2

�
; ð28Þ

and ΠVTðp2Þ is defined by:

ðpρgμσ − pσgμρÞδijΠVTðp2Þ

¼
Z

d4xeip·x
�
0

����T
�
Vi
μðxÞ

�
q̄σρσ

λj

2
q

�
ð0Þ

�����0
	
: ð29Þ

Let us compute now the FV and GV functions (24) in the
RChT formalism. Analogously to the previous Green
function we denote our Lagrangian as:

LSVV ¼ LGB
ð2Þ þ LGB

ð4Þ þ LGB
ð6Þ þ LV

ð2Þ þ LS
ð2Þ þ LV; ð30Þ

where LGB
ð2Þ is defined in Eq. (2), LGB

ð4Þ and LGB
ð6Þ are defined

in Eq. (5), LV
ð2Þ and LS

ð2Þ are specified in Eq. (3) and LV

includes interaction terms between scalar, vector resonan-
ces, and external currents. There is a key difference
between the operators needed to match the Green function
in the hSAμAνi case and the present ones. The Lagrangian
LA only includes those operators that, upon integration of
the resonance, contributes to the ChPT Oðp6Þ Lagrangian.
Contrary to the hSAμAνi case, these operators are not
enough to achieve the matching in the hSVμVνi case. More
precisely, if we only include the operators in Table II we
would get GVðp2

1; p
2
2; q

2Þ ¼ 0 and, therefore, we would not
be able to fulfill the matching. We thus need to include
additional operators that are listed in Table III. They have
the chiral structure: hRχðp6Þi, hRRχðp4Þi and hRRRχðp2Þi
and yield contributions to both FV and GV .

TABLE II. Operators of Oðp6Þ in ChPT and operators in LV
that, upon integration of the resonances, give chiral operators of
Oðp6Þ. Short-distance constraints [20] require that λV22 ¼ 0. Note
that the dimensions of these couplings is ½C̃i� ¼ E−2, ½λRi � ¼ E−1,
½λRRi � ¼ E0 and ½λSVV � ¼ E.

Coupling Operator Coupling Operator

Ĉ61
hfþμνf

μν
þ χþi

λS15 hSfþμνf
μν
þ i λVV6 hVμνVμνχþi

λV6 hVμνffμνþ ; χþgi λSV3 hfS; Vμνgfμνþ i
λV22 hVμν∇α∇αfμνþ i λSVV hSVμνVμνi

1It is possible to vary the high energy behavior of the Green
function as

lim
λ1;λ2→∞

ðΠijk
SVVÞμνðλ1p1; λ2p2Þ:

Since λ1, λ2 arbitrarily go to infinity, the matching in the short
distance region should be fulfilled for each momentum inde-
pendently.
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The complete set of diagrams contributing to hSVμVνi is given in Fig. 5. The resulting expressions for the FV and GV
functions are

FVðp2
1;p

2
2;q

2Þ¼−32Ĉ61−32λS15PSþ16
ffiffiffi
2

p
ðλV6 þλSV3 PSÞðPVðp2

1ÞþPVðp2
2ÞÞ−16ðλVV6 þλSVVPSÞPVðp2

1ÞPVðp2
2Þ

−4ðð2κSVV2 þ2κSVV3 þ κSVV6 Þðp2
1þp2

2Þ− ð2κSVV3 −4κSVV4 þ2κSVV5 þ κSVV6 Þq2ÞPSPVðp2
1ÞPVðp2

2Þ
þ4

ffiffiffi
2

p
ð2κSV1 −2κSV3 þ κSV4 þ κSV5 ÞPSðp2

1PVðp2
2Þþp2

2PVðp2
1ÞÞ

þ4
ffiffiffi
2

p
ð2κSV3 − κSV4 þ κSV5 Þq2PSðPVðp2

1ÞþPVðp2
2ÞÞþ4

ffiffiffi
2

p
ð2κSV3 þ κSV4 − κSV5 ÞPSðp2

1PVðp2
1Þþp2

2PVðp2
2ÞÞ

þ8ðκS1þ2κS3Þq2PS−8ðκS1þ2κS2þ2κS3Þðp2
1þp2

2ÞPS−4ððκVV1 þ2κVV2 þ2κVV3 Þðp2
1þp2

2Þ
− ðκVV1 þ2κVV3 Þq2ÞPVðp2

1ÞPVðp2
2Þþ4

ffiffiffi
2

p
ð2κV1 þ2κV3 þ κV4 þ κV5 Þðp2

1PVðp2
1Þþp2

2PVðp2
2ÞÞ

þ4
ffiffiffi
2

p
ð2κV3 − κV4 þ κV5 Þq2ðPVðp2

1ÞþPVðp2
2ÞÞ−4

ffiffiffi
2

p
ð2κV3 − κV4 þ κV5 Þðp2

1PVðp2
2Þþp2

2PVðp2
1ÞÞ; ð31Þ

and

GVðp2
1; p

2
2; q

2Þ ¼ 8ðκSVV1 − 2κSVV2 ÞPSPVðp2
1ÞPVðp2

2Þ − 32κS2PS þ 8
ffiffiffi
2

p
ðκSV1 − κSV2 ÞPSðPVðp2

1Þ þ PVðp2
2ÞÞ

þ 8
ffiffiffi
2

p
ðκV1 − κV2 ÞðPVðp2

1Þ þ PVðp2
2ÞÞ − 16κVV2 PVðp2

1ÞPVðp2
2Þ; ð32Þ

TABLE III. Operators inLV that, upon integration of the resonances, give chiral operators ofOðpnÞwith n > 6. The dimensions of the
couplings are: ½κSVVi � ¼ E−1, ½κSV;VVi � ¼ E−2 and ½κS;Vi � ¼ E−3.

