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In this work, extending a previous study at zero temperature (T ¼ 0), we perform a systematic study of
the modifications to the QCD vacuum energy density ϵvac in the finite-temperature case, above the chiral
transition at Tc, caused by a nonzero value of the parameter θ, using two different effective Lagrangian
models which implement the Uð1Þ axial anomaly of the fundamental theory and which are both well
defined also above Tc. In particular, we derive (and critically compare) the expressions for the topological
susceptibility χ and for the second cumulant c4 starting from the θ dependence of ϵvacðθÞ in the two models.
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I. INTRODUCTION

It is well known (mainly by lattice simulations [1])
that, at temperatures above a certain critical temperature
Tc ≈ 150 MeV, thermal fluctuations break up the chiral
condensate hq̄qi, causing the complete restoration of the
SUðLÞL ⊗ SUðLÞR chiral symmetry of QCD with L light
quarks (L ¼ 2 and L ¼ 3 being the physically relevant
cases): this leads to a phase transition called chiral
transition. For what concerns, instead, the Uð1Þ axial
symmetry, the nonzero contribution to the anomaly pro-
vided by the instanton gas at high temperatures [2] should
imply that it is always broken, also for T > Tc. (However,
the real magnitude of its breaking and its possible effective
restoration at some temperature above Tc are still important
debated questions in hadronic physics).
In this work, extending a previous study at zero temper-

ature (T ¼ 0) [3], we perform a systematic study of the
modifications to the QCD vacuum energy density ϵvac in
the finite-temperature case, above the chiral transition at Tc,
caused by a nonzero value of the parameter θ, using two
different effective Lagrangian models which implement the
Uð1Þ axial anomaly of the fundamental theory and which
are both well defined also above Tc. In particular, we derive
(and critically compare) the expressions for the topological
susceptibility χ and for the second cumulant c4 starting
from the θ dependence of ϵvacðθÞ in the two models. Indeed,
these two quantities are known to be, respectively, the

second and the fourth derivative with respect to θ of the
vacuum energy density, evaluated at θ ¼ 0: ϵvacðθÞ ¼
constþ 1

2
χθ2 þ 1

24
c4θ4 þ � � �.

The first effective Lagrangian model that we shall
consider was originally proposed in Refs. [4] to study
the chiral dynamics at T ¼ 0, and later used as an effective
model to study the chiral-symmetry restoration at nonzero
temperature [5–7]. According to ’t Hooft (see Refs. [8,9]
and references therein), it reproduces, in terms of an
effective theory, the Uð1Þ axial breaking caused by instan-
tons in the fundamental theory.1 For brevity, following the
notation already introduced in Ref. [3], we shall refer to it
as the extended linear sigma (ELσ) model. This model is
described by the following Lagrangian:

LðELσÞðU;U†Þ ¼ 1

2
Tr½∂μU∂μU†� − VðU;U†Þ; ð1:1Þ

where

VðU;U†Þ ¼ 1

4
λ2πTr½ðUU† − ρπIÞ2� þ

1

4
λ02π ½TrðUU†Þ�2

−
Bm

2
ffiffiffi
2

p Tr½MUþM†U†�− κ½detU þ detU†�:

ð1:2Þ

In this model, the mesonic effective fields are represented
by a L × L complex matrix Uij which can be written
in terms of the quark fields as Uij ∼ q̄jRqiL, up to a*enrico.meggiolaro@unipi.it
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1We recall here, however, the criticism by Christos [10] (see
also Refs. [11,12]), according to which the determinantal inter-
action term in this effective model [see Eq. (1.2) below] does not
correctly reproduce the Uð1Þ axial anomaly of the fundamental
theory.
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multiplicative constant; moreover, M is a complex quark-
mass matrix, given by

M ¼ Mei
θ
L; ð1:3Þ

where M ¼ diagðm1;…; mLÞ is the physical (real and
diagonal) quark-mass matrix. (In this paper, therefore,
we have decided to move all the dependence on θ into
the mass term, for later convenience).
For what concerns the potential VðU;U†Þ defined in

Eq. (1.2), we recall that the parameter ρπ is responsible
for the fate of the SUðLÞL ⊗ SUðLÞR chiral symmetry,
which, as is well known, depends on the temperature T. We
shall include the effects of the temperature in the model
allowing the various parameters in Eq. (1.2) to vary with
the temperature: in particular, the parameter ρπ will be
positive, and, correspondingly, the “vacuum expecta-
tion value” (vev), i.e., the thermal average, of U will be
different from zero in the chiral limit M ¼ 0, until the
temperature reaches the chiral phase-transition temperature
Tc [ρπðT < TcÞ > 0], above which it will be negative
[ρπðT > TcÞ < 0], and, correspondingly, the vev of U will
vanish in the chiral limit M ¼ 0.2

The second effective Lagrangian model that we shall
consider is a generalization of the model proposed by
Witten, Di Vecchia, Veneziano et al. [11–13] (that, follow-
ing the notation introduced in Ref. [3], will be denoted for
brevity as the WDV model), and (in a sense which will be
made clear below) it approximately “interpolates” between
the WDV model at T ¼ 0 and the ELσ model for T > Tc:
for this reason (always following Ref. [3]) we shall call it
the interpolating model (IM). In this model (which was
originally proposed in Ref. [14] and elaborated on in
Refs. [15–17]), the Uð1Þ axial anomaly is implemented,
as in the WDV model, by properly introducing the

topological charge density QðxÞ ¼ g2

64π2
εμνρσFa

μνðxÞFa
ρσðxÞ

as an auxiliary field, so that it satisfies the correct trans-
formation property under the chiral group.3 Moreover, it
also assumes that there is another Uð1Þ-axial-breaking
condensate (in addition to the usual quark-antiquark chiral
condensate hq̄qi), having the form CUð1Þ ¼ hOUð1Þi, where,
for a theory with L light quark flavors, OUð1Þ is a 2L-quark

local operator that has the chiral transformation properties
of [18–20] OUð1Þ ∼ detstðq̄sRqtLÞ þ detstðq̄sLqtRÞ, where
s; t ¼ 1;…; L are flavor indices.4

The effective Lagrangian of the interpolating model is
written in terms of the topological charge density Q, the
mesonic field Uij ∼ q̄jRqiL (up to a multiplicative con-
stant), and the new field variable X ∼ det ðq̄sRqtLÞ (up to a
multiplicative constant), associated with the Uð1Þ axial
condensate:

LðIMÞðU;U†; X; X†; QÞ ¼ 1

2
Tr½∂μU∂μU†� þ 1

2
∂μX∂μX†

− V0ðU;U†; X; X†Þ

þ i
2
Q½ω1TrðlogU − logU†Þ

þ ð1 − ω1ÞðlogX − logX†Þ�

þ 1

2A
Q2; ð1:4Þ

where

V0ðU;U†; X; X†Þ ¼ 1

4
λ2πTr½ðUU† − ρπIÞ2�

þ 1

4
λ02π ½TrðUU†Þ�2 þ 1

4
λ2X½XX† − ρX�2

−
Bm

2
ffiffiffi
2

p Tr½MU þM†U†�

−
κ1
2

ffiffiffi
2

p ½X† detU þ X detU†�: ð1:5Þ

Once again, we have decided (for later convenience) to
put all the θ dependence in the complex mass matrix
M ¼ Mei

θ
L.

