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We first extend our formulation for the calculation of π- and σ-meson screening masses to the case of
finite chemical potential μ. We then consider the imaginary-μ approach, which is an extrapolation method
from an imaginary chemical potential (μ ¼ iμI) to a real one (μ ¼ μR). The feasibility of the method
is discussed based on the entanglement Polyakov-loop extended Nambu–Jona-Lasinio (EPNJL) model
in 2-flavor system. As an example, we investigate how reliable the imaginary-μ approach is for π- and
σ-meson screening masses, comparing “screening masses at μR in the method” with “those calculated
directly at μR.” We finally propose a new extrapolation method and confirm its efficiency.
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I. INTRODUCTION

T and μ dependence of hadron masses are closely related
with those of the ground-state structure of hot QCD matter,
where T is temperature and μ means quark-number
chemical potential. In fact, medium modification of vector
and η0 mesons has been measured in heavy-ion collisions
[1,2]. These results indicate the chiral and the effective
Uð1ÞA-symmetry restoration. It is, therefore, important to
determine T and μ dependence of light hadron masses.
Lattice QCD (LQCD) is a powerful tool to investigate

the QCD matter at finite T and μ. In fact, many LQCD
calculations have been done for low density (μ=T ≲ 1). The
calculation in the high density region is still challenging
because of thewell-known “sign problem.” Several methods
were proposed so far to circumvent the sign problem;
the Taylor expansion method [3,4], the reweighting method
[5], the imaginary-μ method [6–9], the canonical approach
[10], the complex Langevin method [11–14], and the
Lefschetz thimble theory [15,16]. These have made great
progress, but all the results are consistent only in μ=T ≲ 1 at
the present stage. Among them, we pick up the imaginary-μ
method in the present paper. When one considers μ as a
complex variable, this method corresponds to the analytic

continuation from the imaginary chemical potential
(μ ¼ iμI) to the real one (μ ¼ μR).
In LQCD simulation for finite θ≡ μI=T, the thermody-

namic potential ΩQCDðθÞ has the Roberge and Weiss (RW)
periodicity: ΩQCDðθÞ ¼ ΩQCDðθ þ 2π=3Þ [17]. The QCD
phase diagram has the first-order phase transition (RW
phase transition) at T ≥ TRW and θ ¼ π=3, where TRW is
RW transition temperature. The endpoint of RW phase
transition is located at ðθ; TÞ ¼ ðπ=3; TRWÞ. The order of the
RWendpoint and the value of TRW have been investigated in
2-flavor LQCD simulations [6–8].
One can consider effective models as a complementary

approach to the first-principle LQCD simulation. The
Polyakov-loop extended Nambu–Jona-Lasinio (PNJL)
model [18–38] qualitatively reproduces 2-flavor LQCD
data in μR=T ≲ 1, since the model can treat the chiral and
the deconfinement transition simultaneously. In addition,
the model is successful in accounting for 2-flavor LQCD
data in 0 ≤ θ ≲ π=3 [34,35], because it has the RW
periodicity. The entanglement PNJL (EPNJL) model
[39–41] is an improved version of the PNJL model. The
EPNJL model quantitatively reproduces 2-flavor LQCD
data in 0 ≤ θ ≲ π=3 [39] and μR=T ≲ 1 [40], since the
model possesses the RW periodicity and the strong corre-
lation between the chiral and the deconfinement transition.
Meson masses can be classified into “meson pole mass”

and “meson screening mass.” In LQCD simulations at finite
T, the derivation of meson screening mass is easier than
that of meson pole mass, since the spatial lattice size is
larger than the temporal one; see Appendix of Ref. [42] for
the further explanation. Meanwhile, in NJL-type effective
models, time-consuming calculations were needed for the
meson screening mass compared with that of the meson

*ishii@phys.kyushu-u.ac.jp
†miyahara@email.phys.kyushu-u.ac.jp
‡kounoh@cc.saga-u.ac.jp
§yahiro@phys.kyushu-u.ac.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 114010 (2019)

2470-0010=2019=99(11)=114010(10) 114010-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.114010&domain=pdf&date_stamp=2019-06-18
https://doi.org/10.1103/PhysRevD.99.114010
https://doi.org/10.1103/PhysRevD.99.114010
https://doi.org/10.1103/PhysRevD.99.114010
https://doi.org/10.1103/PhysRevD.99.114010
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


pole mass. Recently, this problem was solved by our
previous works [42–44] for the case of μ ¼ 0.
In this paper, for simplicity, we concentrate on the

π-meson and σ-meson screening masses, Mscr
π and Mscr

σ ,
in the framework of 2-flavor EPNJL model. We apply the
method of Refs. [42–44] for the case of finite μR and μI, and
then investigate how reliable the imaginary-μ method is for
Mscr

π and Mscr
σ . For this purpose, we compare “the Mscr

ξ

extrapolated from iμI (extrapolating result)” with “the Mscr
ξ

calculated directly at μR (direct result)” for ξ ¼ π, σ
mesons.
In Sec. II, we explain a way of calculating the meson

screening mass at finite μ. Numerical results are shown in
Sec. III. Section IV is devoted to a summary.

