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We report measurements of the production cross sections of charged pions, kaons, and protons as a
function of fractional energy, the event-shape variable called thrust, and the transverse momentum with
respect to the thrust axis. These measurements access the transverse momenta created in the fragmentation
process, which are of critical importance to the understanding of any transverse-momentum-dependent
distribution and fragmentation functions. The low transverse-momentum part of the cross sections can bewell
described by Gaussians in transverse momentum as is generally assumed but the fractional-energy
dependence is nontrivial and different hadron types have varying Gaussian widths. The width of these
Gaussians decreases with thrust and shows an initially rising, then decreasing fractional-energy dependence.
The widths for pions and kaons are comparable within uncertainties, while those for protons are significantly
narrower. These single-hadron cross sections and Gaussian widths are obtained from a 558 fb−1 data sample
collected at the ϒð4SÞ resonance with the Belle detector at the KEKB asymmetric-energy eþe− collider.

DOI: 10.1103/PhysRevD.99.112006

I. INTRODUCTION

Transverse-momentum-dependent parton distribution
(PDF) and fragmentation functions (FF) have gained
substantial interest due to the emergence of transverse spin
dependent phenomena. The most well-known transverse-
momentum-dependent effects in semi-inclusive deeply
inelastic scattering (SIDIS) are related to the Sivers
function [1] and the Collins FF [2]. Both have been
measured, first at HERMES [3,4], and since confirmed
by COMPASS [5–7] as well as by Belle, BABAR and
BESIII in the case of the Collins FFs [8–11]. They will play
an important role in the future electron-ion collider to pin
down the transverse-momentum structure of the nucleon
and its transverse spin (see [12] for details on the planned
measurements). However, at present, for any transverse-
momentum-dependent distribution (TMD) the explicit
transverse-momentum dependence is only poorly measured
at best. The reason is that in most processes a convolution
of several transverse momenta is involved (such as in SIDIS
[13,14]), or that the statistical precision of several

measurements is not sufficient, yet. Some direct access
to the transverse-momentum dependence of the polarized
Collins FFs has been achieved by BABAR [10,15], but little
is known about the transverse-momentum dependence of
unpolarized fragmentation functions. Some old data for
inclusive, unidentified hadron cross sections from eþe−
annihilation does exist [16,17]. An attempt at fitting these
data was made, including the scale dependence [18], but the
precision of the data is very limited. Also the SIDIS data
has been fit by two groups [19,20], but the groups differ in
their conclusions while explicit information for only the
fragmentation part is necessary. Furthermore, in order to
relate the TMD effects in SIDIS and eþe− to the large
inclusive asymmetries measured in proton-proton colli-
sions [21–23], transverse-momentum integrals over the
TMDs are needed to arrive at the higher-twist functions
relevant there [24–26]. Another important aspect of TMDs
that is yet to be addressed in more detail is the scale
dependence, which is expected [27] to be different from the
collinear Dokshitzer, Gribov, Lipatov, Altarelli, Parisi
(DGLAP) [28–30] evolution but again lacks data.
In this paper we present the unpolarized cross sections

for single charged pion, kaon as well as proton production
as a function of fractional energy, transverse momentum,
and thrust where the reference axis is given by the thrust
axis. These measurements are then related to the unpolar-
ized single-hadron fragmentation functions Dh

1ðz; kT; QÞ
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with fractional energy z ¼ 2Eh=
ffiffiffi
s

p
, and transverse

momentum kT at the scale Q ¼ ffiffiffi
s

p
. Experimentally, the

transverse momentum of the hadron is calculated relative to
the thrust axis n̂ which maximizes the event-shape variable
thrust T [31]:

T ¼max
P

hjPCMS
h · n̂j

P
hjPCMS

h j : ð1Þ

The sum extends over all detected particles, and PCMS
h

denotes the momentum of particle h in the center-of-mass
system, CMS.
As the thrust variable describes how collimated all

particles in an event are, the results are presented in bins
of this value.
The paper is organized as follows: the detector setup and

reconstruction criteria are detailed in Sec. II, in Sec. III the
various corrections to get from the raw spectra to the final
cross sections are discussed. In Sec. IV the results are shown
and compared toMonte Carlo (MC) tunes beforewe proceed
to study the transverse-momentumbehavior viaGaussian fits
for small transverse momenta. We conclude with a summary
in Sec. V. (Note: Additional figures and data files are
available online in the Supplemental Material [32].)

