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We analyze within the framework of resonance chiral theory the (SA,A,) and (SV, V) three-point Green
functions, where S, A, and V,, are short for scalar, axial-vector and vector SU(3) hadronic currents. We

construct the necessary Lagrangian such that the Green functions fulfill the asymptotic constraints, at large
momenta, imposed by QCD at leading order. We study the implications of our results on the spectrum of
scalars in the large-N limit, and analyze their decays.
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I. INTRODUCTION

Green functions of quantum fields convey all the dynam-
ics of a quantum field theory describing a system of many
interacting particles. Their consistent construction in the
hadronic low-energy region (typically £ < 1 GeV), driven
by nonperturbative quantum chromodynamics (QCD), can
be thoroughly carried out within the model-independent
framework of chiral perturbation theory (ChPT) [1,2]. The
predictability of this theory is however spoiled at O( p*) and
higher due to our poor knowledge of the chiral low-energy
constants. At higher energies, in the hadronic resonances
populated domain (1 GeV < E < 2.5 GeV), the construc-
tion of the Green functions has been addressed only under
several specific model-dependent assumptions, such as the
extended Nambu-Jona-Lasinio model [3-5] and related
ones [6]. Different implementations of large-N. [7-9]:
minimal hadronic ansatz [10-12] and resonance chiral
theory (RChT) [13-24], have also been explored in the last
decades. At even higher energies (2.5 GeV < E), except
where very narrow hadronic resonances arise, perturbative
QCD starts to provide a correct description.

It is clear that QCD should rule the dynamics of those
Green functions. However, our lack of knowledge of
nonperturbative QCD makes that task very difficult
and the use of models of QCD becomes necessary.
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The construction of those models should include chiral
symmetry as a feature to be fulfilled in its low-energy
domain. The properties of the model at high-energies are
more difficult to implement due to hadronization and hence
they are not obvious from a Lagrangian point of view.
Several works have addressed this problem within RChT
[13], which provides a framework for the evaluation of the
Green functions in the intermediate energy region. This is a
Lagrangian setting in terms of pseudo-Goldstone bosons
and resonances (as matter fields) that, by construction,
respect the chiral symmetry. As in ChPT, this symmetry
provides the structure of the operators but gives no infor-
mation on the coupling constants. However, due to the
presence of resonance fields, the Lagrangian has no obvious
counting that controls the number of operators and, con-
sequently, some extra features are needed in its application.
On one side Green functions are computed using large-N ¢
premises [25]; this translates, essentially, in a loop expansion
generated by the Lagrangian. This is not enough to limit the
number of operators and, in addition, gives no information
on the coupling constants. The extra help comes from the
assumption that the correlation functions, as given by RChT
(ITrcnr), can be matched, at large momenta, with the known
asymptotic behavior of Green functions and form factors on
QCD grounds (Ilgcp)- This sounds feasible as the RChT
result (at tree level) and the operator product expansion
(OPE), at O(ag), generate an expansion in inverse powers of
momenta. The method was originally applied to two-point
Green functions in Ref. [14] and later to three-point
functions [15,16] as:

ao .
lim ey (1) = lim TS 1 (7). (1)

Short-distance constraints are also imposed on vertex func-
tions (form factors) by considering their Brodsky-Lepage
[26] asymptotic behavior, using parton dynamics [14,27].
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These approaches can provide valuable information on the
structure of the operators and their coupling constants.
Moreover, as the latter do not depend on the masses of
the pseudo-Goldstone bosons, the procedure can be carried
out in the chiral limit. The question of the feasibility of this
matching was discussed in Ref. [6].

The above-mentioned procedure is particularly trans-
parent for Green functions that are order parameters of the
spontaneous breaking of the chiral symmetry, i.e., those
that do not receive contributions of perturbative QCD, in
the chiral limit, at large momentum transfers and, therefore,
show a rather smooth behavior. Several works along this
line have been produced [16-22,24] with noticeable results.
One of the key issues in order to carry out the matching
procedure in Eq. (1) lies in the construction of the
appropriate operators in the RChT Lagrangian that make
the matching possible. The procedure may not always be
feasible [6], but most of the time it is just a matter of
looking for the suitable operators. In Ref. [28] it was
pointed out the difficulty involved in the matching for the
(SV,V,) Green function (where S and V, are short for
scalar and vector QCD currents, respectively) using a Proca
representation for the vector resonance fields in RChT. As
expected, the authors satisfied the matching by including a
higher order (in derivatives) RChT operator that was
needed to enforce the QCD short-distance behavior even
though it was nonleading at low energies. In this article we
perform a systematic analysis of the (SV,V,) and (SA,A,)
Green functions (A, is short for axial-vector QCD current)
using an antisymmetric representation for the spin-1
resonances in the RChT framework. We will fulfill the
matching indicated by Eq. (1) for both Green functions by
constructing a minimal set of RChT operators that provide
the correct short-distance behavior. We consider tree-level
diagrams only and, accordingly, work in the N — oo limit.
Moreover, we restrict our large-N ~ description to only one
multiplet for each hadron type: scalars, vectors and axial-
vectors. As a final result we obtain several relations
between the relevant coupling constants of the Lagrangian.

The description, classification and dynamics of hadronic
scalar meson resonances, with masses Mg < 2 GeV, has a
long story of successes and failures (see the corresponding
note in Ref. [29]). The light-quark spectrum of meson
resonances is populated by many scalar states whose
identification as SU(3) octets/nonets is far from clear and
that are, probably, an admixture of exotic states that involve
tetraquarks or even glueballs. The unsolved nonperturbative
dynamics does not allow us to identify the nature of the
bound states generated by QCD. Experimentally one
observes a number of J¥ = 0" states that could fit into
two U(3) nonets constituted by quarks. Our present knowl-
edge points out to usual [gg]| states but also tetraquark ones
[G4]|gq] [30]. The existence of a glueball (with J© = 0" and
of similar properties to the quark resonances) with mass in
the upper part of our spectrum (~2 GeV) was also pointed

out some time ago by the lattice [31,32]. Hence it is expected
that all the scalar resonances in this energy region could be
an admixture of all these basic states.

By construction, the leading multiplets of resonances
described by RChT should correspond to those remaining
in the N — oo limit. However, while this identification does
not create discussion for vector, axial-vector and pseudoscalar
resonances, the scalar case is much more complex. In Ref. [33]
a study within RChT in the large-N - framework identified the
preferred lightest scalar nonet as the one constituted by
S = {/0(980), K{(1430), ao(1450), f((1500)}, assuming
that the a((980) is dynamically generated and making an
octet together with f((500) and K;(700) as a subleading
spectrum. In Ref. [34], a new method to study the large-N
behavior of the final states interactions (FSI) within the
dispersive approach was proposed. The N trajectories of
the poles suggest that f((980) and f,(1370) should have
the [gq] component. This is further confirmed in Ref. [35],
by studying the semilocal duality in the large-N limit.
Finally, there is also a broad consensus that S, corresponds
to the [g¢] structure while the lightest nonet of resonances is
constituted by [g¢][gq] [30,36] (and references therein),
with a possible large mixing between them. Even though we
basically agree with this description, we will modify it
slightly in order to include the f,(1370) and the f,(1710),
aiming to account for the glueball in our framework.

Although the experimental situation of the scalar decays
is rather poor and uncertain [29], we intend to analyze the
two-pseudoscalar decays of the spectrum of scalars in RChT,
i.e.,the S — PP decays of the leading multipletinthe N —
oo limit. In doing so, we will use the minimal set of operators
in this framework. We will conclude that meanwhile the
short-distance matching procedure of the three-point Green
functions requires higher derivative operators in some cases,
and we do not need to introduce subleading operators (in the
large-N ¢ counting) to fulfill the matching. On the contrary,
the experimental data on the S — PP decays will require to
break manifestly that counting by introducing subleading
operators. Hence we conclude that the scalar related cou-
plings in the matching of the Green functions are not given
by the N — oo limit.