II. FORMALISM

A. Model setting

The Lagrangian density of 2-flavor EPNJL model is
defined by

L ¼ ψ̄ðiγνDν −m0Þψ þ GSðΦÞ½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�
− UðΦ½A�; Φ̄½A�; TÞ ð1Þ

with u- and d-quark fields ψ ¼ ðu; dÞT and the isospin
matrix τ⃗. We assume isospin symmetry, i.e., u and d quarks
have the same mass m0. The gluon field Aν is introduced
through the covariant derivative Dν ¼ ∂ν þ iAν with
Aν ¼ δν0gðA0Þaλa=2 ¼ −δν0igðA4Þaλa=2, where the matrices
λa are the Gell-Mann matrices in color space and g is the
gauge coupling. Here, we consider only the time compo-
nent A4 of Aν and assume that the A4 is a homogeneous and
static background field.
In the EPNJL model, the Polyakov loop Φ and its

Hermitian conjugate Φ̄ are defined by

Φ ¼ 1

3
trcðLÞ; Φ̄ ¼ 1

3
trcðL�Þ ð2Þ

with L ¼ exp½iA4=T� ¼ exp½idiagðA11
4 ; A22

4 ; A33
4 Þ=T� for

real classical variables Ajj
4 (j ¼ 1, 2, 3). The trace trc is

taken in color space. The relation between Ajj
4 andΦ or Φ̄ is

summarized in the Appendix. The coupling constant GS of
the four-quark interaction is assumed to depend on the
Polyakov loop Φ and Φ̄;

GSðΦÞ ¼ GSð0Þ × ½1 − α1ΦΦ̄ − α2ðΦ3 þ Φ̄3Þ�; ð3Þ

which is essential to reproduce the strong correlation
between the chiral and deconfinement transitions observed
in LQCD simulations [45–47].
The Polyakov loop Φ and its Hermitian conjugate Φ̄ are

mainly governed by the Polyakov-loop potential U in
Eq. (1). We use the logarithm-type Polyakov-loop potential

U of Ref. [26]. The parameter set in U is determined from
LQCD data on thermodynamic quantities in the pure gauge
limit. The U has one dimensionful parameter T0 and the
value is often set to T0 ¼ 270 MeV since the deconfine-
ment transition occurs at T ¼ 270 MeV in the pure gauge
limit. When one considers the dynamical quarks, the
typical energy scale T0 depends on the number of flavors
(Nf ). Hence we treat T0 as an adjustable parameter and
determine the value to reproduce the chiral- and deconfine-
ment-transition temperatures Tχ;LQCD

c ¼ 173� 8 MeV and
Td;LQCD
c ¼ 173� 8 MeV calculated with 2-flavor LQCD

simulations at zero chemical potential [45–47].
Applying the mean field approximation to Eq. (1) leads

to the linearized Lagrangian density

LMFA ¼ ψ̄S−1ψ −GSðΦÞσ2 − UðΦ½A�; Φ̄½A�; TÞ; ð4Þ

where the dressed quark propagator S is defined by

S ¼ 1

iγν∂ν − iγ0A4 −M
ð5Þ

with the effective quark mass M ¼ m0 − 2GSðΦÞσ and the
chiral condensate σ ¼ hψ̄ψi. One can make the path
integral over the quark fields analytically, and the thermo-
dynamic potential Ω per unit volume is obtained by

Ω¼UMþU−2Nf

Z
d3p
ð2πÞ3

×

�
3Epþ

1

β
ln½1þ3ðΦþΦ̄e−βðEp−μÞÞe−βðEp−μÞþe−3βðEp−μÞ�

þ1

β
ln½1þ3ðΦ̄þΦe−βðEpþμÞÞe−βðEpþμÞþe−3βðEpþμÞ�

�

ð6Þ

with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
and UM ¼ GSðΦÞσ2. The mean-

field variables σ;Φ; Φ̄ are determined so as to minimize the
potential Ω. For real μ, we take the approximation Φ ¼ Φ̄
for simplicity. This approximation is pretty good for
μR=T ≲ 1 and not so bad even for μR=T ≳ 1 [38].
In the μI region, this thermodynamic potential Ω has the

RW periodicity [32,33,37]. The RW periodicity stems from
the fact that Ω is invariant under the extended Z3 trans-
formation [37] defined by