Coupling Operator Coupling Operator Coupling Operator

κSVV1
h∇μVμν∇αVανSi κSV1 hfVαν;∇μf

μν
þ g∇αSi κV1 hf∇αVαν; f

μν
þ g∇μχþi

κSVV2
hf∇μVμν; Vανg∇αSi κSV2 hf∇αVαν;∇μf

μν
þ gSi κV2 hf∇αVαν;∇μf

μν
þ gχþi

κSVV3
h∇αVμν∇αVμνSi κSV3 hf∇αVμν; f

μν
þ g∇αSi κV3 hf∇αVμν; f

μν
þ g∇αχþi

κSVV4
hf∇αVμν; Vμνg∇αSi κSV4 hf∇μVαν;∇αfμνþ gSi κV4 hf∇μVαν;∇αfμνþ gχþi

κSVV5
hf∇αVμν; Vαμg∇νSi κSV5 hfVαν;∇αfþμνg∇μSi κV5 hf∇μVαν; fþμνg∇αχþi

κSVV6
h∇αVμν∇μVανSi κS1 h∇αfμνþ∇μfþανSi κVV1 h∇αVμν∇μVανχþi

κS2 hffμνþ ;∇αfþανg∇μSi κVV2 hfVμν;∇αVανg∇μχþi
κS3 h∇αfμνþ∇αfþμνSi κVV3 h∇αVμν∇αVμνχþi

FIG. 5. Diagrams contributing to the hSVμVνi Green function in RChT. Goldstone bosons and resonance states are represented by
single and double lines, respectively.
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where PS has been defined in Eq. (19) and

PVðp2Þ ¼ FV − 2
ffiffiffi
2

p
λV22p

2

M2
V − p2

; ð33Þ

with MV the mass of the nonet of vector resonances in the
Uð3Þ and chiral limit.
By imposing the constraints on Eqs. (25)–(28), we obtain:

κS2¼ κVV2 ¼0;

κS1þ2κS3¼0;

κVV1 þ2κVV3 ¼0;

κSV1 −κSV2 ¼0;

2κSV3 þκSV4 −κSV5 ¼−
2

ffiffiffi
2

p
λS15

FV
;

2κSV1 −2κSV3 þκSV4 þκSV5 ¼0;

2κSV3 −κSV4 þκSV5 ¼4λV6
cm

þM2
V

cm
ð2κV1 þ2κV3 þκV4 þκV5 Þ;

κV1 −κV2 ¼0;

2κV3 −κV4 þκV5 ¼0;

κV1 þ2κV3 þκV5 ¼−
ffiffiffi
2

p
Ĉ61

FV
;

κSVV1 −2κSVV2 ¼ F2

4cmF2
V

2κSVV3 −4κSVV4 þ2κSVV5 þκSVV6 ¼−
4λVV6
cm

þ F2

4cmF2
V
;

2κSVV2 þ2κSVV3 þκSVV6 ¼−
F2

4cmF2
V
−
4

ffiffiffi
2

p
λSV3

FV

−
ffiffiffi
2

p
M2

Sð2κSV3 −κSV4 þκSV5 Þ
FV

−
ffiffiffi
2

p
M2

Vð2κSV3 þκSV4 −κSV5 Þ
FV

:

ð34Þ
Notice that, in this case, the local contribution from LGB

ð6Þ ,
namely Ĉ61, is not forced to vanish by the short-distance
constraints. Our Lagrangian, defined in Eq. (30), generates
both FV and GV functions, and is able to satisfy the short-
distance relations.
Incidentally, the matching procedure in Eqs. (26) and

(27) provides an expression for the vector-tensor correlator
defined in Eq. (29), namely:

ΠVTðp2Þ ¼ B0F2

p2 −M2
V
; ð35Þ

that agrees with the result in [21].

C. RChT coupling constants

The relations between the RChT couplings obtained in
Eqs. (20) and (34) rely on the assumptions of short-distance
QCD asymptotic behavior and single resonance approxi-
mation. We may wonder how reliable are those assump-
tions. If our implementation of large-NC was exact (i.e., if
we had included an infinite number of resonances) we
could argue that our computation should receive ∼33%
one-loop corrections. In practice this is a rough estimate
because we cannot evaluate the error introduced by
imposing the asymptotic behavior. Because of these
uncertainties, one should expect slight modifications to
the relations obtained in Eqs. (20) and (34). In our opinion
the largest source of uncertainty arises from the lack of a
more thorough implementation of the large-NC description.
It is well known that the phenomenology of hadron

processes indicates that large-NC is a reasonable assumption
for spin-1 related processes, but fails for scalar (vacuum)
quantum numbers.2 In this case, higher-order 1=NC correc-
tions seem to be particularly relevant. Let us consider, for
instance, the case of the cd and cm couplings in Eq. (3) with
the constraints in Eq. (4). One would conclude that in the
single resonance approximation we have:

cd ¼ cm ¼ F
2
: ð36Þ

Taking F ¼ 92.4 MeV we get cd ¼ cm ¼ 46.2 MeV.
However, the phenomenology of different processes
(I ¼ 1=2 and I ¼ 3=2 Kπ S-wave scattering, a0ð980Þ
decay) gives 13 MeV≲ cd ≲ 40 MeV and 30 MeV≲
cm ≲ 100 MeV (see [44] and references therein). While
the condition 4cdcm ¼ F2 is rather well satisfied, there
seems to be some tension between the phenomenological
values of cd and cm and the relation cd ¼ cm. Given the large
uncertainties, we cannot reliably estimate the error of our
large-NC result (36) (in single resonance approximation),
but it could be off even by a factor of 3 (for cd) or 2 (for cm) in
the worst case.
We conclude that our relations in Eqs. (20) and (34) may

be affected by errors of similar size to the case above. The
order of magnitude is expected to be correct but notable
deviations may arise. Unfortunately, we cannot constrain
most of the couplings with the present phenomenological
status. However we can get reliable estimates in certain
couplings, such as cd and cm, which appear in the decays of a
scalar to two pseudoscalars. We will pursue this in Sec. IV.
In summary, our present knowledge of the hadron scalar

spectrum, and its decays, is rather poor [29] and the couplings
involved are essentially unknown. On one hand, we need to
identifywhich is the spectrumdescribed by theRChT (or any
other) framework. On the other hand, we lack the required

2As a general setting, meson-vector form factors are well
described in a NC → ∞ framework in RChT. On the contrary, a
resummation of many loops is usually required to provide a
reasonable account of scalar form factors.
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experimental data to have a general vision of the accuracy of
our results. In the next sectionwewill try to clarify part of the
phenomenological status of scalar resonances.