In Sec. II we recall the RChT framework within our
large-N - model, leaving for Sec. III the matching procedure
for the (SA,A,) and (SV,V,) three-point Green functions.
Section 1V is devoted to explain the features of our scalar
resonance sector and the results of their decays into two
pseudoscalar mesons. We establish our conclusions in Sec. V.
The chiral notation and several analytical expressions on the
decays of scalars are given in the Appendices.

II. THE LARGE-N¢ SETTING:
RESONANCE CHIRAL THEORY

RChT is a Lagrangian framework that includes the
interaction between the chiral pseudoscalar octet of mesons
in ChPT, and the hadron resonances in the energy region up
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to ~2 GeV. The symmetries driving the operators are both
the chiral [SU(N); ® SU(N)g and flavor SU(N)] sym-
metries, for light flavors, N =2, 3 [13,14,20]. By con-
struction the RChT method matches the chiral symmetric
results at low energies. Here we only recall the content
needed for our present work. We will only consider scalar,
vector and axial-vector resonances, and the case with
N =3 flavors. For a detailed account and notation we
refer the reader to Refs. [20,25] and Appendix A.

The RChT framework starts with the leading chiral
Lagrangian involving only the octet of pseudoscalar
Goldstone bosons (GB) and external currents. It is
given by:

2

F
(R, O

where F is the decay constant of the pion in the chiral
limit, and the symbol () stands for the trace in flavor
space. This term collects the information on the sponta-
neous symmetry breaking of the chiral symmetry and
coincides with the same order Lagrangian of ChPT.
RChT has no defined parameter (in the Lagrangian) on
which to build a qualified counting to establish a classi-
fication for the operators. As the integration of the reso-
nances should provide, generically, the ChPT Lagrangian of
O(p"),forn > 2,ithas been customary to classify the RChT
operators by the order in momenta of the ChPT operators that
they were producing upon integration. Therefore the general
structure of the operatorsis O ~ (R R,...R,y(p")), with R,
a U(3) nonet of resonance fields, namely V,, (vector), A,
(axial-vector) and S (scalar). Notice that we will use the
antisymmetric representation for the spin-1 fields [37], given
its relevance in the chiral framework [1,14]. In addition,
x(p") is atensor (constructed with chiral invariants in terms
of the pseudoscalar Goldstone fields and external currents of
ChPT) of n chiral order (see Appendix A). The operators
giving the O(p*) terms in the chiral Lagrangian are of the

type (Rux(p?)):

F .G
,CE/Z) =— <V/wf+/w> + i—= <Vﬂyu;z”v>’

22 V2
A v
Ly =55 Wl
ﬁ?g) = Cd<Suﬂu/4> =+ Cm<S)(+>7 (3)

where the real couplings: Fy, Gy, F4, ¢, and c,, are, a priori,
unknown. Those generating the O(p®) chiral Lagrangian
have been studied in Ref. [20] and have the general
structures: (R y(p*)), (R, Rpx(p?)) and (R, R,R.). We will
collect those of interest for our study in the next section.
It would also be possible to classify the operators into
sets that provide the correct asymptotic behavior of definite
n-point Green function of QCD currents, that is, the relation

in Eq. (1). As has been concluded in previous studies of
these Green functions, one starts with the two-point Green
function (and related form factors) and determines the
appropriate set of operators and relations between cou-
plings. For instance the study of two-point Green functions,
with only one multiplet of resonances (single resonance
approximation), gives [14,38-42]:

FVGV — Fz,

4cyc,, = F?,

F,—Fi=F  F}M}=FiM3,

Cqg = Cp, (4)

for the couplings in Egs. (2) and (3). Here My, and M, are
the masses of the vector and axial-vector nonet, respec-
tively. When the study is extended to three-point Green
functions one may determine an extended set of operators
and the initial relations between couplings could be
modified [15-22,24], and so on.

A comment on the nature of the resonances described in
the Lagrangian of RChT is needed. This framework is
embedded in a large-N - setting. Accordingly, the spectrum
described in the Lagrangian corresponds to states that stay
in the No — oo limit. Thus our framework cannot contain
resonances that are generated by the Lagrangian (for
instance on accounts of unitarity) because these are sub-
leading in the 1 /N expansion. A clear case is the f(500),
generated by (or coincident with) a strong zz wide S-wave.

Together with C% in Eq. (2) and the Lagrangian
involving resonances, RChT requires the addition of oper-
ators with the same structure as the ones in the ChPT
Lagrangian at O(p*) [2], O(p®) [43], and so on, although
with different couplings. It is well known that the low-
energy couplings in ChPT are, at least at O(p*), mostly
saturated by the contribution of the lightest multiplets of
resonances [14]. At O(p®) the situation is less clear.
Since the couplings are different from their ChPT counter-

parts, we will denote them as L; and C; (for ng and ﬁ%,
respectively):

LEE = ZLi(’)E4), LE = Zciogﬁ). (5)

Notice that the dimension of the couplings are [L;] = E°
and [C;] = E2.

In this article we intend to analyze the three-point Green
functions (SV,V,) and (SA,A,), imposing the asymptotic
behavior in Eq. (1), at leading order in the 1/N - expansion.
In practice this means that we will evaluate the three-point
Green functions in RChT with tree-level diagrams only.
For consistency, we should include in our computations
an infinite set of resonances. We do not know how to do this
in a model-independent way. However, there are good
phenomenological reasons that indicate that the lowest
mass states (surviving in the N — oo limit) contribute
dominantly, as has been shown for instance in the
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determinations of the O(p*) low-energy couplings [13].
This is in agreement with the usual decoupling of effective
field theories where the contributions from heavy mass
states to the low-energy theory is suppressed by powers of
E/M, with E the energy scale of the effective theory and M
the mass of the decoupled state. Accordingly, we model our
N — oo setting by including only the lightest multiplet of
resonances for each hadron type.

The identification of the nonets in Eq. (3) is simple for
vector states [29]: V,,(17) = {p(770), K*(892), w(782),
¢(1020) }. For axial-vector mesons the situation is slightly
more complicated [33]: A, (17)={a(1260),K,(1270),
f1(1285),f,(1420)}, since the strange doublet could
also be K(1400) or an admixture of both. The common
feature of these two multiplets is that they correspond
to the lightest states (experimentally identified) with those
quantum numbers. For the scalar resonance case (and
the glueball) the identification of the lightest nonet,
surviving at N — oo, seems not to concur with the lightest
nonet but with one of higher mass. We delay this discussion
to Sec. IV.

III. THREE-POINT GREEN FUNCTIONS
FROM RCHT

Similarly to the relations in Eq. (4), based on two-point
Green functions, one can obtain additional constraints
on the RChT couplings by analyzing the three-point
Green functions. A lot of work has already been employed
in their study [6,15-22,24]. Here we focus on the scalar-
involved Green functions (SA,A,) and (SV,V,). Both of
them are order parameters of the spontaneous chiral
symmetry breaking and, consequently, vanish at O(a(s))
in the chiral limit.

