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The weak phase γ is extracted from three-body charmless decays of B mesons following a method
proposed by Bhattacharya, et al. The result is obtained by combining the BABAR amplitude analyses for the
processes B0 → Kþπ0π−, B0 → K0

Sπ
þπ−, B0 → K0

SK
0
SK

0
S, B

0 → KþK0
SK

−, and Bþ → Kþπþπ−, under
the assumption of SUð3Þ flavor symmetry. Six possible solutions are found, γ1 ¼ ð12.9þ8.4−4.3 � 1.3Þ°;
γ2 ¼ ð36.6þ6.6−6.1 � 2.6Þ°; γ3 ¼ ð68.9þ8.6−8.6 � 2.4Þ°; γ4 ¼ ð223.2þ10.9−7.5 � 1.0Þ°; γ5 ¼ ð266.4þ9.2−10.8 � 1.9Þ°; γ6 ¼
ð307.5þ6.9−8.1 � 1.1Þ°;where the first uncertainty is statistical and the second systematic. The γ3 solution is

compatible with the world-average value γ ¼ ð73:5þ4.2
−5.1 Þ°, while the other solutions are not. It is also found

that, when averaged over the entire Dalitz plane, the effect of SUð3Þ breaking on the analysis is only at the
percent level.

DOI: 10.1103/PhysRevD.99.114011

I. INTRODUCTION

In the Standard Model (SM), CP violation in the weak
sector is due to a complex phase in the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. The CKM matrix is 3 × 3 and
unitary; its phase information is often represented as a
triangle in the complex plane, the unitarity triangle [1]. Its
three interior angles α, β, and γ sum to π, and each contains
information about the complex phase. In order to test the
SM, one measures α, β, and γ in many different ways. Any
discrepancies would suggest the presence of physics
beyond the SM.
To date, direct searches for this new physics (NP) have

not found anything, implying that the mass scale of the NP
may be beyond the reach of present experiments. However,
these new particles can still contribute significantly to loop
processes, so that flavor physics, which is sensitive to such
virtual effects, is a very promising avenue to perform
indirect searches for NP.
Of the three angles of the unitarity triangle, γ is

currently the least well known: the world average value
is γ ¼ ð73.5þ4.2

−5.1Þ° [2]. It has mainly been extracted using
processes dominated by tree-level transitions such as B� →

Dð�ÞKð�Þ� [3–5]. One potential way of searching for NP
would therefore be to measure γ via loop-level processes.
This can be done using charmless three-body B → PPP
decays (P is a pseudoscalar meson) [6,7].
The method proposed in Ref. [8] uses flavor SUð3Þ

symmetry to relate B → Kππ and B → KKK̄ decays. The
angle γ is then obtained by combining information from
the Dalitz plots for B0 → Kþπ0π−, B0 → K0πþπ−,
Bþ → Kþπþπ−, B0 → KþK0K−, and B0 → K0K0K0.
These decay modes all involve b → s transitions and
include contributions from both tree and penguin (loop)
diagrams (the inclusion of charge-conjugate decay modes is
implied throughout this paper). The extraction of γ is
therefore potentially sensitive to NP.
A preliminary implementation of this method was

carried out in Ref. [9] using published BABAR results.
In the present paper, we repeat the analysis of the same
results, while fully taking into account the experimental
uncertainties and their correlations. We find six possible
solutions for γ. One agrees with the world-average
(Standard Model) value for gamma; the other solutions
do not, so that a NP scenario is allowed by the data. We are
also able to estimate the size of SUð3Þ breaking. We find
that local SUð3Þ -breaking effects can reach the usual 30%
level, especially near resonances. However, when averaged
over the entire Dalitz plane, the net effect of SUð3Þ
breaking is only at the percent level.
We begin in Sec. II with a review of the method for

extracting γ from B → Kππ and B → KKK̄ decays.
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Practical details of how to implement this method are
discussed in Sec. III. In Sec. IV, we present the results of the
analysis where γ is extracted from four decay modes,
assuming no SUð3Þ breaking. Systematic uncertainties are
discussed in Sec. V. Section VI contains a description of
further tests of SUð3Þ breaking. We conclude in Sec. VII.