IV. SCALAR COUPLINGS

Which are the, experimentally identified, scalar states
present in our Lagrangian? As commented at the end of
Sec. II, there is almost no discussion on the identification of
the vector and axial-vector resonances of the RChT
Lagrangian. They are, in fact, the lightest hadron reso-
nances in the spectrum with those quantum numbers.
Scalars (and glueballs) are different. They carry the vacuum
quantum numbers and their identification (forM ≲ 2 GeV)
generates controversy. Here, we will comment first several,
more or less agreed, features and we will propose a scheme.
As discussed in Sec. II the lightest scalar resonance,

namely the isosinglet f0ð500Þ, corresponds to a wide ππ
S-wave that does not survive the NC → ∞ limit. Increasing
in mass we have K�

0ð700Þ, the isotriplet a0ð980Þ and the
isosinglet f0ð980Þ. The next scalar appears at around
1.4 GeV. Hence, naively, one could consider that the
first Uð3Þ nonet of scalar resonances is the one with
those states: SL¼ff0ð500Þ;K�

0ð700Þ;a0ð980Þ;f0ð980Þg.
Following this scheme, determined by the mass, the next
nonet would be: SH¼ff0ð1370Þ;K�

0ð1430Þ;a0ð1450Þ;
f0ð1500Þg. Until ∼2 GeV there is another isosinglet scalar:
f0ð1710Þ. Other scalars appear around 2 GeV. Needless to
say that the physical states do not need to correspond exactly
with the basis in the Lagrangian and mixing between those
with the same quantum numbers surely arise. If our
assumption, relying on the mass, was correct, we could
conclude that SL would correspond to the nonet that
vanishes atNC → ∞, as it includes the f0ð500Þ. A thorough
analysis in this limit was carried out in Ref. [33]. Their
conclusion was that the most favored candidates for the
leading nonet in the infinite number of colors limit
was: S∞ ¼ ff0ð980Þ; K�

0ð1430Þ; a0ð1450Þ; f0ð1500Þg.
Another aspect of the spectrum of scalars is related with

their quark content. This is of no relevance for the RChT
Lagrangian: it can allocate any quark content. However it is
suitable to collect this information here. We will reduce our
comment to ½q̄q� and ½q̄q�½q̄q� states (see [30] and references
therein). One aspect that distinguishes the quark structure of
the nonets is that, in the ideal mixing case, the tetraquark
multiplet has an inverted spectrum: the isodoublet is heavier
than the isotriplet. We see that this feature (the order in the
spectrum) is clearly described by SL above, while they are
essentially degenerated (within errors [29]) in the case ofSH.
This feature could be the result of a violation of the ideal
mixing. There are also other reasons to conclude that the
light nonet corresponds to the tetraquark structure while the
heavy one is the usual ½q̄q� [30].
In this section we will identify the nonet of scalar

resonances in our RChT Lagrangian with the SH nonet
above. We will also consider the singlet f0ð1710Þ and a

general mixing between the isosinglet fields that generates
the physical states, including a possible glueball. As
commented in Sec. III C, the phenomenology seems to
indicate that the NC → ∞ limit is rather poor when scalars
are involved. Hence, in our analysis, we will include
subleading contributions into the Lagrangian in order to
accommodate the experimental figures within their large
errors. This will allow us to get more accurate determina-
tions of the leading cd and cm couplings.
Similar studies have been carried out in the last years, see

for instance [45–52] and references therein.

A. S → PP: Isodoublet and isotriplet decays

We will consider a RChT framework with violation of
the NC → ∞ limit in the tree level Lagrangian. More
precisely, we will consider terms with more than one trace
in flavor space. Previous studies [46] have pointed out a
non-negligible mixing between the I ¼ 1, 1=2 states of
both nonets SL and SH. Hence we will include a mixing
between them. The Lagrangian reads:

LI¼1;1=2 ¼ cLd hSLuμuμi þ αLhSLuμihuμi þ cLmhSLχþi
þ cHd hSHuμuμi þ αHhSHuμihuμi þ cHmhSHχþi;

ð37Þ
after diagonalization. This introduces two mixing angles:�

a0;L
a0;H

�
¼

�
cosφa sinφa

− sinφa cosφa

��
a0ð980Þ
a0ð1450Þ

�
;

�
K�

0;L

K�
0;H

�
¼

�
cosφk sinφk

− sinφk cosφk

��
K�

0ð700Þ
K�

0ð1430Þ
�
: ð38Þ

The mixing angles φa and φk are not fixed. In Ref. [46] the
values quoted are φa ¼ π=4 and φk ∼ 0.17π. We will
consider them as free parameters. The lack of data on the
FSI phase shifts for the decays of these fields prevents the
inclusion of these effects in our analysis. The amplitudes for
such decays are collected in Sec. B 1 of Appendix B.

B. S → PP: Isosinglet decays

As commented before, we are interested in the descrip-
tion of the decays of the f0ð1370Þ, f0ð1510Þ and f0ð1710Þ.
Although we identify the first two as those of the SH
multiplet and the third as a possible glueball, the real
situation can be much more cumbersome and the real
physical states is surely a non-neglible mixing between the
isosinglets of the SH multiplet (namely S8, S0) and an extra
singlet (S1). A general rotation of them will provide the
physical states:

0
B@

f0ð1370Þ
f0ð1510Þ
f0ð1710Þ

1
CA ¼ A

0
B@

S8
S0
S1

1
CA; ð39Þ
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where

A ¼

0
B@

cos γ cos β cos α − sin γ sin α cos γ cos β sin αþ sin γ cos α − cos γ sin β

− sin γ cos β cos α − cos γ sin α − sin γ cos β sin αþ cos γ cos α sin γ sin β

sin β cos α sin β sin α cos β

1
CA: ð40Þ

Now we set up our RChT framework to describe
these decays. Contrary to the above decays, we are
not going to consider mixing between the light and
heavy multiplets. This would give a complicated setting
with many parameters and, as we will conclude, it is not
necessary to provide a reasonable description of all the
decays.
With these inputs the Lagrangian to study the f0 → PP

decays will be

LI¼0;S1 ¼ cHd hSHuμuμiþcHmhSHχþiþαHhSHuμihuμi
þβHhSHihuμuμiþ γHhSHihuμihuμi
þc0dS1huμuμiþc0mS1hχþiþ γ0S1huμihuμi: ð41Þ

Furthermore, as the ππ and K̄K phase shifts are rather well
known [53,54] we also incorporate the parametrization of
final state interactions as described in Appendix C. The
amplitudes for these decays are gathered in Sec. B 2 of
Appendix B.