The definition of these Green functions is given by

Y (pr.p2) = 12 / dxdtyelrapey)
X <O‘T{ (u‘/l“] /Zy/> (0) (wrz’;jw> (x)
(ot o

where I'; = 2 for the scalar current, I'; = y,, for the vector
current and I'; =y,ys for the axial-vector current. Our
conventions for the momenta are defined in Fig. 1. We will
proceed to determine the general structure of those Green
functions as provided by their chiral Ward identities,
SU(3)y, parity and time reversal. Then we will obtain
their short-distance behavior at leading order in the
momenta expansion. We also calculate their expressions
using RChT and including the necessary operators such that
we have a perfect matching in the momenta expansion,
following the relation in Eq. (1). A simplifying aspect of the

+q

7

j e
A |
b1 D2

FIG. 1. Identification of momenta for the HYQkS Green function.
Here g = py + p».

procedure is that, since the couplings do not depend on the
masses of the pseudoscalar mesons, we can perform this
operation in the chiral limit. Since our Green functions are
order parameters of the chiral symmetry breaking, this
implies that there is no perturbative contribution in the
parton calculation, at least at O(a}).

A. (SA,A,)
The (SA,A,) Green function is defined by:

(i = [ atsdtyetvecieny
< (OIT{S AL A0, (7)
where
S0 =@aw. A= (amnga)w. ®

with ¢(x) = (u,d, s)" the quark fields. In SU(3) it satisfies
the Ward identities:

i . (p2)
plf(HfS!:A)/w = _2dl]kB0F2 22 - B
P>
pA(TE,),, = —2a By e o)
P1

Here B( parametrizes the spontaneous chiral symmetry
breaking and it has been defined in Eq. (A5). The general
structure of the Green function is given by:

A A

FIG. 2. Contribution to (SA,A,) from the chiral Lagrangian

ChPT
£(2> .
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TABLE L.

Couplings and operators in Lga contributing to the (SA,A,) Green function. Those with resonances are collected from

Ref. [20]. On the left two columns we collect the operators with only Goldstone bosons given by ChPT. On the middle two columns we

collect the operators with one resonance (Ry(p*

(RRy(p?)) and (RRR). Note that the dimensions of these couplings are [Af] = E~!, [AFR]

)). On the right two columns we list the operators with more than one resonance:

=E%and MM =E

Coupling Operator Coupling Operator Coupling Operator
F?/4 (' + ) A (S{Vaf™ u,}) A ({VuS. A" }u,)
1:5 (uﬂ MM}H) ’1?6 <Sf—/wf”b> lgA <{S’ A/xv}flib>
Ci () o (SY, V7 (u,0)) a3 (AuAz.)
680 <f—;wfliu}(+> /1?‘8 <Sv V )(+> )VSAA (SAMDAMD>
685 (f—;w{)(ﬁ—* ub}> )“2 < l”/[ V D

/1’?6 < ;w{f;— 7)(+}>

yos (AW V V)

ijk ik > (1 ) (P2), 1
(Mgap), = d*Bo {—ZF W+fA(pl’p2 a’)P, hm( SAA)W(ﬁpl,q Apy) = /12 . (15)
+Ga(pt. p3, qz)Q/w:| ; (10) Let us now compute F, and G, in RChT at tree level.

with the generic scalar functions F,(p?, p3,¢*) and

Ga(p1. p3.4%), ¢* = (p1 + p2)*, and where P, and Q,,
are the two Lorentz structures that vanish upon projection
with the (p;), and (p,), momenta:

P;w = (pZ)ﬂ(pl)u —P1° P29
Q;u/ = p%(pZ)ﬂ(pZ)v + p%(p1>;4(pl)v
= p1-02(p1),(P2), = PIP3Gu- (11)

The Ward identities in Eq. (9) are also at the origin of the
first term of the Green function in Eq. (10). This term is
recovered in RChT by the O(p?) ChPT Lagrangian in
Eq. (2) through the diagram in Fig. 2.

The short-distance behavior of the (SA,A,) function, at
leading order in the momenta expansion, is given by:

hm( SAA)/AD(API vlpZ)
1 1

= —2dfkaoF2pm [4(P1)u(P2)y + Qu = P1* P2P ]
+0(5). (12
hm( SAA);w()“pl’pZ)
_ZdijkBOle(pl)g(lzz)u+O<i2>, (13)
A pip; A

lim (13, ), (P1.4p2)

A=
l(pl)y< 2)v

N ) 1
—2d'/kB,F? o=, 14
T A </12> (14)

o S

The content of the Lagrangian, as explained in Sec. II
presents two main parts: the operators with Goldstone
boson fields only (and external currents) and those with
interactions among them and resonance fields. We have:

Lsan = L) + LG} + Ly + Ll + Ly + Loy (16)
where the GB Lagrangians have been defined in Eqs. (2)
and (5). For the reader’s convenience we list the relevant
operators in Table I. Their contribution to the Green
functions are given by the diagrams in Fig. 3.

Next we consider the resonance contributions. The
Lagrangians C and E are given in Eq. (3) while in
L4 we include those operators with resonances, Goldstone
fields and external currents that, upon integration of the
resonances, originate the O(p®) ChPT Lagrangian. They
have been constructed in Ref. [20]. Those contributing to
our Green function are also collected in Table I. They
contribute through the diagrams in Fig. 4. Previous short-
distance constraints already concluded that A7, = Ajq =
245 =0 [20]. We include these couplings in our analysis
and we set them to zero at the very end.

The final result for the F, and G, functions defined in
Eq. (10) is

S & A S
S
A A
A A A
FIG. 3. Goldstone boson contributions to the (SA,A,) Green

function from the higher-order GB chiral Lagrangian at O(p*)
and O(p®).
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/Iﬁ\@ j@ | Z@
A A A A A A A A
S S S A
A A A A A A S A
S S S
A A A A AAA
S S

A A A A

FIG. 4. Diagrams contributing to the (SA,A,) Green function in RChT. Goldstone bosons and resonance states are represented by
single and double lines, respectively.

FA(I’%?I’%’ 612) = 32(612 - 680 - 685) - 321%135 - 16ﬂéAPA(P%)PA(P%)

+ 8\/5(2/1?6 — A+ (M +2230)Ps) (Pa(p]) + Pa(p3)) — 16434 4PsP 4 (p)Ps(P3). (17)

and

8 ~ ~ «
Ga(pl. p3.4%) = 25 (2Ls + 4C 1y (p? + p3 — ¢%) — 2Css(p? + p3) + 2¢4Ps — 225, (p3 + p3)Ps — 225,4°Ps
1P3

— V24 = 23Ps)(p3PA(P) + PAPA(PD))). (18)

where

Cm — lfng
M% - q2

Fu =222 p?

PS: 5
M - p?

Py(p?) = (19)

and Mg and M, are the masses of the nonet of scalars and axial-vector mesons in the U(3) and chiral limits.
We can now expand our RChT results for the 7,4 and G, functions and impose the constraints by Eqs. (12)—(15). We get:
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Ls=Cpy=Cg=Cg5 =0,

’lé = /1?6 = ’Ifz = /1?6 =0,
/1AA — F2
16F3
1 F?
ASA — -,
l \/EFA <Cd Scm)
=G 20
2 2\/§FA ( )

It is interesting to observe that the low-energy couplings of
the GB Lagrangians vanish. This strengthens the notion of
resonance dominance of the chiral couplings.

B. (SV,V,)

We proceed analogously with the (SV,V,) Green func-
tion defined by:

(Hg!‘l/c.v ww :iz/d4xd4ygi<pl‘x+p2'y)

* (OIT{S'(0)V4(x)VEM)}0).  (21)

where

Vi) = (an )0 @)

and the scalar current as defined in Eq. (8). In the SU(3)
limit it satisfies the Ward identities:

ijk
plf(nsjvv),w =0,
v (T —
pZ(HSjVV);,w =0. (23)
Its general structure is given by:
(I5y),,, = A7 B[ Fv (P} P} 42 P+ Gy (PR 3. 4% Q)
(24)
where P, and Q,, have been defined in Eq. (11).
The short-distance behavior of the (SVV) function, at
leading order in the momenta expansion, reads':
hm( va)ﬂy(ﬂphﬂpz)

1 1
—5—55 20 + (PT + P53 + ¢*)Pu)
/119117261 . : :

ro(3) -

"It is possible to vary the high energy behavior of the Green
function as

— _dt/kBOFZ

lim (ngév)ﬂy(/hphﬂzpz)
A Ay =00
Since 4;, 4, arbitrarily go to infinity, the matching in the short
distance region should be fulfilled for each momentum inde-
pendently.