II. BELLE DETECTOR AND DATA SELECTION

This single-hadron cross-sectionmeasurement is based on
a data sample of 558 fb−1 collected with the Belle detector at
the KEKB asymmetric-energy eþe− (3.5 GeV on 8 GeV)
collider [33,34] operating at theϒð4SÞ resonance (denoted as
on-resonance), as well as a smaller data set taken 60 MeV
below for comparison (denoted as continuum).
The Belle detector is a large-solid-angle magnetic

spectrometer that consists of a silicon vertex detector
(SVD), a 50-layer central drift chamber, an array of aerogel
threshold Cherenkov counters, a barrel-like arrangement of
time-of-flight scintillation counters, and an electromagnetic
calorimeter comprised of CsI(Tl) crystals located inside a
superconducting solenoid coil that provides a 1.5 T mag-
netic field. An iron flux return located outside of the coil is
instrumented to detect K0

L mesons and to identify muons.
The detector is described in detail elsewhere [35,36].
A 1.5 cm beampipe with 1 mm thickness and a four-layer
SVD and a small-cell inner drift chamber were used to
record 558 fb−1 [37].
The primary light (uds)- and charm-quark simulations

used in this analysis were generated using PYTHIA6.2 [38],
embedded into the EVTGEN [39] framework, followed by a
GEANT3 [40] simulation of the detector response. The
various MC samples were produced separately for light
(uds) and charm quarks, and on the generator level several
JETSET [41] settings were produced in order to study their
impact. For generator level MC to data comparisons, long-
lived weak decays, which normally are handled in GEANT,
were allowed in EVTGEN. In addition, we generated

charged and neutral B meson pairs from ϒð4SÞ decays
in EVTGEN, τ pair events with the KKMC [42,43] generator
and the TAUOLA [44] decay package, and other events with
either PYTHIA or dedicated generators [45] such as for two-
photon processes.

A. Event and track selection

The goal of this analysis is to extract hadron cross
sections from uds and charm pair events. Therefore events
are required to have a visible energy of all detected charged
tracks and neutral clusters above 7 GeV (to remove τ pair
events) and either a heavy-jet mass (the greater of the
invariant masses of all particles in a hemisphere as
generated by the plane perpendicular to the thrust axis)
above 1.8 GeV=c2 or a ratio of the heavy-jet mass to visible
energy above 0.25. Also, events need to have at least three
reconstructed charged tracks, which reduces two-photon
processes. The thrust value is calculated as described
above, where all detected particles and neutral clusters
are included. For the charged particles, the mass hypothesis
for the identified particle type is taken into account when
boosting into the CMS. The thrust axis is required to point
into the barrel part of the detector by having a z component
jn̂zj < 0.75 in order to reduce the amount of thrust-axis
smearing due to undetected particles in the forward/back-
ward regions. Tracks are required to be within 4 cm (2 cm)
of the interaction point along (perpendicular to) the
positron beam axis. Each track is required to have at least
three SVD hits and fall within the polar-angular acceptance
of −0.511 < cos θlab < 0.842 in order to have Particle
Identification (PID) information from all relevant PID
detectors. The fractional energy of each track is required
to exceed 0.1 and the transverse momentum with respect to
the thrust axis is then calculated in the CMS as illustrated in
Fig. 1. Also a minimum transverse momentum in the

FIG. 1. Illustration of transverse-momentum-dependent single
hadron fragmentation where the final-state hadron is depicted as a
red arrow, the incoming leptons as blue arrows, and the event
plane—spanned by leptons (blue lines) and initial quarks/thrust
axis n (purple line)—is depicted as a light blue plane. The
transverse momentum PhT is calculated relative to the thrust axis
and depicted by the red, dashed line.