C. Results

The present experimental determination of the S → PP
decay widths is rather poor. Many channels have not been
observed or have large errors. As a result, we end up with
more variables than experimental inputs. However, from
our fit we can obtain a general idea of the current
landscape.
We will fit our partial widths and ratios with the data

collected in the rightmost column of Tables IV and V. We
input the masses of the resonances from [29], with the
exception of the a0ð980Þ and f0ð1370Þ. The first one is also
fitted due to the sensibility of the results to its decay. For
f0ð1370Þ we take the result put forward by [55] in the
analysis of its dominant decay into four pions,
Mf0ð1370Þ ¼ 1.395 GeV. We take F ¼ 92.4 MeV for the
decay constant of the pion.
Our results for the fit are presented in the central

column of Tables IV and V. As we can see, we obtain a
reasonable description of most of the channels (being the
clear exception the K�

0ð700Þ → πK decay). We get a null
value for Γðf0ð1500Þ → ηη0Þ since this decay is kine-
matically forbidden for the central value of the f0ð1500Þ
mass. The results for masses, couplings and parameters
are collected in Table VI. We are going to analyze, in
turn, the outcome:

(a) We obtain the mixing angles between the I ¼ 0 states,
α,β, γwith rather large errors. To illustrate the results let
us change to the flavor basis, jSi, jNi, jGi, defined by:

TABLE IV. Results of our fit for the decay widths analyzed in
our RChT framework. The experimental data are taken from [29]
except when explicitly stated otherwise.

Width Our fit (MeV) Exp. (MeV)

Γf0ð1370Þ→ππ 11.7� 5.7 20.8� 10.7 [56,57]
Γf0ð1370Þ→KK̄ 10.7� 3.2 19.0� 10.6 [56,57]
Γf0ð1370Þ→ηη 10.4� 4.3 6.41� 2.88 [55,58]
Γf0ð1500Þ→ππ 38.1� 5.6 38.0� 2.5 [59,60]
Γf0ð1500Þ→KK̄ 9.39� 2.2 9.37� 1.09 [59,60]
Γf0ð1500Þ→ηη 5.50� 4.1 5.56� 0.98 [59,60]
Γf0ð1500Þ→ηη0 0.0 2.07� 0.87
Γf0ð1710Þ→ππ 20.5� 6.6 20.5� 9.9
Γf0ð1710Þ→KK̄ 50.0� 15.3 50.0� 16.7
Γf0ð1710Þ→ηη 23.8� 9.8 24.0� 11.0
Γf0ð1710Þ→ηη0 30.9� 20.2 � � �
Γaþ

0
ð1450Þ→πþη 24.4� 12.0 24.7� 5.3

Γa0ð1450Þ→π0η 24.5� 12.0 24.7� 5.3
Γaþ

0
ð1450Þ→πþη0 9.14� 7.6 8.7� 4.5

Γa0ð1450Þ→π0η0 9.18� 7.7 8.7� 4.5
Γaþ

0
ð1450Þ→KþK̄0 21.0� 7.3 21.7� 7.4

Γa0
0
ð1450Þ→KþK− 10.6� 3.7 � � �

Γa0
0
ð1450Þ→K0K̄0 10.4� 3.6 � � �

ΓK�
0
þð1430Þ→π0Kþ 80.5� 12.8 � � �

ΓK�
0
þð1430Þ→πþK0 159.7� 25.5 � � �

ΓK�
0
0ð1430Þ→π0K0 80.0� 12.8 � � �

ΓK�
0
0ð1430Þ→π−Kþ 160.6� 25.6 � � �

ΓK�
0
þð1430Þ→ηKþ 20.7� 14.3 � � �

ΓK�
0
0ð1430Þ→ηK0 20.5� 14.2 � � �

ΓK�
0
þð1430Þ→πK 240.1� 38.3 251.1� 27.0

Γaþ
0
ð980Þ→πþη 81.2� 16.9 � � �

Γa0ð980Þ→π0η 81.7� 17.0 � � �
Γaþ

0
ð980Þ→KþK̄0 14.4� 5.5 14.2� 1.8

Γa0
0
ð980Þ→KþK− 7.66� 2.8 � � �

Γa0
0
ð980Þ→K0K̄0 6.68� 2.7 � � �

ΓK�
0
þð700Þ→π0Kþ 1.56� 1.9 � � �

ΓK�
0
þð700Þ→πþK0 3.04� 3.6 � � �

ΓK�
0
0ð700Þ→π0K0 1.53� 1.8 � � �

ΓK�
0
0ð700Þ→π−Kþ 3.09� 3.7 � � �

ΓK�
0
ð700Þ→πK 4.59� 5.5 478� 127
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jSi≡ js̄si ¼ −
ffiffiffi
2

3

r
jS8i þ

1ffiffiffi
3

p jS0i;

jNi≡ 1ffiffiffi
2

p jūuþ d̄di ¼ 1ffiffiffi
3

p jS8i þ
ffiffiffi
2

3

r
jS0i; ð42Þ

being jGi the singlet glueball. In this basis we have:

0
B@

f0ð1370Þ
f0ð1500Þ
f0ð1710Þ

1
CA

¼

0
B@

−0.82� 0.22 0.12� 0.49 0.57� 0.16

0.07� 0.48 −0.95� 0.24 0.30� 0.25

0.57� 0.14 0.29� 0.23 0.77� 0.09

1
CA

×

0
B@

N

S

G

1
CA: ð43Þ

From this result we conclude that there is a dominant
one-to-one identification between f0ð1370Þ, f0ð1500Þ
and f0ð1710Þ with N, S and G respectively. Notwith-
standing there seems to be also a large mixing between
f0ð1370Þ and f0ð1710Þ with the N and G states.
Our result agrees with solution II of Ref. [62]. Their

solution I switches the roles of f0ð1500Þ and f0ð1710Þ.
Different models and different settings can be found in
the literature. Our conclusion differs from the one in
Ref. [47] because although they agree on identifying
the f0ð1710Þ mostly with the glueball, they find that
f0ð1370Þ is dominantly jSi and f0ð1500Þ is domi-
nantly jNi. This later identification of f0ð1370Þ is also
found in Ref. [50], though with a noticeable four-quark
component too. In Ref. [49] it was concluded that
f0ð1500Þ was mostly glueball but f0ð1710Þ was also
sharing a large component. Reference [63] provides
two scenarios: In one of them f0ð1710Þ is dominantly
glueball; in the other this role corresponds to f0ð1500Þ.
In relation with the mixing between the light and

heavy nonets of scalar resonances, our results differ
from those of Ref. [46], and we find a tiny mixing for
the a0 states and an almost inverted situation for theK�

0

states.
(b) The couplings in Eq. (41), c0d, c

0
m and γ0, involving the

extra singletS1 (glueball), are consistentwith zero. This
indicates that the glueball component only arises
through themixingwith the I ¼ 0 singlets of the nonet.

