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We estimate the number of quark jets in QCD multijet final states at hadron colliders. In the estimation,
we develop the calculation of jet rates into that of quark jet rates. From the calculation, we estimate the
improvement on the signal-to-background ratio for a signal semianalytically by applying quark-gluon
discrimination, where the signal predicts many quark jets. We introduce a variable related to jet flavors in
multijet final states and propose a data-driven method using the variable. As with the semianalytical result,
the improvements in the signal-to-background ratio using the variable in Monte Carlo analysis are
estimated.
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I. INTRODUCTION

So far we have not caught a clear sign of physics beyond
the standard model at the LHC. We should maximize the
discoverability of new physics at the LHC by using informa-
tion of final states more precisely. In conventional analyses,
we categorize events by inclusive variables like the number
of jets, the scalar sum of the transverse momentum of jets
and so on, then find signal regions using exclusive variables
like the transversemomentumofobjects, thedistancebetween
objects etc. We are able to access more specific features of
events using jet substructure, and the related studies have
developed dramatically in the last 10 years [1–6].
In recent studies, many methods and variables have been

proposed to identify the origin of a jet using information
about the jet’s substructure [7–21] including those based
on resummation techniques with the assumption of soft-
collinear factorization [22–42]. Applications of the jet
substructure techniques to new physics searches at the
LHC have also been considered (see e.g., Refs. [43–47]). In
particular, numerous studies related to identifications of
boosted jets originated from the top quark, Higgs and Z=W
bosons have been performed. Some prominent variables
were measured experimentally and the performance of
tagging techniques has been tested. The tagging techniques
are being used for new physics searches at the LHC
[48–51]. These boosted jets have a multiprong structure
inside the jet and we can distinguish these from QCD jets

using this feature, where “QCD jets” means quark- and
gluon-initiated jets. There has also been progress in the
studies of the separation between the quark jets and gluon
jets. The performance of this separation and the shapes of
variables have been measured [52–59]. In recent years,
machine learning techniques have been used to improve the
separation performance [60–72].
One of the differences between the boosted jet tagging

technique and the quark-gluon discrimination is the size of
the jet radius used in the analysis. The multiprong structure
of boosted jets is formed by decays stemming from the
electroweak interaction, and a large jet radius is basically
required to catch most of the decay products. The QCD jets
have one-prong structures such that there is a core parton
carrying most of the energy of the jet, and the core is
dressed in soft gluons radiated from itself. The main
difference between quark jets and gluon jets stems from
the difference between the color factors for the gluon
radiation. Gluon jets emit more partons and wider radiation
due to this difference. Neglecting the logarithmic scaling on
the strong coupling and masses of the active quarks, the
QCD radiation is scale invariant. That is, if one zooms in on
a QCD jet, one will find a repeated self-similar pattern of
jets within jets within jets, reminiscent of fractals. The
difference exists even in the neighborhood of the jet core,
and therefore the quark-gluon discrimination works out
even if the jet radius is small.
Due to these properties, the quark-gluon discrimination

is maximally utilized in multijet final states. In the case that
a signal has n more quark jets compared to backgrounds,
we naively expect that the signal-to-background ratio will
increase ðϵq=ϵgÞn times using the quark-gluon tagging,
where ϵq and ϵg are the quark and gluon jet efficiencies and
ϵq=ϵg > 1 under the assumption that quarks come from a
signal.
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Many new physics models form multijet final states.
For example, heavy colored resonances, like the gluino or
squarks in supersymmetry (SUSY), could emit many
partons via their cascade decays, and there are several
studies that address these possibilities at the LHC [73–79].
Another example is searches of low-scale gravity which
deals with the hierarchy problem concerned with the
difference between the electroweak and Planck scale.
These models can predict microscopic black holes or
highly excited string states at the TeV scale. The objects
emit a large number of energetic particles which are mostly
quarks and gluons, and the phenomenon is constrained
experimentally [80–84]. Moreover, the multijet final state is
a good probe for the higher-dimensional operators which
are caused by new color interactions at a high energy scale.
There are two types of dimension-six pure QCD operators,
gsfabcG

μ
aνGν

bλG
λ
cμ and g2sðq̄γμTaqÞðq̄γμTaqÞ, and in par-

ticular the triple gluon field strength gets a large enhance-
ment in high energy and large jet multiplicity regions
[85,86]. The operator also predicts a characteristic quark-
gluon jet fraction such that the G3 operator forms leading
and subleading gluon jets although the leading and sub-
leading jets tend to be valence quark jets in the standard
model backgrounds.
We develop the calculation of jet rates into quark jet

rates, and estimate quark-gluon jet fractions in the QCD
multijet final states. Also, we consider a data-driven
analysis for new physics searches in multijet final states.
In the analysis, we introduce a variable defined in events
having jets greater than or equal to n,

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Q2
i

s
; ð1Þ

where Qið> 0Þ is assigned to the ith jet and it becomes
larger when the jet substructure seems to be a quark jet. So,
d gets larger if events have more quark jets. In conventional
analyses of multijet final states, we fit a distribution of an
inclusive variable like the scalar sum of the transverse
momenta HT in a control region and predict the number of
background events in a signal region using the fit functions.
We also fit the remaining rates of the number of events after
imposing a d cut for eachHT bin as will be shown in Fig. 7
and find a big improvement over conventional analyses by
using the new information.
This paper is organized as follows. In Sec. II, we

calculate quark jet rates at hadron colliders based on the
generating functional method. In Sec. III, we estimate how
many quark jets are contained in the QCD multijet back-
ground using the formulas derived in the last section.
Improvements of the signal-to-background ratio for the
analysis in multijet final states by using the quark-gluon
discrimination are also estimated semianalytically. In
Sec. IV, the improvements using the variable d are

estimated in a Monte Carlo (MC) analysis. In Sec. V,
we summarize our results and state our conclusions.

II. QUARK JET RATES IN MULTIJET
FINAL STATES

We first estimate howmany quark jets are contained in the
QCD multijet background at hadron colliders. The estima-
tion is useful to know the impact of quark-gluon discrimi-
nation on new physics searches and helps to understand the
results of the analysis. Assuming infinite computational
resources, we can add any number of additional partons to
parton showers using the matching schemes [87–91] in the
simulation of multijet final states. However, we do not have
such enormous computational resources. So, we use the
generating functional method [92–95] based on the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equa-
tions. All of the leading-logarithmic (LL) terms and some of
the next-to-leading-logarithmic terms are taken into account
in the calculation. Matrix element corrections for additional
partons are absent in the calculations and those effects are
examined in the Appendix A 2.
The definitions of quark and gluon jets are typically given

by using parton-level information [96–98]. We also use the
parton-level definition in this study. Although the definition
is unphysical since jets are observed at the hadron level, we
assume that the number of quark jets defined at the parton
level is close to the number at the hadron level. It should be
noted that a well-defined definition of quark-gluon jets at the
hadron level was proposed recently in Ref. [99]. They
determined that the quark jet fraction defined at the parton
level can be extracted using hadron-level information. It has
been demonstrated for the hardest jet in the Z þ jet process
and for the two hardest jets in the dijet process with a
Monte Carlo event generator.

A. Generating functionals

Conventionally, a generating functional for a final-state
parton i is defined as,

Φiðu; p; tÞ ¼
X∞
n¼1

unRði;outÞ
n ðp; tÞ; ð2Þ

where p and t are the transverse momentum and energy
scale for the parton i. We call a parton whose transverse
momentum is larger than p0 and which is separated from
other partons by R or more in the η-ϕ plane a jet, where the
nonglobal logarithmic effect [100] is ignored. The jet rate

Rði;outÞ
n represents the probability that the parton i forms an

n-jet configuration by final-state radiation [101–105]. We
develop the definition,

Φiðu; v; p; tÞ ¼
X∞
n¼1

unRði;outÞ
n ðv; p; tÞ; ð3Þ
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where the modified jet rates are given by a polynomial
expression,

Rði;outÞ
n ðv; p; tÞ ¼

Xn
m¼0

vmRði;outÞ
n;m ðp; tÞ: ð4Þ

We call Rði;outÞ
n;m the quark jet rate and it represents the

probability that i forms an n-jet configuration in which m
quark jets are contained.1 The number of jet n starts from 1
since the final state itself becomes a jet even if it does not

emit any resolved emissions. The jet rate Rði;outÞ
n in Eq. (2) is

simply given as,

Rði;outÞ
n ðp; tÞ ¼ Rði;outÞ

n ð1; p; tÞ: ð5Þ

We can acquire the quark jet rates by differentiating the
functional as,

Rði;outÞ
n;m ðp; tÞ ¼ 1

n!m!