II. METHOD OF EXTRACTION OF γ

We begin with a review of the method for extracting γ
from B → Kππ and B → KKK̄ decays. There are several
ingredients. First, the amplitudes for three-body B → PPP
decays can be written in terms of diagrams [6,10]. These
diagrams are similar to those of two-body decays [11,12],
except that here it is necessary to “pop” a quark pair from
the vacuum. Also, in contrast to two-body diagrams, the
three-body diagrams are momentum dependent.
Second, one can fix the symmetry of the final state in

B → P1P2P3 by using its Dalitz plot [6]. We define the
three Mandelstam variables si ≡ ðpj þ pkÞ2, where pi is
the momentum of Pi, and ijk ¼ 123, 231, or 312. These
obey s1þs2þs3¼m2

Bþm2
1þm2

2þm2
3. Experimentally,

one can reconstruct the decay amplitude Aðs1; s2Þ, which
varies as a function of position in the Dalitz plot. The
amplitude that is fully symmetric under permutations of the
final-state particles is then given by

Afsðs1; s2Þ ¼
1ffiffiffi
6

p ðAðs1; s2Þ þAðs2; s1Þ þAðs1; s3Þ

þAðs3; s1Þ þAðs3; s2Þ þAðs2; s3ÞÞ: ð1Þ

The symmetrized amplitude Afs has a sixfold symmetry in
the Dalitz plane. In effect, the plane can be divided into six
regions; the structure and information in each region is
identical to the others. It is therefore sufficient to consider
points in one sixth of the symmetrized Dalitz plane.
Third, in Ref. [7], it was shown that, as is the case in

two-body decays [13–15], under the assumption of flavor
SUð3Þ symmetry, there are relations between the electro-
weak penguin (EWP) and tree diagrams for b → s
transitions. For the fully symmetric final state, these take
the form,

P0
EWi ¼ κT 0

i; P0C
EWi ¼ κC0

i ði ¼ 1; 2Þ;

κ ≡ −
3

2

jλðsÞt j
jλðsÞu j

c9 þ c10
c1 þ c2

; ð2Þ

where the ci are Wilson coefficients and λðsÞp ≡ V�
pbVps

(the Vij are elements of the CKM matrix). In Eq. (2), the
T 0
i are associated with color-favored tree diagrams while

the C0
i represent the contributions of color-suppressed

ones (the primes on the diagrams indicate b → s
transitions).

The method uses B → Kππ and B → KKK̄ decays. In
the B → Kππ diagrams, the quark pair popped from the
vacuum is uū or dd̄ (under isospin, these diagrams are
equal). On the other hand, the B → KKK̄ diagrams have a
popped ss̄ pair. Now, under flavor SUð3Þ symmetry, which
is required for the EWP-tree relations Eq. (2), diagrams
with a popped ss̄ quark pair are equal to those with a
popped uū or dd̄. In other words, under SUð3Þ, the
diagrams in B → KKK̄ decays are the same as those in
B → Kππ decays.
Of course, flavor SUð3Þ symmetry is not exact, so one

must keep track of SUð3Þ breaking. Technically, there will
be an SUð3Þ -breaking factor for each diagram. However, if
all such quantities are included, there will be too many
unknown parameters to perform a fit. For this reason, we
make the assumption that the size of SUð3Þ breaking is the
same for all diagrams, so there is a single SUð3Þ -breaking
parameter αSUð3Þ relating B → Kππ and B → KKK̄ decays
[αSUð3Þ ¼ 1 corresponds to the flavor-SUð3Þ limit]. The
idea behind this assumption is as follows. As noted above,
the diagrams are momentum dependent. This means that
the size of SUð3Þ breaking associated with a particular
diagram, αD, varies from point to point on the Dalitz plot.
Specifically, αD will be > 1 at some points and < 1 at
others. When one averages over all points, αD − 1 will be
small, and this will be true for all diagrams. For this reason,
we make the assumption that the size of SUð3Þ breaking is
the same for all diagrams, and we expect it to be small. As
we will see, in our fits αSUð3Þ − 1 is found to be at the
percent level, which supports our assumption.
Three B → Kππ and two B → KKK̄ decays are used in

this analysis. They are B0 → Kþπ0π−, B0 → K0πþπ−,
Bþ → Kþπþπ−, B0 → KþK0K−, and B0 → K0K0K0.
Note that both K0 and K̄0 are observed as K0

S. As shown
in Ref. [9], when the EWP-tree relations of Eq. (2) are used,
the fully symmetric amplitudes for the five modes can be
expressed as linear combinations of five effective diagrams,

2AfsðB0→Kþπ0π−Þ¼Beiγ−κC;
ffiffiffi
2

p
AfsðB0→K0πþπ−Þ¼−Deiγ− P̃0

uceiγ−AþκD;