(c) The rest of RChT couplings show an interesting trend.
Although with large errors, the expected 1=NC sup-
pression between the leading and next-to-leading
terms does not seem to be realized. They are essen-
tially of the same order. We verify that both multiplets
satisfy the condition in Eq. (4): cLdc

L
m > 0 and

cHd c
H
m > 0, but we notice that the relation cd ¼ cm

is approximately satisfied only by the light multiplet
cLd ∼ cLm. Meanwhile the heavy multiplet deviates from
this relation. None of them satisfies, numerically,
Eq. (36), though the light multiplet comes close.

TABLE V. Results of our fit for the ratios of decay widths analyzed in our RChT framework. The experimental data are taken from
[29] except when explicitly stated otherwise.

Decaying particle Ratio Our fit Exp.

f0ð1370Þ Br½KK̄=ππ� 0.912� 0.374 0.91� 0.20 [57]
Br½ηη=ππ� 0.889� 0.771 0.31� 0.80 [55,58]

f0ð1500Þ Br½KK̄=ππ� 0.246� 0.006 0.246� 0.026
Br½ηη=ππ� 0.144� 0.002 0.145� 0.027
Br½η0η=ππ� 0.0 0.055� 0.024

f0ð1710Þ Br½ππ=KK̄� 0.410� 0.037 0.41� 0.14 [59,60]
Br½ηη=KK̄� 0.476� 0.282 0.48� 0.15

a0ð1450Þ Br½πη0=πη� 0.375� 0.163 0.35� 0.16
Br½KK̄=πη� 0.859� 0.269 0.88� 0.23 [58]

K�
0ð1430Þ Br½ηK=πK� 0.086� 0.074 0.092� 0.031 [61]

a0ð980Þ Br½KK̄=πη� 0.175� 0.057 0.183� 0.024

TABLE VI. Results of the fit for the parameters in the RChT
framework. The mass and all the couplings are given in MeV. All
the angles are in degrees.

Parameter Our fit Mixing angle Our fit

Ma0ð980Þ 1023.8� 22.6
cLd 15.6� 1.9 α −98.8� 41.9
cHd 3.07� 1.00 β −39.8� 13.7
c0d 0.0 γ −27.8� 44.4
cLm 13.3� 6.8 ω 53.6� 4.7
cHm 9.21� 3.21 φa 4.78� 3.75
c0m 0.0 φk 90.3� 22.5
αL 17.9� 3.2
αH 0.88� 1.50
βH −3.42� 0.53
γH −6.45� 1.19
γ0 1.43� 3.26
χ2d:o:f 0.40
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V. CONCLUSIONS

The phenomenology of the lightest hadron scalars is
rather clumsy. The issues of identification of the Uð3Þ
nonets, its nature and their decays embrace a thorough
research and a large number of publications. Many aspects
remain to be understood. In this work we have tried to put
some light on the features and problems that have to be
taken into account for a Lagrangian description of the
scalar sector; in our case within the resonance chiral theory.
The greater part of the decays of scalar resonances

involve the hSVμVνi and hSAμAνi Green functions of QCD
currents. We have analyzed these within RChT, including
the necessary operators in order to fulfill the short-distance
requirements determined by the matching in Eq. (1). As a
result we found a set of relations between the couplings in
our Lagrangian. These should be valid in theNC → ∞ limit
and single resonance approximation. Although the pro-
cedure that we have followed has given in the past many
successful predictions, we know that hadron scalar-involved
amplitudes are not well behaved in the large-NC limit. In
order to assess our results, we have carried out a fit to S →
PP decays in Sec. IV. In the fit we have included subleading
contributions in 1=NC, to analyze the behavior of our RChT
description of such decays. The results of our study are
indeed pointing out that operators that should be suppressed
following large-NC premises are in fact as relevant as the
leading ones.Hence, at least part of the relations between the
couplings involving scalars, in the NC → ∞ limit, may be
largely violated.We have to stress, though, that the poor, and
sometimes confusing, experimental determinations in most
of the scalar decays could mislead this conclusion. It will be
important to improve the experimental measurements in
order to validate this scenario.
As a consequence of our study we also conclude that,

within errors, f0ð1370Þ is dominantly a jūuþ d̄di state,
f0ð1710Þ is dominantly a glueball, but both of them also
have a noticeable mixing. The f0ð1500Þ is dominantly a
js̄si state. The results by other authors vary, however the
use of different frameworks make the comparison difficult.
The study of hadron scalar resonances remains an open

field.Their spectrum, classification andnatureoriginate a rich
debate. The large-NC framework, already questioned in the
study of these decays, does not seem to be the proper setting
becauseof the large size of subleadingcorrections.However a
solid conclusionwill only be possible if a better experimental
knowledge of the spectrum and decays is achieved.
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APPENDIX A: CHIRAL NOTATION

We collect briefly the basic notation used in both ChPT
and RChT [20]. The Goldstone fields ϕ parametrize the
elements uðϕÞ of the coset space SUð3ÞL ⊗ SUð3ÞR=
SUð3ÞV :

uðϕÞ ¼ exp

�
iffiffiffi
2

p
F
ΦðϕÞ

�
; ðA1Þ

where F is the decay constant of the pion in the chiral limit
and

ΦðϕÞ ¼
X8
i¼1

λi
ϕiffiffiffi
2

p

¼

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η8 πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η8 K0