As in the case of theWDVmodel, the auxiliary fieldQ in
(1.4) can be integrated out using its equation of motion:

Q ¼ −
i
2
A½ω1TrðlogU − logU†Þ

þ ð1 − ω1ÞðlogX − logX†Þ�: ð1:6Þ

After the substitution, we obtain

LðIMÞðU;U†; X; X†Þ ¼ 1

2
Tr½∂μU∂μU†� þ 1

2
∂μX∂μX†

− VðU;U†; X; X†Þ; ð1:7Þ

2We notice here that we have identified the temperature Tρπ at
which the parameter ρπ is equal to zero with the chiral phase-
transition temperature Tc: this is always correct except in the case
L ¼ 2, where we have Tρπ < Tc (see Secs. II B and III B for a
more detailed discussion). In any case, in this paper we shall
consider exclusively the region of temperatures T > Tc.

3However, we must recall here that also the particular way of
implementing the Uð1Þ axial anomaly in the WDV model, by
means of a logarithmic interaction term [as in Eqs. (1.4) and (1.8)
below], was criticized by ’t Hooft in Ref. [8]. Unfortunately, no
real progress has been done up to now to solve the controversy
(recalled also in the first footnote) between Refs. [8] and [10], and
we are still living with it.

4The color indices (not explicitly indicated) are arranged
in such a way that (i) OUð1Þ is a color singlet, and
(ii) CUð1Þ ¼ hOUð1Þi is a genuine 2L-quark condensate, i.e., it
has no disconnected part proportional to some power of the
quark-antiquark chiral condensate hq̄qi; the explicit form of the
condensate for the cases L ¼ 2 and L ¼ 3 is discussed in detail in
the Appendix A of Ref. [16].
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where

VðU;U†; X; X†Þ ¼ V0ðU;U†; X; X†Þ

−
1

8
A½ω1TrðlogU − logU†Þ

þ ð1 − ω1ÞðlogX − logX†Þ�2: ð1:8Þ

All the parameters which appear in Eqs. (1.5) and (1.8)
have to be considered as temperature dependent. In par-
ticular, the parameter ρX plays for the Uð1Þ axial symmetry
the same role the parameter ρπ plays for the SUðLÞL ⊗
SUðLÞR chiral symmetry: ρX determines the vev of the field
X and it is thus responsible for the way in which the Uð1Þ
axial symmetry is realised. In order to reproduce the
scenario we are interested in, that is, the scenario in which
the Uð1Þ axial symmetry is not restored for T > Tc, while
the SUðLÞ ⊗ SUðLÞ chiral symmetry is restored as soon
as the temperature reaches Tc, we must assume that,
differently from ρπ , the parameter ρX remains positive
across Tc, i.e., ρπðT < TcÞ > 0, ρXðT < TcÞ > 0, and
ρπðT > TcÞ < 0, ρXðT > TcÞ > 0.
For what concerns the parameter ω1ðTÞ, in order to avoid

a singular behavior of the anomalous term in the potential
(1.8) above the chiral-transition temperature Tc, where the
vev of the mesonic field U vanishes (in the chiral limit
M ¼ 0), we must assume that [14,17] ω1ðT ≥ TcÞ ¼ 0.
[This way, indeed, the term including logU in the potential
vanishes, eliminating the problem of the divergence, at least
as far as the vev of the field X is different from zero or, in
other words, as far as the Uð1Þ axial symmetry remains
broken also above Tc].
As it was already observed in Refs. [3,16], the

Lagrangian of the WDV model is obtained from that of
the interpolating model by first fixing ω1 ¼ 1 and then
taking the formal limits λX → þ∞ and also ρX → 0 (so that
X → 0):

LðIMÞjω1¼1⟶
λX→þ∞; ρX→0

LðWDVÞ: ð1:9Þ

For this reason, ω1 ¼ 1 seems to be the most natural choice
for T ¼ 0 (and, indeed, it was found in Ref. [3] that the
expressions for χ and c4, obtained using the interpolating
model with ω1 ¼ 1, coincide with those of the WDV
model, regardless of the values of the other parameters
κ1 and ρX).
On the other side, as we have seen above, the parameter

ω1 must be necessarily taken to be equal to zero above the
critical temperature Tc, where the WDV is no more valid
(because of the singular behavior of the anomalous term in
the potential), and vice versa, as it was already observed in
Ref. [17], the interaction term κ1

2
ffiffi
2

p ½X† detU þ X detU†�
of the interpolating model becomes very similar to the
“instantonic” interaction term κ½detU þ detU†� of the ELσ

model. More precisely, we here observe that, by first fixing

ω1 ¼ 0 and then taking the formal limits λX → þ∞ and
A → ∞ (so that, writing X ¼ αeiβ, one has α →

ffiffiffiffiffi
ρX

p
and

β → 0, i.e., X →
ffiffiffiffiffi
ρX

p
), the Lagrangian of the interpolating

model reduces to the Lagrangian of the ELσ model with

κ ¼ κ1
ffiffiffiffi
ρX

p
2
ffiffi
2

p [i.e., with κ proportional to the Uð1Þ axial

condensate]:

LðIMÞjω1¼0 ⟶
λX→þ∞;A→þ∞

LðELσÞjκ¼κ1
ffiffiffiffi
ρX

p
2
ffiffi
2

p : ð1:10Þ

The paper is organized as follows: In Secs. II and III we
shall present the results for the extended linear sigma model
and the interpolating model, respectively. These results will
be obtained at the first nontrivial order in an expansion in
the quark masses (since this will greatly simplify the search
for the minimum of the potential). On the other side, no
assumption will be done on the parameter θ, which will be
treated as an absolutely free parameter. Moreover, for each
of the two models considered, we shall present separately
the results for the cases L ≥ 3 and L ¼ 2, due to the fact
that (for some technical reasons which will be explained in
the following; see also Ref. [17]) the case L ¼ 2 requires a
more specific analysis. Finally, in the last section we shall
draw our conclusions, summarizing (and critically com-
menting) the results obtained in this work and discussing
also some possible future developments.