AfsðB0→K0K0K̄0Þ¼αSUð3ÞðP̃0
uceiγþAÞ;

ffiffiffi
2

p
AfsðB0→KþK0K−Þ¼αSUð3Þð−Ceiγ− P̃0

uceiγ−AþκBÞ;
ffiffiffi
2

p
AfsðBþ→Kþπþπ−Þ¼−Ceiγ− P̃0

uceiγ−AþκB: ð3Þ

Here, the complex parameters A, B,C,D, and P̃0
uc are linear

combinations of momentum-dependent diagrams (and will,
in general, vary across the phase space), γ is the CKM angle
of interest, and κ is a constant defined in Eq. (2). As noted
above, the real quantity αSUð3Þ parametrizes the breaking of
flavor SUð3Þ symmetry and can also vary across the Dalitz
plot. In the absence of any SUð3Þ -breaking effects,
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αSUð3Þ ¼ 1, so that the amplitudes of Bþ → Kþπþπ− and
B0 → KþK0K− modes are equal. In this limit, the fifth
decay mode provides no additional information and can be
dropped from the analysis.
For each decay mode, a set of linearly independent

observables can be formed,

Xðs1; s2Þ ¼ jAfsðs1; s2Þj2 þ jĀfsðs1; s2Þj2;
Yðs1; s2Þ ¼ jAfsðs1; s2Þj2 − jĀfsðs1; s2Þj2;
Zðs1; s2Þ ¼ Im½A�

fsðs1; s2ÞĀfsðs1; s2Þ�; ð4Þ

where Āfsðs1; s2Þ denotes the fully symmetric amplitude
of the conjugate process. The observables X, Y, and Z are
related to the effective CP -averaged branching fraction,
the direct CP asymmetry, and the indirect CP asymmetry.
For a given decay, their values depend on the position
in the Dalitz plane. The observable Z has no physical
meaning for flavor-specific final states such as Kþπ0π−
and Kþπþπ−.
In this study, we take as experimental inputs the

amplitude models obtained by BABAR in Refs. [16–20].
The BABAR analysis of B0 → K0

SK
0
SK

0
S [19] was time

integrated and CP averaged; since no distinction was made
between B0 and B0, only the observable X is accessible for
this mode. As noted in Ref. [9], this implies a simplification
in the expression for its amplitude compared with Eq. (3).
To be specific, the requirement that Y ¼ Z ¼ 0 implies that
P̃0
uc ¼ 0, so that

AfsðB0 → K0K0K̄0Þ ¼ αSUð3ÞA: ð5Þ

Since for each mode the observables X, Y, Z depend
upon the fully symmetric amplitudeAfs [Eq. (4)], andAfs is
related to the theory parameters by Eqs. (3) and (5), the
observables may be written as functions of those theoretical
parameters. Expressing them in terms of magnitudes and
strong phases (U ¼ ueiϕu for U ¼ A, B, C, D), and setting
ϕa ¼ 0 without loss of generality, the following relations
are obtained:

Xth
Kþπþπ−ðs1; s2Þ ¼ a2þðκbÞ2þ c2þ 2accosϕc cos γ

− 2κabcosϕb − 2κbccosðϕb −ϕcÞcosγ;
Y th
Kþπþπ−ðs1; s2Þ ¼ −2ðac sinϕc þ κbc sinðϕb −ϕcÞÞ sinγ;

Xth
K0

SK
þK−ðs1; s2Þ ¼ αSUð3Þ2Xth

Kþπþπ− ;

Y th
K0

SK
þK−ðs1; s2Þ ¼ αSUð3Þ2Y th

Kþπþπ− ;

Zth
K0

SK
þK−ðs1; s2Þ ¼ αSUð3Þ2ð−c2 cos γ − accosϕc

þ κbccosðϕb −ϕcÞÞ sin γ;

Xth
K0

Sπ
þπ−ðs1; s2Þ ¼ a2þðκdÞ2þ d2þ 2adcosϕd cos γ

− 2κadcosϕd − 2κd2 cos γ;

Y th
K0

Sπ
þπ−ðs1; s2Þ ¼ −2ad sinϕd sin γ;

Zth
K0

Sπ
þπ−ðs1; s2Þ ¼ ð−d2 cos γ − adcosϕd þ κd2Þ sin γ;

Xth
Kþπþπ0ðs1; s2Þ ¼

1

2
ðb2þ κ2c2 − 2κbccos γ cosðϕb −ϕcÞÞ;

Y th
Kþπþπ0ðs1; s2Þ ¼ κbc sin γ sinðϕb −ϕcÞ;