K− K̄0 − 2ffiffi
6

p η8

1
CCCA;

ðA2Þ
with λi the Gell-Mann matrices.
The nonlinear realization of SUð3ÞL ⊗ SUð3ÞR on

resonance fields depends on their transformation properties
under the unbroken SUð3ÞV , the flavor group. Here we will
consider massive states transforming as octets (R8) or
singlets (R0), with R ¼ V, A, S, P for vector, axial-vector,
scalar and pseudoscalar fields, respectively. In the large-NC
limit both become degenerate in the chiral limit and we
collect them in a nonet field:

R ¼
X8
i¼1

λi
Riffiffiffi
2

p þ R0ffiffiffi
3

p 1: ðA3Þ

We will use the antisymmetric representation for the spin-1
fields [37]. In order to calculate Green functions of vector,
axial-vector and scalar currents, it is convenient to include
external hermitian sources lμðxÞ (left), rμðxÞ (right), sðxÞ
(scalar) and pðxÞ (pseudoscalar).
With the fundamental building blocks uðϕÞ, Vμν, Aμν, S,

lμ, rμ, s and p, the hadronic Lagrangian is given by the
most general set of monomials invariant under Lorentz,
chiral, P and C transformations. At leading order in 1=NC,
the monomials should be constructed by taking a single
trace of products of chiral operators (exceptions to this rule
are not of interest for our research). The chiral tensors
χðpnÞ, i.e., those not including resonance fields, can be
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labeled according to the chiral power counting. The
independent building blocks of lowest dimension are

uμ ¼ ifu†ð∂μ − irμÞu − uð∂μ − ilμÞu†g;
χ� ¼ u†χu† � uχ†u;

fμν� ¼ uFμν
L u† � u†Fμν

R u;

hμν ¼ ∇μuν þ∇νuμ; ðA4Þ
of OðpÞ;Oðp2Þ;Oðp2ÞandOðp2Þ, respectively, and with

χ ¼ 2B0ðsþ ipÞ; B0 ¼ −
h0jūuj0i

F2
; ðA5Þ

and non-Abelian field strengths Fμν
R ¼ ∂μrν − ∂νrμ−

i½rμ; rν�, Fμν
L ¼∂μlν−∂νlμ−i½lμ;lν�. The covariant deriva-

tive is defined by∇μX¼∂μXþ½Γμ;X�, in terms of the chiral
connection Γμ ¼ fu†ð∂μ − irμÞuþ uð∂μ − ilμÞu†g=2 for
any operator X transforming as an octet of SUð3ÞV .
Higher-order chiral tensors can be obtained by taking
products of lower-dimensional building blocks or by acting
on them with the covariant derivative.

APPENDIX B: S → PP DECAY AMPLITUDES

The widths of the S → P1P2 decays are given by:

ΓðS → P1P2Þ≡ Γi ¼
λ1=2ðm2

S; m
2
P1
; m2

P2
Þ

16NP1P2
πM3

S

jMS→P1P2
j2;

ðB1Þ

with λða; b; cÞ ¼ ðaþ b − cÞ2 − 4ab. Notice that NP1P2
is

2 for two identical particles such as π0π0, ηη. Here we have
taken into consideration the effect of masses of the final
mesons in the phase space. In Eq. (B1) the amplitudes
MS→P1P2

are given in the following subsections.

1. I = 1, 1=2 decays

The couplings and mixing for the decays of a0ð980Þ,
a0ð1450Þ, K�

0ð700Þ and K�
0ð1430Þ, have been defined in

Eqs. (37) and (38). The decay amplitudes, defined in
Eq. (B1), of the isovectors and isodoublets in the SH
multiplet are

MH
aþ
0
→ηπþ ¼ −

1ffiffiffi
3

p
F2

fðM2
a0 −m2

η −m2
πþÞ½

ffiffiffi
2

p
cosθðcLd sinφa þ cHd cosφaÞ

− sinθðð3αL þ 2cLd Þ sinφa þ ð3αH þ 2cHd Þ cosφaÞ� þ 2m2
πð

ffiffiffi
2

p
cosθ− 2 sinθÞðcLm sinφa þ cHm cosφaÞg;

MH
a0
0
→ηπ0

¼ −
1ffiffiffi
3

p
F2

fðM2
a0 −m2

η −m2
π0
Þ½

ffiffiffi
2

p
cosθðcLd sinφa þ cHd cosφaÞ

− sinθðð3αL þ 2cLd Þ sinφa þ ð3αH þ 2cHd Þ cosφaÞ� þ 2m2
πð

ffiffiffi
2

p
cosθ− 2 sinθÞðcLm sinφa þ cHm cosφaÞg;

MH
aþ
0
→η0πþ ¼ −

1ffiffiffi
3

p
F2

fðM2
a0 −m2

η0 −m2
πþÞ½

ffiffiffi
2

p
sinθðcLd sinφa þ cHd cosφaÞ

þ cosθðð3αL þ 2cLd Þ sinφa þ ð3αH þ 2cHd Þ cosφaÞ� þ 2m2
πð

ffiffiffi
2

p
sinθþ 2 cosθÞðcLm sinφa þ cHm cosφaÞg; ðB2Þ

MH
a0
0
→η0π0 ¼ −

1ffiffiffi
3

p
F2

fðM2
a0 −m2

η0 −m2
π0
Þ½

ffiffiffi
2

p
sin θðcLd sinφa þ cHd cosφaÞ

þ cos θðð3αL þ 2cLd Þ sinφa þ ð3αH þ 2cHd Þ cosφaÞ� þ 2m2
πð

ffiffiffi
2

p
sin θ þ 2 cos θÞðcLm sinφa þ cHm cosφaÞg;

MH
aþ
0
→KþK̄0 ¼ −

1

F2
ððM2

a0 −m2
Kþ −m2

K0ÞðcLd sinφa þ cHd cosφaÞ þ 2m2
KðcLm sinφa þ cHm cosφaÞÞ;

MH
a0
0
→KþK− ¼ −

1ffiffiffi
2

p
F2

ððM2
a0 − 2m2

KþÞðcLd sinφa þ cHd cosφaÞ þ 2m2
KðcLm sinφa þ cHm cosφaÞÞ;

MH
a0
0
→K0K̄0 ¼ −

1ffiffiffi
2

p
F2

ððM2
a0 − 2m2

K0ÞðcLd sinφa þ cHd cosφaÞ þ 2m2
KðcLm sinφa þ cHm cosφaÞÞ;

