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The path optimization method is applied to a QCD effective model with a Polyakov loop and a repulsive
vector-type interaction at finite temperature and density to circumvent the model sign problem. We show
how the path optimization method can increase the average phase factor and control the model sign
problem. This is the first study which correctly treats the repulsive vector-type interaction in the QCD
effective model with a Polyakov loop via the Markov-chain Monte Carlo approach. It is shown that we can
evade the model sign problem within the standard path-integral formulation by complexifying the temporal
component of the gluon field and the vector-type auxiliary field.
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I. INTRODUCTION

Understanding the confinement-deconfinement transition
at finite temperature (T) and chemical potential (μ) in
quantum chromodynamics (QCD) is one of the important
and interesting subjects in elementary particle, nuclear, and
hadron physics. To investigate nonperturbative properties of
QCD such as chiral symmetry breaking and the confinement
mechanism, Monte Carlo simulations of lattice QCD have
been utilized as a powerful tool for studying nonperturbative
properties of QCD such as chiral symmetry breaking and
confinement at zero baryon density. Unfortunately, lattice
QCD simulations have the sign problem at a nonzero real
quark chemical potential. To circumvent the sign problem,
several methods have been proposed so far such as the
Taylor expansion method [1–3], the reweighting method
[4,5], the analytic continuation method [6–8], and the
canonical approach [9–14]. However, we cannot access
the cold dense region, μ=T > 1, in these methods at
present [15].
The QCD effective models are widely used to investigate

the QCD phase structure at finite real chemical potential.
We can sometimes avoid the sign problem in simple models
such as the Nambu–Jona-Lasinio (NJL) model without a

repulsive vector-type interaction. In more realistic models,
however, the sign problem arises again. For example, the
Polyakov-loop extended NJL (PNJL) model [16] has the
sign problem even in the mean-field treatment. The sign
problem appearing in the QCD effective model is called the
model sign problem [17,18]. Practically, one can avoid the
model sign problem by using some prescriptions which
may not have a clear theoretical foundation.
One of the model sign problems arises from the vector-

type interaction. In the mean-field approximation for the
NJL-type model, we usually neglect the Wick rotation of
the vector-type auxiliary field (ω0), and then the stationary
point of the action is considered to be the solution. The
stationary point corresponds to the maxima of the thermo-
dynamic potential along the ω0 direction, and thus it is not
stable, in principle. While this treatment cannot be justified
from the standard path-integral formulation, it can be
acceptable in the mean-field approximation. Actually, this
problem has been discussed in Ref. [19] by using the
Lefschetz-thimble method [20–22]. We can clearly under-
stand that the standard mean-field treatment implicitly
employs the complexification of the vector-type auxiliary
field based on the Cauchy(-Poincaré) theorem.
In this article, we use the path optimization method

[23–26] to formally tackle the model sign problem induced
by the Polyakov loop and also the repulsive vector-type
interaction in a QCD effective model. In Ref. [26], we have
shown that the complexification of the temporal component
of the gluon field is sufficient to control the model sign
problem in the PNJL model without a repulsive vector-type
interaction. In addition, we have shown that the complex-
ification of the vector-type auxiliary field should be
responsible to control the model sign problem in the
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NJL model with a repulsive vector-type interaction [19]. It
should be noted that the flow equation of the Lefschetz
thimble blows up at a small value of the vector-type
auxiliary field, and we failed to obtain the Lefschetz
thimbles in the auxiliary-field space in Ref. [19].
Therefore, in this article, we apply the path optimization
method to the PNJL model with a repulsive vector-type
interaction to control its model sign problem. This study is
the first attempt to treat the model sign problem correctly
and systematically within the standard path-integral for-
mulation via the complexification of the integral variables
in the QCD effective model with a Polyakov loop and a
repulsive vector-type interaction.
This article is organized as follows. In the next section,

we explain the path optimization method and the PNJL
model with a repulsive vector-type interaction. Section III
shows numerical results by using the hybrid Monte Carlo
method. Section IV is devoted to the summary and
discussions.

II. FORMULATION

We investigate the model sign problem appearing in the
PNJL model with a repulsive vector-type interaction via the
path optimization method. Details are explained below.