Φ→ e−i2πk=3Φ; Φ̄→ ei2πk=3Φ̄; θ→ θþ2πk
3

ð7Þ

for integer k.
The three-dimensional momentum p integral in Eq. (6)

has ultraviolet divergence and needs to be regularized. In
this paper, we use the Pauli–Villars (PV) regularization
[48,49]. When Ω is divided into Ω ¼ UM þ U þΩFðMÞ,
the function ΩFðMÞ is regularized in the PV scheme as
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Ωreg
F ðMÞ ¼

X2
α¼0

CαΩFðMαÞ; ð8Þ

where M0 ¼ M and the Mα (α ¼ 1, 2) mean masses
of auxiliary particles. The parameters Mα and Cα are
determined so as to satisfy the condition

P
2
α¼0 Cα ¼P

2
α¼0 CαM2

α ¼ 0 in order to remove the quartic, the quad-
ratic, and the logarithmic divergence in ΩF. We then set
ðC0;C1;C2Þ¼ð1;−2;1Þ and ðM2

0;M
2
1;M

2
2Þ¼ ðM2;M2þΛ2;

M2þ2Λ2Þ. The parameter Λ should be finite even
after the regularization [49], since the present model is
nonrenormalizable.
The EPNJL model has three parameters m0, GSð0Þ;Λ in

addition to T0, α1, α2. We set m0 to m0 ¼ 6.3 MeV and
determine GSð0Þ;Λ to reproduce the experimental values
of pion mass Mπ ¼ 138 MeV and its decay constant
fπ ¼ 93.3 MeV at vacuum. The values of m0, GSð0Þ;Λ
are summarized in Table I. The remaining parameters
T0, α1, α2 are determined from LQCD results on the
chiral- and deconfinement-transition temperatures [45–47];
see Sec. III A for the determination of the parameters
T0, α1, α2.

B. Meson screening mass at finite T and μ

Following the previous work [43], we first consider π
and σ mesons at T ¼ μ ¼ 0. The current operator is
expressed by

JξðxÞ ¼ ψ̄ðxÞΓξψðxÞ − hψ̄ðxÞΓξψðxÞi ð9Þ

with x ¼ ðt; xÞ for meson species ξ ¼ π, σ, where Γσ ¼ 1
for σ meson and Γπ ¼ iγ5τ3 for π meson. The mesonic
correlation function in coordinate space is defined by

ζξξðt; xÞ≡ h0jTðJξðt; xÞJ†ξð0ÞÞj0i: ð10Þ

Here, the symbol T stands for the time-ordered product.
The Fourier transform χξξðq20; q2Þ of ζξξðt; xÞ is obtained by

χξξðq20; q̃2Þ ¼ i
Z

d4xeiq·xζξξðt; xÞ ð11Þ

for an external momentum q ¼ ðq0; qÞ and q̃ ¼ �jqj.
When we take the random-phase approximation, we can
get χξξ as

χξξ ¼
Πξ

1 − 2GSðΦÞΠξ
ð12Þ

for ξ ¼ π, σ. The one-loop polarization function Πξ is
explicitly calculated by

Πσ ¼ ð−2iÞ
Z

d4p
ð2πÞ4 trc;dðiSðpþ qÞiSðpÞÞ

¼ 4i½I1 þ I2 − ðq2 − 4M2ÞI3� ð13Þ

for σ meson and

Ππ ¼ ð−2iÞ
Z

d4p
ð2πÞ4 trc;dððiγ5ÞiSðpþ qÞðiγ5ÞiSðpÞÞ

¼ 4i½I1 þ I2 − q2I3� ð14Þ

for π meson, where the trace trc;d is taken in color and Dirac
spaces. Three functions in Eqs. (13) and (14) are defined by

I1 ¼
Z

d4p
ð2πÞ4 trc

�
1

p2 −M2

�
; ð15Þ

I2 ¼
Z

d4p
ð2πÞ4 trc

�
1

ðpþ qÞ2 −M2

�
; ð16Þ

I3 ¼
Z

d4p
ð2πÞ4 trc

�
1

ðp2 −M2Þððpþ qÞ2 −M2Þ
�
: ð17Þ

These functions are regularized with the same procedure as
shown in Eq. (8).
In the two cases of (a) finite T and μ ¼ μR and (b) finite

T and μ ¼ iμI, one can get the final equations by taking the
following replacement

p0 → iωn þ iA4 þ μ ¼ ið2nþ 1ÞπT þ iA4 þ μ;Z
d4p
ð2πÞ4 → iT

X∞
n¼−∞

Z
d3p
ð2πÞ3 : ð18Þ

The meson screening mass Mscr
ξ for ξ meson is

defined by

Mscr
ξ ¼ − lim

r¼jxj→∞

�
d
dr

ln ζξξð0; xÞ
�
; ð19Þ

where the correlation function ζξξð0; xÞ in coordinate space
is obtained by the Fourier transformation of the correlation
function χξξð0; q̃2Þ in momentum space as

ζξξð0; xÞ ¼
1

4π2ir

Z
∞

−∞
dq̃ q̃ χξξð0; q̃2Þeiq̃r; ð20Þ

see Fig. 1 to understand the meaning of q̃ integral.