∂n

∂un
∂m

∂vm Φiðu; v; p; tÞ
����
u¼v¼0

: ð6Þ

Similarly, we introduce a generating functional for an
initial-state parton i,

Ψiðu; v; x; tÞ ¼
X∞
n¼0

unRði;inÞ
n ðv; x; tÞ; ð7Þ

where

Rði;inÞ
n ðv; x; tÞ ¼

Xn
m¼0

vmRði;inÞ
n;m ðx; tÞ: ð8Þ

Quark jet rates for the initial-state Rði;inÞ
n;m represent the

probability that i emits n jets in which m quark jets are
contained. The argument x is the energy fraction for i, and
therefore, the parton carries an energy xpbeam, where pbeam
is the hadron beam energy. The number of jets n starts from
0 since the initial state does not generate any jet if it does
not emit any resolved emissions.
A generating functional for a hard process is given by a

product of functionals for initial and final states. For
example, a generating functional which has initial states
i1, i2 and final states f1, f2 is given asΦ ¼ Ψi1Ψi2Φf1Φf2 ,
and we can derive the quark jet rates for the hard process by
differentiating the functional Φ2.
For brevity, we omit the arguments u and v in the

generating functionals below.

1. Evolution equations

We derive evolution equations for generating functionals
of final and initial states. We first start with the final state.
We get the following equations in the case that no resolved
emission occurs, namely for n ¼ 1:

Rðq;outÞ
1 ðv; p; tÞ ¼ vΔ̃qðp; tÞ;

Rðg;outÞ
1 ðv; p; tÞ ¼ Δ̃gðp; tÞ; ð9Þ

where Δ̃iðp; tÞ are the Sudakov form factors which show
the probability that any resolved emission does not happen
between the starting scale t and a minimum resolved scale.
We define the form factors in Sec. II A 2. If a quark does not
emit any resolved emission it forms one quark jet, so we
need v in front of Δ̃q. In the case that the resolved emission
happens at least one time, namely for n > 1, the modified
jet rates have the following equation:

Rði;outÞ
n ðv;p; tÞ ¼

X
k

Z
1

p0=p

dz
z

Z
t

t0

dt0

t0
Δ̃iðp; tÞ
Δ̃iðp; t0Þ

Γ̃i→jkðz; t0Þ

×
X

n1þn2¼n

Rðj;outÞ
n1 ðv;p; t0ÞRðk;outÞ

n2 ðv; zp; t0Þ;

ð10Þ
where Γ̃iðz; tÞ ¼ αsðz; tÞPiðzÞ=π, αsðz; tÞ and PiðzÞ are the
running strong coupling and the splitting functions, t0 is a
given minimal scale, and p0 is the minimum resolved
transverse momentum which corresponds to the minimum
pT cut for jets. We use the emission angle as the scale such
that t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − cos θ
p ð≃θ= ffiffiffi

2
p Þ, and thus t0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosR

p
,

where R corresponds to the jet radius. As said above, we
simply define radiation whose transverse momentum and
angle are greater than p0 and R as a jet in our calculation,
and the jet algorithm dependence is beyond the scope of
this paper. The ratio of Sudakov form factors shows the
probability that the parton i does not emit any resolved
emissions between the scales t and t0. From these equations,
we get evolution equations for the generating functionals of
final states [19,95] as,

Φqðp; tÞ ¼ uvΔ̃qðp; tÞ þ
Z

1

p0=p

dz
z

Z
t

t0

dt0

t0
Δ̃qðp; tÞ
Δ̃qðp; t0Þ

× Γ̃qðz; t0ÞΦqðp; t0ÞΦgðzp; t0Þ; ð11Þ

Φgðp; tÞ ¼ uΔ̃Gðp; tÞ þ
Z

1

p0=p

dz
z

Z
t

t0

dt0

t0
Δ̃Gðp; tÞ
Δ̃Gðp; t0Þ

× ½Γ̃gðz; t0ÞΦgðp; t0ÞΦgðzp; t0Þ
þ nfΓ̃ggðz; t0ÞΦqðp; t0ÞΦqðzp; t0Þ�; ð12Þ

where Φq and Φg are the generating functionals for quarks
and gluons. For brevity we define the following logarithms:

1You may prefer the definition of a functional such that
Φ̂ðug; uqÞ ¼

P
ng

P
nq u

ng
g u

nq
q R̂ng;nq , where nq and ng are the

number of quark and gluon jets, and R̂ng;nq is the probability
that an event has nq quark jets and ng gluon jets. The two
functionals are just related by Φðu; vÞ ¼ Φ̂ðu; uvÞjnq¼n−ng;ng¼m.

2See in Eqs. (84) and (85).
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κ ¼ lnðp=p0Þ; κ0 ¼ lnðzp=p0Þ; ð13Þ

λ ¼ lnðt=t0Þ; λ0 ¼ lnðt0=t0Þ: ð14Þ
With these variables, the equations in Eqs. (11) and (12) are
rewritten as,

Φqðκ;λÞ¼ uvΔ̃qðκ;λÞ

×exp

�Z
λ

0

dλ0
Z

κ

0

dκ0Γ̃qðz;t0ÞΦgðκ0;λ0Þ
�
; ð15Þ

Φgðκ; λÞ ¼ uΔ̃Gðκ; λÞ exp
�Z

λ

0

dλ0

×
Z

κ

0

dκ0
�
Γ̃gðz; t0ÞΦgðκ0; λ0Þ

þ nfΓ̃qq̄ðz; t0Þ
Φqðκ; λ0Þ
Φgðκ; λ0Þ

Φqðκ0; λ0Þ
��

: ð16Þ

We next derive generating functionals for initial states.
For an initial state i, from the DGLAP equation, the
normalized change of a parton density for i, in other
words, the probability that i emits initial-state radiation
between t0 and t0 þ dt0 is,

dPðx; t0Þ ¼ dfiðx; t0Þ
fiðx; t0Þ

¼
X
k

dt0

t0

Z
1

x

dx0

x0
αs
π
Pk→ijðzÞ

×
fkðx0; t0Þ
fiðx; t0Þ

; ð17Þ

¼
X
k

dt0

t0
Pk→ijðz; t0Þ; ð18Þ

where x and x0 are the momentum fractions for i and its
parent parton as shown in Fig. 1, fi is the parton distri-
bution function (PDF) for i, and z ¼ ðx0 − xÞ=x0. In the case
of initial-state radiation, Rði;inÞ

0 is given by the probability
that i does not emit any resolved initial-state radiation,

Rði;inÞ
0 ðv; x; tÞ ¼ exp

�
−
Z

t

t0

dPðx; t0Þ
	

¼ Π̃iðx; tÞ; ð19Þ

where Π̃i is the Sudakov form factor for initial states. In the
case that a resolved emission happens at least one time,
namely for n > 0, the modified jet rates have the following
relation:

Rði;inÞ
n ðx; tÞ ¼

X
k

Z
t

t0

dt0

t0
Π̃iðx; tÞ
Π̃iðx; t0Þ

Pk→ijðz; t0Þ ð20Þ

×
X

n1þn2¼n

Rðj;inÞ
n1 ðx0; t0ÞRðk;outÞ

n2 ððx0−xÞpbeam; t0Þ: ð21Þ

From the above equations and the definitions of the
generating functionals, the evolution equation for the
functional of initial states is given as,

Ψiðx; tÞ ¼ Πiðx; tÞ þ
X
k

Z
t

t0

dt0

t0

Z
1

x

dx0

zx0
Πiðx; tÞ
Πiðx; t0Þ

fkðx0; tÞ
fiðx; tÞ

× Γk→ijðz; t0ÞΨkðx0; t0ÞΦjððx0 − xÞEbeam; t0Þ:
ð22Þ

The logarithms κ and κ0 are modified for initial states as,

κ̄ ¼ lnðð1 − xÞpbeam=p0Þ; κ̄0 ¼ lnððx0 − xÞpbeam=p0Þ:
ð23Þ

In terms of these variables, the equations in Eq. (22) for
quarks and gluons are,

Ψqðκ̄; λÞ ¼ Π̃qðκ̄; λÞ exp
�Z

λ

0

dλ0

×
Z

κ̄

0

dκ̄0
�
Γ̃qðz; t0Þ

fqðx0Þ
fqðxÞ

Φgðκ̄0; λ0Þ

þ Γ̃qq̄ðz; t0Þ
fgðx0Þ
fqðxÞ

Ψgðx0; t0Þ
Ψqðx; t0Þ

Φqðκ̄0; λ0Þ
��

; ð24Þ

Ψgðκ̄; λÞ ¼ Π̃gðκ̄; λÞ exp
�Z

λ

0

dλ0

×
Z

κ̄

0

dκ̄0
�
Γ̃gðz; t0Þ

fgðx0Þ
fgðxÞ

Φgðκ̄0; λ0Þ

þ
X
q

Γ̃gqðz; t0Þ
fqðx0Þ
fgðxÞ

Ψqðx0; t0Þ
Ψgðx; t0Þ

Φqðκ̄0; λ0Þ
��

;

ð25Þ

where we neglect the scale dependence on the ratio of the
PDF since the effect is negligible.3

FIG. 1. Schematic illustration of initial- and final-state radia-
tion. The central blob shows a hard process, p is the transverse
momentum for a final state, z is the energy fraction for the final
state, and x and x0 are the momentum fractions for an initial state
and its parent parton.