II. RESULTS FOR THE EXTENDED
LINEAR SIGMA MODEL

A. The case L ≥ 3

Following the notation of Ref. [17], we shall write the
parameter ρπ, for T > Tc, as follows:

ρπ ≡ −
1

2
B2
π < 0; ð2:1Þ

and, moreover, we shall use for the matrix field U the
following simple linear parametrization:

Uij ¼ aij þ ibij; ð2:2Þ

where aij and bij are real field variables whose vevs āij
and b̄ij vanish in the chiral limit (Ū ¼ 0 for M ¼ 0, when
T > Tc). We shall also write the complex mass matrix (1.3)
in a similar way, i.e., separating its real and imaginary parts:

Mij ¼ Mijei
θ
L ≡mij þ inij: ð2:3Þ

With this choice of the parametrizations for the parameter
ρπ , the fields U, and the mass matrixM, the potential (1.2)
becomes
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V ¼ L
16

λ2πB4
π þ

1

4
λ2πB2

πða2ij þ b2ijÞ −
Bmffiffiffi
2

p ðmijaji − nijbjiÞ

þ 1

4
λ2πTr½ðUU†Þ2� þ 1

4
λ02π ½TrðUU†Þ�2

− κ½detU þ detU†�: ð2:4Þ

In order to find the value Ū for which the potential V is
minimum (that is, in our mean-field approach, the vev of
U), we have to solve the following system of stationary-
point equations:

8<
:

∂V
∂aij

���
S

¼ 1
2
λ2πB2

πāij −
Bmffiffi
2

p mji þ � � � ¼ 0;

∂V
∂bij

���
S

¼ 1
2
λ2πB2

πb̄ij þ Bmffiffi
2

p nji þ � � � ¼ 0;
ð2:5Þ

where the neglected terms are of quadratic or higher order
in the fields. We can easily solve this system, at the leading
order in the quark masses, obtaining Ūij ¼ āij þ ib̄ij ≃
2Bmffiffi
2

p
λ2πB2

π
ðmji − injiÞ, that is

Ū ≃
2Bmffiffiffi
2

p
λ2πB2

π

M† ¼ 2Bmffiffiffi
2

p
λ2πB2

π

Me−i
θ
L: ð2:6Þ

A simple analysis of the second derivatives of the potential
V with respect to the fields, calculated in this point,
confirms that it is indeed a minimum of the potential.
So, we find that (at the first nontrivial order in the quark
masses) the vev of the mesonic fieldU is proportional to the
mass matrix. We notice here that, by virtue of the result
(2.6), the quantities ŪŪ† and MŪ turn out to be inde-
pendent of θ. Therefore, all the terms of the potential (1.2)
carry no dependence on θ except for the “instantonic” one.
That is, explicitly

VminðθÞ ¼ VðŪðθÞÞ
¼ const − κðdet ŪðθÞ þ det Ū†ðθÞÞ þ…

¼ const − 2κ

�
2Bmffiffiffi
2

p
λ2πB2

π

�
L
detM cos θ þ…;

ð2:7Þ

where the omitted terms are either constant with respect
to θ or of higher order in the quark masses. Finally, from
(2.7) we can straightforwardly derive the topological
susceptibility and the second cumulant, which turn out
to be

χ ¼ ∂2VminðθÞ
∂θ2

����
θ¼0

≃ 2κ

�
2Bmffiffiffi
2

p
λ2πB2

π

�
L
detM;

c4 ¼
∂4VminðθÞ

∂θ4
����
θ¼0

≃ −2κ
�

2Bmffiffiffi
2

p
λ2πB2

π

�
L
detM: ð2:8Þ

B. The special case L= 2

As already said in the Introduction, the case L ¼ 2
requires a more specific analysis. In fact, in this case, the
determinant of the matrix field U is quadratic in the fields
and so it must be considered explicitly in the stationary-
point equations at the leading order in the quark masses.
In this particular case, it is more convenient to choose for
the parametrization of the field U a variant of the linear
parametrization (2.2), which is explicitly written in terms of
the fields describing the mesonic excitations σ, η, δ⃗ and π⃗,
i.e.,

U ¼ 1ffiffiffi
2

p ½ðσ þ iηÞIþ ðδ⃗þ iπ⃗Þ · τ⃗�; ð2:9Þ

where τa (a ¼ 1, 2, 3) are the Pauli matrices (with the usual
normalization Tr½τaτb� ¼ 2δab), while the multiplicative
factor 1ffiffi

2
p guarantees the correct normalization of the kinetic

term in the effective Lagrangian. We expect that all the vevs
of the fields σ, η, δ⃗, and π⃗ are (at the leading order)
proportional to the quark masses, so that they vanish in the
chiral limit M → 0. Using the parametrization (2.9), we
find the following expression for the potential (1.2) (having
defined Λ2

π ≡ λ2π þ 2λ02π ):

V ¼ 1

8
λ2πB4

π þ
1

8
Λ2
πðσ2 þ η2 þ δ⃗2 þ π⃗2Þ2 þ 1

2
λ2πðσ2δ⃗2 þ 2σηδ⃗ · π⃗ þ η2π⃗2Þ

þ 1

2
λ2π½π⃗2δ⃗2 − ðδ⃗ · π⃗Þ2� þ 1

4
λ2πB2

πðσ2 þ η2 þ δ⃗2 þ π⃗2Þ

−
Bm

2

�
ðmu þmdÞ

�
σ cos

θ

2
− η sin

θ

2

�
þ ðmu −mdÞ

�
δ3 cos

θ

2
− π3 sin

θ

2

��

− κðσ2 − η2 − δ⃗2 þ π⃗2Þ: ð2:10Þ

We now look for the minimum of the potential, solving the following system of stationary-point equations:

ENRICO MEGGIOLARO PHYS. REV. D 99, 114009 (2019)

114009-4



8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

∂V
∂σ
���
S
¼ 1

2
Λ2
πðσ̄2 þ η̄2 þ ¯

δ⃗
2 þ ¯π⃗2Þσ̄ þ λ2πðσ̄ ¯δ⃗2 þ η̄

¯
δ⃗ · ¯π⃗Þ þ 1

2
ðλ2πB2

π − 4κÞσ̄ − Bm
2
ðmu þmdÞ cos θ2 ¼ 0;