TABLE II.  Operators of O(p®) in ChPT and operators in £y
that, upon integration of the resonances, give chiral operators of
O(p®). Short-distance constraints [20] require that 23, = 0. Note
that the dimensions of these couplings is [C;] = E~2, [Af] = E~!,
[ARR] = EO and [5VV] = E

Coupling Operator Coupling Operator
661 <f+/4bf/f)(+>
/1_195 <Sf+uuf{l:> l‘ﬁ/v <V;u/ VM”)(+>
)'g <Vﬂb{f’jry’)(+}> ﬂ*gv <{S7 V;w}f’jry>
/1%/2 <Vﬂuvavafl-l:> ASVV (SV/WV”U>
111
hm (HSVV)W(’IPI’IQ) = —Zd”kl V;( )P +O< )
1
(26)
) . 110 (p ) 1
ijk ; VT
i (s (1o Ap2) = =245 == 572 P 4 O ).
(27)
- ijk 1
}LH;(HSVV);UJ(API? q— Apl) =0 ),_2 s (28)
and Iy7(p?) is defined by:
(p/)g/m - po—gy/)>5inVT(p2)

= / d4xefP-X<o‘T{V;;(x) (c‘zapa%jq) (O)HO>- (29)

Let us compute now the Fy and Gy functions (24) in the
RChT formalism. Analogously to the previous Green
function we denote our Lagrangian as:

Lsyy = £g‘§ + £g§§ + ﬁfg + c(Vz) + cfz) + Ly, (30)

where Eg)g is defined in Eq. (2), ﬁgg and [2?6? are defined
in Eq. (5), EYZ) and £f2> are specified in Eq. (3) and Ly
includes interaction terms between scalar, vector resonan-
ces, and external currents. There is a key difference
between the operators needed to match the Green function
in the (SA,A,) case and the present ones. The Lagrangian
L, only includes those operators that, upon integration of
the resonance, contributes to the ChPT O(p®) Lagrangian.
Contrary to the (SA,A,) case, these operators are not
enough to achieve the matching in the (SV,V,) case. More
precisely, if we only include the operators in Table II we
would get Gy (p?, p3, ¢*) = 0 and, therefore, we would not
be able to fulfill the matching. We thus need to include
additional operators that are listed in Table III. They have
the chiral structure: (Ry(p®)), (RRy(p*)) and (RRRy(p?))
and yield contributions to both Fy and Gy .
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TABLEIIL.  Operators in £y, that, upon integration of the resonances, give chiral operators of O(p") with n > 6. The dimensions of the

couplings are: [3VV] = E~', [¥"""Y] = E? and [x}"] = E7.

Coupling Operator Coupling Operator Coupling Operator
(V4V,,9,VS) K (Vs V, 21 V55) oY VY P3V,0)
AR (VY. T, 1215) o VY. V)
S (VV,, VaVes) i (VY0 11 VS) Ky AV f 1 Var )
S {VEV,u. VIIV,S) S ({V.Va. VEFIILS) Ky {V Ve Vi)
xSV {VaVyu. VHIVES) K3V {V. Vaf 1w} VES) K3 VIV V)
xSV VoV, VIVes) K} (VA f 1) K" (VEVIV, Vg 1)
S {FE Vi w}V,S) Ky (V™. VTV V)
K (VEFEV S 1) Ky (VEVIEV,Vy 1)

The complete set of diagrams contributing to (SV,V,) is given in Fig. 5. The resulting expressions for the 7 and Gy

functions are

Fv(pt p3.q%) = =32Ce1 — 32455 Ps + 16V2(4Y + 23V Ps)(Py(p}) + Py(p3)) —16(A¢ Y + 25" P) Py (p}) Py(p3)
—4((263"Y +263"Y 0"V ) (P + p3) — (263" = 4x3YY + 265V + x5V )@ ) Ps Py (pT) Py (p3)
+4v2(2}Y =263 + Y +x8")Ps(ptPy (p3) + P3PV (p]))
+4v2(263" =iV +13")a?Ps(Py (p}) + Py (p3)) +4V2(2k5" +5Y —k$") Ps(pPy () + P3Py (P3))
+8(k3 4 2K3) g*Ps — 8(k§ + 215 +2K3) (p? + p3) Ps — 4((x}Y +2c¥V +-26¥V) (p3 + p3)
— (et +263V)q?) Py (p7) Py (p3) +4V2(2k) +2Y ] +K3) (PTPy () + P3Py (P3))
+4v2(26Y =k +55)g* (Py(p}) + Py (p3)) = 4V2(2Y =i} +&5)(PTPy(p3) + P3Py (p?)). (31)

and

Gy (P, P3.¢*) = 8(k}"V = 263VY)PsPy (p3) Py (p3) — 3263 Ps + 8V2 (kY — k3V)P(Py(p}) + Py(p3))

+8V2(k) = &Y)(Py(p}) + Py(p3)) — 1665 Py (p}) Py (p3), (32)
\4 S S
S
VG%V
S \% \Y% \Y% \Y \%
S S S
\% \Y% \Y \Y \Y %V

FIG. 5. Diagrams contributing to the (SV,V,) Green function in RChT. Goldstone bosons and resonance states are represented by
single and double lines, respectively.
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where Pg has been defined in Eq. (19) and

- 2\[’12219
sz -p*

Pv(Pz) =

with M, the mass of the nonet of vector resonances in the
U(3) and chiral limit.
By imposing the constraints on Egs. (25)—(28), we obtain:

(33)

S_ . VV _
Ky =Ky’ =0,
Kf+21<3 =0,
KV 2klY =0,
KfV —ng =0,
2V248
21<§V _qu _ng __ 5
Fy
208V — 2k 8V + kY =0,
47
263" — x5V + K3V =0
Cl?’l

M2
+ k] + 26 & + 7).,

k) —xy =0,
2y —k) +x¥ =0,

V2Ca

K| +2KY +x¥ =— .
F2
va 2stv .
4c, Fy
4AVV F2
2K§VV_4K§VV+2K§VV+K2‘VV __™ 7
ml'y
2 %
25 SVV+2KSVV_|_KSVV_ F _4\/5’13
2
4cmFV FV
B \/§M§(2K§V K3V +x5Y)
Fy
VM6 i —)
Fy '
(34)

Notice that, in this case, the local contribution from L B
namely Cg,, is not forced to vanish by the short- dlstance
constraints. Our Lagrangian, defined in Eq. (30), generates
both Fy and Gy functions, and is able to satisty the short-
distance relations.

Incidentally, the matching procedure in Egs. (26) and
(27) provides an expression for the vector-tensor correlator
defined in Eq. (29), namely:

B, F>

My (p?) = 02—, 35
VT( ) pz_M%/ ( )

that agrees with the result in [21].

C. RChT coupling constants

The relations between the RChT couplings obtained in
Egs. (20) and (34) rely on the assumptions of short-distance
QCD asymptotic behavior and single resonance approxi-
mation. We may wonder how reliable are those assump-
tions. If our implementation of large-N . was exact (i.e., if
we had included an infinite number of resonances) we
could argue that our computation should receive ~33%
one-loop corrections. In practice this is a rough estimate
because we cannot evaluate the error introduced by
imposing the asymptotic behavior. Because of these
uncertainties, one should expect slight modifications to
the relations obtained in Egs. (20) and (34). In our opinion
the largest source of uncertainty arises from the lack of a
more thorough implementation of the large-N - description.