MH
K�

0
þ→Kþπ0 ¼ −

1ffiffiffi
2

p
F2

fðcLd sinφk þ cHd cosφkÞðM2
K�

0
þ −m2

Kþ −m2
π0
Þ þ ðcLm sinφk þ cHm cosφkÞðm2

K þm2
πÞg;

MH
K�

0
þ→K0πþ ¼ −

1

F2
fðcLd sinφk þ cHd cosφkÞðM2

K�
0
þ −m2

K0 −m2
πþÞ þ ðcLm sinφk þ cHm cosφkÞðm2

K þm2
πÞg;

MH
K�

0
0→K0π0

¼ −
1ffiffiffi
2

p
F2

fðcLd sinφk þ cHd cosφkÞðM2
K�

0
þ −m2

Kþ −m2
π0
Þ þ ðcLm sinφk þ cHm cosφkÞðm2

K þm2
πÞg;

MH
K�

0
0→Kþπ− ¼ −

1

F2
fðcLd sinφk þ cHd cosφkÞðM2

K�
0
þ −m2

K0 −m2
πþÞ þ ðcLm sinφk þ cHm cosφkÞðm2

K þm2
πÞg; ðB3Þ
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MH
K�

0
þ→Kþη ¼ −

1

2
ffiffiffi
3

p
F2

fðM2
K�

0
þ −m2

Kþ −m2
ηÞ½−

ffiffiffi
2

p
cos θðcLd sinφk þ cHd cosφkÞ

− 2 sin θðð3αL þ 2cLd Þ sinφþ ð3αH þ 2cHd Þ cosφÞ�
þ ðcLm sinφk þ cHm cosφkÞ½3

ffiffiffi
2

p
cos θm2

π − 5
ffiffiffi
2

p
cos θm2

K − 8 sin θm2
K�g;

MH
K�

0
0→K0η

¼ −
1

2
ffiffiffi
3

p
F2

fðM2
K�

0
0 −m2

K0 −m2
ηÞ½−

ffiffiffi
2

p
cos θðcLd sinφk þ cHd cosφkÞ

− 2 sin θðð3αL þ 2cLd Þ sinφþ ð3αH þ 2cHd Þ cosφÞ�
þ ðcLm sinφk þ cHm cosφkÞ½3

ffiffiffi
2

p
cos θm2

π − 5
ffiffiffi
2

p
cos θm2

K − 8 sin θm2
K�g:

Those for the decays of the SL multiplet are

ML
aþ
0
→ηπþ ¼ −

1ffiffiffi
3

p
F2

fðM2
a0 −m2

η −m2
πþÞ½

ffiffiffi
2

p
cos θðcLd cosφa − cHd sinφaÞ

− sin θðð3αL þ 2cLd Þ cosφa − ð3αH þ 2cHd Þ sinφaÞ� þ 2m2
πð

ffiffiffi
2

p
cos θ − 2 sin θÞðcLm cosφa − cHm sinφaÞg;

ML
a0
0
→ηπ0

¼ −
1ffiffiffi
3

p
F2

fðM2
a0 −m2

η −m2
π0
Þ½

ffiffiffi
2

p
cos θðcLd cosφa − cHd sinφaÞ

− sin θðð3αL þ 2cLd Þ cosφa − ð3αH þ 2cHd Þ sinφaÞ� þ 2m2
πð

ffiffiffi
2

p
cos θ − 2 sin θÞðcLm cosφa − cHm sinφaÞg;

ML
aþ
0
→η0πþ ¼ −

1ffiffiffi
3

p
F2

fðM2
a0 −m2

η0 −m2
πþÞ½

ffiffiffi
2

p
sin θðcLd cosφa − cHd sinφaÞ

þ cos θðð3αL þ 2cLd Þ cosφa − ð3αH þ 2cHd Þ sinφaÞ� þ 2m2
πð

ffiffiffi
2

p
cos θ − 2 sin θÞðcLm cosφa − cHm sinφaÞg;

ML
a0
0
→η0π0 ¼ −

1ffiffiffi
3

p
F2

fðM2
a0 −m2

η0 −m2
π0
Þ½

ffiffiffi
2

p
sin θðcLd cosφa − cHd sinφaÞ

þ cos θðð3αL þ 2cLd Þ cosφa − ð3αH þ 2cHd Þ sinφaÞ� þ 2m2
πð

ffiffiffi
2

p
cos θ − 2 sin θÞðcLm cosφa − cHm sinφaÞg;

ML
aþ
0
→KþK̄0 ¼ −

1

F2
ððM2

a0 −m2
Kþ −m2

K0ÞðcLd cosφa − cHd sinφaÞ þ 2m2
KðcLm cosφa − cHm sinφaÞÞ;

ML
a0
0
→KþK− ¼ −

1ffiffiffi
2

p
F2

ððM2
a0 −m2

Kþ −m2
K0ÞðcLd cosφa − cHd sinφaÞ þ 2m2

KðcLm cosφa − cHm sinφaÞÞ;

ML
a0
0
→K0K̄0 ¼ −

1ffiffiffi
2

p
F2

ððM2
a0 − 2m2

K0ÞðcLd cosφa − cHd sinφaÞ þ 2m2
KðcLm cosφa − cHm sinφaÞÞ; ðB4Þ

ML
K�

0
þ→Kþπ0 ¼ −

1ffiffiffi
2

p
F2

fðcLd cosφk − cHd sinφkÞðM2
K�

0
þ −m2

Kþ −m2
π0
Þ þ ðcLm cosφk − cHm sinφkÞðm2

K þm2
πÞg;

ML
K�

0
þ→K0πþ ¼ −

1

F2
fðcLd cosφk − cHd sinφkÞðM2

K�
0
þ −m2

K0 −m2
πþÞ þ ðcLm cosφk − cHm sinφkÞðm2

K þm2
πÞg;

ML
K�

0
0→K0π0

¼ −
1ffiffiffi
2

p
F2

fðcLd cosφk − cHd sinφkÞðM2
K�

0
þ −m2

Kþ −m2
π0
Þ þ ðcLm cosφk − cHm sinφkÞðm2

K þm2
πÞg;