A. Polyakov-loop extended
Nambu–Jona-Lasinio model

The Euclidean Lagrangian density of the two-flavor
PNJL model [16] with a repulsive vector-type interaction
is given as

L ¼ q̄ðDþm0Þq −G½ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2� þ Gvðq̄γμqÞ2
þ VgðΦ; Φ̄Þ; ð1Þ

wherem0 denotes the current quark mass,Dν¼∂ν−igAνδν4
is the covariant derivative, Φ (Φ̄) represents the Polyakov
loop (its conjugate), and Vg expresses the gluonic con-
tribution. The coupling constants G and Gv take positive
values, as understood from the QCD one-gluon exchange
interaction; see Ref. [27] as an example.
We employ the homogeneous auxiliary-field ansatz, as

adopted in previous works using the Monte Carlo PNJL
model [26,28], and thus our numerical results converge to
mean-field results in the infinite volume limit. The homo-
geneous ansatz corresponds to the momentum truncation to
k ¼ 0. After the bosonization and complexification of
auxiliary fields, the grand-canonical partition function is
given as

Z ¼
Z Y

k

dzke−Γ½zk�; ð2Þ

where Γ is the effective action and zk represents the
dynamical variables in the momentum space. With the

homogeneous field ansatz, we truncate the auxiliary fields
to k ¼ 0 components. Then the effective action becomes
Γ ¼ βVV, where V is the effective potential and β is the
inverse temperature. Thus, our Monte Carlo results should
agree with the mean-field results in the infinite volume
limit, where the configuration at the minimum of V
dominates.
After the Hubbard-Stratonovich transformation (bosoni-

zation), the thermodynamic potential is obtained as

V ¼ VNJL þ Vg; ð3Þ

where VNJL and Vg are the fermionic and gluonic parts of
the effective potential, respectively. The actual form of VNJL
is given as

VNJL¼−2Nf

Z
Λ

d3p
ð2πÞ3

h
NcEp−Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

0

q
þT lnðf−fþÞ

i

þGðσ2þ ⃗π2ÞþGvω
2
4; ð4Þ

where Nf ¼ 2 (Nc ¼ 3) is the number of flavor (color) and
Λ is the three-dimensional momentum cutoff. We set the
same momentum cutoff in the vacuum and the thermal
parts. We here introduce auxiliary fields as σ ¼ q̄q,
π⃗ ¼ q̄iγ5τ⃗q, and ω4 ¼ −q̄iγ0q. The Fermi-Dirac distribu-
tion functions are given as

f− ¼ 1þ 3ðΦþ Φ̄e−βE
−
p Þe−βE−

p þ e−3βE
−
p ;

fþ ¼ 1þ 3ðΦ̄þΦe−βE
þ
p Þe−βEþ

p þ e−3βE
þ
p ;

E∓
p ¼ Ep ∓ μ̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2p þ 2NþN−

q
∓ μ̃;

εp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2 þ N2

q
; ð5Þ

whereM, N, N�, and μ̃ are functions of the auxiliary fields:

M ¼ m0 − 2Gσ; N ¼ −2Gπ0;

N� ¼ −2Gπ�; μ̃ ¼ μ − 2iGvω4; ð6Þ

with π0 ¼ π3 and π� ¼ ðπ1 � iπ2Þ=
ffiffiffi
2

p
. Because of the

2iGvω4 term in μ̃, the repulsive vector-type interaction
induces the model sign problem in addition to that from the
Polyakov loop. For Vg, we employ the logarithmic-type
Polyakov-loop potential proposed in Ref. [29]:

Vg

T4
¼ −

1

2
aTΦ̄Φþ bT lnðhÞ; ð7Þ

h ¼ 1 − 6Φ̄Φþ 4ðΦ̄3 þΦ3Þ − 3ðΦ̄ΦÞ2; ð8Þ

aT ¼ a0þa1

�
T0

T

�
þa2

�
T0

T

�
2

; bT ¼ b3

�
T0

T

�
3

: ð9Þ
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The parameters are usually set to reproduce the lattice QCD
data in the pure gauge limit. The basic setup to compute the
PNJL model with the Markov-chain Monte Carlo method is
shown in Refs. [26,28].
Cuts in the logarithm of Eq. (7) may induce the

numerical problem, but it may be a model artifact, and
thus we do not consider any additional care for the
singularities in this study as in Ref. [26]. One of the
promising ways to avoid the problem is the modification of
the functional form of the Polyakov-loop potential. The
logarithmic term in the Polyakov-loop potential appears as
VT3

0b3 × lnðhÞ in the Boltzmann weight. If VT3
0b3 is set to

be a positive integer, the singularity does not matter. In the
present potential, VT3

0b3 is not an integer. It is well known
that there is another functional form of the Polyakov-loop
potential that is the polynomial one [30], which also
reproduces the lattice QCD data in the pure gauge limit
at finite T and does not have singularities. Nevertheless,
sampled configurations are found to be well localized; then
the path optimization method works well practically in the
present setup as shown later.