Xth
K0

SK
0
SK

0
S
ðs1; s2Þ ¼ 2αSUð3Þ2a2: ð6Þ

If γ is extracted at a single point ðs1; s2Þ on the Dalitz
plane, there are nine real, unknown parameters: four
magnitudes (a, b, c, d), three strong phases (ϕb, ϕc, ϕd),
γ, and αSUð3Þ. From the experimental input, there are eleven
observables: three (X, Y, Z) for each of the modesK0

SK
þK−

and K0
Sπ

þπ−, two (X, Y) for each of the modes Kþπþπ−

and Kþπþπ0, and one (X) for K0
SK

0
SK

0
S. If αSUð3Þ is fixed to

unity, there are instead eight unknown parameters and nine
observables. In both cases, there are more observables than
theory parameters, and γ may be extracted with a fit.
One can instead determine γ using information from

several points on the Dalitz plane simultaneously. This
increases the number of observables, but it also increases
the number of unknowns, since all those parameters that
describe the strong dynamics of the decay can vary across
the Dalitz plane (whereas γ of course does not). Thus, if N
points on the Dalitz plane are used, there are 11N
observables and 8N þ 1 unknown parameters when
αSUð3Þ is allowed to vary, or 9N observables and 7N þ 1

unknowns if αSUð3Þ is fixed to unity. For any N ≥ 1, the
number of observables exceeds the number of unknowns in
both cases, so that γ may again be extracted with a fit.

III. PRACTICAL IMPLEMENTATION
OF THE EXTRACTION METHOD

The five BABAR analyses use the isobar formalism to
parametrize the variation of the amplitude across the Dalitz
plane. In this approach, the total amplitude at a point
ðs1; s2Þ in the Dalitz plane is given by the coherent sum of
the amplitudes of n individual decay channels,

Aðs1; s2Þ ¼
Xn

j¼1

cjFjðs1; s2Þ; ð7Þ

where the isobar coefficients, cj, are complex numbers
containing all the weak phase dependence, and the line
shapes, Fj, are wave functions (such as Breit–Wigner
functions) that describe the dynamics of the decay
amplitudes.
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The isobar coefficients and the line shapes given in
BABAR’s papers are used to compute the amplitudes of the
different decay modes as a function of the position in
the Dalitz plane. This calculation is implemented with the
LAURAþþ software package [21]. The uncertainties on the
isobar coefficients quoted by BABAR, and the associated
correlation matrices, are used to compute the experimental
uncertainties on the extracted values of the angle γ. For the
decay mode B0 → K0

SK
0
SK

0
S, no correlation matrix was

quoted, and the correlations are therefore neglected.
After encoding the isobar model for a decay mode in

LAURAþþ, the amplitudes for the process and its CP
conjugate may be calculated at any point, or set of points,
on the Dalitz plot. From the amplitudes, those observables
(X, Y, Z) that are well-defined may be computed according
to Eq. (4). The uncertainties on the isobar coefficients are
propagated to obtain the uncertainties on the observables
along with their correlations.
It is also possible to compute the observables from

the theory parameters Eq. (6); for a set of N points,
those theory parameters consist of γ plus N instances
of the amplitude and SUð3Þ -breaking parameters,
fa; b; c; d;ϕb;ϕc;ϕd; andαSUð3Þg. The χ2 may then be
computed for compatibility between the observables
expected given these theory parameters, and the observ-
ables obtained from experimental inputs. To constrain γ, a
χ2 scan is performed as follows: γ is fixed to a certain value,
then a χ2 minimization is performed with the other 8N
parameters free to vary. In principle, for a global mini-
mization, the final values of the fit parameters and the χ2

should not depend on the initial values of the parameters. In
practice, for multidimensional fits, some dependency is
observed due to the presence of secondary local minima. In
order to obtain a more robust estimate of the global
minimum, the minimization process is repeated 500 times,
with values of the initial parameters varied randomly in a
large physical range each time. Then, for each fixed value
of γ, the smallest χ2 is retained. The value of γ is then
increased by one step, and the minimization repeated.
Performing this many times, a scan of the χ2 as a function
of γ is obtained. The minima of this scan are the preferred
values for γ. The procedure for finding the minima in a scan
is detailed in Appendix A. The asymmetric statistical
uncertainty on each solution is then estimated as the
change in γ required to produce a change of one unit in
χ2 from the minimum.
Flavor SUð3Þ symmetry can be broken locally when

considering single points on the Dalitz plane. However, as
shown in Sec. VI below, SUð3Þ -breaking effects are small
when averaging over a large number of points. For this
reason, as well as to minimize the statistical uncertainties
and to use the maximum amount of information possible, it
is desirable to extract γ using the largest possible number of
points. In principle, γ could be obtained from an arbitrarily
large set of points. However, the observables can be highly