R. SEIDL et al. PHYS. REV. D 99, 112006 (2019)

112006-4



laboratory frame with respect to the beam axis of
100 MeV=c is imposed to ensure the particles traverse
the magnetic field.

B. PID selection

To apply the PID correction according to the PID
efficiency matrices used in previous results [46], the same
selection criteria are applied first to define a charged track
as a pion, kaon, proton, electron or muon. This information
is determined from normalized likelihood ratios that are
constructed from various detector responses. If the muon-
hadron likelihood ratio is above 0.9, the track is identified
as a muon. Otherwise, if the electron-hadron likelihood
ratio is above 0.85, the track is identified as an electron. If
neither of these applies, the track is identified as a kaon by a
kaon-pion likelihood ratio above 0.6 and a kaon-proton
likelihood ratio above 0.2. Pions are identified with the
kaon-pion likelihood ratio below 0.6 and a pion-proton
ratio above 0.2. Finally, protons are identified with kaon-
proton and pion-proton ratios below 0.2. Here, and in the
remaining sections of this presentation, protons will refer to
combinations of protons and antiprotons unless the charge
is explicitly mentioned. While neither muons nor electrons
are considered explicitly for the single hadron analysis,
they are retained as necessary contributors for the PID
correction, wherein a certain fraction enters the pion, kaon,
and proton samples under study.

III. HADRON ANALYSIS AND CORRECTIONS

In the following sections, the hadron yields are extracted
and, successively, the various corrections are applied and the
corresponding systematic uncertainties are determined to
arrive at the single hadron differential cross sections
d3σðeþe− → hXÞ=dzdPhTdT depending on fractional
energy z, transverse momentum PhT , and thrust value T.

A. Binning and cross-section extraction

For the hadron cross section, a (z, PhT) binning of 18
equidistant z bins from 0.1 to 1.0 and 20 equidistant PhT
bins from 0 to 2.5 GeV=c is chosen. The thrust values are
separated into six bins with boundaries at 0.5, 0.7, 0.8,
0.85, 0.9, 0.95, and 1.0. Due to the correlation between
total hadron energy and transverse momentum, the range in
PhT is kinematically limited at low z bins.
The distributions of thrust for the selected hadron samples

are displayed in Fig. 2, where the different processes are
depicted. It can be seen that uds and charm events peak at
high thrust values, which is why in the following most
corrections and results are displayed in the 0.85 < T < 0.9
thrust bin. The results of other bins are shown in the
Supplemental Material [32], as are logarithmic versions of
the thrust contributions.

B. PID correction

Following Ref. [46], particle misidentification is
addressed in a very fine binning of 17 laboratory momen-
tum and nine polar angular bins. In each bin the particle
misidentification matrix between true and detected particle
types is reconstructed using five particle hypotheses (pions,
kaons, protons, muons, and electrons) based on decays of
D�þ, Λ, and J=ψ from data where the actual particle type
can be inferred from the decay chain. In the boundaries of
the acceptance, MC information needs to be included to
determine all matrix entries. These boundary bins are
extrapolated either directly from the MC or by following
the bins filled by data using only the behavior of the MC.
The particle yields are then corrected using the inverse
matrices and their uncertainties, and the uncertainties due to
these MC extrapolations are assigned as systematic uncer-
tainties. The corrections have a moderate effect on the
hadron yields, with slight increases of the pion yields and
reductions of kaon yields at low z, mostly due to pion-kaon
misidentification. At higher z, kaon yields increase at the
expense of proton yields with increasing transverse
momentum. The ratios relative to the uncorrected hadron
yields are shown in Fig. 3 for an intermediate thrust bin.
The behavior for other thrust bins is similar.