It is well known that the phenomenology of hadron
processes indicates that large-N - is a reasonable assumption
for spin-1 related processes, but fails for scalar (vacuum)
quantum numbers.” In this case, higher-order 1/N correc-
tions seem to be particularly relevant. Let us consider, for
instance, the case of the ¢, and c,, couplings in Eq. (3) with
the constraints in Eq. (4). One would conclude that in the
single resonance approximation we have:

F

Ca=Cn =7 (36)
Taking F =924 MeV we get ¢, =c, =46.2 MeV.
However, the phenomenology of different processes
(I=1/2 and I =3/2 Kz S-wave scattering, a(980)
decay) gives 13 MeV <c,; <40 MeV and 30 MeV <
< 100 MeV (see [44] and references therein). Wh1le
the condition 4c,c,, = F? is rather well satisfied, there
seems to be some tension between the phenomenological
values of ¢, and c,, and the relation ¢, = c¢,,. Given the large
uncertainties, we cannot reliably estimate the error of our
large-N result (36) (in single resonance approximation),
butit could be off even by a factor of 3 (for ¢,) or 2 (for ¢,,,) in

the worst case.

We conclude that our relations in Egs. (20) and (34) may
be affected by errors of similar size to the case above. The
order of magnitude is expected to be correct but notable
deviations may arise. Unfortunately, we cannot constrain
most of the couplings with the present phenomenological
status. However we can get reliable estimates in certain
couplings, such as ¢, and c,,, which appear in the decays of a
scalar to two pseudoscalars. We will pursue this in Sec. I'V.

In summary, our present knowledge of the hadron scalar
spectrum, and its decays, is rather poor [29] and the couplings
involved are essentially unknown. On one hand, we need to
identify which is the spectrum described by the RChT (or any
other) framework. On the other hand, we lack the required

’As a general setting, meson-vector form factors are well
described in a N — oo framework in RChT. On the contrary, a
resummation of many loops is usually required to provide a
reasonable account of scalar form factors.
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experimental data to have a general vision of the accuracy of
our results. In the next section we will try to clarify part of the
phenomenological status of scalar resonances.

IV. SCALAR COUPLINGS

Which are the, experimentally identified, scalar states
present in our Lagrangian? As commented at the end of
Sec. 11, there is almost no discussion on the identification of
the vector and axial-vector resonances of the RChT
Lagrangian. They are, in fact, the lightest hadron reso-
nances in the spectrum with those quantum numbers.
Scalars (and glueballs) are different. They carry the vacuum
quantum numbers and their identification (for M < 2 GeV)
generates controversy. Here, we will comment first several,
more or less agreed, features and we will propose a scheme.

As discussed in Sec. II the lightest scalar resonance,
namely the isosinglet f((500), corresponds to a wide zz
S-wave that does not survive the N — oo limit. Increasing
in mass we have K;(700), the isotriplet a((980) and the
isosinglet f((980). The next scalar appears at around
1.4 GeV. Hence, naively, one could consider that the
first U(3) nonet of scalar resonances is the one with
those states: S, ={f¢(500),K;(700),a(980),/,(980)}.
Following this scheme, determined by the mass, the next
nonet would be: Sy={fy(1370),K;(1430),a,(1450),
f0(1500)}. Until ~2 GeV there is another isosinglet scalar:
fo(1710). Other scalars appear around 2 GeV. Needless to
say that the physical states do not need to correspond exactly
with the basis in the Lagrangian and mixing between those
with the same quantum numbers surely arise. If our
assumption, relying on the mass, was correct, we could
conclude that §; would correspond to the nonet that
vanishes at N~ — o0, as it includes the f;(500). A thorough
analysis in this limit was carried out in Ref. [33]. Their
conclusion was that the most favored candidates for the
leading nonet in the infinite number of colors limit
was: S, = {f(980), K§5(1430), ag(1450), f(1500)}.

Another aspect of the spectrum of scalars is related with
their quark content. This is of no relevance for the RChT
Lagrangian: it can allocate any quark content. However it is
suitable to collect this information here. We will reduce our
comment to [G¢q] and [gq][gq] states (see [30] and references
therein). One aspect that distinguishes the quark structure of
the nonets is that, in the ideal mixing case, the tetraquark
multiplet has an inverted spectrum: the isodoublet is heavier
than the isotriplet. We see that this feature (the order in the
spectrum) is clearly described by S; above, while they are
essentially degenerated (within errors [29]) in the case of S,.
This feature could be the result of a violation of the ideal
mixing. There are also other reasons to conclude that the
light nonet corresponds to the tetraquark structure while the
heavy one is the usual [gg] [30].

In this section we will identify the nonet of scalar
resonances in our RChT Lagrangian with the Sy nonet
above. We will also consider the singlet f;(1710) and a

general mixing between the isosinglet fields that generates
the physical states, including a possible glueball. As
commented in Sec. IIIC, the phenomenology seems to
indicate that the N~ — oo limit is rather poor when scalars
are involved. Hence, in our analysis, we will include
subleading contributions into the Lagrangian in order to
accommodate the experimental figures within their large
errors. This will allow us to get more accurate determina-
tions of the leading c; and c,, couplings.

Similar studies have been carried out in the last years, see
for instance [45-52] and references therein.

A. S — PP: Isodoublet and isotriplet decays

We will consider a RChT framework with violation of
the No — oo limit in the tree level Lagrangian. More
precisely, we will consider terms with more than one trace
in flavor space. Previous studies [46] have pointed out a
non-negligible mixing between the I =1, 1/2 states of
both nonets S; and Sy. Hence we will include a mixing
between them. The Lagrangian reads:

Li_y12 = c5(Spuut) + ag (Spu,) (') + ch(Siry)
+ A (Squu) + ap(Syu,) (W) + ch(Sux.),
(37)

after diagonalization. This introduces two mixing angles:
(aO.L ) ( cosg, sing, ) ( ay(980) )
Aoy ~ \—sing, cosg, ay(1450) )’

K} cos sin K#(700
( S,L)Z( .(ﬂk §0k>( 0( )) (38)
KO’H — sin @

cos ¢y ) \ K§(1430)
The mixing angles ¢, and ¢; are not fixed. In Ref. [46] the
values quoted are ¢, = n/4 and @, ~0.177. We will
consider them as free parameters. The lack of data on the
FSI phase shifts for the decays of these fields prevents the
inclusion of these effects in our analysis. The amplitudes for
such decays are collected in Sec. B 1 of Appendix B.

B. S — PP: Isosinglet decays

As commented before, we are interested in the descrip-
tion of the decays of the f(1370), f((1510) and f(1710).
Although we identify the first two as those of the Sy
multiplet and the third as a possible glueball, the real
situation can be much more cumbersome and the real
physical states is surely a non-neglible mixing between the
isosinglets of the Sy multiplet (namely Sg, Sy) and an extra
singlet (S;). A general rotation of them will provide the
physical states:

fo(1370) Ss
fo(1510) | = A S, |, (39)
£o(1710) S
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where

cosycosffcosa —siny sina

A= | —sinycosfcosa —cosysina

sin fcos

Now we set up our RChT framework to describe
these decays. Contrary to the above decays, we are
not going to consider mixing between the light and
heavy multiplets. This would give a complicated setting
with many parameters and, as we will conclude, it is not
necessary to provide a reasonable description of all the
decays.