correlated between points, especially if the same resonance
(or nonresonant component) is the dominant contributor to
the points in one of the decay modes. High correlations
have an impact on the covariance matrix, which becomes
approximately singular and not invertible. This imposes
practical limitations on the choice of points: the total
number of points that can be used in a fit is finite and
small. For these modes and isobar models, it is found that
no more than three points can be used, and not all three-
point combinations are possible. In order to avoid depend-
ence on the choice of points (i.e., to avoid experimenter’s
bias), the scan procedure is carried out repeatedly with
random combinations of three points, applying a filter to
reject sets of points for which the correlation matrix
contains entries above 70%. In total, 501 random sets of
three points that pass this filter are used.
For each of the solutions (scan minima) for γ, the final

result is taken to be the average over the central values for
that solution, and the uncertainty on that result is the
average of the uncertainties from individual scans. Note
that, fluctuations aside, the average uncertainty does not
decrease as more scans are added.
As discussed in Sec. II, the extraction of γ can be

performed with four modes [fixing αSUð3Þ ¼ 1 and so
neglecting flavor SUð3Þ symmetry-breaking effects], or
with five modes [allowing αSUð3Þ to vary and parametrizing
those effects]. For reasons of fit stability and convergence,
the method with four modes is chosen to be the baseline for
the results and will be presented in the next section. The
method using five modes is then used to assess the
systematic uncertainties associated with SUð3Þ breaking;
the corresponding uncertainties are given in Sec. V, with the
results for the five-mode method described in more detail in
Appendix B.

IV. RESULTS WITH FOUR MODES, αSUð3Þ = 1

The method described in the previous section is applied,
and χ2 scans for γ are obtained. Six distinct minima are
found; averaging over the 501 sets of three points in the
Dalitz plot, their central values μ, and asymmetric exper-
imental uncertainties (σL, σR) are given in Table I.

TABLE I. The minima found with four decay modes
(αSUð3Þ ¼ 1). For each minimum γi, the central value for γ is
given (μ), along with the asymmetric experimental uncertainty on
the left- and right-hand sides (σL, σR).

Minimum μ σL σR

γ1 12.9° 4.3° 8.4°
γ2 36.6° 6.1° 6.6°
γ3 68.9° 8.6° 8.6°
γ4 223.2° 7.5° 10.9°
γ5 266.4° 10.8° 9.2°
γ6 307.5° 8.1° 6.9°
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The experimental uncertainties are below 11° in each case.
The third of these minima, at 68.9°, is compatible with the
current world-average value of γ [2].
Since each combination of three points carries different

information, the form of the χ2 scans vary from one
combination of points to the next. The central values
fluctuate, and, in some instances, not all of the six minima
are present. The distribution of the minima across the scans
is shown in Fig. 1, and the rates at which the minima are
found are given in Table II; each of them is found in more
than 90% of scans.

V. SYSTEMATIC UNCERTAINTIES

The experimental statistical and systematic uncertainties
on the amplitude models used as inputs are already
included in the results given in Table I. Two additional
sources of systematic uncertainty, discussed below, are
considered in this study. The first relates to the combination
of the minima obtained with different sets of three points in
the Dalitz plot. The second relates to flavor SUð3Þ break-
ing. The results are summarized in Table III.

The form of the χ2 scan varies according to the points
chosen, and in some instances, a minimum is found
successfully but is not well separated from another nearby
minimum, such that if the two minima are at μ1 and μ2 with
χ2 values χ21 and χ22, no value of γ in the range μ1 < γ < μ2
(or μ2 < γ < μ1) has a χ2 value greater than or equal to
χ21 þ 1. This means that the algorithm set out in Sec. III
cannot determine the experimental uncertainty on μ1. These
minima are referred to as poorly resolved and are not
included in the average from which the overall results are
obtained (Table I). Discarding these minima could have a
systematic effect on the average (e.g., if μ1 < μ2 are two
nearby minima then upward fluctuations in μ1 are more
likely to be too close to μ2 to resolve than downward
fluctuations in μ1, potentially causing a negative bias in μ1).
To assess this effect, the analysis is repeated including all
minima from all scans in the average, even those that are
not well resolved. The systematic uncertainty is then
assessed as