∂V
∂η
���
S
¼ 1

2
Λ2
πðσ̄2 þ η̄2 þ ¯

δ⃗
2 þ ¯π⃗2Þη̄þ λ2πðσ̄ ¯

δ⃗ · ¯π⃗ þ η̄ ¯π⃗2Þ þ 1
2
ðλ2πB2

π þ 4κÞη̄þ Bm
2
ðmu þmdÞ sin θ

2
¼ 0;

∂V
∂δa

���
S
¼ 1

2
Λ2
πðσ̄2 þ η̄2 þ ¯

δ⃗
2 þ ¯π⃗2Þδ̄a þ λ2πðσ̄2δ̄a þ σ̄ η̄ π̄aÞ þ λ2π½ ¯π⃗2δ̄a − ð ¯π⃗ · ¯δ⃗Þπ̄a�

þ 1
2
ðλ2πB2

π þ 4κÞδ̄a − Bm
2
ðmu −mdÞ cos θ2 δa3 ¼ 0;

∂V
∂πa

���
S
¼ 1

2
Λ2
πðσ̄2 þ η̄2 þ ¯

δ⃗
2 þ ¯π⃗2Þπ̄a þ λ2πðσ̄ η̄ δ̄a þ η̄2π̄aÞ þ λ2π½ ¯δ⃗2π̄a − ð ¯π⃗ · ¯δ⃗Þδ̄a�

þ 1
2
ðλ2πB2

π − 4κÞπ̄a þ Bm
2
ðmu −mdÞ sin θ

2
δa3 ¼ 0:

ð2:11Þ

Solving these equations at the first nontrivial order in the
quark masses, one immediately finds that δ̄1 ¼ δ̄2 ¼ π̄1 ¼
π̄2 ¼ 0 (i.e., the matrix field Ū turns out to be diagonal, as
expected, being the mass matrix M ¼ Mei

θ
2 diagonal), and

moreover

σ̄ ≃
Bmðmu þmdÞ
λ2πB2

π − 4κ
cos

θ

2
; η̄ ≃ −

Bmðmu þmdÞ
λ2πB2

π þ 4κ
sin

θ

2
;

δ̄3 ≃
Bmðmu −mdÞ
λ2πB2

π þ 4κ
cos

θ

2
; π̄3 ≃ −

Bmðmu −mdÞ
λ2πB2

π − 4κ
sin

θ

2
:

ð2:12Þ

Studying the matrix of the second derivatives of the
potential with respect to the fields, one immediately sees

that this stationary point corresponds indeed to a minimum
of the potential, provided that the condition λ2πB2

π > 4κ is
satisfied. Remembering Eq. (2.1), this condition can be
written as Gπ ≡ 4κ þ 2λ2πρπ < 0 and the critical transition
temperature Tc is just defined by the condition
GπðT ¼ TcÞ ¼ 0: assuming that κ > 0, this implies that in
this case (differently from the case L ≥ 3), Tc > Tρπ , where
Tρπ is defined to be the temperature at which ρπ vanishes
[with ρπðT < TρπÞ > 0 and ρπðT > Tρπ Þ < 0; see also
Ref. [17] for a more detailed discussion on this question].
Substituting the solution (2.12) into Eq. (2.10) (and

neglecting, for consistency, all the terms which are more
than quadratic in the quark masses or which are simply
constant with respect to θ), we find the following θ
dependence for the minimum value of the potential:

VminðθÞ ¼
1

8
λ2πB4

π þ
1

4
λ2πB2

πðσ̄2 þ η̄2 þ δ̄23 þ π̄23Þ −
Bm

2

�
ðmu þmdÞ

�
σ̄ cos

θ

2
− η̄ sin

θ

2

�
þ ðmu −mdÞ

�
δ̄3 cos

θ

2
− π̄3 sin

θ

2

��

− κðσ̄2 − η̄2 − δ̄23 þ π̄23Þ þOðm3Þ

¼ const −
4κB2

mmumd

λ4πB4
π − 16κ2

cos θ þOðm3Þ: ð2:13Þ

From Eq. (2.13), we can derive the following expressions of the topological susceptibility and of the second
cumulant:

χ ¼ ∂2VminðθÞ
∂θ2

����
θ¼0

≃
4κB2

m

λ4πB4
π − 16κ2

mumd;

c4 ¼
∂4VminðθÞ

∂θ4
����
θ¼0

≃ −
4κB2

m

λ4πB4
π − 16κ2

mumd: ð2:14Þ

III. RESULTS FOR THE INTERPOLATING MODEL WITH THE INCLUSION
OF A Uð1Þ AXIAL CONDENSATE

A. The case L ≥ 3

Following, as usual, the notation of Ref. [17], we shall write the parameters ρπ and ρX for T > Tc as follows:

ρπ ≡ −
1

2
B2
π < 0; ρX ≡ 1

2
F2
X > 0: ð3:1Þ
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Moreover, we shall continue to write the complex mass matrix in the form (2.3) and, concerning the fields, we shall use
for U the usual linear parametrization (2.2), while we shall use for X the following nonlinear parametrization (in the form
of a polar decomposition):

X ¼ αeiβ: ð3:2Þ

With this choice of the parametrizations for the parameters ρπ and ρX, the fields U and X, and the mass matrix M, the
following expression for the potential of the interpolating model at T > Tc is found:

V ¼ L
16

λ2πB4
π þ

1

4
λ2πB2

πða2ij þ b2ijÞ þ
1

4
λ2X

�
α2 −

1

2
F2
X

�
2

þ 1

2
Aβ2

−
Bmffiffiffi
2

p ðmijaji − nijbjiÞ þ
1

4
λ2πTr½ðUU†Þ2� þ 1

4
λ02π ½TrðUU†Þ�2

−
κ1α

2
ffiffiffi
2

p ½cos βðdetU þ detU†Þ − i sin βðdetU − detU†Þ�: ð3:3Þ

The minimum of the potential is found by solving the following system of stationary-point equations:

8>>>>>>>>><
>>>>>>>>>:

∂V
∂aij

���
S
¼ 1

2
λ2πB2

πāij −
Bmffiffi
2

p mji þ � � � ¼ 0;

∂V
∂bij

���
S
¼ 1

2
λ2πB2

πb̄ij þ Bmffiffi
2

p nji þ � � � ¼ 0;