With these inputs the Lagrangian to study the f, - PP
decays will be

Lios, = cH{Sguut) +ch(Spuy.) +ay(Syu,) (u?)
+Bu(Su) (") + 7 (Su) (u,) (u")
+ Sy {u ) + ¢Sy () +7'Si(uy) (). (41)

Furthermore, as the zz and KK phase shifts are rather well
known [53,54] we also incorporate the parametrization of
final state interactions as described in Appendix C. The
amplitudes for these decays are gathered in Sec. B 2 of
Appendix B.

C. Results

The present experimental determination of the S — PP
decay widths is rather poor. Many channels have not been
observed or have large errors. As a result, we end up with
more variables than experimental inputs. However, from
our fit we can obtain a general idea of the current
landscape.

We will fit our partial widths and ratios with the data
collected in the rightmost column of Tables IV and V. We
input the masses of the resonances from [29], with the
exception of the ay(980) and f(1370). The first one is also
fitted due to the sensibility of the results to its decay. For
fo(1370) we take the result put forward by [55] in the
analysis of its dominant decay into four pions,
My (1370) = 1.395 GeV. We take F =92.4 MeV for the
decay constant of the pion.

Our results for the fit are presented in the central
column of Tables IV and V. As we can see, we obtain a
reasonable description of most of the channels (being the
clear exception the Kj(700) — 7K decay). We get a null
value for I'(f,(1500) — ') since this decay is kine-
matically forbidden for the central value of the f(1500)
mass. The results for masses, couplings and parameters
are collected in Table VI. We are going to analyze, in
turn, the outcome:

cosycosfisina +sinycosa  —cosysinf
—sinycosfisina + cosycosa  sinysinf |. (40)
sin #sina cos f}

(a) We obtain the mixing angles between the I = 0 states,
a, B,y withrather large errors. To illustrate the results let
us change to the flavor basis, |S), |N), |G), defined by:

TABLE IV. Results of our fit for the decay widths analyzed in
our RChT framework. The experimental data are taken from [29]
except when explicitly stated otherwise.

Width Our fit (MeV) Exp. (MeV)

Tt (1370)nn 11.7+5.7 20.8 & 10.7 [56,57]
L'y 1370~ k& 10.7+3.2 19.0 £ 10.6 [56,57]
T}, (1370)>m 104 +4.3 6.41 4+ 2.88 [55,58]
T/, (1500) >z 38.1+5.6 38.0 4 2.5 [59,60]
T (1500)> K& 939 +22 9.37 4+ 1.09 [59,60]
L}, (1500) 550 +4.1 5.56 +0.98 [59,60]
L't (1500)~ny 0.0 2.07 +0.87

T/, (1710)>xn 20.5+6.6 20.5+9.9

T}, (1710)> KK 50.0 +15.3 50.0 + 16.7
Ls,(1710)=m 23.84+9.8 24.0 - 11.0
rfo(1710)—>'111’ 30.9 +£20.2 cee

T (1450)=a 'y 24.4412.0 247453

Ty, (1450) 2% 245+ 12.0 247453

T (1450) 'y 9.14+7.6 87+45

Ty, (1450) 20y 9.18 +7.7 87+45

T o (14502 K R? 21.0+73 21.7+74

T 0(1450)=k K- 10.6 +3.7

T 40(1450)~KR? 104 +3.6

ks (1430) oK 80.5 + 12.8

ke (1430)=r' &0 159.7 +£25.5

T k:0(1430) =K 80.0 = 12.8

Tk:0(1430) =7 K+ 160.6 £ 25.6

Tk (1430)onk 20.7 +14.3

T k:0(1430)=k? 20.5 + 14.2 e

T+ (1430)onK 240.1 + 38.3 251.1 £27.0

T4 980)='n 81.2+16.9

T, (980) 2% 81.7+17.0 .
r‘aar(ggo)%K-f(U 144+£55 142+1.8

T 0(080)~K" K- 7.66 +2.8

T 42980~ KOR? 6.68 +2.7

Tk: (100) a0k 156+ 1.9

Tk (700) =z K0 3.04 +3.6

T k0 (700) K0 153+ 1.8

p—— 3.09 4+ 3.7 e

Tk (700)nk 459455 478 + 127
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TABLE V. Results of our fit for the ratios of decay widths analyzed in our RChT framework. The experimental data are taken from
[29] except when explicitly stated otherwise.

Decaying particle Ratio Our fit Exp.
fo(1370) Br[KK/nx] 0912 +£0.374 0.91 £ 0.20 [57]
Br[yn/nx] 0.889 £0.771 0.31 £ 0.80 [55,58]
fo(1500) Br[KK/nx] 0.246 £ 0.006 0.246 +0.026
Br[yn/#x] 0.144 £ 0.002 0.145 £ 0.027
Brliy'n/zx] 0.0 0.055 £0.024
fo(1710) Br[zz/KK] 0.410 £+ 0.037 0.41 +0.14 [59,60]
Brlyn/KK) 0.476 +0.282 048 £0.15
ay(1450) Br{zn' /zn) 0.375 £ 0.163 0.35+0.16
Br[KK/mn) 0.859 £+ 0.269 0.88 +0.23 [58]
K{(1430) Br[nK/zK] 0.086 + 0.074 0.092 +0.031 [61]
ay(980) Br[KK/nn) 0.175 £ 0.057 0.183 +0.024
From this result we conclude that there is a dominant
TABLE VI. Results of the fit for the parameters in the RChT

framework. The mass and all the couplings are given in MeV. All
the angles are in degrees.

Parameter Our fit Mixing angle Our fit

M 4 (930) 1023.8 £22.6

ck 15619 a —98.8+41.9
cH 3.07 £ 1.00 B -39.8+13.7
c 0.0 4 —27.8+44.4
ck 13.3+6.8 @ 53.6 +4.7
cH 921 +£3.21 Py 4.78 £3.75
Chn 0.0 @ 90.3 £22.5
ay 179+£3.2

ay 0.88 £ 1.50

Pu —-3.42+053

YH —-6.45+1.19

7 1.43 £3.26

Xior 0.40

)= 159 =~ 250 + =150

P -
|N>=\ﬁ|uu+dd>—\/§58>+\£|50>, (42)

being |G) the singlet glueball. In this basis we have:

fol1370)
f0(1500)
fo(1710)
—-0.82£0.22 0.12+049 0.57+0.16
=| 007+£048 -095+0.24 0.30+0.25
0.57+0.14 029+£0.23 0.77£0.09
N
x| S (43)
G

(b)
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one-to-one identification between f,(1370), f((1500)
and fy(1710) with N, S and G respectively. Notwith-
standing there seems to be also a large mixing between
f0(1370) and f((1710) with the N and G states.
Our result agrees with solution IT of Ref. [62]. Their
solution I switches the roles of f(1500) and f,(1710).
Different models and different settings can be found in
the literature. Our conclusion differs from the one in
Ref. [47] because although they agree on identifying
the f,(1710) mostly with the glueball, they find that
f0(1370) is dominantly |S) and f,(1500) is domi-
nantly |N). This later identification of f,(1370) is also
found in Ref. [50], though with a noticeable four-quark
component too. In Ref. [49] it was concluded that
fo(1500) was mostly glueball but f,(1710) was also
sharing a large component. Reference [63] provides
two scenarios: In one of them f,(1710) is dominantly
glueball; in the other this role corresponds to f(1500).
In relation with the mixing between the light and
heavy nonets of scalar resonances, our results differ
from those of Ref. [46], and we find a tiny mixing for
the ay states and an almost inverted situation for the K
states.
The couplings in Eq. (41), ¢/, ¢}, and ¥/, involving the
extra singlet S; (glueball), are consistent with zero. This
indicates that the glueball component only arises
through the mixing with the / = 0 singlets of the nonet.
The rest of RChT couplings show an interesting trend.
Although with large errors, the expected 1/N¢ sup-
pression between the leading and next-to-leading
terms does not seem to be realized. They are essen-
tially of the same order. We verify that both multiplets
satisfy the condition in Eq. (4): ckck >0 and
cHell > 0, but we notice that the relation ¢y = ¢,
is approximately satisfied only by the light multiplet
ck ~ ¢k Meanwhile the heavy multiplet deviates from
this relation. None of them satisfies, numerically,
Eq. (36), though the light multiplet comes close.
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V. CONCLUSIONS

The phenomenology of the lightest hadron scalars is
rather clumsy. The issues of identification of the U(3)
nonets, its nature and their decays embrace a thorough
research and a large number of publications. Many aspects
remain to be understood. In this work we have tried to put
some light on the features and problems that have to be
taken into account for a Lagrangian description of the
scalar sector; in our case within the resonance chiral theory.