TABLE I. Model parameters determined from physical observ-
ables at vacuum.

m0 [MeV] Λ [MeV] GSð0ÞΛ2

6.3 768 2.95
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NJL-type effective models have two problems in the
calculation of Eq. (20). The first problem stems from the
regularization. The three-dimensional-momentum cutoff
regularization commonly used explicitly breaks Lorentz
invariance, and induces unphysical oscillations in ζξξð0; xÞ
[48]. This problem can be solved by taking the PV
regularization [49]. We then use the PV regularization in
this paper. The second problem is the fact that direct
numerical calculations of q̃ integral is quite difficult
because the integrand is highly oscillating at large r where
Mscr

ξ is defined. In order to overcome this problem, one can
rewrite the q̃ integral to the complex q̃ integral by using the
Cauchy’s integral theorem. However, it is shown in
Ref. [48] that the complex function χξξð0; q̃2Þ has loga-
rithmic cuts in the vicinity of the real q̃ axis. The evaluation
of the cuts still demands time-consuming numerical cal-
culations. Our previous works [43,44] showed that the
emergence of these logarithmic cuts is avoidable by making
the p integration analytically before taking the Matsubara
(n) summation in Eqs. (12)–(18).
Consequently, we obtain the regularized function Ireg3 as

an infinite series of analytic functions:

Ireg3 ð0; q̃2Þ ¼ iT
XNc

j¼1

X∞
n¼−∞

X2
α¼0

Cα

×
Z

d3p
ð2πÞ3

�
1

p2 þM2

1

ðpþ qÞ2 þM2

�

¼ T
8πq̃

X
j;n;α

CαLog

�
2Mþ iq̃
2M − iq̃

�
ð21Þ

with a complex valued thermal mass

MðMα;ωn; A
jj
4 ; μÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

α þ ðωn þ Ajj
4 − iμÞ2

q
; ð22Þ

where we take the principle value for logarithm
in Eq. (21) and the square root in Eq. (22). Each term in
the last line of Eq. (21) has four cuts starting at q̃¼
�2iMðMα;ωn;A

jj
4 ;μÞ and q̃ ¼ �2iMðMα;ωn;−A

jj
4 ;−μÞ,

as shown in Fig. 1. For later convenience, we define the
threshold mass Mth and the decay width Γth by the M
located at the lowest branch point in the upper-half plane:
Namely

2Mlowest ≡Mth − i
Γth

2
; ð23Þ

where Mth (Γth) is the real (imaginary) part of
2Mlowest. Meson screening mass Mscr

ξ is a pole of χξξ
and is calculated by

½1 − 2GSðΦÞΠξð0; q̃2Þ�jq̃¼iMscr
ξ
¼ 0; ð24Þ

when the pole is located below the lowest branch point.
This condition leads to [43]

Mscr
ξ ≤ Mth: ð25Þ

III. NUMERICAL RESULTS

A. Determination of T0

The EPNJL model has three parameters T0, α1, α2. These
values are determined so as to reproduce LQCD data [45–
47] on the chiral and deconfinement transition temperatures
Tχ;LQCD
c ≃ Td;LQCD

c ¼ 173� 8 MeV. Here the parameters
α1, α2 are fixed to α1 ¼ α2 ¼ 0.2, since the values are
necessary to explain the coincidence between the two
transitions [39]: namely, Tχ;LQCD

c ≃ Td;LQCD
c . The remaining

parameter T0 is controlled by the absolute values and their
errors of Tχ;LQCD

c and Td;LQCD
c . The resulting allowed region

of T0 is constrained into 186 MeV ≤ T0 ≤ 205 MeV.
Hereafter we estimate the uncertainty of model prediction
by considering the lower and upper limits of T0. For later
convenience, we also define Set 3 with T0 ¼ 200 MeV at
which the calculated deconfinement-transition temperature
Td;EPNJL
c is close to the mean value of Td;LQCD

c . Eventually,
we consider the following three parameter sets;

Set 1: T0 ¼ 186 MeV, α1 ¼ α2 ¼ 0.2.
Set 2: T0 ¼ 205 MeV, α1 ¼ α2 ¼ 0.2.
Set 3: T0 ¼ 200 MeV, α1 ¼ α2 ¼ 0.2.
Figure 2 shows T dependence of σ and jΦj for the case of

θ ¼ 0. The model uncertainty is represented by bands for σ
and Φ. The EPNJL results quantitatively simulate LQCD
data on the chiral condensate [45] within the uncertainty of
T0. As for the Polyakov loop, the EPNJL results agree with
LQCD ones [46] in T ≲ Tχ

c , but overestimate them in

FIG. 1. Singularities of χξξð0; q̃2Þ in the complex-q̃ plane. Cuts
are denoted by the wavy lines and poles are denoted by points.
The threshold masses correspond to the endpoints of cuts. The
original contour C in Eq. (20) is deformed into C1, C2 (cut
contributions) and C3 (pole contribution). For the definition of
threshold masses, see Eq. (23).
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1 < T=Tχ
c < 1.8. This is the well-known problem in PNJL-

type effective models [23,50–52], and it has not been
solved yet. However, the discrepancy does not affect the
qualitative behavior of Mscr

π ðθÞ and Mscr
σ ðθÞ; therefore, we

will not discuss the problem in the present work.