∂V
∂α
���
S
¼ λ2X

�
ᾱ2 − F2

X
2

	
ᾱ − κ1

2
ffiffi
2

p ½cos β̄ðdet Ū þ det Ū†Þ − i sin β̄ðdet Ū − det Ū†Þ� ¼ 0;

∂V
∂β
���
S
¼ Aβ̄ þ κ1ᾱ

2
ffiffi
2

p ½sin β̄ðdet Ū þ det Ū†Þ þ i cos β̄ðdet Ū − det Ū†Þ� ¼ 0:

ð3:4Þ

We notice that the first two equations (3.4) coincide with
the equations (2.5), so that the solution for āij and b̄ij (i.e.,
for Ū) will be, at the leading order in the quark masses,
exactly the same that has been found in the ELσ model [see
Eq. (2.6)]. Moreover, with that expression for Ū, we can see
that det Ū þ det Ū† ∼ detM cos θ and det Ū − det Ū†∼
detM sin θ, and from the second couple of equations (3.4),
we can conclude that ᾱ ∼ FXffiffi

2
p þOðdetM cos θÞ and

β̄ ∼OðdetM sin θÞ. More precisely, we find that5

ᾱ ≃
FXffiffiffi
2

p þ κ1ffiffiffi
2

p
λ2XF

2
X

�
2Bmffiffiffi
2

p
λ2πB2

π

�
L
detM cos θ;

β̄ ≃ −
1

A
κ1FX

2

�
2Bmffiffiffi
2

p
λ2πB2

π

�
L
detM sin θ: ð3:5Þ

We can now substitute the solutions (2.6) and (3.5) into the
expression (3.3), in order to find the θ dependence of the
minimum value of the potential. As in the case of the ELσ

model, the mass term and the terms dependent only on the
quantity ŪŪ† turn out to be independent of θ, while by

virtue of the result (3.5), the quantity X̄X̄† turns out to be
(at the first nontrivial order in the quark masses)

X̄X̄† ≃ F2
X
2
þ κ1

λ2XFX
ð 2Bmffiffi

2
p

λ2πB2
π
ÞL detM cos θ. Putting all together,

we see that the θ dependence of the minimum value of the
potential is given, at the lowest order in the quark masses,
by the following expression:

VminðθÞ ¼ const −
κ1
2

ffiffiffi
2

p ðX̄† det Ū þ X̄ det Ū†Þ þ � � �

¼ const −
κ1FX

2

�
2Bmffiffiffi
2

p
λ2πB2

π

�
L
detM cos θ þ � � � :

ð3:6Þ

From Eq. (3.6) we can directly derive the following
expressions for the topological susceptibility χ and the
second cumulant c4:

χ ¼ ∂2VminðθÞ
∂θ2

����
θ¼0

≃
κ1FX

2

�
2Bmffiffiffi
2

p
λ2πB2

π

�
L
detM;

c4 ¼
∂4VminðθÞ

∂θ4
����
θ¼0

≃ −
κ1FX

2

�
2Bmffiffiffi
2

p
λ2πB2

π

�
L
detM: ð3:7Þ

Comparing these last results with those that we have found
in the ELσ model (for the case L ≥ 3), we see that they
coincide with each other (at least, at the leading order in the

5Studying the matrix of the second derivatives, one easily sees
that the solution (3.5) for ᾱ and β̄ (which, in the chiral limit,
reduces to ᾱ ¼ FXffiffi

2
p and β̄ ¼ 0) indeed corresponds to the mini-

mum of the potential (see also Ref. [17] for more details).
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quark masses) provided that the parameter κ in Eqs. (2.7)
and (2.8) is identified with κ1FX=4 [and is thus proportional
to the Uð1Þ axial condensate].

B. The special case L= 2

Being the quark-mass matrix M ¼ Mei
θ
2 diagonal, and

remembering what we have found for the nondiagonal
elements of the matrix field Ū in the case of the ELσ model
in Sec. II B, we can reasonably assume Ū to be diagonal
since the beginning (i.e., δ̄1 ¼ δ̄2 ¼ π̄1 ¼ π̄2 ¼ 0). In other
words, we take Ū and X̄ in the form

Ū ¼ 1ffiffiffi
2

p ½ðσ̄ þ iη̄ÞIþ ðδ̄3 þ iπ̄3Þτ3�; X̄ ¼ ᾱeiβ̄:

ð3:8Þ

For what concerns the various terms of the potential in
this case, the only term which needs to be put in a new
and more explicit form is the interaction term between
U and X, which turns out to be X̄† det Ū þ X̄ det Ū† ¼
ᾱ½ðσ̄2 − η̄2 − δ̄23 þ π̄23Þ cos β̄ þ 2ðη̄ σ̄ −δ̄3π̄3Þ sin β̄�. Putting
together all these results, we find the following expression
for the potential:

V̄ ¼ 1

8
λ2πB4

π þ
1

8
Λ2
πðσ̄2 þ η̄2 þ δ̄23 þ π̄23Þ2 þ

1

2
λ2πðσ̄2δ̄23 þ 2σ̄ η̄ δ̄3π̄3 þ η̄2π̄23Þ

þ 1

4
λ2πB2

πðσ̄2 þ η̄2 þ δ̄23 þ π̄23Þ þ
1

4
λ2X

�
ᾱ2 −

F2
X

2

�
2

þ 1

2
Aβ̄2

−
Bm

2

�
ðmu þmdÞ

�
σ̄ cos

θ

2
− η̄ sin

θ

2

�
þ ðmu −mdÞ

�
δ̄3 cos

θ

2
− π̄3 sin

θ

2

��

−
κ1ᾱ

2
ffiffiffi
2

p ½ðσ̄2 − η̄2 − δ̄23 þ π̄23Þ cos β̄ þ 2ðη̄ σ̄ −δ̄3π̄3Þ sin β̄�: ð3:9Þ

As usual, in order to find the minimum of the potential, we have to solve the following system of stationary-point equations:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

∂V
∂σ
���
S
¼ 1

2
Λ2
πðσ̄2 þ η̄2 þ δ̄23 þ π̄23Þσ̄ þ λ2πðσ̄δ̄23 þ η̄δ̄3π̄3Þ þ 1

2
λ2πB2

πσ̄ − Bm
2
ðmu þmdÞ cos θ2 − κ1ᾱffiffi

2
p ðσ̄ cos β̄ þ η̄ sin β̄Þ ¼ 0;