The greater part of the decays of scalar resonances
involve the (SV,V,) and (SA,A,) Green functions of QCD
currents. We have analyzed these within RChT, including
the necessary operators in order to fulfill the short-distance
requirements determined by the matching in Eq. (1). As a
result we found a set of relations between the couplings in
our Lagrangian. These should be valid in the N — oo limit
and single resonance approximation. Although the pro-
cedure that we have followed has given in the past many
successful predictions, we know that hadron scalar-involved
amplitudes are not well behaved in the large-N limit. In
order to assess our results, we have carried out a fitto S —
PP decays in Sec. IV. In the fit we have included subleading
contributions in 1/N, to analyze the behavior of our RChT
description of such decays. The results of our study are
indeed pointing out that operators that should be suppressed
following large-N . premises are in fact as relevant as the
leading ones. Hence, at least part of the relations between the
couplings involving scalars, in the N- — oo limit, may be
largely violated. We have to stress, though, that the poor, and
sometimes confusing, experimental determinations in most
of the scalar decays could mislead this conclusion. It will be
important to improve the experimental measurements in
order to validate this scenario.

As a consequence of our study we also conclude that,
within errors, f(1370) is dominantly a |itu + dd) state,
fo(1710) is dominantly a glueball, but both of them also
have a noticeable mixing. The f(1500) is dominantly a
|5s) state. The results by other authors vary, however the
use of different frameworks make the comparison difficult.

The study of hadron scalar resonances remains an open
field. Their spectrum, classification and nature originate a rich
debate. The large-N .~ framework, already questioned in the
study of these decays, does not seem to be the proper setting
because of the large size of subleading corrections. However a
solid conclusion will only be possible if a better experimental
knowledge of the spectrum and decays is achieved.
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APPENDIX A: CHIRAL NOTATION

We collect briefly the basic notation used in both ChPT
and RChT [20]. The Goldstone fields ¢ parametrize the
elements u(¢) of the coset space SU(3); ® SU(3)x/
SU(3)y:

) = e {00}, (A1)

where F is the decay constant of the pion in the chiral limit
and

8 b
D(g) = ziijli

i=1
7T+ s a K"
= - —ﬁﬂ'o—'—%ﬂg KO s
K- K? _%’78

(A2)

with ; the Gell-Mann matrices.

The nonlinear realization of SU(3), ® SU(3); on
resonance fields depends on their transformation properties
under the unbroken SU(3),, the flavor group. Here we will
consider massive states transforming as octets (Rg) or
singlets (R), with R =V, A, S, P for vector, axial-vector,
scalar and pseudoscalar fields, respectively. In the large-N -
limit both become degenerate in the chiral limit and we
collect them in a nonet field:

8
R. R
R=> Ji—ft+—1I. (A3)

=V2 V3

We will use the antisymmetric representation for the spin-1
fields [37]. In order to calculate Green functions of vector,
axial-vector and scalar currents, it is convenient to include
external hermitian sources 7, (x) (left), r,(x) (right), s(x)
(scalar) and p(x) (pseudoscalar).

With the fundamental building blocks u(¢), V.. A,,, S,
£ys Ty» s and p, the hadronic Lagrangian is given by the
most general set of monomials invariant under Lorentz,
chiral, P and C transformations. At leading order in 1/N,
the monomials should be constructed by taking a single
trace of products of chiral operators (exceptions to this rule
are not of interest for our research). The chiral tensors
x(p"), i.e., those not including resonance fields, can be
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labeled according to the chiral power counting. The
independent building blocks of lowest dimension are

u, = i{u’(8, —ir,)u—u(d,—it,)u'},
ye=uyu" fuytu,
= uFu’ £ u"Fi u,

h :Vu +V,ou

Hv vy

(A4)

of O(p),0(p?),0(p?)and O(p?), respectively, and with
. Olzzu|0
r=2By(s+ip). Bo=-"ml0 (s
and non-Abelian field strengths Fi' = 9#r* — 0 r —

i, ], Ff =0rev = v e —il e, ¢v). The covariant deriva-
tive is defined by V, X =0, X +[I',.X], in terms of the chiral
connection I, = {u’(8, —ir,)u+ u(d, —i¢,)u'}/2 for
any operator X transforming as an octet of SU(3),.
Higher-order chiral tensors can be obtained by taking
products of lower-dimensional building blocks or by acting
on them with the covariant derivative.

|

APPENDIX B: S - PP DECAY AMPLITUDES
The widths of the § — PP, decays are given by:

A2 (g, mip, )

16NP]P27TM§

F(S g P1P2> = Fi = |MS—>P]P2|2’

(B1)

with A(a, b, ¢) = (a + b — ¢)* — 4ab. Notice that Np p, is
2 for two identical particles such as 7°z°, 1. Here we have
taken into consideration the effect of masses of the final
mesons in the phase space. In Eq. (B1) the amplitudes
M;_ p p, are given in the following subsections.

1. I=1, 1/2 decays
The couplings and mixing for the decays of a,(980),
ag(1450), K§(700) and K((1430), have been defined in
Egs. (37) and (38). The decay amplitudes, defined in
Eq. (B1), of the isovectors and isodoublets in the Sy
multiplet are

1
Mf e = —W{(M2 —m} —m2,)[V2cosO(chsing, + clf cosp,)
—sin@((3a, +2¢k) sing, + (3ay +2cH) cos p,)] + 2m2 (V2 cos @ — 2sin @) (ck sing, + ct cos )},
1
58—”’”0 a _\/§F2 {(M2 - m —m o)[\/_COSQ(Cd sing, + ¢ cos¢a>
—sin((3a, +2¢k) sing, + (3ay +2cH) cos g,)] + 2m2 (V2 cos @ — 2sin @) (ck sin g, + ct cos )},
1
M;’ e = _W{(MZO —my —m’ D [V2siné(cksing, + ¢l cos g,)
+cosO((3ay, +2¢k) sing, + (Bay +2cH) cos @, )] + 2m2(V2sin 0 4 2 cos 0)(ck sing, + cH cosp,)}, (B2)
M = = (M2, = ) = m2) [V 2sin (el sing, + cff cosp,
e T my — m sin0(ck sing, + ¢ cos ¢,
+ cos 0((3ay, + 2¢5) sing, + Bay + 2¢i) cos @,)] + 2m2 (V2 sin 6 + 2 cos 0)(ck, sin g, + ¢ cos )},
1 . .
./\/lH kR =TT (M3, = my. —mz,)(chsing, + clf cosg,) 4+ 2mg(cy, sing, + ¢ cos@,)),
1
2{3_)1(_1( =— NoTZ (MZ, —2mz. ) (ch sing, + cff cosp,) + 2mF(ck sing, + chi cos ).
1 . .
MI oo = = (M2, =20 ) s+l o) + 2kl sin +cl cos).
1 . .
MK*+_)K+ o= —W{(CQ sin g + cf cos §0k)(M%<3+ — my, —m2y) + (cg, sin gy + cjf cos gy ) (my + mz)},
1 . .
ML s == {(chsingy + el cosp) (M3, — i = m2.) + (chsingy, + el cos )+ m2).