C. Non-qq̄ background correction

Several processes that are not part of the fragmentation
function definitions need to be removed from the initial
yields. These include the two-photon processes eþe− →
eþe−uū, eþe− → eþe−dd̄, eþe− → eþe−ss̄, and eþe− →
eþe−cc̄, as well as τ pair production and the ϒð4SÞ decays
via either charged or neutral B meson pairs. These con-
tributions are extracted fromMC and are directly subtracted
from the luminosity-normalized yields. For all hadrons, the
contributions from these processes are minor and only
reach larger relative contributions in the higher transverse-
momentum tails where two-photon processes and, for the
pions also τ decays, contribute to more than 10% of the
yields. A large amount of ϒð4SÞ background has to be
removed for low thrust values, and in particular at lower z
values, but at high thrust and high z this contribution
becomes negligible as the thrust variable very effectively
discriminates against ϒð4SÞ decays.
Apart from the uncertainties due to the MC statistics

used to determine these non-qq̄ contributions, their relative
sizes are also varied by �1.4% for τ production [47] and a
factor of 5 for the two-photon contributions. The reason for
this large factor in the two-photon contributions originates
from the fact that not all possible diagrams are included in
the MC generator. Those uncertainties are then assigned as
systematic uncertainties for the non-qq̄ removal. The total
relative background contributions for pions in an inter-
mediate thrust bin, 0.85 < T < 0.9, can be seen in Fig. 4.
For kaons, the ϒð4SÞ decay contributions are even more
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pronounced at low thrust values and z, reaching initially
more than 80% of the yields before rapidly decreasing with
z and thrust value. For protons, the ϒð4SÞ contributions are
again less dominant. It should be noted that the large

number of decays needed by B mesons to produce the light
hadrons studied here increases their contribution at higher
transverse momenta disproportionately. Also the initial
momentum of the B mesons is small which enhances
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τþτ− (light green), ϒð4SÞ → BþB− (violet), ϒð4SÞ → B0B̄0 (dark green), charm (blue), and uds (red) are shown. For comparison, the
data for continuum (turquoise, denoted as “data cont”) and on-resonance (orange, denoted as “data res”) are also shown. The black
vertical lines display the thrust bin boundaries used in this analysis.
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the possibility to find decay hadrons at high transverse
momenta.

D. Momentum-smearing correction

The momentum-smearing correction takes into account
the momentum smearing in the detector as well as the
smearing of the hadron transverse momentum due to the
corresponding smearing of the thrust axis and its value.
While the thrust axis is a good proxy for the initial quark-
antiquark axis, the initial quark-antiquark axis itself is only
meaningful in a leading-order picture. As such, we do not
correct the axis smearing to the quark-antiquark axis but
only to the true thrust axis based on all generated stable
particle momenta. Examples of the thrust angular resolu-
tions are shown in the Supplemental Material [32]. The
unfolding is performed using a singular-value decomposi-
tion technique [48] as implemented in ROOT [49] taking
into account only the z × PhT × T bins kinematically
accessible. At small z, the diagonal elements dominate
the matrices, but at higher z the thrust algorithm biases the
thrust axis closer to the high-z hadron. The optimal
regularization parameter for this unfolding is chosen as

prescribed by the authors of the unfolding algorithm [48].
As the determination of the correct regularization parameter
is not simple for such large matrices, a variation of the rank
parameter of up to 300 units is assigned as a systematic
uncertainty. Additionally, the uncertainties due to the
unfolding itself and the corresponding MC statistics are
kept as systematic uncertainties. All previously extracted
uncertainties are also unfolded.
The final after-to-before ratio plots are displayed in

Fig. 5 as a function of z and PhT bins, where one can see
that predominantly the ratios are around unity at moderate z
and transverse momenta and increase for larger transverse
momenta and higher z. The smearing correction is mostly
similar for all particle types except for the larger transverse-
momentum tails where differences are visible. The behav-
ior for other thrust ranges is similar.