B. Path optimization method

In the path optimization method, we first complexify the
integral variables, xi ∈ R → zi ∈ C, where i ¼ 1;…; n
with n being the dimension of integration. To construct
the new (and good) integral path in the complex space, we
use the cost function, which represents the seriousness of
the sign problem. We vary the integral path in the direction
to decrease the cost function. This method has a similarity
from the viewpoint of the complexification of dynamical
variables with the complex Langevin method [31,32] and
the Lefschetz-thimble method [20–22,33]. Especially, the
path optimization method belongs to the category of the
off-thimble integral methods, which allow the integral path
to deviate from the thimble, as proposed in the generalized
Lefschetz-thimble method [33]. See Refs. [34–40] for
recent progress in these methods.
The path optimization method was first proposed in

Ref. [23]. Machine learning (feedforward neural network)
was introduced to describe and to optimize the modified
integral path in Refs. [24,25]. A few days before Ref. [25]
was submitted, machine learning was introduced to learn
the integral manifold in the generalized Lefschetz-thimble
method in Ref. [41]. This method uses supervised learning,
because we must teach the relevant integral path (manifold)
to the neural network, and the results of the generalized
Lefschetz-thimble method have been used as the teacher
data; it is the first paper which employs supervised learning
to evade the sign problem as far as we know. Also, the same
group applied machine learning to optimize the integral
path by using the average phase factor in Ref. [40] after our
paper [25] appeared. This method has a similarity with
our path optimization method which uses unsupervised

learning. Machine learning can be applied to various
optimization problems, and, thus, it is quite useful in
physics.
The functional form of the new integral path is repre-

sented by using the feedforward neural network [23,25].
Then, the parameters in the feedforward neural network are
optimized via the minimization of the cost function. The
largest advantage of using the feedforward neural network
in the path optimization method is in the universal
approximation theorem; the neural network even with a
mono-hidden layer can approximate any kind of continuous
function on the compact subset as long as we prepare a
sufficient number of units in the hidden layer [42,43].
To use the feedforward neural network, we represent zi

by using a parametric quantity (ti) as

aiðtÞ ¼ gðwð1Þ
ij tj þ bð1Þi Þ; fiðtÞ ¼ gðwð2Þ

ij aj þ bð2Þi Þ;
ziðtÞ ¼ ti þ i½αifiðtÞ þ βi�; ð10Þ

where wij, bi, αi, and βi are parameters. In particular, w and
b are called the weight and the bias, respectively. Thus, we
have the map ReðziÞ ↠ ImðziÞ. The function gðxÞ is called
the activation function, and we use the hyperbolic tangent
function. We use the back-propagation algorithm in the
actual optimization of parameters. It should be noted that
the path optimization method reproduces the same results
as the original theory because of the Cauchy(-Poincaré)
theorem as long as the integral path does not go across
singular points and the contribution at Rez → �∞
vanishes.
To obtain the good integral path, we use the following

form of the cost function:

F ½zðtÞ� ¼ 1

2

Z
dntjeiθðtÞ−eiθ0 j2× jJðtÞe−ΓðzðtÞÞj

¼
Z

dntjJðtÞe−ΓðzðtÞÞj−
����
Z

dntJðtÞe−ΓðzðtÞÞ
����; ð11Þ

where

θðtÞ ¼ argðJðtÞe−ΓðzðtÞÞÞ; θ0 ¼ argðZÞ;

JðtÞ ¼ det

�∂zi
∂tj

�
; ð12Þ

see Ref. [23] for details.
In applying the path optimization method to the PNJL

model with a vector-type interaction, we complexify
temporal gluon components (A3 and A8) and the Wick-
rotated vector-type auxiliary field (ω4), while the scalar-
type and pseudoscalar-type auxiliary fields (σ and π⃗) are
still treated as real variables. Thus, we have seven dynami-
cal variables (σ, π0, π�, Reω4, ReA3, and ReA8) and three
dependent variables (Imω4, ImA3, and ImA8), where the
latter three variables are given via Eq. (10), since it is
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known that the model sign problem can be resolved by the
complexification of the temporal gluon fields in the
Lefschetz-thimble method at least in a system without a
repulsive vector-type interaction [18]. Also, ω4 can induce
the model sign problem even in the NJL model, and then
we must consider the complexification of ω4 [19].
In the present study, we directly complexify A3, A8, and

ω4, but this treatment may violate the periodicity along the
ReA3 and ReA8 directions. If we wish to take care of
the periodicity, we may use the periodic functional form in
the neural network as in Ref. [41]. In particular, the
violation of the periodicity may become serious when
the configurations are spread widely in the ReA3 and ReA8

variables. For example, see Ref. [44] for the issue of the
periodicity. As shown later, however, the present calcu-
lation agrees well with the mean-field approximation and
configurations are well localized. Thus, we do not intro-
duce the periodic form of inputs at present.
It should be noted that the path optimization with the

feedforward neural network is unsupervised learning,
because we do not need teacher data. The settings of the
feedforward neural network in the path optimization
method such as the optimizer are the same as Ref. [26],
and, thus, we skip the explanation here.