ML
K�

0
0→Kþπ− ¼ −

1

F2
fðcLd cosφk − cHd sinφkÞðM2

K�
0
þ −m2

K0 −m2
πþÞ þ ðcLm cosφk − cHm sinφkÞðm2

K þm2
πÞg; ðB5Þ

ML
K�

0
þ→Kþη ¼ −

1

2
ffiffiffi
3

p
F2

fðM2
K�

0
þ −m2

Kþ −m2
ηÞ½−

ffiffiffi
2

p
cos θðcLd cosφk − cHd sinφkÞ þ 2 sin θðð3αH þ 2cHd Þ sinφ

− ð3αL þ 2cLd Þ cosφÞ� þ ðcLm cosφk − cHm sinφkÞ½3
ffiffiffi
2

p
cos θm2

π − 5
ffiffiffi
2

p
cos θm2

K − 8 sin θm2
K�g;

ML
K�

0
0→K0η

¼ −
1

2
ffiffiffi
3

p
F2

fðM2
K�

0
0 −m2

K0 −m2
ηÞ½−

ffiffiffi
2

p
cos θðcLd cosφk − cHd sinφkÞ þ 2 sin θðð3αH þ 2cHd Þ sinφ

− ð3αL þ 2cLd Þ cosφÞ� þ ðcLm cosφk − cHm sinφkÞ½3
ffiffiffi
2

p
cos θm2

π − 5
ffiffiffi
2

p
cos θm2

K − 8 sin θm2
K�g:

SCALAR-INVOLVED THREE-POINT GREEN FUNCTIONS … PHYS. REV. D 99, 114015 (2019)

114015-15



2. I =O decays

In the following amplitudes, i¼ 1, 2, 3 and f1 ≡ f0ð1370Þ, f2 ≡ f0ð1500Þ and f3 ≡ f0ð1710Þ:

Mfi→πþπ−;π0π0 ¼
M2

fi
−2m2

π

3F2
½

ffiffiffi
6

p
cHd ðai1þ

ffiffiffi
2

p
ai2Þþ6

ffiffiffi
3

p
βHai2þ6c0dai3�−4

m2
π

F2



cHmffiffiffi
6

p ðai1þ
ffiffiffi
2

p
ai2Þþc0mai3

�

M
fi→KþK−;K0K0 ¼

M2
fi
−2m2

K

6F2
½

ffiffiffi
6

p
cHd 2ð−ai1þ2

ffiffiffi
2

p
ai2Þþ12

ffiffiffi
3

p
βHai2þ12c0dai3�−

m2
K

3F2
½

ffiffiffi
6

p
cHmð−ai1þ2

ffiffiffi
2

p
ai2Þþ12c0mai3�;

ðB6Þ

Mfi→ηη ¼
M2

fi
− 2m2

η

6F2
½−

ffiffiffi
6

p
cHd ai1 þ 12c0dai3 þ 2

ffiffiffi
3

p
ai2ð3αH þ 6βH þ 2cHd þ 9γHÞ þ 18γHai3

− cos 2θ½
ffiffiffi
6

p
cHd ai1 þ 6

ffiffiffi
3

p
ai2ðαH þ 3γHÞ þ 18ai3γ0� − 2

ffiffiffi
3

p
sin 2θð3αH þ 2cHd Þai1�

þ 1

9F2
½

ffiffiffi
6

p
cHmai1½3ð3m2

π − 4m2
KÞ þ ðm2

π − 4m2
KÞðcos 2θ þ 2

ffiffiffi
2

p
sin 2θÞ�

þ 4ð
ffiffiffi
3

p
cHmai2 þ 3c0mai3Þð3m2

K þ ðm2
K −m2

πÞðcos 2θ þ 2
ffiffiffi
2

p
sin 2θÞÞ�

Mfi→ηη0 ¼
M2

fi
−m2

η −m2
η0

6F2
½2

ffiffiffi
3

p
ð3αH þ 2cHd Þai1 cos 2θ − ð

ffiffiffi
6

p
cHd ai1 þ 6

ffiffiffi
3

p
ðαH þ 3γHÞai2 þ 18ai3γ0Þ sin 2θ�

þ 1

9F2
ð2

ffiffiffi
2

p
cos 2θ − sin 2θÞ½

ffiffiffi
6

p
cHmai1ð4m2

K −m2
πÞ − 4ðm2

K −m2
πÞð

ffiffiffi
3

p
cHmai2 þ 3c0mai3Þ�: ðB7Þ

Here aij are the matrix elements of the Amatrix in Eq. (40).
In Eq. (B7), θ is the η − η0 mixing angle defined by:

�
η

η0

�
¼

�
cos θ − sin θ

sin θ cos θ

��
η8

η0

�
: ðB8Þ

APPENDIX C: FINAL STATE INTERACTIONS
IN f i → PP DECAYS

We know that I ¼ 0, S ¼ 0 amplitudes have large FSI
effects. Unfortunately we only have reliable information on
the ππ and KK̄ phase-shifts. Hence we can only consider
the FSI effects in the decays with those final states. We
would expect that I ¼ 1 or I ¼ 1=2 final states should be
less affected and, therefore, we will consider only fi → PP
decays (i ¼ 1, 2, 3 as in Appendix B), with P ¼ π, K.
Following Refs. [64,65], we can parametrize:

�
Mfi→ππ

Mfi→KK̄

�FSI

¼
ffiffiffi
S

p �
Mfi→ππ

Mfi→KK̄

�bare

; ðC1Þ

where

ffiffiffi
S

p
¼ OT

ffiffiffiffiffiffiffiffiffi
Sdiag

q
O; ðC2Þ

with

Sdiag ¼
�
e2iδ

I¼0
ππ 0

0 e2iδ
I¼0
KK̄

�
; O ¼

�
cosω sinω

− sinω cosω

�
:

ðC3Þ

Here ω should be a new parameter to fit. For the phase-
shifts we will only need δI¼0

ππ ðM2
fi
Þ and δI¼0

KK̄ ðM2
fi
Þ,

because in two-body decays always s ¼ M2 being M
the mass of the decaying particle. The phase shifts
are given by the extended K-matrix fit following
[53,54], up to 1.8 GeV. We will consider the results
in Table VII.

TABLE VII. Phase shifts for the FSI interactions in fi → ππ,
K̄K decays. Data from [53,54].

Energy (GeV) δI¼0
ππ (Deg) δI¼0

K̄K (Deg)

1.395 308.05 −71.46
1.504 340.18 −78.92
1.720 373.59 −107.20
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