σpoorly resolved ¼ jμ − μallj; ð8Þ

where μ is the central value obtained including only well-
resolved minima in the average, and μall is the central value
obtained when including both well-resolved and not-well-
resolved minima. The values obtained are given in Table III
and are below 1.5° for each minimum.
The extraction performed with four modes does not take

into account flavor SUð3Þ breaking. While it is not practical
to allow for SUð3Þ breaking in a completely general way in
this analysis, the scale of the effect can be assessed by
allowing the SUð3Þ -breaking parameter αSUð3Þ to vary and
seeing how much the values of γ change. To this end, the
analysis is repeated using five modes instead of four, and
with αSUð3Þ free to vary as an additional real parameter in
the fit. As before, a χ2 scan for γ is obtained with hundreds
of random combinations of three points in the Dalitz plot,
and for each scan, the minima are found. (More details are
given in Appendix B.) For each minimum, the central value
of γ is averaged over the scans as before. These estimates
using five modes (μ5modes) may then be compared to the
value for that minimum obtained with the baseline, four-
mode procedure (μ) to assess how large an effect flavor
SUð3Þ breaking has on the value of γ,

0 50 100 150 200 250 300 350
    [deg]

min
γ

0

50

100

150

200

250

300
#e

vt
s

FIG. 1. The minima found with four decay modes (αSUð3Þ ¼ 1).
For each of the 501 sets of random combinations of three points
in the Dalitz plot, a χ2 scan for γ is performed and the minima γmin
are found. The histogram shows the accumulation of the minima
across all 501 scans.

TABLE II. The rates at which the different minima are obtained
with four decay modes (αSUð3Þ ¼ 1). A total of 501 scans are
used.

Minimum Count Fraction (%)

γ1 484 96.6
γ2 474 94.6
γ3 461 92.0
γ4 499 99.6
γ5 487 97.2
γ6 488 97.4

TABLE III. Summary of the systematic uncertainties.

Minimum Poorly resolved minima Flavor SUð3Þ breaking
γ1 0.8° 1.0°
γ2 0.3° 2.6°
γ3 0.2° 2.4°
γ4 0.7° 0.7°
γ5 1.4° 1.3°
γ6 0.7° 0.9°
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σSUð3Þ ¼ jμ − μ5modesj: ð9Þ

The values obtained are given in Table III and are below 3°
for each minimum. More tests of the validity of the flavor
SUð3Þ symmetry hypothesis are described in Sec. VI.

VI. STUDIES OF FLAVOR SUð3Þ BREAKING

The assumption of flavor SUð3Þ, and specifically that
αSUð3Þ ¼ 1, is tested in two further ways. The first involves
comparing the amplitudes of two modes related by flavor
SUð3Þ as a function of position in the Dalitz plane. The
second consists of determining the value of αSUð3Þ over the
Dalitz plane from fits to the amplitude models.

A. Comparison of the amplitudes
of B0 → KSK +K − and B+ → K +π + π −

From inspection of the last two lines of Eq. (3), there is a
linear relationship between the fully symmetric amplitudes
for B0 → K0

SK
þK− and Bþ → Kþπþπ−,

AfsðB0 → KþK0K−Þ ¼ αSUð3ÞAfsðBþ → Kþπþπ−Þ: ð10Þ

The value of the parameter αSUð3Þ, a measure of the amount
of the local flavor SUð3Þ breaking, can be inferred by
comparing the values of the amplitudes of these modes at
different points on the Dalitz plane [10]. We define the
following ratio:

Rðs13; s23Þ ¼
����
AfsðBþ → Kþπþπ−; s13; s23Þ þAfsðB− → K−π−πþ; s13; s23Þ
AfsðB0 → KþK0

SK
−; s13; s23Þ þAfsðB0 → K−K0

SK
þ; s13; s23Þ

����; ð11Þ

whereAfsðX; s13; s23Þ is the symmetrized amplitude for the
decay mode X measured at point ðs13; s23Þ. The ratio is an
estimate of αSUð3Þ at that point.
Figure 2(a) shows the value of Rðs13; s23Þ as a func-

tion of position in the Dalitz plane. Significant devia-
tions from unity are seen, especially near resonances.
This is unsurprising, given that flavor SUð3Þ is broken
by the mass difference between s and u=d quarks.
A histogram of the values of R, sampled uniformly
across the Dalitz plane, is shown in Fig. 2(b).
The distribution peaks near one, and the average
value is 1.028, rather close to unity. This suggests
qualitatively that, while SUð3Þ is strongly violated
locally, it holds reasonably well when averaging across
the phase space.