B. Deconfinement- and chiral-transition
lines in θ-T plane

Figure 3 shows the deconfinement- and chiral-transition
lines in the imaginary-μ region. The T0 uncertainty
mentioned above is represented by the bands. The critical
endpoint (CEP) exists on the deconfinement-transition line
in both Set 1 and Set 2. For further description, we have
varied T0 in the allowed region and investigated whether
the existence of CEP is robust or not for the T0 uncertainty.
It is confirmed that the CEP exists for any T0 and its
location is limited in 0.087 ≤ jθ − π=3j ≤ 0.107, whose
range is denoted by two bars in Fig. 3.
Once one fixes the value of T0, θ dependence of the

transition lines are well fitted in 0 ≤ θ ≤ π=3 by using

TX
c ðθÞ

TX
c ð0Þ

¼ 1þ cX1 θ
2 þ cX2 θ

4; ð26Þ

where the superscript “X ¼ d” means the deconfinement
transition and “X ¼ χ” corresponds to the chiral transition.
The fitting results for the coefficients and the CEP location
ðθCEP; TCEP=T

χ
cð0ÞÞ are summarized in Table II. The fitting

results weakly depend on T0 and the deviations between
Set 1 and Set 2 are less than 10%.

C. θ dependence of π- and σ-meson screening masses

We have confirmed that π- and σ-meson screening
masses have the RW periodicity and charge symmetry:

Mscr
ξ ðθÞ¼Mscr

ξ

�
θþ2πk

3

�
; Mscr

ξ ðθÞ¼Mscr
ξ ð−θÞ ð27Þ

for ξ ¼ π, σ, where k is an arbitrary integer. This result
stems from the fact that Eqs. (15)–(18) and the threshold
mass Mth are invariant under the extended Z3 transforma-
tion defined by Eq. (7).
From now on, we consider the following two cases:
(A) T ¼ 1.4Tχ

cð0Þ in Fig. 3: The system is in both the
deconfinement and the chiral-symmetry restored
phase for any θ, since T ≥ Tχ

cðπ=3Þ.

FIG. 2. T dependence of the chiral condensate σ and the
absolute value jΦj of Polyakov loop for θ ¼ 0. The horizontal
axis is scaled by Tχ

c. The T0 uncertainty is denoted by bands for σ
and Φ. The chiral condensate is normalized by its value σ0 at
T ¼ 0. LQCD data are taken from Refs. [46,47]. The 10% errors
come from those of Td;LQCD

c and Tχ;LQCD
c .

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  0.5  1  1.5  2

RW

CEPT
/T

cχ (0
)

θ/(π/3)

Chiral
Deconfinement (crossover)
Deconfinement (1st order)

FIG. 3. Deconfinement- and chiral-transition lines in the
imaginary-μ region. The thin solid lines with bands stand for
the deconfinement- and chiral-transition lines, where the bands
are originated in the ambiguity of T0. The location of CEP in the
deconfinement transition is limited in two bars because of the
uncertainty of T0. At the CEP, the deconfinement transition is
the second order. The first-order RW transition line is denoted by
the thick solid line.

TABLE II. Coefficients cX1 ; c
X
2 and the CEP location for

deconfinement- and the chiral-transition lines.

Set 1: T0 ¼ 186 MeV
X ¼ χ X ¼ d

TX
c ð0Þ [MeV] 168 165

cX1 0.083 0.057
cX2 0.018 0.019
ðθCEP; TCEP=T

χ
cð0ÞÞ � � � ðπ=3� 0.042; 1.062Þ

Set 2: T0 ¼ 205 MeV
X ¼ χ X ¼ d

TX
c ð0Þ [MeV] 181 177

cX1 0.092 0.067
cX2 0.021 0.018
ðθCEP; TCEP=T

χ
cð0ÞÞ � � � ðπ=3� 0.084; 1.055Þ

Set 3: T0 ¼ 200 MeV
X ¼ χ X ¼ d

TX
c ð0Þ [MeV] 177 174

cX1 0.090 0.064
cX2 0.020 0.019
ðθCEP; TCEP=T

χ
cð0ÞÞ � � � ðπ=3� 0.063; 1.059Þ
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(B) T ¼ 1.02Tχ
cð0Þ in Fig. 3: This T satisfies Tχ

cð0Þ ≤
T ≤ TRW. The system is in the deconfinement phase
for 0 ≤ θ ≲ 0.7, but in the confinement phase for
0.7≲ θ ≤ π=3. The system is in the chiral-symmetry
restored phase for 0 ≤ θ ≲ 0.45 but in the chiral-
symmetry broken phase for 0.45≲ θ ≤ π=3.