∂V
∂η
���
S
¼ 1

2
Λ2
πðσ̄2 þ η̄2 þ δ̄23 þ π̄23Þη̄þ λ2πðσ̄δ̄3π̄3 þ η̄π̄23Þ þ 1

2
λ2πB2

πη̄þ Bm
2
ðmu þmdÞ sin θ

2
− κ1ᾱffiffi

2
p ð−η̄ cos β̄ þ σ̄ sin β̄Þ ¼ 0;

∂V
∂δ3

���
S
¼ 1

2
Λ2
πðσ̄2 þ η̄2 þ δ̄23 þ π̄23Þδ̄3 þ λ2πðσ̄2δ̄3 þ σ̄ η̄ π̄3Þ þ 1

2
λ2πB2

πδ̄3 −
Bm
2
ðmu −mdÞ cos θ2 − κ1ᾱffiffi

2
p ð−δ̄3 cos β̄ − π̄3 sin β̄Þ ¼ 0;

∂V
∂π3

���
S
¼ 1

2
Λ2
πðσ̄2 þ η̄2 þ δ̄23 þ π̄23Þπ̄3 þ λ2πðσ̄ η̄ δ̄3 þ η̄2π̄3Þ þ 1

2
λ2πB2

ππ̄3 þ Bm
2
ðmu −mdÞ sin θ

2
− κ1ᾱffiffi

2
p ðπ̄3 cos β̄ − δ̄3 sin β̄Þ ¼ 0;

∂V
∂α
���
S
¼ λ2X

�
ᾱ2 − F2

X
2

	
ᾱ − κ1

2
ffiffi
2

p ½ðσ̄2 − η̄2 − δ̄23 þ π̄23Þ cos β̄ þ 2ðη̄ σ̄ −δ̄3π̄3Þ sin β̄� ¼ 0;

∂V
∂β
���
S
¼ − κ1ᾱ

2
ffiffi
2

p ½−ðσ̄2 − η̄2 − δ̄23 þ π̄23Þ sin β̄ þ 2ðη̄ σ̄ −δ̄3π̄3Þ cos β̄� þ Aβ̄ ¼ 0:

ð3:10Þ

Solving these equations at the first nontrivial order in the quark masses, one finds that

σ̄ ≃
Bmðmu þmdÞ
λ2πB2

π − κ1FX
cos

θ

2
; η̄ ≃ −

Bmðmu þmdÞ
λ2πB2

π þ κ1FX
sin

θ

2
;

δ̄3 ≃
Bmðmu −mdÞ
λ2πB2

π þ κ1FX
cos

θ

2
; π̄3 ≃ −

Bmðmu −mdÞ
λ2πB2

π − κ1FX
sin

θ

2
;

ᾱ ≃
FXffiffiffi
2

p þ
ffiffiffi
2

p
κ21λ

2
πB2

π

λ2XFXðλ4πB4
π − κ21F

2
XÞ2

B2
mðm2

u þm2
dÞ þ

ffiffiffi
2

p
κ21ðλ4πB4

π þ κ21F
2
XÞ

λ2XF
2
Xðλ4πB4

π − κ21F
2
XÞ2

B2
mmumd cos θ;

β̄ ≃ −
κ1FX

A
B2
mmumd

λ4πB4
π − κ21F

2
X
sin θ: ð3:11Þ
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Studying the matrix of the second derivatives of the
potential with respect to the fields, one immediately
verifies that this solution corresponds indeed to a mini-
mum of the potential, provided that the condition
λ2πB2

π > κ1FX, i.e., remembering Eq. (2.1), Gπ ≡ κ1FX þ
2λ2πρπ < 0, is satisfied. As in the case of the ELσ model
for L ¼ 2 (discussed in Sec. II B), the critical transi-
tion temperature Tc is just defined by the condition

GπðT ¼ TcÞ ¼ 0 and, assuming that κ1FX > 0, this im-
plies that (differently from the case L ≥ 3) Tc > Tρπ (see
also Ref. [17] for a more detailed discussion on this
question).
Substituting this solution into Eq. (3.9), and neglecting

(for consistency) all the terms which are more than
quadratic in the quark masses, we find the following θ
dependence for the minimum value of the potential:

VminðθÞ ¼
λ2π
8
B4
π þ

λ2π
4
B2
πðσ̄2 þ η̄2 þ δ̄23 þ π̄23Þ −

Bm

2

�
ðmu þmdÞ

�
σ̄ cos

θ

2
− η̄ sin

θ

2

�

þ ðmu −mdÞ
�
δ̄3 cos

θ

2
− π̄3 sin

θ

2

��
−
κ1FX

4
ðσ̄2 − η̄2 − δ̄23 þ π̄23Þ þOðm3Þ

¼ const −
κ1FXB2

mmumd

λ4πB4
π − κ21F

2
X
cos θ þOðm3Þ: ð3:12Þ

Also in this case, we notice that this potential, as well as the
expressions (3.11) for σ̄, η̄, δ̄3, and π̄3, coincide exactly (at
least, at the leading order in the quark masses) with the
corresponding expressions (2.12) and (2.13) that we have
found in the ELσ model, provided that the constant κ is
identified with κ1FX=4 [and is thus proportional to the
Uð1Þ axial condensate]. The same consideration also
applies, of course, to the results for the topological
susceptibility and for the second cumulant:

χ ¼ ∂2VminðθÞ
∂θ2

����
θ¼0

≃
κ1FXB2

m

λ4πB4
π − κ21F

2
X
mumd;

c4 ¼
∂4VminðθÞ

∂θ4
����
θ¼0

≃ −
κ1FXB2

m

λ4πB4
π − κ21F

2
X
mumd: ð3:13Þ

IV. CONCLUSIONS: SUMMARY AND ANALYSIS
OF THE RESULTS

In this conclusive section we summarize and critically
comment on the results that we have found, indicating also
some possible future perspectives.
Two basic remarks must be made about our results. First

(as already observed at the end of Secs. III A and III B),
the results that we have found (both in the case L ≥ 3 and in
the case L ¼ 2) for the vacuum energy density ϵvacðθÞ ¼
VminðθÞ (and, as a consequence, for the topological
susceptibility χ and the second cumulant c4) in the ELσ

model and in the interpolating model are exactly the same,
provided that the parameter κ in Eqs. (2.7)–(2.8) and
(2.13)–(2.14) is identified with κ1FX=4 [and is, therefore,
proportional to the Uð1Þ axial condensate]. In fact, we have
found that