B. Fitted value of αSUð3Þ over the Dalitz plane

Another approach is to determine αSUð3Þ from a fit. For
this exercise, individual points in the Dalitz plane are
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FIG. 2. (a) Ratio of amplitudes Rðs13; s23Þ over the whole fully symmetrized DP. Note that the Rðs13; s23Þ scale is truncated at 2.0.
Some regions where SUð3Þ is strongly violated coincide with resonances; for instance, f0ð980Þ, f0ð1710Þ and χc0 are clearly visible.
Since the amplitudes are fully symmetrized, similar structures are seen horizontally, vertically, and on the antidiagonal. (b) Histogram of
the different values of the ratio of amplitudes Rðs13; s23Þ.

TABLE IV. The six values γi assumed when investigating the
variation of αSUð3Þ across the Dalitz plane, and the average value
of αSUð3Þ obtained for each, hαSUð3Þii.

γi hαSUð3Þii
12° 1.06
37° 1.06
68° 1.05
223° 1.06
266° 1.05
307° 1.05
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considered (as opposed to sets of three points). A uniform
grid of 386 points is used. For each point, a similar
procedure is followed to that described in Sec. III, with
a χ2 minimization carried out with γ being fixed to a certain
value γi and the other physics parameters, including αSUð3Þ,
being free to vary. As before, the fit is repeated 500 times
(for each point) with the initial parameter values random-
ized, and the solution with the smallest χ2 after the fit is
retained. However, instead of scanning for γ across the full
range, the exercise is only performed for six values γi
corresponding approximately to the six minima given in
Table I. At each point and for each value of γi tested, the
value of αSUð3Þ for the best-fit solution is recorded.
Averaging over the uniform grid of points, the mean

values of αSUð3Þ are given in Table IV for each γi. Each value
is close to unity, and negligible variation in the average
αSUð3Þ is seen between the six minima. The variation of
αSUð3Þ with position in the Dalitz plot is illustrated in Fig. 3,
in which at each point in the symmetrized Dalitz plot the
fitted values of αSUð3Þ from the six γi are averaged. Similar
structure is seen to that observed in Fig. 2, and the breaking
of flavor SUð3Þ is clearly seen near resonances.

VII. CONCLUSION

The standard method for extracting the weak phase γ
uses tree-level B� → Dð�ÞKð�Þ� decays; the world average
is γ ¼ ð73.5þ4.2

−5.1Þ°. In the present paper, the method
developed by Bhattacharya, et al. [9] for extracting γ from
three-body charmless B-meson decays is applied to
amplitude models of the five decays B0 → Kþπ0π−,
B0 → K0

Sπ
þπ−, B0 → K0

SK
0
SK

0
S, B0 → KþK0

SK
−, and

Bþ → Kþπþπ−, obtained by the BABAR Collaboration
[16–20]. All of these decay modes receive both tree-
and loop-level (penguin) contributions. Since NP can affect

penguin diagrams, a comparison of the values of γ extracted
using the two methods can potentially reveal the presence
of NP.
Six solutions for γ are found,

γ1 ¼ ð12.9þ8.4−4.3 � 1.3Þ°; γ2 ¼ ð36.6þ6.6−6.1 � 2.6Þ°;
γ3 ¼ ð68.9þ8.6−8.6 � 2.4Þ°; γ4 ¼ ð223.2þ10.9−7.5 � 1.0Þ°;
γ5 ¼ ð266.4þ9.2−10.8 � 1.9Þ°; γ6 ¼ ð307.5þ6.9−8.1 � 1.1Þ°;

where the first uncertainty is statistical and the second
systematic. The six values obtained are well separated, and
γ3 is compatible with the world average, while the other
solutions are not. The central values and statistical uncer-
tainties are obtained under the hypothesis of SUð3Þ
symmetry; the systematic uncertainties indicate the effect
of flavor SUð3Þ breaking as well as the impact of poorly
resolved minima on the procedure. The statistical uncer-
tainty is dominant and is below 11° for each of the six
solutions. This is approximately a factor of 2 larger than the
uncertainty on the world-average value of γ and allows
the value obtained from these loop-level processes to be
compared to the tree-dominated average. The presence of
multiple solutions may reflect trigonometric ambiguities in
the amplitudes. The results obtained here are compatible
within their uncertainties with the solutions found in the
analysis of Ref. [9].
Further tests of the flavor SUð3Þ symmetry hypothesis

were performed, studying the variation in the SUð3Þ-
breaking parameter αSUð3Þ across the phase space. Strong
local variation is seen, comparable to the ∼30% level
typically considered, but the average value of αSUð3Þ is
found to be close to one [corresponding to SUð3Þ sym-
metry] within a few percent.
The study presented in this paper is a complete proof of

principle, including fully propagated experimental uncer-
tainties. It would benefit from additional and more precise
experimental inputs; results from Belle II and LHCb would
be welcome. It is worth noting that certain modes are well
suited to the LHCb detector (e.g., Bþ → Kþπþπ−), while
others are better adapted to Belle II (e.g., B0 → K0