Figure 4 explains θ dependence of π- and σ-meson
screening masses for two cases (A) and (B). The Mscr

π and
Mscr

σ monotonically change as θ increases for cases (A) and
(B). As for case (A), the π- and σ-meson screening masses
agree with each other, because of the chiral symmetry
restoration. For each of Mscr

π and Mscr
σ , the deviation

between Set 1 and Set 2 is less than 10% and gets smaller
for larger θ.

D. Fitting of π- and σ-meson screening masses

In the next subsection, we will extrapolate the meson
screening masses from μ ¼ iμI to μ ¼ μR. For this purpose,
we first fit our model results with the polynomial function,

Mscr
ξ ðT; iμIÞ

T
¼

Xnmax

n¼0

aðnÞξ ðTÞθ2n; ð28Þ

in 0 ≤ θ ≤ π=3. We take nmax ¼ 1, 2, 3, 4 in order to
confirm convergence of the expansion. In this procedure, θ
is varied in the range 0 ≤ θ ≤ π=3, although T is fixed.

Here the coefficient að0Þξ is fixed to theMscr
ξ =T at θ ¼ 0 and

the other coefficients are determined with the least-square
method for each nmax. From now on, we only consider Set 3
and skip the discussion for the uncertainty of T0, since the
uncertainty of T0 gets smaller for lager θ and the fixing of

að0Þξ at θ ¼ 0 reduces its uncertainty. The resulting aðnÞξ are
tabulated in Table III.

In fact, θ dependence of π- and σ-meson screening
masses is well fitted with the polynomial function (28) with
nmax ¼ 4, as shown in Fig. 5.

E. Extrapolation from μI to μR region

We compare the extrapolating result with the direct one
for finite μR in order to confirm applicability of the analytic
continuation. One can easily make the analytic continuation
by replacing θ with −iμR=T:

Mscr
ξ ðT; μRÞ

T
¼

Xnmax

n¼0

ð−1ÞnaðnÞξ ðTÞ
�
μR
T

�
2n
: ð29Þ

Figure 6 explains μR dependence of π-meson screening
masses for two cases (A) and (B). In μR=T ≲ 0.4, the Mscr

π

converge to the direct results as nmax increases for both the
two cases.
Figure 7 shows μR=T dependence of Mscr

σ for case (B),
i.e., T ¼ 1.02Tχ

c . We skip case (A) since chiral symmetry
is restored in case (A), and θ dependence of Mscr

σ is almost
the same as that ofMscr

π . The extrapolating results tend to the
direct ones for 0 ≤ μR=T ≲ 0.4, and the deviation in 0.4 ≤
μR=T cannot be improved by taking the higher order terms.
The origin of the deviation can be understood when one

considers the relation between σ-meson screening mass
and chiral susceptibility. Equation (19) indicates that the
inverse of Mscr

σ corresponds to the correlation length in the
fluctuation of hψ̄ðxÞψðxÞi; see Ref. [53] for the further
explanation, and note that screening mass is referred to be
the frequency of “sound mode” there. HenceMscr

σ is related
to the chiral susceptibility χσ as

FIG. 4. θ dependence of Mscr
π and Mscr

σ for two cases (A)
and (B). The Mscr

π and Mscr
σ are shown by the thin solid lines

with bands. The dotted line (dot-dash line) denotes σ-meson
(π-meson) screening mass at vacuum.

TABLE III. Resultant coefficients aðnÞπ and aðnÞσ for Set 3.

T ¼ 1.4Tχ
cð0Þ

nmax að0Þπ að1Þπ að2Þπ að3Þπ að4Þπ

1 3.009 −1.187 � � � � � � � � �
2 3.009 −1.453 0.343 � � � � � �
3 3.009 −1.542 0.638 −0.214 � � �
4 3.009 −1.573 0.825 −0.533 0.163

T ¼ 1.02Tχ
cð0Þ

nmax að0Þπ að1Þπ að2Þπ að3Þπ að4Þπ

1 1.303 −0.704 � � � � � � � � �
2 1.303 −1.319 0.793 � � � � � �
3 1.303 −1.430 1.160 −0.266 � � �
4 1.303 −1.318 0.482 0.893 −0.593

nmax að0Þσ að1Þσ að2Þσ að3Þσ að4Þσ

1 1.653 1.369 � � � � � � � � �
2 1.653 1.520 −0.196 � � � � � �
3 1.653 −0.0314 4.952 −3.727 � � �
4 1.653 −0.742 9.276 11.127 3.788
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Mscr
σ ∝ χ−1=2σ : ð30Þ

Particularly for the chiral limit, μR and μI dependence of
Mscr

σ is nonanalytic on the chiral-transition line in μR–T and
μI–T plane, since χσ is nonanalytic on the chiral-transition
line. As for finite quark mass, a remnant of the non-
analyticity makes the accuracy of the analytic continuation
less accurate.