E. Preselection and acceptance correction

As a next step, the reconstruction efficiencies and
acceptance efficiencies are corrected for. These corrections
are performed in two steps to better understand the effects
of the reconstruction and preselection, and the effects
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purely due to using only the barrel acceptance for this
analysis. At this correction stage, the restriction of the
thrust axis pointing into the central area of the detector is
lifted as well as the 100 MeV=c minimal laboratory
transverse-momentum requirement for tracks. Within the
barrel acceptance, the corrections are generally moderate
and only increase slightly with increasing transverse
momentum, except for high fractional energies where
the corrections appear to be falling slightly with increasing
PhT . With the exception of protons at lower z close to the
mass threshold, pions, kaons, and protons behave very
similarly. The corresponding figures for the ratios of yields
after acceptance corrections can be seen in Fig. 6 for pions,
kaons, and protons.
Correcting from the barrel acceptance to the full accep-

tance affects higher transverse momenta more, where the
angle between the thrust axis and the hadron gets large and
thus also the possibility to miss the barrel. Pions, kaons,
and protons again behave similarly with the exception of
the very lowest z bins, where the differences in actual
momentum are relevant. For both correction steps, the
statistical uncertainties of correction factors from the MC
samples are included as systematic uncertainties. In the

second acceptance correction, the variation of the correc-
tion factor with fragmentation tunes (JETSET settings
optimized for various collision systems and energies) is
included as systematic uncertainties. As the latter would
move the central values up or down for all bins, they are
considered correlated.

F. Weak decays

Weak decays are in principle not part of the fragmenta-
tion function definitions and might alter the applicability of
DGLAP [28–30] or other evolution schemes. However, in
practice, many weak decays cannot be experimentally
removed and one has to rely on information from MC.
Because of this additional uncertainty, weak decays are
often no longer removed from reported fragmentation
results. In this analysis we provide cross sections either
containing all weak decays or removing all of them based
on MC. The relative fraction of weak decays is different for
the various hadron types. For pions, light-quark production
via strong decays dominates, while charm decays provide
pions mostly through weak decays. These contributions
are not flat in transverse momentum and weak decays at
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intermediate z have a larger contribution at intermediate
transverse momenta around 1 GeV=c. In contrast, at even
higher transverse momenta, strong charm decays provide a
sizable contribution. For kaons, the transverse momentum
and z behavior is similar but the overall fraction of weak
decays is larger due to the preferred charm decays into
kaons. For protons, charm decays are generally less
pronounced while hyperon decays of light (including
strange) quarks provide many weak-decay channels. For
the weak-decay corrected results, systematic uncertainties
for this correction are assigned based on the statistical
uncertainties from the MC and the variation of the PYTHIA

fragmentation tune.

G. ISR correction

Initial-state radiation (ISR) is treated similarly to the
previous publication [50] by comparing the cross section in
MC with and without ISR effects. As shown in Fig. 7, at
low transverse momenta, these effects are very minor and
only the accessibility of higher z events creates increasingly
larger non-ISR cross sections. However, ISR changes
the boost of the hadronic system and its thrust axis, and
therefore accumulates hadrons at larger transverse

momenta which produces a very substantial fraction of
events at high transverse momenta. The origin of this
increase is confirmed by explicitly reconstructing the
boosted quark-antiquark system in the presence of ISR
photons and comparing it to the nominal transverse
momentum. Due to relying on MC to correct for ISR
effects, the variation between several fragmentation tunes is
taken as an additional systematic uncertainty and is in many
bins the dominant systematic uncertainty. The central value
of the ISR correction for various tunes has been used for the
correction. Especially at the higher z bins, the differences
between tunes become substantial in the transverse-momen-
tum tails. These uncertainties again affect all bins and are
treated as correlated uncertainties. The statistical uncertain-
ties of the MC sample used to calculate these ratios are also
assigned as uncorrelated systematic uncertainties.