3We fix the factorization scale for the PDF ratios to the hard
scale, namely t0 ¼ t, in numerical calculations below.
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The splitting kernels are summarized as follows:

Z
dz
z
Γ̃iðz; t0Þ ¼

Z
dz

αsðk2t Þ
π

PiðzÞ ð26Þ

≃
Z

dz
z
ð1−DÞ×

8>>>>><
>>>>>:

aq; i¼ q;q→ qg;

ag; i¼ g; g→ gg;
aqq
nf
z½z2 þ ð1− zÞ2�; i¼ qq̄; g→ qq̄;

aq
z
2
1þz2
1−z ; i¼ gq;q→ gq;

ð27Þ

¼
Z

dz
z
ð1 −DÞ × ΓiðzÞ: ð28Þ

We use the relative transverse momentum kt as the scale of
the strong coupling, and expand the coupling at a minimal
kt with the one-loop beta function,

αsðk2t Þ ¼ ᾱsð1 −DÞ; ᾱs ¼ αsð2p2
0t

2
0Þ; a ¼ 2ᾱsb0;

ð29Þ

D ¼
� ðaκ0 þ aλ0Þ=ð1þ aκ0 þ aλ0Þ; for final states;

ðaκ̄0 þ aλ0Þ=ð1þ aκ̄0 þ aλ0Þ; for initial states;

ð30Þ

where we employed the following expressions for the
transverse momentum:

k2t ¼
�
2z2p2t02 for final states;

2ðx0 − xÞ2p2
beamt

02 for initial states:
ð31Þ

The coefficients are aq;g ¼ 2CF;Aᾱs=π and aqq̄ ¼
nfTRᾱs=π for final states, and we remove the factor 2 in
ag for initial states because the soft singularity for z → 1 in
the gluon splitting function PgðzÞ is suppressed by the
gluon PDF fgðx0Þ. The number of active flavors is given
by nf and it is set to 5 in the numerical calculations below.
The nontilde splitting kernel ΓiðzÞ is given by removing the
running effect of αs from Γ̃iðz; t0Þ.

2. Sudakov form factors

The Sudakov form factors for final states are defined as,

Δ̃iðκ; λÞ ¼ exp

�
−
Z

κ

0

dκ0
Z

λ

0

dλ0Γ̃iðz; t0Þ
	
; i ∈ fq; gg

ð32Þ

Δ̃qq̄ðκ; λÞ ¼ exp

�
−
Z

κ

0

dκ0
Z

λ

0

dλ0nfΓ̃qq̄ðz; t0Þ
	
; ð33Þ

Δ̃Gðκ; λÞ ¼ Δ̃gðκ; λÞΔ̃qq̄ðκ; λÞ: ð34Þ

The Sudakov form factors which are evaluated by neglect-
ing the running effect of αs are given as,

Δiðκ; λÞ ¼ expð−aiκλÞ; i ∈ fq; gg; ð35Þ

Δqq̄ðκ; λÞ ¼ expð−aqq̄cqq̄λÞ; ð36Þ

ΔGðκ; λÞ ¼ Δgðκ; λÞΔqq̄ðκ; λÞ; ð37Þ

where cqq̄ ¼ 2
3
ð1 − e−3κÞ þ e−2κ − e−κ ∼ 2

3
. We can see the

structure of leading (or double) logarithms in Δq and Δg,
and single logarithms in Δqq̄.
For initial states, the Sudakov factors are defined as,

Π̃iðκ̄; λÞ ¼ Π̃i;1ðκ̄; λÞΠ̃i;2ðκ̄; λÞ; i ∈ fq; gg; ð38Þ

Π̃i;1ðκ̄; λÞ ¼ exp

�
−
Z

κ̄

0

dκ̄0
Z

λ

0

dλ0
fiðx0Þ
fiðxÞ

Γ̃iðz; t0Þ
	
; ð39Þ

Π̃q;2ðκ̄; λÞ ¼ exp

�
−
Z

κ̄

0

dκ̄0
Z

λ

0

dλ0
fgðx0Þ
fqðxÞ

Γ̃qq̄ðz; t0Þ
	
;

ð40Þ

Π̃g;2ðκ̄; λÞ ¼ exp

�
−
Z

κ̄

0

dκ̄0
Z

λ

0

dλ0
X
q

fqðx0Þ
fgðxÞ

Γ̃gqðz; t0Þ
	
:

ð41Þ

Neglecting the running of αs, we get

Πiðκ̄; λÞ ¼ Πi;1ðκ̄; λÞΠi;2ðκ̄; λÞ; i ∈ fq; gg; ð42Þ

Πi;1ðκ̄; λÞ ¼ expð−aiκ̄ð1Þfi=i
λÞ; ð43Þ

Πq;2ðκ̄; λÞ ¼ exp

�
−cð1Þg=q

aqq̄
nf

λ

	
; ð44Þ

Πg;2ðκ̄; λÞ ¼ expð−cð1ÞQ=gaqλÞ: ð45Þ

We define a functionalized κ̄ with a function f as,

κ̄ðnÞf ¼ n
Z

κ̄

0

dκ̄0κ̄0n−1fðκ̄0Þ; ð46Þ

where fi=iðκ̄Þ ¼ fiðx0Þ=fiðxÞ. For an identity function I,

we can find a simple relation, κ̄ðnÞI ¼ κ̄n. The two coef-
ficients are given as,

cðnÞg=q ¼
nf
aqq̄

Z
κ̄

0

dκ̄0
fgðx0Þ
fqðxÞ

Γqq̄ðzÞ × κ̄0n−1; ð47Þ

cðnÞQ=g ¼
1

aq

Z
κ̄

0

dκ̄0
P

qfqðx0Þ
fgðxÞ

ΓgqðzÞ × κ̄0n−1; ð48Þ
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where
P

q runs over all active quarks and antiquarks.
Figure 2 shows the x dependence of the coefficients in
Eqs. (46)–(48). The vertical axis shows xpbeam which is the
energy of an initial state. Valence quarks become dominant

at large x; therefore, cðnÞQ=g becomes bigger and cðnÞg=u becomes
smaller as xpbeam increases. We adopt the CTEQ6L1 PDF
set [106] in the calculations with the help of a PDF parser
package, MANEPARSE 2.0 [107].

B. Primary structure of functionals

Since the largest contribution to the t integration in
Eqs. (11) and (12) comes from the region t0 ∼ t, we use
the approximations Φqðλ0Þ ∼Φqðt0Þ ¼ uv and Φgðλ0Þ ∼
Φgðt0Þ ¼ u to see the primary structures of the functionals
[108].4 In these approximations, subsequent emissions
from a low-scale parton are prohibited. We correct the
absence of the effect of subsequent emissions in the next
section. Applying the approximations in the evolution
equation (15)–(16) and neglecting the running of αs, we get

ΦðLLþqq̄Þ
q ¼ uvΔq exp

�Z
λ

0

dλ0
Z

κ

0

dκ0ΓqðzÞu
	

ð49Þ

¼ uvΔ1−u
q ; ð50Þ

ΦðLLþqq̄Þ
g ¼ uΔG exp

�Z
λ

0

dλ0
Z

κ

0

dκ0½ΓgðzÞu

þ nfΓqq̄ðzÞuv2�
�

ð51Þ

¼ uΔ1−u
g Δ1−uv2

qq̄ : ð52Þ

The terms Δ1−u
q;g ð∝

P
nu

n · ᾱnsL2n=n!Þ which come from the
integration of the leading splitting kernels Γq;g are involved
in the increment of the number of gluon jets with the double
logarithmic coefficients ᾱnsL2n, where L is proportional to κ
or λ. The termΔ1−uv2

qq̄ ð∝ P
nu

nv2n · ᾱnsLn=n!Þ contains v, so
it is involved in the increment of the number of quark jets
with the single logarithmic coefficients ᾱnsLn. Since the
enhancement term of gluon jets has more logarithmic
enhancement, the increment of gluon jets is larger than

that of quark jets. For ΦðLLþqq̄Þ
q , the functional does not

contain the Δqq̄ term, so the number of quark jets does not
increase in this approximation.
Regarding the evolution equation for initial states in

Eqs. (24) and (25), we adopt the approximation Ψiðλ0Þ ∼
Ψiðt0Þ ¼ 1 as with the case of final states. The primary
structures of the functionals are represented by,

ΨðLLþqq̄Þ
i ¼ Π1−u

i;1 Π1−uv
i;2 ; i ∈ fq; gg: ð53Þ

The structures of the Sudakov form factors are,

FIG. 2. The x dependence of the coefficients in Eqs. (46)–(48). The vertical axis shows xpbeam which is the energy of an initial state.
CTEQ6L1 is used in the calculations.