M

K;0—K"2 =

1 .
ma = —ﬁ{(cj singy + ¢ cos (pk)(Mf(S+

K*O K*n

1 .
T {(ck sin gy + cH cos qok)(M%<S+ —-m

= myy —mZ.) + (ciy singy + ¢y cos ) (m + mz)},

- =m2) + (e singy + cfp cos gp) (mg + m3) .

2
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1 .
MK*+—>K+;7 =R {(M? o m3. —m2)[—v2cos O(ch sin gy + ¢ cos )

—2sin0((3a +2ck) sing + Bay + 2c) cos ¢)]
+ (ck sin gy + ¢ cos ¢y )[3V/2 cos Om2 — 5v/2 cos Om% — 8 sin Om% ]},

1
H - _
Mio-xn = =3 55

—2sin0((3a +2ck) sing + (Bay + 2¢) cos @)

{(Migo —m2, — m2)[—V/2cos 0(clj sin gy + ¢!l cos ;)

+ (cL sin gy 4 cH cos ;) [3V/2 cos Om2 — 5v/2 cos Om% — 8 sin Om%]}.
Those for the decays of the S; multiplet are

1
L _ 2 2 H
/\/la - NeTE {(M —my, m )[\/E cos 6(6d cos @, — ¢l sing,)

—sin0((3ay, + 2¢k) cos @, — Bay + 2¢H) sing,)] + 2m2 (V2 cos  — 2sin 0)(ck cos g, — ¢l sing,)},

1
L _ 2 _ _
M, Bt = T A {(MZ —m}—m 0)[\/§cos9(cd cos ¢, — ctsing,)
—sin0((3ay, + 2¢k) cos @, — Bay + 2¢H) singp,)] + 2m2 (V2 cos 0 — 2sin 0)(ck cos g, — cH sing,)},
1

M%—m’fr* =~ AP {(MZ, —my — m2,)[v2sin0(cl cos g, — ! sing,)

+ cos O((3a, + 2¢L) cos p, — (3ay + 2¢H) sing, )] 4+ 2m2(V2 cos @ — 2 sin ) (ck, cos ¢, — ¢l sin )},
1
ME, =— {(MZ, - mr2] m 0)[\/Esmé(cd cos @, — c sing,)

—>;17r \/§F2

+ cos O((3a, + 2¢L) cos p, — (3ay + 2cH) sing, )] 4 2m2(V2 cos @ — 2 sin0)(ck, cos ¢, — ¢l sin )},

ML KR —%((Mgo — my, —my,)(chcos g, — clf sing,) 4+ 2mg(ch cos p, — cji sing,)),

MI; kK- = \/§1F2 (M3, — my. —m%y)(ch cos g, — ¢ sing,) + 2mg (ck, cos g, — chi sing,)).

ML o =~ \/§]F2 (M3, —2m3,)(ch cos g, — cff sing,) + 2mi(ch cos g, — cfl sing,)). (B4)
MK*+_,K+ o = —ﬁ {(ck cos ¢y — ¢ sin (pk)(M§(6+ — my. —m2) + (ch cos g — cff singy) (mg + mz)},
ME_ o = =5 {(ch cos g = ff sin ) (M3, = = i2,) + (ch o3 g = el sin )+ i) .

M?{;;MK%O = —ﬁ {(ck cos ¢y — ¢ sin gok)(M%(*+ ma., — mlzro) + (ck cos @y — ct singy) (m% + m2)},
M?(S”—»K*ﬂ‘ = —% {(ck cos gy — ¢ sin (pk)(Mﬁ(g+ — my, —m2,) + (ch cos @ — chi sin ) (mg 4+ mz)}, (BS)
Méé*—ﬂf*n = _2\/1—3F2{(M%<8+ -mi. - m%)[—\/icos 0(ck cos @i — cH singy) + 2sin0((3ay + 2cH) sing
— (Bay +2ck) cos )] + (ck, cos gy — ! sin o) [3v/2 cos Om2 — 52 cos Om — 8 sin Om? ]},
Mégo_)l(o” =- 2\/1§F2 {(Még0 — m2q —m2)[~V2cos 0(cli cos g — clf singy) + 2sinO((3ay + 2cf) sing

— (Bay +2ck) cos )] + (ck cos gy — ! sin ) [3v/2 cos Om2 — 5v/2 cos Om — 8 sin Om’]}.
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2. I =0 decays
In the following amplitudes, i =1, 2, 3 and f; = f((1370), f>» = f((1500) and f5 = f,(1710):
—2m2 m [l /
Mt g 7029 :T[\/Ecd (an +V2ap) +6V3Byan +6c)a;] - 4F2 \/E(ail +V2a,) +chap
M Zm’( H ws H
Mf,<—>K+K_,K0F [\/_Cd 2( a;y +2\/§aiz)+12\/§ﬁHCliz+IZCQCZB]—F[\/EC,”(—CZH +2\/§ai2)+12cﬂna,~3],
(B6)
M%- B Zm% H / H
Mfi—"’m = 167 [—\/ng a;p + 12Cdal'3 + 2\/361,»2(30!11 + 6ﬂH + ch + 9}’].1) + 18]/Ha,-3
— cos 20[V6ct a4+ 6\ 3an(ay + 3yy) + 18a5y"] — 2V/35in 20(3ay + 2c¢H)ay]
+ 9? [V6cta; [3(3m2 — 4m%) + (m2 — 4m3)(cos 20 + 2v/2 sin 20)]
+4(V3ctay + 3chas)(3mk + (mk — m2)(cos 20 + 2/25in 260))]
M2 —mj—m? " '
Mfi_”’lﬂ/ T [2\/—(305H + 2Cd) i1 COS 20 — (\/gcgail —+ 6\/§(0¢H —+ 3}’1.])(11'2 =+ 18611‘3]//) Sin 29]

1
+ 552 (2v/2 cos 20 — sin 20)[V6ct a; (4m% —

Here a;; are the matrix elements of the A matrix in Eq. (40).
In Eq. (B7), 0 is the n — ' mixing angle defined by:

(n)_(cos& —sin9)(:18>
) \sin® cos6 /)

APPENDIX C: FINAL STATE INTERACTIONS
IN f; —» PP DECAYS

We know that 7 =0, § = 0 amplitudes have large FSI
effects. Unfortunately we only have reliable information on
the zz and KK phase-shifts. Hence we can only consider
the FSI effects in the decays with those final states. We
would expect that / = 1 or / = 1/2 final states should be
less affected and, therefore, we will consider only f; — PP
decays (i =1, 2, 3 as in Appendix B), with P = 7, K.

Following Refs. [64,65], we can parametrize:

(B8)

M - FSI M - bare
(i) =Sy m)
My ki My ki
where
\/E - OT Sdiag(’), <C2)

m2) = 4(my — m2)(V3clap + 3cia;)). (B7)
|
with
2i8!=0 ;
an 0 cosm  Sinw
Sdiag:<e <10>’ 02( . )
0 2%k —sin®w cosw
(C3)

Here w should be a new parameter to fit. For the phase-
shifts we will only need 6z°(M7) and &i2(M7),
because in two-body decays always s = M’ being M
the mass of the decaying particle. The phase shifts
are given by the extended K-matrix fit following
[53,54], up to 1.8 GeV. We will consider the results
in Table VII.

TABLE VII. Phase shifts for the FSI interactions in f; — 7z,
KK decays. Data from [53,54].

Energy (GeV) 5'=0 (Deg) 5120 (Deg)

1.395 308.05 —71.46
1.504 340.18 —78.92
1.720 373.59 —107.20
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