III. NUMERICAL RESULTS

In the actual numerical calculation, we have generated
80 000 configurations by using the hybrid Monte Carlo
method. Then, the expectation values are estimated after a
few times of optimization. We employ the simple neural
network which contains the input, mono-hidden, and out-
put layers. The number of unit in the hidden layer is set to
4Ndof ¼ 12, where Ndof is the number of dependent
variables. The expectation value of an operator (O) is
obtained via the phase reweighting as

hOi ¼
R
dntOeiθjJðtÞe−ΓðzðtÞÞjR
dnteiθjJðtÞe−ΓðzðtÞÞj ¼ heiθOipq

heiθipq
; ð13Þ

where h� � �ipq means the phase quenched average and

eiθ ¼ JðtÞe−ΓðzðtÞÞ
jJðtÞe−ΓðzðtÞÞj : ð14Þ

The parameters in the NJL part are the same as in Ref. [26],
and we newly introduce Gv as Gv ¼ 0.5G.
Figure 1 shows the average phase factor, Reheiθipq, at

T ¼ 0.1 GeV with k ¼ VT3 ¼ 8 and 64. In some regions
of μ, the average phase factor becomes almost 0 before the
optimization, as shown by the dashed line in the figure. By
comparison, we can successfully increase the average
phase factor after the optimization. It suggests that there
is no need to complexify σ and π⃗ auxiliary fields in the path
optimization method to investigate the PNJL model with a

repulsive vector-type interaction. Also, this would be true
in the Lefschetz-thimble method and other complexified
integral-path approaches. Compared with the PNJL model
without a repulsive vector-type interaction [26], the average
phase factor becomes worse, because the ω4 field addi-
tionally induces the sign problem at a finite density. Around
μ ¼ 0.36 GeV, the optimization is neither sufficient nor
automatic in the case with k ¼ 64. With naive initial
conditions of dynamical variables, the average phase factor
stays very small. Then, various initial conditions have been
examined, and we finally obtain the optimized path with a
reasonably large average phase factor as shown in Fig. 1.
This result indicates that the present neural network in the
case with k ¼ 64 does not have enough performance of the
approximation to overcome the exponential suppression of
the average phase factor.
Figure 2 shows the μ dependence of the order parameters

at T ¼ 0.1 GeV after the optimization. We also show the
mean-field results based on the CK symmetry ansatz in
the fermion determinant [45,46], where C and K are
the charge and complex conjugations, respectively. This
ansatz can be justified by using the Lefschetz-thimble
method [18]. Under the CK symmetry condition, we solve
gap equations

FIG. 1. The μ dependence of Reheiθipq at T ¼ 0.1 GeV. The
top and bottom panels show results with k ¼ 8 and 64, respec-
tively. The circle and square symbols are results after and before
the optimization, respectively.
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∂Γ
∂σ ¼ 0;

∂Γ
∂ω0

¼ 0;
∂Γ
∂Φ ¼ 0;

∂Γ
∂Φ̄ ¼ 0; ð15Þ

where we do not use the Wick rotation of the vector-type
auxiliary field. This treatment cannot be justified in the
standard path integral formulation, but practically it repro-
duces the correct result in the leading order of the large Nc
expansion, because ω0 corresponds to the quark number
density in themean-field approximation. From the figure, we
find that the numerical errors are well controlled and the
difference between Φ and Φ̄ at a finite density, Φ̄ > Φ, is
correctly reproduced. Compared with the results without a
vector-type interaction [26], the chiral condensate decreases
more slowly. This is reasonable, since the repulsive vector-
type interaction is known to weaken the chiral phase
transition. We find that jImω4j strongly increases above
μ ¼ 0.3 GeV. Since the quark number density and ω4 are
related to each other via ω0 ¼ hq†qi ¼ iω4, this sudden
increase indicates the absence of the silver-blaze problem at
T ¼ 0; the quark number density should start to increase at