4In the approximations, the functional ratio in Eq. (16) takes
the form Φqðκ; λ0Þ=Φgðκ; λ0Þ ∼ uv=u, which causes unphysical
terms, unvmðn < mÞ. We remove such terms by hand, which
causes a unitarity violation, namely Φju¼1;v¼1 ≠ 1. However the
violation is very tiny, so we keep using the approximations. Note
that the unitarity violation rate is 1 −Φju¼1;v¼1 ≃ ð0.1–0.4Þ% for
numerical results in this paper.
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Π1−u
i;1 ∝

X
n

un · ðaiκ̄ð1Þfi=i
λÞn=n!; ð54Þ

Π1−u
q;2 ∝

X
n

unvn ·

�
aqq̄
nf

cð1Þg=qλ

	
n
=n!; ð55Þ

Π1−u
g;2 ∝

X
n

unvn · ðaqcð1ÞQ=gλÞn=n!: ð56Þ

Since the leading Sudakov form factor Π1−u
i;1 does not

contain v, it is not involved in the increment of the number
of quark jets. On the other hand, the subleading Sudakov
form factor Π1−u

i;2 increases the number of quark jets since it

contains v. In Fig. 2, we notice that the coefficient κ̄ð1Þfi=i
is

basically larger than cð1Þi=j since the former is given by the
integral of the splitting kernels which have soft-singularity
terms. Therefore the increment of gluon jets is basically
larger than that of quark jets as with the case of final-state
radiation. However, it easier for quark jets to be radiated

from gluon initial states at high energy since cð1ÞQ=g gets
bigger as the hard scale increases.

C. Corrections from subsequent emissions

We add a correction to the generating functionals
evaluated in the last section. In the previous section, we
used the approximation Φgðκ0; λ0Þ ¼ u. This means that
emissions by soft gluons which carry the energy fraction z
are neglected. Consequently, a quark in a final state does
not make more than one quark jet due to the absence of
g → qq̄. We modify the approximation in order to take into
account the radiation by the soft gluons as Φgðκ0; λ0Þ≃
ΦðLLþqq̄Þ

g ðκ0; λ0Þ. We also modify the approximation for the
ratio of functionals. We find that the primary structure of
the functionals has the exponential suppression expð−cκÞ,
and thus the precision of the approximation employed in
the previous section, i.e., Φqðκ; λ0Þ=Φgðκ; λ0Þ ¼ 1 gets
worse as the energy scale κ increases. In order to take
into account the energy scaling of the ratio, we employ a

new approximation Φqðκ; λ0Þ=Φgðκ; λ0Þ ≃ΦðLLþqq̄Þ
q ðκ; λ0Þ=

ΦðLLþqq̄Þ
g ðκ; λ0Þ. Applying these approximations in the

evolution equation (15)–(16) and neglecting the running
of αs, we get

ΦðLLþqq̄þsubÞ
q ¼ uvΔq exp

�Z
λ

0

dλ0
Z

κ

0

dκ0Γqðz; t0ÞuΔ1−u
g ðκ0; λ0ÞΔ1−uv2

qq̄ ðκ0; λ0Þ
�

ð57Þ

¼ ΦðLLþqq̄Þ
q × expðSqÞ; ð58Þ

ΦðLLþqq̄þsubÞ
g ¼ uΔG exp

�Z
λ

0

dλ0
Z

κ

0

dκ0
�
Γgðz; t0ÞuΔ1−u

g ðκ0; λ0ÞΔ1−uv2
qq̄ ðκ0; λ0Þ

þ nfΓqq̄ðz; t0Þ
Δ1−u

q ðκ; λ0Þ
Δ1−u

g ðκ; λ0ÞΔ1−uv2
qq̄ ðκ; λ0Þ uv

2

��
ð59Þ

¼ ΦðLLþqq̄Þ
g × expðSgÞ expðS0Þ: ð60Þ

The exponential factor expðSiÞ stems from the modification
for the soft-gluon generating functional. In other words, the
term arises from activating subsequent emissions by soft
gluons. The term expðS0Þ stems from the modification for
the functional ratio. Their full formulas are shown in
Appendix A 1. The leading terms for the exponents are
as follows:

Si ∼ −u lnΔi

�
−
ð1 − uÞagκλ

4
−
ð1 − uv2Þaqq̄λ

2

�
; ð61Þ

S0 ∼ −uv2 lnΔqq̄
w
2
; ð62Þ

w ¼ ð1 − uÞðag − aqÞκλþ ð1 − uv2Þcqq̄aqq̄λ: ð63Þ

In Eq. (61), the double logarithmic term −u lnΔi comes
from the soft-gluon emission i → iþ g. The double and

single logarithms in the square brackets come from the
subsequent emissions by the soft gluon, and their fractional
factors arise from the integrals of the ordering variables κ0
and/or λ0. In Eq. (62), w=2 comes from the correction to the
functional ratio.
As with the case of final states, we adopt the approx-

imations Φiðλ0Þ ∼ΦðLLþqq̄Þ
i ðλ0Þ and Ψiðt0Þ ∼ΨðLLþqq̄Þ

i ðt0Þ
for the evolution equations for initial states in Eqs. (24)
and (25); then we get

ΨðLLþqq̄þsubÞ
i ¼ ΨðLLþqq̄Þ

i × expðSi½fi=i�Þ expðS0iÞ: ð64Þ
For an analytic function G ¼ P

ncnκ
n, we define a func-

tionalized one, G½f�, as,

G½f� ¼
X
n

cnκ̄
ðnÞ
f : ð65Þ
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The full formula of S0i is shown in Appendix A 1, and the
leading terms are,

S0q ∼ −uv lnΠq;2
−w̄
2

; ð66Þ

S0g ∼ −uv lnΠg;2
w̄
2
; ð67Þ

w̄ ¼ ð1 − uÞðagκ̄ð1Þg=g − aqκ̄
ð1Þ
q=qÞλ

þ ð1 − uvÞ
�
aqc

ð1Þ
Q=g −

aqq̄
nf

cð1Þg=q

	
λ: ð68Þ

Regarding S0q and S0g, −uv lnΠi;2 comes from the sublead-
ing splitting kernels for g → qq̄ and g → gq in Eqs. (24)
and (25). The factors �w̄=2 come from the corrections to
the functional ratios. The sign of w̄=2 is opposite since the
numerators and denominators for the functional ratios have
opposite sign.

D. αs running correction

Finally, we consider the running effect of αs. Taking into
account the effect of subsequent emission discussed in
the previous section and using the Sudakov factors and the
splitting functions with a tilde, i.e., Δ̃i and Γ̃i, we get the
following equations for the final states:

ΦðLLþqq̄þsubþδαsÞ
q ¼ uvΔ̃q exp

�Z
λ

0

dλ0
Z

κ

0

dκ0Γ̃qðz; t0ÞuΔ1−u
g ðκ0; λ0ÞΔ1−uv2

qq̄ ðκ0; λ0Þ
�

ð69Þ

¼ ΦðLLþqq̄þsubÞ
q × expðS̃qÞ expðTqÞ; ð70Þ

ΦðLLþqq̄þsubþδαsÞ
g ¼ uΔ̃G exp

�Z
λ

0

dλ0
Z

κ

0

dκ0
�
Γ̃gðz; t0ÞuΔ1−u

g ðκ0; λ0ÞΔ1−uv2
qq̄ ðκ0; λ0Þ

þ nfΓ̃qq̄ðz; t0Þ
Δ1−u

q ðκ; λ0Þ
Δ1−u

g ðκ; λ0ÞΔ1−uv2
qq̄ ðκ; λ0Þ uv

2

��
ð71Þ

¼ ΦðLLþqq̄þsubÞ
g × expðS̃gÞ expðTgÞ expðS̃0Þ expðT 0Þ: ð72Þ

The full formulas for the exponential factors are shown in Appendix A 1 and their leading terms are,

S̃i ∼ u lnΔi

�
−
1

6
ð1 − uÞagκλ · aðκ þ λÞ − ð1 − uv2Þcqq̄aqq̄λ · a

�
κ

4
þ λ

3

	�
; ð73Þ

S̃0 ∼ uv2 lnΔqq̄ · w · a

�
2κ

3
þ λ

3

	
; ð74Þ

Ti ¼ ð1 − uÞ lnðΔ̃i=ΔiÞ ∼ −ð1 − uÞ lnΔi · a
κ þ λ

2
; ð75Þ

T 0 ¼ ð1 − uv2Þ lnðΔ̃qq̄=Δqq̄Þ ∼ −ð1 − uv2Þ lnΔqq̄ · a

�
κ þ λ

2

	
: ð76Þ

The two exponents S̃i and S̃0 are the αs corrections for Si
and S0, and eTi and eT

0
are the corrections for Δi and Δqq̄.