H. Consistency checks and total
systematic uncertainties

In addition to the systematic uncertainties based on
the various corrections previously described, there are
two global uncertainties due to the luminosity evaluation
(1.4%) and the track reconstruction (0.35%). The overall
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bin-by-bin systematic uncertainties are summarized in
Fig. 8. It can be seen that generally the systematic
uncertainties dominate and all systematics increase with
increasing transverse momentum. The systematic uncer-
tainties in turn are generally dominated by the uncertainties
from the variation of PYTHIA fragmentation tunes in the
various correction steps. The uncertainties from the smear-
ing correction are also substantial, particularly at larger
transverse momenta. The bin-by-bin systematic uncertain-
ties are kept separate for all correlated and uncorrelated
uncertainties, as those need to be treated differently when
using the cross-section data to extract the widths of
Gaussian fits to the PhT dependence or perform global
fragmentation fits. In the cross-section result figures of the
next section, they are however displayed as the quadratic
sum.
Before combining opposite charges, their consistency

has been confirmed. Also a second data set taken below the
ϒð4SÞ resonance is found to be consistent such that no
additional systematic uncertainties need to be assigned. The
consistency with the previously published transverse-
momentum and thrust-integrated cross sections [51] is
confirmed after applying the same ISR correction method
to the previous analysis.

IV. RESULTS

The differential cross sections for pions, kaons, and
protons as a function of fractional energy and transverse
momentum are given in Fig. 9 for an intermediate thrust
bin. Due to the large uncertainties in them, z bins above
0.85 are not displayed. The behavior is generally quite
similar between hadron types. Only the proton cross
sections have a steeper transverse-momentum dependence
than the light mesons. At lower transverse momenta, the
behavior resembles a Gaussian which is also generally
assumed for TMD fragmentation functions, while the tails
extend further than the Gaussians. However, the systematic
uncertainties in the tails are generally too large to conclude
much about their behavior.

A. Widths of PhT dependence

Motivated by the dependence in the lower transverse-
momentum region, a Gaussian dependence is fit to the data
in this region as can be seen in Fig. 10 for pions as a
function of P2

hT (so the Gaussian distribution appears as a
straight line on a single logarithmic plot). The statistical
uncertainties are included in this fit while the systematic
uncertainties are assessed by varying the individual
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contributions according to their own uncertainties using a
sampling method with 70 000 iterations. The correlations
between transverse-momentum bins are taken into account
for the corresponding uncertainties since they are separated
into fully correlated and uncorrelated contributions. At
present the correlations are only considered between PhT
bins, not between z or thrust bins. It is expected that while
global variations of the latter could have a substantial
impact on the absolute magnitude of the cross sections, the
shape of the Gaussian behavior is less affected. After each
uncertainty-sampling iteration, the Gaussian width is fit
again. The mean value and 32 percentile ranges above and
below the mean are determined from the distributions over
all iterations. Their differences to the main fit are then
assigned as upper and lower systematic uncertainties on the
Gaussian widths. The inclusion of correlated systematic
uncertainties between different PhT bins generally reduces
the uncertainties on the Gaussian widths as the variation of
points moves all points similarly up or down while the
shape stays more robust. The range in PhT used in the
Gaussian fit is varied and the resulting variation of the fit
results is assigned as an additional systematic uncertainty
on the Gaussian widths. At intermediate fractional energies,

the fit ranges were motivated by the nonperturbative range
of transverse momenta below 1 GeV. However, in particular
at very small and large fractional energies, the number of
points becomes limited, resulting in very large uncertainties
on these widths. Those z bins for which either the main fit
fails or the uncertainties on the widths covers zero or unity
are not shown.
The extracted Gaussian variances for pions, kaons, and