F. Phase-transition-line extrapolation

We propose the new extrapolation method by modifying
a trajectory of ðT; θÞ in fitting. In standard extrapolation,
θ is varied with fixed T. In a new method, we consider to

FIG. 5. Polynomial fitting for θ dependence ofMscr
π andMscr

σ in
case (A) and case (B).

FIG. 6. Comparison between the extrapolating and the direct
results on μR=T dependence of Mscr

π . We draw direct-result lines
only when the inequality Mscr

π < Mth in Eq. (25) is satisfied.

FIG. 7. Comparison between the extrapolating and the direct
results on μR=T dependence ofMscr

σ in case (B), i.e., T ¼ 1.02Tχ
c .
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vary T so that the trajectory runs along the chiral-transition
line. We then assume θ dependence of T as

T ¼ Tχ
PTLðθÞ ¼ R × Tχ

cðθÞ ð31Þ

with any constant R that is introduced to cover the θ-T
plane; see Fig. 8 for the understanding. In this paper, we
refer to the modified extrapolation as “phase-transition-line
(PTL) extrapolation”.
We fit θ dependence of σ-meson screening masses with a

polynomial series:

Mscr
σ ðθÞ

Tχ
PTLðθÞ

¼
Xnmax

n¼0

bðnÞσ ðRÞθ2n: ð32Þ

In Eq. (31), the extrapolation line does not pass through the
chiral transition line, we can use all range of θ for fitting,
i.e., 0 ≤ θ ≤ π=3.

We then extrapolate Mscr
σ ðθÞ and Tχ

PTLðθÞ from finite μI
region to μR region. Figure 9 shows the comparison
between the direct results and the extrapolating ones for
Mscr

σ , where we set Tχ
PTLð0Þ ¼ 1.02Tχ

cð0Þ ≃ 180 MeV. The
extrapolating results rapidly converge to direct-calculated
ones in μR=T

χ
PTL ≲ 0.6. The PTL extrapolation yields better

agreement than the standard extrapolation.
We also check the reliability of extrapolation by

estimating the radius of convergence in Eq. (32)
based on the d’Alembert ratio test. The coefficients

bðnÞπ and bðnÞσ in Eq. (32) are summarized in Table. IV.

The radius of convergence rnmax
ξ is calculated by rnmax

ξ ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðnmax−1Þ
ξ =bðnmaxÞ

ξ

q
for ξ ¼ π, σ. For ξ ¼ σ, the convergence

radius gets smaller as nmax increases and the value
with nmax ¼ 4 is estimated as rnmax

σ ¼ 0.628, which is
consistent with the upper bound of the agreement region
μR=T

χ
PTL ≲ 0.6.

Parallel discussion is possible for Mscr
π , as shown in

Fig. 10. We can obtain good agreement between direct
results and extrapolating ones for μR=T

χ
PTL ≤ π=3, whose

FIG. 8. A schematic figure of PTL extrapolation and standard-
extrapolation. The arrows stand for the standard extrapolation and
the PTL extrapolation. Transition line for chiral symmetry
restoration is denoted by the dotted line.
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FIG. 9. μR=T
χ
PTL dependence of σ-meson screening mass for

Tχ
PTLð0Þ ¼ 1.02Tχ

cð0Þ.

TABLE IV. Coefficients bðnÞξ and convergence radii rnmax
ξ for

ξ ¼ π, σ with nmax ¼ 1, 2, 3, 4.

nmax bð0Þπ bð1Þπ bð2Þπ bð3Þπ bð4Þπ rnmax
π

1 1.303 −0.270 � � � � � � � � � 2.196
2 1.303 −0.332 0.080 � � � � � � 2.042
3 1.303 −0.355 0.157 −0.056 � � � 1.676
4 1.303 −0.360 0.187 −0.107 0.026 2.018

nmax bð0Þσ bð1Þσ bð2Þσ bð3Þσ bð4Þσ rnmax
σ

1 1.653 −0.316 � � � � � � � � � 2.288
2 1.653 −0.326 0.014 � � � � � � 4.874
3 1.653 −0.324 0.006 0.006 � � � 0.986
4 1.653 −0.325 0.001 −0.001 0.004 0.628
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FIG. 10. μR=T
χ
PTL dependence of π-meson screening mass for

Tχ
PTLð0Þ ¼ 1.02Tχ

cð0Þ.
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region is inside the radius of convergence: rnmax
π ∼ 2.0.