The αs corrections for the generating functionals of
initial states are

ΨðLLþqq̄þsubþδαsÞ
i ¼ ΨðLLþqq̄þsubÞ

i × expðS̃i½fi=i�Þ
× expðTi½fi=i�Þ expðS̃i0Þ expðT 0

iÞ; ð77Þ

where S̃i½fi=i� and Ti½fi=i� are the functionalized S̃i and Ti

[see the definition of “functionalized” in Eq. (65)]. The full

formulas for the exponents S̃i
0 and T 0

i are shown in
Appendix A 1, and their leading terms are as follows:

S̃0q ∼ uv lnΠq;2 · w · a

�
cð1Þg=q þ

λ

3

	
; ð78Þ

S̃0g ∼ uv lnΠg;2 · w · a

�
cð1ÞQ=g þ

λ

3

	
; ð79Þ

T 0
q ∼ −ð1 − uvÞ lnΠq;2 · ac

ð2Þ
g=q=c

ð1Þ
g=q; ð80Þ

T 0
g ∼ −ð1 − uvÞ lnΠg;2 · ac

ð2Þ
Q=g=c

ð1Þ
Q=g: ð81Þ
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III. NUMERICAL RESULTS

A. Number of quark jets

We evaluate the quark jet rate for a given Born con-
figuration, i1i2 → f1f2. The generating functional for the
configuration is given by,

Φi1i2→f1f2 ¼ Ψi1ðx1; ti1ÞΨi2ðx2; ti2ÞΦf1ðpf1 ; tf1Þ
×Φf2ðpf2 ; tf2Þ: ð82Þ

We assume that the two final states scatter in the central
region, which tends to occur at high energy, and set
p̂T ¼ pf1 ¼ pf2 ¼ x1pbeam ¼ x2pbeam, where the proton
beam energy is set to pbeam ¼ 7 TeV. The starting scale is
set to the maximal one allowed kinematically, namely
tmax ¼

ffiffiffi
2

p
.

We calculate the number of quark jets for events in which
Njets jets are contained. The expected value for the number
is given by,

hNquark-jetsi ¼
P

n
m¼0 mRði1i2→f1f2Þ

n;m

Rði1i2→f1f2Þ
n

; n ¼ Njets; ð83Þ

where the jet rates and quark jet rates for i1i2 → f1f2 are
given as,

Rði1i2→f1f2Þ
n ¼ 1

n!
∂n

∂un Φi1i2→f1f2

���
u¼0;v¼1

; ð84Þ

Rði1i2→f1f2Þ
n;m ¼ 1

n!m!

∂n

∂un
∂m

∂vm Φi1i2→f1f2

���
u¼v¼0

: ð85Þ

In Fig. 3, the results for gg → gg (left), gu → gu
(center) and uu → uu (right) are shown. In the calcu-
lation, p0 ¼ 50 GeV and R ¼ 0.4 are used. We set the
parton transverse momentum as p̂T ¼ 1 TeV. The blue,
green and red curves are analytical results using the
functionals labeled by ðLLþ qq̄Þ, ðLLþ qq̄þ subÞ
and ðLLþ qq̄þ subþ δαsÞ. The black curves show

Monte Carlo predictions given by HERWIG++ [109].5

Hadronization is turned off and the generated partons
are clustered by the anti-kT algorithm [110].6 We define a
jet flavor from jet constituents. In the definition, it is
necessary to consider the IR-unsafety of the jet flavor
caused by soft gluon decaying into qq̄, as noted in
Ref. [96]. We take into account the decay effect and
the details of estimating the number of quark jets in
Monte Carlo samples are summarized in Appendix A 3.
We can see that the analytic results including the terms of
the subsequent emissions agree with the Monte Carlo
results.
The primary structure of functionals has the form

Φ ∝ u2vm0eAuλeBuvλeCuv
2λ; ð86Þ

where A, B and C are constants for a Born configuration.
The expected value for the functional is estimated as,

hNquark-jetsi ≃
Bþ 2C

Aþ Bþ C
ðNjets − 2Þ þm0; ð87Þ

where m0 is the number of quarks in final states for a
targeted Born configuration. As the coefficients B and C
related to v increase, the number of quark jets increases.
The three coefficients and the initial number of quarks for
the three configurations gg → gg, gu → gu, and uu → uu
are shown in Table I. When we neglect subsequent
emissions, the increase in the number of quark jets for
uu → uu is tiny because it is caused by only B and the
coefficient is much smaller than the other coefficients as
shown in Fig. 2. The main cause of the increase in the

FIG. 3. Expected values of the number of quark jets for events in whichNjets jets are contained. The results for gg → gg (left), gu → gu
(center) and uu → uu (right) are shown. In the calculation, p0 ¼ 50 GeV and R ¼ 0.4 are used.

5Our calculation employs a traditional angular-ordered parton
shower formalism with 1 → 2 splitting kernels. We compare our
calculation with HERWIG++ by implementing the same formalism
and splitting kernels to check the consistency of our analytical
results.

6As mentioned in Sec. II, we will be able to measure the Njets
dependence on hNquark-jetsi using the hadron-level definition of
quark jets as in Ref. [99].
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number of quark jets for uu → uu stems from expðSqÞ
which is related to subsequent emissions, and the lowest
order at which v appears is Oðu4v4Þ; therefore, the number
of quark jets begins to increase clearly from Njets ¼ 4.
You can also see auxiliary plots in Appendix A 4 where

only initial- or final-state radiation are taken into account.

B. Expected improvement by the
quark-gluon discrimination

In this subsection, we connect the knowledge obtained
so far with beyond-the-standard-model (BSM) searches at
the LHC. In Sec. III A, we can see that the coefficient A in
Table I which is related to the increment of gluon jets is
basically bigger than B and C. This means that much of the
QCD multijet background is composed of gluon jets and a
few quark jets stemming from the valence quarks. So, we
expect to get a large improvement in the separation between
QCD multijet backgrounds and signals containing many
quark jets by using the quark-gluon tagging.
We estimate the improvement of the signal-to-back-

ground ratio (S=B) for such signals using the analytical
results in Sec. II and Monte Carlo results. We introduce an
improvement factor ϵS=ϵB, where ϵS and ϵB are the signal
and background efficiencies after applying the quark-gluon
discrimination in multijet final states. Therefore the ratio
factor represents how many times S=B increases after the
application. We assume that all jets in signals are quark jets,
i.e., Nq;S ¼ Njets, where Nq;S is the number of quark jets in
signals. Such signals will also be considered in the next
section. In this assumption, the signal efficiency is naively

estimated as ϵS ∼ ϵ
Nq;S
q . If a signal contains one more quark

jet than backgrounds, S=B increases by ϵq=ϵg times by
applying the quark-gluon tagging, i.e., ϵS=ϵB ¼ ϵq=ϵg,
where ϵq and ϵg are the quark and gluon jet efficiencies.
In the case that the expected number of quark jets in
background is Nq;B, we can expect that the improvement
factor maximally increases up to ϵS=ϵB ∼ ðϵq=ϵgÞNq;S−Nq;B .
Below, we estimate Nq;B using the generating functionals
from Sec. II D. Although the efficiency ratio ϵq=ϵg is
calculable for IRC-safe and Sudakov safe variables, we
calculate the ratio using a Monte Carlo generator.
For the estimation of Nq;B, we first define the generating

functional for proton collisions as,

Φpp→jets ∝
X
i1;i2

fi1ðxi1 ; μFÞfi2ðxi2 ; μFÞΦi1i2→f1f2 : ð88Þ

The starting scale, p̂T and pbeam in Φi1i2→f1f2 are set as in
Sec. III A. The hard scale of collisions is set to the invariant
mass of the initial partons

ffiffiffî
s

p
. We are interested in the case

where the hard scale is a given new physics scale Λnew, and
therefore we set

ffiffiffî
s

p ¼ Λnew. The transverse momentum of
the final states is set to half of the invariant mass
p̂T ¼ ffiffiffî

s
p

=2 ¼ Λnew=2. The function fi is the proton
PDF for an initial parton i, and the factorization scale is
set to μF ¼ p̂T . The four-flavor scheme is used in the
calculation. With these settings, we calculate the expected
number of quark jets Nq;B as in Sec. III A,

FIG. 4. Jet pT dependence on gluon efficiencies for each quark efficiency (left panel). Dependence of the physics scale Λnew on the
improvement factor ϵS=ϵB for each Njets category (right panel).

TABLE I. Coefficients in Eq. (86) for the three configurations gg → gg, gu → gu, and uu → uu.

i1i2 → f1f2 m0 A B C

gg → gg 0 2agðκ þ κ̄ð1Þfg=g
Þ 2cð1ÞQ=gaq

2cqq̄aqq̄

gu → gu 1 agðκ þ κ̄ð1Þfg=g
Þ þ aqðκ þ κ̄ð1Þfq=q

Þ cð1ÞQ=gaq þ cð1Þg=u
aqq̄
nf

cqq̄aqq̄

uu → uu 2 2aqðκ þ κ̄ð1Þfu=u
Þ 2cð1Þg=u

aqq̄
nf

0
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Nq;B ¼
P

n
m¼0 mRðpp→jetsÞ

n;m

Rðpp→jetsÞ
n

; n ¼ Njets; ð89Þ

Rðpp→jetsÞ
n ¼ 1

n!
∂n

∂un Φpp→jets

����
u¼0;v¼1

; ð90Þ

Rðpp→jetsÞ
n;m ¼ 1

n!m!