ϵvacðθÞ ≃ const − K cos θ; ð4:1Þ

and, therefore

χ ¼ ∂2ϵvacðθÞ
∂θ2

����
θ¼0

≃ K; c4 ¼
∂4ϵvacðθÞ

∂θ4
����
θ¼0

≃ −K;

ð4:2Þ

where, for L ≥ 3

KðL≥3Þ ¼ 2κ

�
2Bmffiffiffi
2

p
λ2πB2

π

�
L
detM

¼ κ1FX

2

�
2Bmffiffiffi
2

p
λ2πB2

π

�
L
detM; ð4:3Þ

and, for L ¼ 2

KðL¼2Þ ¼
4κB2

m

λ4πB4
π − 16κ2

mumd ¼
κ1FXB2

m

λ4πB4
π − κ21F

2
X
mumd: ð4:4Þ

This result is, of course, in agreement with what we have
already observed in the introduction [see, in particular,
Eq. (1.10)], but we want to emphasize that it is even
stronger than the correspondence (1.10), since it is valid
regardless of the parameters λX and A of the interpola-
ting model [which do not appear in the above-written
expressions for ϵvacðθÞ, χ, and c4]. Taking into account also
the results that were found in Ref. [3], we now clearly see
that the so-called “interpolating model” indeed approxi-
mately “interpolates” between the WDV model at T ¼ 0
(for ω1 ¼ 1 it reproduces the same expressions for χ and c4
of the WDV model) and the ELσ model at T > Tc
(where ω1 ¼ 0).
We also observe that the result (4.4), for the special case

L ¼ 2, can be rewritten in the following more interesting
and enlightening way:
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KðL¼2Þ ≃
M2

η −M2
σ

4M2
ηM2

σ
ðBmmuÞðBmmdÞ; ð4:5Þ

in terms of the masses of the scalar and pseudoscalar
mesonic excitations, which, at the leading order in the
quark masses, are given by [17]

M2
σ ¼ M2

π ≃
1

2
ðλ2πB2

π − 4κÞ ¼ 1

2
ðλ2πB2

π − κ1FXÞ;

M2
η ¼ M2

δ ≃
1

2
ðλ2πB2

π þ 4κÞ ¼ 1

2
ðλ2πB2

π þ κ1FXÞ: ð4:6Þ

The second important remark that we want to make about
our results is that both the θ dependence of ϵvacðθÞ in
Eq. (4.1) and the quark-mass dependence of the coefficient
K (proportional to detM) are in agreement with the
corresponding results found using the so-called dilute
instanton-gas approximation (DIGA) [2]. Of course, we
cannot make any more quantitative statements about the
comparison of our value of K with the corresponding
value Kinst in DIGA, or about its dependence on the
temperature T.
In this respect, recent lattice investigations have shown

contrasting results. While the results of Refs. [21–23] have
shown a considerable agreement with the DIGA prediction,
even in the region right above Tc, other studies [24,25] have
found appreciable deviations from the DIGA prediction for
temperatures T up to two or three times Tc. The situation is
thus controversial and calls for further and more accurate
studies (in this respect, see also Ref. [26]).
Concerning, instead, the limits of validity of our ana-

lytical results (4.1)–(4.4), we recall that they were obtained
at the first nontrivial order in an expansion in the quark
masses. Therefore, both the coincidence between the results
in the two models and the agreement with the θ dependence
predicted by DIGA are valid in this approximation and it
would be interesting to investigate how strongly these
results are modified going beyond the leading order in the
quark masses. (It is reasonable to suspect that this approxi-
mation makes sense for T − Tc ≫ mf, but not for T close to
Tc, i.e., for T − Tc ≲mf).
A complete and detailed study of the θ dependence of

ϵvacðθÞ both for the ELσ model and the interpolating model,
not limited to the leading order in the quark masses, is
beyond the scope of the present paper and is left for
future works.
A first step in this direction has been, however, already

done in the Appendix of the present paper, where an
“exact” expression for the topological susceptibility χ for
T > Tc has been derived, both for the interpolating model
(considering the effective Lagrangian in the form (1.4)–
(1.5), where the field variable QðxÞ has not yet been
integrated out) and, making use of the correspondence
(1.10), also for the ELσ model. The expressions of χ for the
two models are reported in Eqs. (A8) and (A9) respectively.

We see that they are slightly different, but if one expands at
the leading order in the quark masses, one easily verifies
that they both tend to the same limit (with the identification
κ ¼ κ1FX=4), given by Eqs. (2.8) and (3.7) for L ≥ 3, and
by Eqs. (2.14) and (3.13) for L ¼ 2.
A necessary condition for this approximation to be valid

is, of course, that [see Eqs. (A8)–(A12)] detS ≪ A
ᾱ2
detΛ,

which, by virtue of Eq. (A8), implies χ ≪ A. (In the
opposite extreme case, if we formally let A → 0, keeping
all the rest fixed, we would obtain that χ ≃ A → 0.)
While at T ¼ 0 this condition is reasonably satisfied,

since in that case one identifies A with the pure-gauge
topological susceptibility and [see Ref. [3] and references
therein] χðT ¼ 0Þ≃ ð75MeVÞ4, AðT ¼ 0Þ ≃ ð180 MeVÞ4,
its validity at finite temperature, above Tc, is, instead,
questionable. [For example, it is not even clear if, in our
phenomenological Lagrangian for the interpolating model
at finite temperature, the parameter AðTÞ can be simply
identified with the pure-gauge topological susceptibility].
We hope that future works (both analytical and numeri-

cal) will be able to shed light on these questions.
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APPENDIX: “EXACT” EXPRESSION FOR THE
TOPOLOGICAL SUSCEPTIBILITY ABOVE Tc

In the interpolating model, it is possible to derive the
two–point function of QðxÞ (i.e., the topological suscep-
tibility χ) at θ ¼ 0 in another (and even more direct)
way, considering the effective Lagrangian in the form
(1.4)–(1.5), where the field variable QðxÞ has not yet been
integrated out (and θ is fixed to be equal to zero, by putting
M ¼ M). Clearly,

χðkÞ≡ −i
Z

d4xeikxhTQðxÞQð0Þi ¼ ðK−1ðkÞÞQ;Q; ðA1Þ

where K−1ðkÞ is the inverse of the matrix KðkÞ associated
with the quadratic part of the Lagrangian (1.4)–(1.5) in
the momentum space, for the ensemble of pseudoscalar
fields ðQ; SX; b11; b12;…Þ [see Eqs. (2.2) and (3.2), with
α≡ ᾱþ hX and β≡ SX=ᾱ; the contribution of the scalar
fields ðhX; a11; a12;…Þ is block diagonal and, therefore,
can be trivially factorized out]:

KðkÞ ¼

0
BBBBB@

1
A − 1

ᾱ 0 …

− 1
ᾱ RðkÞX;X RðkÞX;11 …

0 RðkÞ11;X RðkÞ11;11 …

..