protons are then summarized in Fig. 11 as a function of z in
the 0.85 < T < 0.9 thrust bin. At very low z the phase
space is very limited and consequently the Gaussian widths
are not very well constrained. A similar behavior is also
relevant at very large fractional energies. In the intermedi-
ate z range, the widths are mostly similar for pions and
kaons but those for pions are generally slightly smaller.
Protons, however, have substantially narrower widths at
intermediate fractional energies while being closer to pions
and kaons at low and high z. This might point to the
differences in production mechanisms for mesons and
baryons, as for the latter the production of di-quark pairs
is additionally needed. In all cases the Gaussian widths are
increasing with z until around 0.6 before decreasing again
at higher fractional energies.
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It is also interesting to study the behavior of the Gaussian
widths for the different thrust ranges. These are shown for
pions in Fig. 12. At very low thrust, any reference direction
is as good as any other, resulting in a nearly flat distribution
of transverse momenta. Consequently, the Gaussian widths
cannot be well extracted or become very large. For all other
thrust ranges, the widths show the same general behavior:
increasing toward intermediate z before decreasing again.
They are ordered according to the thrust ranges with the
lowest thrust having the largest widths and vice versa. This
correlation can be understood by the high-thrust limit,
where the event is very collimated along the thrust axis and
therefore little transverse momentum with respect to this

axis is available. The behavior of the Gaussian widths for
different thrust bin values is also shown for kaons and
protons in Figs. 13 and 14, respectively. For kaons, the
same narrowing of the widths with increasing thrust can be
seen as observed for the pions. Also for the protons, the
thrust dependence is similar but the uncertainties start to
overlap in many z bins, making the effect less pronounced.

B. MC generator comparison

One can study the behavior of various PYTHIA tunes on
the transverse-momentum dependence. It should be noted
that the overall z dependence has already been discussed in
previous publications [50,51], showing that only a few
tunes are reasonably close to the actual data, while others
either largely overshoot or undershoot them, particularly at
high z. The Gaussian widths, however, are not sensitive to
either the z behavior nor the overall normalization. In
PYTHIA they are very directly related to the variable ParJ
(21), which ranges between 0.28 and 0.4 in these tunes and
describes the Gaussian widths for primary hadrons within
the LUND string model [41]. The Gaussian widths are
partially also sensitive to the variable ParJ(42), which
ranges from 0.54 to 0.80 and describes the inverse of
the width of the transverse mass in the LUND string model.
With the exception of the old Belle tune [ParJð21Þ ¼ 0.28],
all tunes have very similar Gaussian widths and reproduce
both the small and larger fractional energies well. At
intermediate z, the PYTHIA default tune and the tunes with
larger ParJ(21) seem to get closest to the data but fail to
fully describe the maximum widths. The comparison for
intermediate thrust values can be seen in Fig. 15.
The individual pion, kaon and proton cross sections as a

function of fractional energy, thrust value and transverse
momentum as well as the extracted Gaussian widths are
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(blue squared and boxes), thrust 0.85 < T < 0.9 (green triangles
and boxes), thrust 0.9 < T < 0.95 (magenta triangles and boxes)
and 0.95 < T < 1.0 (red circles and boxes). The error boxes
represent the corresponding systematic uncertainties.
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provided online in the Supplemental Material [32] together
with cross section and Gaussian width figures for other
thrust bins.

V. SUMMARY

We provide the first direct transverse-momentum-
dependent single-hadron production cross sections in
eþe− collisions at

ffiffiffi
s

p ¼ 10.58 GeV for pions, kaons, and
protons as a function of fractional energy z and the thrust
value. In addition, it is found that a Gaussian functional form
describes well the transverse-momentum dependence at
small transverse momenta. The Gaussian widths vary with
z and thrust. This data will help to understand the intrinsic
transverse-momentum dependence generated in the frag-
mentation process. Such input is needed to obtain a better
theoretical description of the various transverse-momentum-
dependent and related higher-twist effects visible in trans-
verse spin asymmetries in semi-inclusive deep inelastic
scattering, proton-proton collisions and electron-positron
annihilation. This information also leads the way toward
high-precisionmeasurements of TMD effects at the electron-
ion collider. In addition, these results provide the unpolarized
baseline for any polarized, transverse-momentum-dependent
fragmentation functions such as the Collins FF.
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