∂n

∂un
∂m

∂vm Φpp→jets

����
u¼v¼0

: ð91Þ

Next, we show Monte Carlo results for the quark and
gluon jet efficiencies. In Fig. 4, the left panel shows the jet-
pT dependence on the gluon efficiency for several quark
efficiencies. We use VINCIA [111–116] in the calculation.7

We use an output evaluated by the boosted decision trees
(BDT) algorithm as a discrimination variable. The output is
trained using four variables, namely the number of charged
tracks, energy correlation functions [16] with β ¼ 0.2 and
1.0, and pT-normalized jet mass (mjet=pT). Only charged
track information is used for the calculation of the BDT
inputs. When we calculate ϵq and ϵg in the improvement
factor, we set the jet pT in the estimation of the quark and
gluon jet efficiencies to Λnew=Njets.
Finally, we estimate the improvement factor ϵS=ϵB ¼

ðϵq=ϵgÞNq;S−Nq;B with the above settings. The right plot in
Fig. 4 shows the dependence of a new physics scale Λnew
on the factor for eachNjets category. The signal efficiency is
fixed at 0.4. We can see that the improvement factor
increases as the number of jets increases since the differ-
ence between the number of quark jets in the signal and
background, namely Nq;S − Nq;B, gets larger. Also, the
factor improves as the new physics scale gets larger because
the discrimination power for the quark-gluon separation
increases as the jet pT increases. The effect is clear in large
Njets categories. The probability that valence quarks flow
into final states becomes larger as Λnew increases. This
makes the difference between the number of quark jets in
the signal and background small, and therefore the factor
decreases. This effect is noticeable in small Njets categories.

IV. BSM SEARCHES INMULTIJET FINAL STATES

In this section, we calculate the improvement factor
estimated in Sec. III B in a realistic data-driven way using a
Monte Carlo generator. The data-driven method is often
used for the analysis of multijet final states. A typical
analysis is the search for micro black holes [73–79]. In the
analysis, the phase space is divided by a variable related to
the hard scale, e.g., the scalar sum of jet transverse

momenta HT , the scalar sum of the masses of large-R

jets, M
P
J [119–121] etc. We fit the distribution of the

variable in phase space at a low-energy scale referred to as
the control region (CR), and estimate the number of
backgrounds in phase space at a high-energy scale referred
to as the signal region (SR) using the fit function. We
interpret any excess from the estimated background as a
sign of new physics.
One of the problems for such analyses is that we simplify

the high-jet-multiplicity events too much. In the analysis
explained above, only one or two inclusive variables are
mainly used.8 We can also utilize robust jet substructure
variables for quark-gluon tagging in the analysis. It is
difficult to predict multidimensional distributions for the jet
substructure variables in multijet final states precisely;
therefore, the data-driven approach is preferred to incor-
porate the jet flavor information into the analysis. We
introduce a variable containing the information for the data-
driven analysis,9

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Q2
i

s
; for Njets ≥ n; ð92Þ

where Qið> 0Þ shows a kind of quark-jet-ness for the ith
jet. If the jet substructure for the ith jet looks like a quark jet
rather than a gluon jet,Qi takes a larger value. In this paper,
we use the BDT output used in Sec. III B as Qi, which is
trained such that the quark and gluon jets are assigned to 1
and 0. The variable d takes a large value for events which
contain many quark jets.
We consider the following toy-signal topologies:

ðgg or uūÞ → XX; X → nX quarks: ð93Þ

The pair production of a hypothetical heavy resonance X
has initial states gg or uū in proton collisions and X decays
into nX quarks. For example, the pair production of gluinos
and squarks in SUSY with R-parity violation have the same
decay topology. We generate hard processes using
MADGRAPH5 [122] with the CTEQ6L PDF set and have
X decay in phase space flatly. When nX is odd or even, X is
assigned to the color octet or triplet respectively, and the
color indices of X are connected to those of quarks in the
large-Nc limit. We use VINCIA for the parton showering and
the hadronization.
For the simulation of the QCD multijet background, we

use VINCIA with the default setting.

7The one problem in quark-gluon discrimination is Monte Carlo
uncertainties of the predictions, and it is known that experi-
mental data on certain observables related to quark/gluon tagging
lie in between the predictions of the two MC generators PYTHIA
and HERWIG [54,56,57]. Although VINCIA’s results are close to
PYTHIA’s, those lie in between the predictions of the two MC
generators, and the uncertainties were studied in Refs. [5,117,118].

8The sum of fat jet masses M
P
J also contains some informa-

tion on exclusive variables like the jet pT and the distance
between subjets.

9We found that the performance of the discrimination between
the signal and background discussed below can increase slightly
with a more complicated definition of d. The optimization of the
variable d is beyond the scope of this paper.
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The generated signal and background are clustered with
the anti-kt algorithm and the jet radius is set to R ¼ 0.4.
As a selection cut, the minimum transverse momentum
(pT > 50 GeV) and rapidity cut (jηj < 2.8) are imposed to
all jets. The invariant mass of the collision system is set
to

ffiffiffi
s

p ¼ 14 TeV.
In Fig. 5, the black and red curves show the distribution

of Qi for the background and signal, where HT > 2 TeV,
Njets ≥ 8 are imposed. For the background, the Qi’s tend to
be distributed in the region close to 0 since the gluon jets
are dominant in QCD multijet final states; however, Q1 has
a clear peak near 1 due to the effect of valence quark jets.
For the signal, we set the mass of X ðMXÞ to 2 TeV, and
nX ¼ 3. The signal has six quarks in the hard process, so

the Qi’s are distributed in the region close to 1 up to the
sixth jet. The seventh and eighth jets would stem fromQCD
radiation, so the differences between the signal and back-
ground become small.
In Fig. 6, the distribution of d for the QCDmultijets (left)

and the signal (right) for each Njets category are shown. The
signal is set to MX ¼ 2 TeV and nX ¼ 5. We can remove
the background by imposing the cut d > dcut, since the
signal is distributed in the large-d region.
In Fig. 7, the remaining rates of the number of events

after imposing the d cut for eachHT bin are shown. The left
and right panels show the results for the QCD multijets and
the signal at Njets ≥ 6. The signal parameters are MX ¼
2 TeV and nX ¼ 5. The background decreases rapidly after

FIG. 6. The distribution of d for the QCD multijets (left) and the signal (right) for each Njets category. The signal is set toMX ¼ 2 TeV
and nX ¼ 5.

FIG. 5. The black and red curves show the distribution of Qi for the background and signal, where HT > 2 TeV, Njets ≥ 8
are imposed. We use the BDT outputs used in Sec. III B as Qi, which is trained such that the quark and gluon jet samples are assigned
to 1 and 0.
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imposing the larger dcut. What we want to know is the
number of backgrounds after imposing the d cut in the
high-energy region. Due to the complexity of large-jet-
multiplicity events, such a number should be estimated by
the data-driven method. The dotted curves in Fig. 7 show an
example of interpolation curves which are fitted by using
data in a control region, i.e., HT < 4 TeV in the figure. In
the practical analysis, we can know the ratio of background
in signal regions using such interpolation curves, and can
obtain the upper bound on the cross-section imposed d cut
in QCD multijet final states.
We estimate how much S=B improves by applying the

quark-gluon discrimination in multijet final states. The ratio
is given by,

S
B
≃
σSðselection cuts&HT-cutÞ
σBðselection cuts&HT-cutÞ

×
ϵSðdcutÞ
ϵBðdcutÞ

; ð94Þ

ϵXðdcutÞ ¼
σXðselection cuts&HT-cut& d > dcutÞ
σXðselection cuts&HT-cut& d > 0Þ ; ð95Þ

where σX is the cross section for the signal (X ¼ S) and the
background (X ¼ B) after imposing the condition in the
brackets. The impact coming from quark-gluon discrimi-
nation is included in the second ratio ϵSðdcutÞ=ϵBðdcutÞ.

We employ an HT cut HT > 1.8MX, which almost makes
the significance of signal maximum in the case that
systematic uncertainties and d cut are neglected.
In Fig. 8, the MX dependence on the efficiency ratio is

shown, where the dependence on ϵS=
ffiffiffiffiffi
ϵB

p
is also shown on

the right axis. We can see how the ratio changes as we
increase the lower bound of Njets from 3 to 10, and nX from
2 (leftmost) to 5 (rightmost). We choose dcut which gives
the signal efficiency ϵS ¼ 0.4. These are the results in the
case that the initial state is gg. The ratio clearly keeps
increasing until the lower bound of Njets reaches 2nX since
2nX quarks are contained in the hard processes of the
signal. A quark emitted from X could be softer than partons
arising from initial- and/or final-state radiation. In that case,
the quark from X could be the ð2nX þ 1Þth jet, so we can
see some improvement in S=B even if the lower bound of
Njets is greater than 2nX. We can understand the behavior of
the MX dependence on the improvement factor from the
result in Sec. III B. The ratio improves as MX get larger
because the discrimination power of the quark-gluon
separation increases as the jet pT increases. The effect is
clear in the large Njets categories. The probability that
valence quarks are in final states becomes larger as the
masses increase. This makes the difference between the
number of quark jets in the signal and background small,

FIG. 8. MX dependence on the efficiency ratio. We can see how the ratio changes as we increase the lower bound of Njets from 3 to 10,
and nX from 2 (leftmost) to 5 (rightmost).