The value of rnmax
π is stable as nmax increases.

IV. SUMMARY

We first showed a method of calculating screening
masses for finite μR and μI in the framework of the
2-flavor EPNJL model.
Next, we investigated how reliable the imaginary-μ

approach is for Mscr
π and Mscr

σ by comparing “the results
extrapolated from imaginary μ” with “those calculated
directly in real μ.” In the standard extrapolation, the
agreement between the direct and the extrapolating results
is seen in μR=T ≲ 0.4 for Mscr

π and Mscr
σ for T ¼ 1.02Tχ

cð0Þ
and T ¼ 1.4Tχ

cð0Þ. Especially for σ meson, the disagree-
ment in 0.4≲ μR=T cannot be improved by taking higher
order terms.
We can understand the difficulty of extrapolation when

one remembers that Mscr
σ is nothing but the inverse of

correlation length in fluctuation of local chiral condensate.
The Mscr

σ is thus related with the chiral susceptibility χσ as
Mscr

σ ∝ χ−1=2σ . When one set quark mass to zero, χσ becomes
nonanalytic on the chiral-transition line T ¼ Tχ

cðθÞ, and so
does Mscr

σ . Even for finite quark mass, a remnant of this
nonanalyticity makes the accuracy of extrapolation less
accurate, since quark mass is much smaller to temperature
and negligible around the chiral phase transition. This
indicates that the simple extrapolation is not useful for
Mscr

σ ðT; μRÞ.
In order to circumvent this problem, we propose the

PTL extrapolation. In the method, the agreement
between the direct and the extrapolating results is seen
in μR=T

χ
PTL ≲ 0.6 for Mscr

σ and in μR=T
χ
PTL ≲ π=3 for Mscr

π

with Tχ
PTLð0Þ ¼ 1.02Tχ

cð0Þ. The extrapolating results tend
to the direct results as higher order terms are taken into
account. The PTL extrapolation thus makes better extrapo-
lating results than the standard one.
The difficulty of the simple extrapolation may be in

common with other quantities which are sensitive to the
chiral transition. The PTL extrapolation is applicable for
such quantities except the chiral-transition line itself.
This application is quite interesting as a future perspective.
For example, T and μ dependences of σ meson screening
mass are essential to explore the location of critical
endpoint in QCD phase diagram, since Mscr

σ ðT; μÞ goes
to zero toward the critical endpoint. Another application is
the prediction of meson pole mass from meson screening
mass, which is proposed in our previous work [42]. The
meson pole mass is one of the experimental observables,

and its T and μ dependences are associated with the
ground-state structures of hot QCD matter. In fact, η0-
and vector-meson pole masses have been measured in
heavy-ion collisions [1,2] in order to investigate the chiral
and Uð1ÞA-symmetry restorations. Hence it is important
to apply the PTL extrapolation for the determination of T
and μ dependence of light-meson pole masses.
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APPENDIX: THE RELATION
BETWEEN A4 AND Φ;Φ̄

The diagonal components A11
4 ; A22

4 ; A33
4 of the gluon

field are related with the Polyakov loopΦ and its conjugate
Φ̄ as

Φ ¼ 1

3
ðϕ1 þ ϕ2 þ ϕ3Þ; ðA1Þ

Φ̄ ¼ 1

3
ðϕ�

1 þ ϕ�
2 þ ϕ�

3Þ ¼
1

3
ðϕ1ϕ2 þ ϕ2ϕ3 þ ϕ3ϕ1Þ ðA2Þ

with ϕj ≡ exp ðiAjj
4 =TÞ (j ¼ 1, 2, 3). Furthermore, the

traceless condition for A4 leads to

ϕ1ϕ2ϕ3 ¼ 1: ðA3Þ

One can confirm that ϕ1;ϕ1;ϕ3 are solutions of the
following equation:

ϕ3 − 3Φϕ2 þ 3Φ̄ϕ − 1 ¼ 0; ðA4Þ

by considering Vieta’s formulas. Once we get Φ and Φ̄, we
can obtain ϕ1;ϕ2;ϕ3 by solving above equation analyti-
cally and get the gluon field as Ajj

4 ¼ −iT logϕj. The

relation between Ajj
4 and ϕj has an ambiguity coming from

the replacement A4 → A4 þ 2nπT for integer n, but this
ambiguity does not change any physical observables and
we simply assume n ¼ 0. If we take the approximation
Φ ≃ Φ̄, we can simply obtain the gluon fields as

A11
4 ¼ −A22

4 ¼ Tcos−1
�
3Φ − 1

2

�
; A33

4 ¼ 0: ðA5Þ
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