. ..
. ..

. . .
.

1
CCCCCA
; ðA2Þ

where:
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RðkÞ ¼ k2I − S; S ¼

0
BB@

m2
0 OðmL−1Þ …

OðmL−1Þ Λ11;11 …

..

. ..
. . .

.

1
CCA;

ðA3Þ

and (assuming that L ≥ 3)

m2
0 ≡ κ1ffiffiffi

2
p

ᾱ
det Ū; Λij;lm ¼ 1

2
λ2πB2

πδilδjm þ…; ðA4Þ

with

Ū ¼ 2Bmffiffiffi
2

p
λ2πB2

π

M þ � � � ; ᾱ ¼ FXffiffiffi
2

p þOðdetMÞ: ðA5Þ

Performing explicitly the computation, one finds that

χðkÞ ¼ ðK−1ðkÞÞQ;Q ¼ detRðkÞ
detKðkÞ ¼ A

detRðkÞ
det R̃ðkÞ ; ðA6Þ

having defined

R̃ðkÞ ¼ k2I − S̃; S̃ ¼

0
BB@

m2
0 þ A

ᾱ2
OðmL−1Þ …

OðmL−1Þ Λ11;11 …

..

. ..
. . .

.

1
CCA;

ðA7Þ

so that det R̃ðkÞ ¼ detRðkÞ − A
ᾱ2
detðk2I − ΛÞ. In particu-

lar, putting k ¼ 0, the following expression for the topo-
logical susceptibility is found:

χ ≡ χðk ¼ 0Þ ¼ A
detS

det S̃
¼ A

detS
detS þ A

ᾱ2
detΛ

: ðA8Þ

This expression has been obtained for the interpolating
model, but, as explained in the Introduction [see, in
particular, Eq. (1.10)], if we take the formal limits
λX → ∞ and A → ∞ (having already fixed ω1 ¼ 0, since
we are at T > Tc), we also obtain the expression for the
topological susceptibility in the ELσ model:

χðELσÞ ¼
ᾱ2 detS
detΛ

¼ det S̄
detΛ

; ðA9Þ

where now ᾱ ¼ FXffiffi
2

p and

S̄ ¼

0
BB@

m̄2
0 ᾱOðmL−1Þ …

ᾱOðmL−1Þ Λ11;11 …

..

. ..
. . .

.

1
CCA; ðA10Þ

with

m̄2
0 ≡ ᾱ2m2

0 ¼
κ1ᾱffiffiffi
2

p det Ū ¼ 2κ det Ū; ðA11Þ

having identified, as usual, κ ≡ κ1ᾱ
2
ffiffi
2

p ¼ κ1FX
4
.

Even with this identification, the two expressions (A8)
and (A9) are slightly different, but if one expands at the
leading order in the quark masses, using the fact that [see
Eqs. (A4) and (A5)]:

detΛ ¼
�
1

2
λ2πB2

π

�
L2

þ � � � ;

detS ¼ κ1
FX

�
2Bmffiffiffi
2

p
λ2πB2

π

�
L
�
1

2
λ2πB2

π

�
L2

detM þ…; ðA12Þ

one easily verifies that they both tend to the same limit,
given by Eqs. (2.8) and (3.7)6:

χ ≃
κ1FX

2

�
2Bmffiffiffi
2

p
λ2πB2

π

�
L
detM ¼ 2κ

�
2Bmffiffiffi
2

p
λ2πB2

π

�
L
detM:

ðA13Þ

Similar results come out also in the special case L ¼ 2. In
particular, the expressions (A8) and (A9) (for the topo-
logical susceptibility in the interpolating model and in
the ELσ model, respectively) are valid also in this case,
provided that one uses for the matrices S, S̄, and Λ the
following expressions [referring to the ensemble of pseu-
doscalar fields ðSX; η; π3Þ; see Ref. [17] for further details]:

SðL¼2Þ ¼

0
BB@

m2
0 − κ1ffiffi

2
p σ̄ κ1ffiffi

2
p δ̄3

− κ1ffiffi
2

p σ̄ Λ11 Λ12

κ1ffiffi
2

p δ̄3 Λ21 Λ22

1
CCA;

S̄ðL¼2Þ ¼

0
B@

m̄2
0 −2κσ̄ 2κδ̄3

−2κσ̄ Λ11 Λ12

2κδ̄3 Λ21 Λ22

1
CA; ðA14Þ

and

ΛðL¼2Þ ¼
�1

2
ðλ2πB2

πþκ1
ffiffiffi
2

p
ᾱÞþΔ λ2πδ̄3σ̄

λ2πδ̄3σ̄
1
2
ðλ2πB2

π−κ1
ffiffiffi
2

p
ᾱÞþΔ

�
;

ðA15Þ

where Δ≡ 1
2
Λ2
πðσ̄2 þ δ̄23Þ (having defined Λ2

π ≡ λ2π þ 2λ02π )
and

6This approximate expression [but not the “exact” expressions
(A8) and (A9)] was derived (for the interpolating model) also in
Ref. [14].
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m2
0 ≡ κ1

2
ffiffiffi
2

p
ᾱ
ðσ̄2 − δ̄23Þ; m̄2

0 ≡ κðσ̄2 − δ̄23Þ; ðA16Þ

with

σ̄ ¼ Bmðmu þmdÞ
λ2πB2

π − κ1FX
þ…; δ̄3 ¼

Bmðmu −mdÞ
λ2πB2

π þ κ1FX
þ…;

ᾱ ¼ FXffiffiffi
2

p þOðm2Þ: ðA17Þ

Using these expressions, one finds that, at the leading order
in the quarks masses,

detΛ ¼ 1

4
ðλ4πB4

π − κ21F
2
XÞ þOðm2Þ;

detS ¼ κ1B2
m

2FX
mumd þOðm3Þ; ðA18Þ

so that, also in the special case L ¼ 2, one easily verifies
that the two expressions (A8) and (A9) tend to the same
limit, given by Eqs. (2.14) and (3.13):

χ ≃
κ1FXB2

m

λ4πB4
π − κ21F

2
X
mumd ¼

4κB2
m

λ4πB4
π − 16κ2

mumd: ðA19Þ
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