FIG. 7. The remaining rates of the number of events after imposing the d cut for eachHT bin. The left and right panels show the results
for the QCD multijets and the signal at Njets ≥ 6. The signal parameters are MX ¼ 2 TeV and nX ¼ 5. The dotted curves show an
example of interpolation curves which are fitted by using data in a control region, i.e., HT < 4 TeV.
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and makes the ratio decrease. The effect looks important in
the small Njets categories. We also see a good agreement
between the rightmost panel in Fig. 8 and the semianalytic
result in Fig. 4. In both cases, the signals are quite quark-jet
dominant. Note that the hard scale or the invariant mass for
the pair production X is about 2MX therefore, the label
Λnew=2 on the x axis in Fig. 4 almost corresponds toMX on
the x axis in Fig. 8.
Figure 9 is the same as Fig. 8, but for the initial states uū.

The Born configuration of the gg initial state tends to emit
valence quark jets at high energy, but it also emits more
gluon jets compared to the case of the uū initial state since
the color factor for g → gg is 9=4 times larger than q → qg.
Consequently, initial-state radiation from gg reduce the
quark jet fraction, and thus the improvement factors for uū
are slightly better than those for gg.

V. CONCLUSIONS

The quark-gluon discrimination is maximally utilized for
searches of new physics that predict quark and gluon jet
fractions that are different from the QCD background. To
determine the jet flavor structure in QCD multijet final
states at hadron colliders, we have introduced the quark
jet rate Rn;m which is the probability that a parton or a
matrix element produces n jets in which m quark jets are
contained. We have calculated generating functionals,
which contain the quark jet rates as coefficients, for initial
and final states by using the QCD resummation technique.
The exponential structures of the functionals were

evaluated and obtained the quark jet rates Rn;m from the
expansion coefficients. The increment of gluon jets mainly
arises from leading-logarithmic terms in the coefficients,
and that of quark jets comes from next-to-leading-loga-
rithmic terms. More details of the logarithmic structure
were also shown. In order to know the rate of increase of the
number of quark jets, we have shown the expected value of
the number of quark jets in Njets categories for the matrix
element configurations gg → gg, gu → gu and uu → uu.
For example, when we set the jet radius, jet pT cut, and the
parton pT cut to R ¼ 0.4, p0 ¼ 50 TeV and p̂T ¼ 1 TeV,
the number of quark jets increases by about 0.25, 0.18 and
0.12 for the three configurations while the number of jets

increases by 1. We have also checked the consistency
between the analytical results and Monte Carlo predictions.
Since the QCDmultijets are basically composed of a few

valence quark jets and many gluon jets, we expect a big
improvement in S=B for a signal which predicts many
quark jets, by using the quark-gluon discrimination. We
have estimated the improvement semianalytically using the
above results and have shown that the improvement gets
larger as the number of quark jets in signals increases. For
example, S=B increases by about 20 times in the case that a
new physics scale is Λnew ¼ 4 TeV and the number of
quark jets is ten.
We have introduced a variable d that takes a large value

for events in which many quark jets are contained, and have
suggested a data-driven analysis using the variable.
Assuming the pair production of a hypothetical heavy
resonance X which decays into nX quarks as a signal, we
have evaluated the large improvement in S=B for each mass
of X, nX and initial state in a Monte Carlo analysis, and
have shown the usability of the quark-gluon discrimination
in multijet final states.
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APPENDIX A: DETAILS ON QUARK
JET RATES

1. Formulas

In Sec. II B, the generating functionals which contain the
effects of emissions coming from only progenitor partons
are evaluated, and those for final states are given as,

ΦðLLþqq̄Þ
q ¼ uvΔ1−u

q ; ðA1Þ

ΦðLLþqq̄Þ
g ¼ uΔ1−u

g Δ1−uv2
qq̄ : ðA2Þ

For initial states, we get

FIG. 9. Same as Fig. 8, with the initial states uū.
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ΨðLLþqq̄Þ
i ¼ Π1−u

i;1 Π1−uv
i;2 ; i ∈ fq; gg: ðA3Þ

In Sec. II C, we also consider the effects of sub-
sequent emissions. The functionals are factorized into
the primary terms and exponential terms related to the
effect as,

ΦðLLþqq̄þsubÞ
q ¼ ΦðLLþqq̄Þ

q × expðSqÞ; ðA4Þ

ΦðLLþqq̄þsubÞ
g ¼ ΦðLLþqq̄Þ

g × expðSgÞ expðS0Þ; ðA5Þ

where

Si ¼ −u lnΔiI1ðpκλ; qλÞ; ðA6Þ

S0 ¼ −uv2 lnΔqq̄I2ðwÞ; ðA7Þ

and

I1ðx; yÞ ¼
Einðxþ yÞ − EinðyÞ

x
− 1; ðA8Þ

I2ðzÞ ¼
ez − 1

z
− 1; ðA9Þ

p ¼ ð1 − uÞag; q ≃ ð2=3Þð1 − uv2Þaqq̄; ðA10Þ

EinðzÞ ¼
X∞
n¼1

−ð−zÞn
nn!

: ðA11Þ

For q in Eq. (A10), we used the approximation cqq̄ ≃ 2=3.
For initial states, the generating functionals containing
effects of subsequent emissions are

ΨðLLþqq̄þsubÞ
i ¼ ΨðLLþqq̄Þ

i × expðSi½fi=i�Þ expðS0iÞ; ðA12Þ

where

S0q ¼ −uv lnΠq;2I2ð−w̄Þ; ðA13Þ

S0g ¼ −uv lnΠg;2I2ðþw̄Þ: ðA14Þ

You can see the definition of w̄ in Eq. (66).
In Sec. II D, the running effects of αs are also considered.

In this case, the functionals for final states are written as,

ΦðLLþqq̄þsubþδαsÞ
q ¼ ΦðLLþqq̄þsubÞ

q × expðS̃qÞ expðTqÞ;
ðA15Þ

ΦðLLþqq̄þsubþδαsÞ
g ¼ ΦðLLþqq̄þsubÞ

g × expðS̃gÞ expðTgÞ
× expðS̃0Þ expðT 0Þ; ðA16Þ

where

S̃i ¼ u lnΔi

�
−
κ þ λ

2
þ I3ðsÞ − I3ðqÞ

	
; ðA17Þ

Ti ¼ −ð1 − uÞ lnΔiI4ðaκ; aλÞ; ðA18Þ

S̃0 ≃ −uv2aqq̄
a

1þ aκ þ aλ

��
κ −

13

12

	�
ew − 1

w
− 1

	
þ λ

�
1 − ew

w2
þ ew

w
−
1

2

	�
; ðA19Þ

T 0 ≃ ð1 − uv2Þ 2
3
aqq̄λ

a
1þ aκ þ aλ

�
κ þ λ

2
−
13

12

	
; ðA20Þ

and

I3ðzÞ ¼ −
1

pκλ

��
z
p
þ λ

	
I2ð−zλÞ þ

q
p
EinðzλÞ

�
; ðA21Þ

I4ðx; yÞ ¼ 1 −
ð1þ xþ yÞ lnð1þ xþ yÞ − ð1þ xÞ lnð1þ xÞ − ð1þ yÞ lnð1þ yÞ

xy
: ðA22Þ

In the calculations of S̃0 and T 0 in Eqs. (A19) and (A20), we use the following approximation:

Z
κ

0

dκ0
Z

λ

0

dλ0Fðκ0; λ0ÞD ¼
Z

κ

0

dκ0
Z

λ

0

dλ0Fðκ0; λ0Þ aðκ0 þ λ0Þ
1þ aðκ þ λÞ : ðA23Þ

This approximation has good accuracy because the integrants for S̃0 and T 0 are localized around κ0 ¼ κ and λ0 ¼ λ. For initial
states, we get
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ΨðLLþqq̄þsubþδαsÞ
i ¼ ΨðLLþqq̄þsubÞ

i × expðS̃i½fi=i�Þ expðTi½fi=i�Þ expðS̃i0Þ expðT 0
iÞ; ðA24Þ

where

S̃0q ≃ uv lnΠq;2aI5ðcð1Þg=q; c
ð2Þ
g=qÞ; ðA25Þ

S̃0g ≃ uv lnΠg;2aI5ðcð1ÞQ=g; c
ð2Þ
Q=gÞ; ðA26Þ

T 0
q ¼ ð1 − uvÞ aqq̄

nf
δcð1Þg=qλ; ðA27Þ

T 0
g ¼ ð1 − uvÞaqδcð1ÞQ=gλ; ðA28Þ

and

I5ðc1; c2Þ ¼
�
1 − ew̄ þ w̄ew̄

w̄2
−
1

2

	
λþ ew̄ − 1 − w̄

w̄
·
c2
c1

; ðA29Þ

δcð1Þg=q ¼
nf
aqq̄

Z
κ̄

0

dκ̄0Γg→qq̄ðκ̄0Þ
fgðx0Þ
fqðx0Þ

�
1 −

1

aλ
ln

�
1þ aλ

1þ aκ̄0

	�
; ðA30Þ

δcð1ÞQ=g ¼
1

aq

Z
κ̄

0

dκ̄0
X
q

Γq→gqðκ̄0Þ
fqðx0Þ
fgðx0Þ

�
1 −

1

aλ
ln

�
1þ aλ

1þ aκ̄0

	�
: ðA31Þ

In the calculations of S̃0q;g in Eqs. (A25) and (A26), we
expand D in logarithms and take into account only the
leading term, namely D ≃ aðκ0 þ λ0Þ.