SK
0
SK

0
S).

Given this, one interesting possibility would be a simulta-
neous fit of the physics parameters to data sets of both
experiments using a framework such as JFIT [22].
Further developments on the theoretical side would also

be welcome, such as considering other symmetry states
(fully antisymmetric or of mixed symmetry). This would
add information, thereby reducing the statistical uncertain-
ties, and might help to resolve the ambiguities and
determine whether the value of γ found using loop-level
processes is or is not equal to that obtained using tree-level
decays.
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APPENDIX A: ALGORITHM FOR
EXTRACTING THE MINIMA

The following algorithm is used to find the minima in a
given scan:
(1) Start at the first point.
(2) Define the current window to be the range of γ

spanned by the current point plus the next 19
consecutive points. Fit those 20 points with a
third-order polynomial function.

(3) Determine the minimum of the fitted polynomial [at
x ¼ γmin, y ¼ χ2ðγminÞ].

(4) Reject the minimum [γmin, χ2ðγminÞ] if any of the
following is true:
(i) The value of γmin is outside the window.
(ii) χ2ðγminÞ > 7.
(iii) The polynomial fit is of poor quality (its fit χ2 is

greater than 5).
(5) Move along one point, then go back to step 2 (unless

the points have been exhausted).
Usually, when a minimum is identified, it will be found

by several consecutive polynomial fits (steps 2–4). Due to
statistical fluctuations, the value of γmin will differ slightly
between these; the average value is taken.

APPENDIX B: EXTRACTION OF γ WITH FIVE
MODES VARYING αSUð3Þ IN THE FIT

The analysis (described in Sec. III) was carried out using
four decay modes and with αSUð3Þ fixed to unity as a
baseline. To assess the systematic effect of SUð3Þ breaking,
a similar procedure was used with five decay modes and
with αSUð3Þ free to vary in the fit. The following changes
were made to the procedure: the rejection criterion on the
correlation between sets of points was relaxed from 70% to
80%, and the number of random set of three points was
reduced from 501 to 401. The fit behavior was found to be
less stable, with convergence of the χ2 minimization in
around 80% of cases (rather than 100% in the baseline).
The frequency with which the minima were identified was
also reduced (as shown in Table V). The reduced stability is
taken to be due to the increased number of free parameters,
and the consequent increase in the size of the covariance
matrix.
The results of the procedure with five modes are shown

in Table VI, giving the central values (μ), asymmetric
experimental uncertainties (σL, σR), and the recomputed

systematic uncertainty due to poorly resolved minima
(jμ − μallj). The systematic uncertainty associated with
SUð3Þ breaking is also given in the table; this is the same
as before by construction. The distribution of the minima
across the scans is shown in Fig. 4. The results for the
minima are compatible with the ones obtained with
four modes.

TABLE V. The rates at which the different minima are obtained
with five decay modes. A total of 401 scans are used.

Minimum Count Fraction (%)

γ1 306 76.3
γ2 329 82.0
γ3 372 92.3
γ4 383 95.5
γ5 378 94.3
γ6 391 97.5

TABLE VI. The minima found with five decay modes, allowing
αSUð3Þ to vary in the fit. For each minimum γi, the central value for
γ is given (μ), along with the asymmetric experimental uncer-
tainty on the left- and right-hand sides (σL, σR). The quantities
jμ − μallj and jμ4modes − μ5modesj are taken as estimates of the
systematic uncertainties due to poorly resolved minima and flavor
SUð3Þ breaking, respectively.
Minimum μ σL σR jμ − μallj jμ4modes − μ5modesj
γ1 11.9° 5.8° 9.1° 1.3° 1.0°
γ2 39.2° 6.3° 6.7° 1.2° 2.6°
γ3 71.3° 9.5° 9.3° 0.4° 2.4°
γ4 223.9° 7.4° 9.5° 0.1° 0.7°
γ5 265.0° 11.0° 10.0° 1.2° 1.3°
γ6 308.4° 8.8° 7.0° 0.6° 0.9°
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FIG. 4. The minima found with five decay modes, with αSUð3Þ
free to vary in the fit. For each of the 401 sets of random
combinations of three points in the Dalitz plot, a χ2 scan for γ is
performed and the minima γmin are found. The histogram shows
the accumulation of the minima across all 401 scans.
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