μ ¼ Mðμ ¼ 0Þ. By comparison, the results at small μ are
almost the same as those without a vector-type interaction
[26], since the quark number density and, thus, the vector
potential are small.
It should be noted that the real part of ω4 is consistent

with zero within the error bar, and, thus, the consequence
obtained in the analyses in the Lefschetz-thimble method
[19] is naturally understood in the path optimization
method. We must consider the Wick rotation of ω0, and

FIG. 2. The top and bottom panels show the μ dependence of σ
and ω4, and Φ and Φ̄ at T ¼ 0.1 GeV with k ¼ 64, where σ and
ω4 are normalized by σ at T ¼ μ ¼ 0 (σ0 < 0) in the infinite
volume limit. The thin dashed lines are eye guides which are the
mean-field results with the CK symmetry ansatz in the fermion
determinant and the un-Wick-rotated calculation.

FIG. 3. The scatter plot at T ¼ 0.1 GeV and μ ¼ 0.3 GeV on
the ReA3–ReA8, ReA3–Reω4, and ReA8–Reω4 planes. Here we
use 80 000 configurations.
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then the model sign problem can be resolved by complex-
ifying ω4. The present results imply that the ω4 field has
almost only the imaginary part; then the flow equation of
the Lefschetz thimble can stall at a small value of jReω4j. In
Fig. 3, we show the scatter plot of the hybrid Monte Carlo
configurations at T ¼ 0.1 GeV and μ ¼ 0.3 GeV on the
ReA3-ReA8, ReA3-Reω4, and ReA8-Reω4 planes. We can
see the localized configurations around ReA8 ¼ 0 and
ReA3 ≠ 0. Thus, this study implies that the standard
PNJL model computation with a repulsive vector-type
interaction under the CK symmetry ansatz and the un-
Wick-rotated ω0 in the mean-field approximation is
systematically and numerically justified via the path
optimization method. The scatter plot also supports the
direct complexification of A3 and A8 without taking care of
the periodicity. The Monte Carlo configurations are not
spread but localized; then it is not necessary to take account
of the periodic boundary condition.

IV. SUMMARY

In this study, we have applied the path optimization
method to the QCD effective model with a Polyakov loop
and a repulsive vector-type interaction. The feedforward
neural network with the mono-hidden layer is employed to
describe the good integral path in the complexified space of
integral variables. The temporal components of the gluon
field and the vector-type auxiliary field are complexified,
and then the path is optimized via the path optimization
method.
By optimizing the path (manifold), we can successfully

improve the average phase factor, and calculated results of
observables show reasonable behavior and have small error
bars. It is not easy to optimize the integral path in the
rapidly changing region of the order parameters, but we can
finally improve the average phase factor by examining
various initial conditions of dynamical variables.
After a few optimization steps, we can well reproduce

the mean-field results at a large volume as we expect. Since
we use the homogeneous ansatz of the integral valuables,
our numerical simulation should give the mean-field result
in the large volume limit. The imaginary part of the vector-
type auxiliary field starts to rapidly increase in strength
above μ ¼ 0.3 GeV at T ¼ 0.1 GeV. This indicates the
absence of the silver-blaze problem at T ¼ 0, and, thus, the

path optimization method can pick up the correct properties
of the theory.
In the standard mean-field approximation, we do not

perform the Wick rotation of the vector auxiliary field (ω0).
While such a treatment cannot be justified within the
standard path integral formulation, it can be justified by
employing a complexified theory such as the Lefschetz-
thimble method and the path optimization method. In this
article, we have demonstrated that the path optimization
method correctly resolves the model sign problem, and then
the ω4 field takes almost a pure imaginary value which is
required from the fact that the grand-canonical partition
function is real. This study provides the correct numerical
treatment of a repulsive vector-type interaction in the QCD
effective model with a Polyakov loop.
Finally, we comment on the problem of the numerical

cost. The degree of freedom is enlarged in the present
calculation compared with the case without a vector-type
interaction [26], the improvement of the average phase
factor becomes slow, and, thus, we need more optimization
steps (epochs) and/or some other extensions. One of the
possible extensions to circumvent such an optimization
problem is introducing a deep neural network, and it is our
future work. Also, the sign problem becomes exponentially
severe with an increasing system size. Then, it is important
to know that the improvement of the average phase factor
via the path optimization method can overcome the
exponential suppression. Therefore, we need further inves-
tigation of the competition in the average phase factor
between the suppression from the system size and the
improvement from the path optimization. In particular, this
problem becomes serious when we consider the lattice
calculation. One promising approach is the reduction of the
Jacobian computation cost; the diagonal ansatz of the
Jacobian [40] and the nearest-neighbor lattice-cites ansatz
[39] are promising examples. It will be reported elsewhere.
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