2. Matrix element corrections

In Sec. III, the number of quark jets for each Njets
category are evaluated by applying parton showers to
Born configurations. In the calculation, matrix element
corrections are absent for more than two jets. In Fig. 10,
we show the matrix element correction to the number
of quark jets with Catani-Krauss-Kuhn-Webber matching
using SHERPA [123,124]. The black curve is the result for
pp → jj + parton showers. One and two partons are
matched in the Born configuration and the results are
shown by the red and blue curves. We impose HT >
2 TeV and set

ffiffiffi
s

p ¼ 14 TeV.
For the black curve, hNquark-jetsi is about 1.5 forNjets ¼ 2.

This means that final states tend to become two valence
quarks. In this case, the curve has an artificial kink at
Njets ¼ 3 as discussed in Sec. III. We can see that the kink
disappears with matching. For the red and blue curves, the
matrix element corrections are contained up to Njets ¼ 3

and 4, and we find that the configuration containing gluons
in final states increases. As we see in Sec. III, the rate of
increase of the number of quark jets for the gluon final state
is larger than that for the quark final state. Therefore, the
rate slightly increases after the matching.

3. Estimating the number of quark jets
in Monte Carlo samples

In Fig. 3 of Sec. III A, we compare the number of quark
jets calculated analytically with that using Monte Carlo
events at the parton level. We define a jet flavor for each jet
in multijet final states and estimate the expected value of

FIG. 10. Matrixelementcorrectiontothenumberofquarkjetswith
Catani-Krauss-Kuhn-Webbermatching.Theblackcurve is the result
forpp → jj + parton showers. One and two partons are matched in
the Born configuration and the results are shown by the red and blue
curves, where we impose HT > 2 TeV and set

ffiffiffi
s

p ¼ 14 TeV.
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the number of quark jets hNquark-jetsi for each Njets category.
One can define a quark or gluon jet by its jet constituents.
First, we look for a qq̄ pair in the constituents and convert
the pair to a gluon, and add the gluon to the constituent list.
We continue this until no pairs are found. After the
conversion, if only gluons are in the list we call the jet a
gluon jet; otherwise we call it a quark jet. If a quark jet
contains only one quark in the list after the conversion we
call it a well-defined quark jet; otherwise we call it an ill-
defined quark jet. In the definition, the number of quark jets
is IR unsafe because the number can change due to a quark
of qq̄ that a soft gluon decays into. We temporarily call the
effect from the soft gluons gsoft → qq̄ pollution. This
pollution turns a gluon jet or a well-defined quark jet into
a well-defined quark jet or an ill-defined quark jet.10

In consideration of the effect, we increase the IR safety
by adding a correction to the number of quark jets cal-
culated by the above simple algorithm. We first define two
probabilities Pn;m and P̂n;m which show the quark jet rate
calculated in a system where we can ignore gsoft → qq̄
pollution and one where we cannot. Here, the quark jet rate
shows the probability that events containm quark jets and n
total jets. P̂n;m can be expressed by the following sum:

P̂n;m ¼ P̂ðwellÞ
n;m þ P̂ðillÞ

n;m: ðA32Þ

P̂ðwellÞ
n;m shows the probability that events contain m quark

jets and n total jets, where the quark jets are all well-defined

jets. P̂ðillÞ
n;m is the probability that the ill-defined jet is

contained. Using Monte Carlo samples, we can calculate
the two probabilities with the jet flavor definition explained
in the above paragraph.
The ill-defined probability is approximately given as,

P̂ðillÞ
n;m ≃mϵPn;m; ðA33Þ

where ϵ shows the probability that gsoft → qq̄ pollution gets
into a jet. This shows the contribution coming from the
process where a well-defined quark jet turns into an ill-
defined quark jet due to the pollution. There is another
relation,

P̂ðwellÞ
n;m ≃ ð1 − nϵÞPn;m þ ½n − ðm − 1Þ�Pn;m−1: ðA34Þ

The first term is the contribution for the case that gsoft → qq̄
pollution does not affect the jet flavor of any jets. The
second term is the contribution for the case that a gluon jet
turns into well-defined quark jets due to the pollution.
Then, the ratio of the measurable probabilities is,

P̂ðillÞ
n;m

P̂n;m
¼ mϵþOðϵ2Þ: ðA35Þ

We denote the expected value of the number of quark jets in
a system where gsoft → qq̄ pollution can be neglected or
cannot be neglected as hNquark-jetsi or hN̂quark-jetsi, and the
values can be related to the quark jet rates as,

hNquark-jetsi ¼
P

n
m¼0 mPn;mP
n
m¼0 Pn;m

; ðN;PÞ ↔ ðN̂; P̂Þ:

ðA36Þ

Finally, we obtain the following expression:

hNquark-jetsi ¼ hN̂quark-jetsi − ðn − hN̂quark-jetsiÞϵþOðϵ2Þ:
ðA37Þ

Ignoring the Oðϵ2Þ term, we estimate ϵ from Eq. (A35)
and correct hN̂quark-jetsi to hNquark-jetsi with Eq. (A37). We
employ hNquark-jetsi as the Monte Carlo results, which is
more appropriate to compare with analytical results in
terms of IR safety.
One may come up with a way to reduce IR unsafety from

gsoft → qq̄ pollution with the flavor-kt algorithm [96], but it
is not simple to apply it to multijet final states. In our
analytical calculation a jet is defined by its jet radius R and
pT;cut, and in order to cluster jets based on this definition, it
is necessary to partially modify the algorithm. First, in
order to cluster unresolved emission, where the distance
between a jet core and the unresolved emission is less than
R, it is necessary to modify the distance factor in the

measure of the flavor-kt algorithm for hadron colliders dðFÞij

as Δη2ijþΔϕ2
ij→ðΔη2ijþΔϕ2

ijÞ=R. Also, the beam measure

dðFÞiB for a quark (or flavored particle) in this algorithm is
larger than the jet pT employed in commonly used
algorithms. As a result, when a jet is clustered with the
inclusive variant of the algorithm without introducing dcut,
hard particles separated by R or more can be clustered. This
does not match our jet definition. If we introduce dcut and
cluster jets with the exclusive variant, it would be appro-
priate to choose dcut ¼ pT;cut. If dcut is set to greater or less
than pT;cut, the minimum value of the jet pT will be greater
or less than pT;cut. However, even if we set dcut ¼ pT;cut,

dðFÞij and dðFÞiB become easily larger than dcut as the hard

process scale increases. In the case that dðFÞij and dðFÞiB are
larger than dcut for i and j, the two partons are declared as
jets even if the distance between i and j is less than R. This
also does not match our jet definition. While avoiding
problems such as those noted above, we might be able to
devise a good way to define IR-safe inclusive jets in
multijet final states, but this time we counted the number
of quark jets in the way written in the above paragraph.

10We ignore the fact that more than one quark contamination
gets into a single jet and also that gsoft → qq̄ pollution turns a
well-defined quark jet into a gluon jet.

QUARK JET RATES AND QUARK-GLUON … PHYS. REV. D 99, 114012 (2019)

114012-17



4. Initial- and final-state radiation

Generating functionals for initial-state radiation (ISR)
and final-state radiation (FSR) are calculated in Sec. II.
The number of quark jets is evaluated using the func-
tionals for three Born configurations in Sec. III. In the
calculation, the contributions from ISR and FSR to the
number are combined. In Figs. 11 and 12, we show
results in which only ISR and FSR are taken into
account. The results for gg → gg (left), gu → gu (center)
and uu → uu (right) are shown. In the calculation,
p0 ¼ 50 GeV, and R ¼ 0.4 are used. We set p̂T to
1 TeV. The blue, green and red curves are the analytical
calculations using the functionals labeled by ðLLþ qq̄Þ,
ðLLþ qq̄þ subÞ and ðLLþ qq̄þ subþ δαsÞ. The black
curves show the Monte Carlo prediction given by
HERWIG++.

When we neglect subsequent emissions, the increase in
the number of quark jets for uu → uu in the ISR-only case
is tiny for the same reason as discussed in Fig. 3. In the
FSR-only case, the generating functional does not contain
v, so the number of quark jets does not increase at all. The
main cause of the increase in the number of quark jets for
uu → uu stems from expðSqÞ which is related to sub-
sequent emissions, and the lowest order at which v appears
is Oðu4v4Þ; therefore, the number of quark jets begins to
increase clearly from Njets ¼ 4 as discussed in Sec. III. For
the ISR-only case and gg → gg, the number of quark jets
decreases a lot when we take into account the subsequent
emissions in our analytic calculation. This is mainly
because the coefficient for uv in Eq. (68) takes a large
negative value, which stems from the improvement of the
approximation to the generating functional ratio in Eq. (25).
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