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The effective quantum dynamics of Bianchi I spacetime is addressed within the statistical regularization
scheme in quantum reduced loop gravity. The case of a minimally coupled massless scalar field is studied
and compared with the effective μ̄–loop quantum cosmology. The dynamics provided by the two
approaches match in the semiclassical limit but differ significantly after the bounces. Analytical and
numerical inspections show that energy density, expansion scalar and shear are bounded also in quantum
reduced loop gravity and the classical singularity is resolved for generic initial conditions in all spatial
directions.
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I. INTRODUCTION

Quantum reduced loop gravity (QRLG) [1,2] is aimed to
address symmetric sectors of loop quantum gravity (LQG)
[3,4] and it has proved to be a versatile and powerful tool
for both primordial cosmology [5,6] and black hole physics
[7]. It is based on suitable gauge fixings of LQG (see e.g.,
[8]) and reduces the computational tasks that plague the
full theory whilst retaining its main features—graph and
intertwiner structure—allowing a deeper theoretical under-
standing [9,10] and the actual computation of observational
consequences [11].
QRLG has been originally designed for dealing with

cosmology, and here it has been successful in bridging loop
quantum cosmology (LQC) (see [12] for a recent review) to
full LQG [10,13]. From the QRLG perspective, LQC
stands as a first order effective quantization that can be
refined within QRLG including key quantum terms coming
from the full theory. Those corrections are crucial and they
must be taken into account when one is interested in
questioning the deep quantum regime of the universe. For
instance, for the Friedmann Lemaitre Robertson Walker
(FLRW) model they provide a quantum evolution which
significantly differs from the one given by LQC: the big
bounce scenario provided by the former [14] is replaced in
QRLG by the dynamics of an emergent-bouncing universe
[5]. The universe “emerges” from an infinite past with a
nonvanishing volume that it keeps until a transient phase of
expansions and contractions occurs and eventually matches
the LQC evolution. This alternative cosmology has been
recently considered also in different contexts (see [15] and
references there in) and its observational signatures have
been studied in [16], and by some of the authors in [11,17].

Going beyond the isotropic context is a needed step both
for testing the QRLG approach in a more general setting
and for addressing the issue of isotropization (e.g., see
[18]), a mechanism that is believed to have a quantum
origin and to be responsible for the observed large scale
symmetry of our universe. The issue of anisotropy has
already been faced by many works in LQC [19–23] where
it has revealed to be less trivial than what was initially
expected. As for the isotropic context, the quantization
deeply depends on the chosen regularization scheme for the
classical symmetry reduced Hamiltonian constraint. The
obvious generalization of the μ0-scheme [24] adopted for
the FLRW quantization, leads to unwanted features such as
a singularity resolution that can be tuned to be at any value
of the energy density, i.e., even way less than Planckian
values. This issue was finally fixed choosing a different
regularization scheme [25] that is a generalization of the
μ̄—scheme implemented in FLRW [14]. In this paper we
study the homogeneous anisotropic sector of QRLG
associated to the Bianchi I geometry, within the statistical
regularization scheme [6]. This framework provides an
effective graph-changing dynamics for both isotropic and
nonisotropic sectors and includes LQC regularizations as
special cases. From the LQC perspective, the QRLG
statistical regularization places itself between the afore-
mentioned μ0 and μ̄—scheme, as explained in [6]. In
addition, it provides a dynamics for states living on the
kinematical arena defined by gauge fixing the full LQG to
diagonal triads and metrics.1 An effective Hamiltonian for
the (quantum corrected) geometry of the Bianchi I universe

1For a similar approach see also [26].
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is considered by taking the expectation value of the
(reduced) nongraph-changing Hamiltonian operator over
a Gaussian ensemble of coherent states peaked on classical
Bianchi I phase-space and based on cuboidal graphs with
different number of nodes Ai. For large Ai, one can expand
the integral over the ensemble that defines the QRLG-
effective Hamiltonian, finding a zero order contribution
which coincides with the standard LQC Bianchi I effective
Hamiltonian plus (infinitely many) corrections that become
relevant in the deep quantum era [6]. Here we have
addressed the dynamics of the QRLG model considering
all those contributions, i.e., without approximating the
integral to a given order, and made a comparison with
the dynamics provided by the standard effective LQC in the
presence of a massless scalar field ϕ. The usual Hamilton
equations are used to obtain the associated effective
dynamics and the evolution is numerically studied for
some general initial conditions, i.e., isotropic, “Kasner-
like” (one direction expands/contracts and the other two
contract/expand) and “un-Kasner like” (all directions
expand/contract). Similarly to what happens in the isotropic
case,2 the QRLG-quantum corrections to the classical
Bianchi I model provide a non singular dynamics that
significantly differs from the one given by LQC before the
bounces and matches it afterwards. More specifically, the
QRLGmodel turns out not to bridge two classical Bianchi I
universes, as instead it occurs in LQC [27]. Starting from a
classical Bianchi I and going backward in the relational
time ϕ, the universe undergoes three bounces (one in each
direction) and after that its scale factors start growing faster
than they do in LQC and GR. Moreover, our numerical
simulations show that the singularity is avoided in all
directions for generic initial conditions. In particular, for
Kasner-like initial conditions each directional scale factor
is nonvanishing, contrary to what happens in the LQC-
evolution where one of the scale factor goes to zero in the
far past [27].
The paper is organized as follows. We start recalling

useful definitions for the Bianchi I geometry and its
Hamiltonian formulation in terms of the Ashtekar variables.
The relevant kinematical quantities, such as the directional
Hubble rates, the expansion scalar and the shear are then
introduced. In Sec. III the Hamiltonian constraints for
the Bianchi I model are given for both GR and LQC. The
QRLG-Bianchi I model is defined in Sec. IV and the
expressions of the kinematical quantities, defined in general
terms in Sec. II, are here given explicitely for our QRLG-
model. Analytical bounds for those quantities and for the
energy density are computed and their evolutions numeri-
cally studied in Sec. VI. Section V presents the numerical
study of the QRLG-Bianchi I effective dynamics for the
minimally coupled massless scalar field, compared to the

one provided by the LQC. Finally, the last section is
devoted to conclusions and outlooks.
Throughout the paper we use γ ¼ 0.24 and G ¼ ℏ ¼

c ¼ 1, so that l2P ≔ ℏG=c3 ¼ 1. We do not follow Einstein
notation, i.e., repeated indices are not summed over, except
where explicitly stated otherwise.

II. BIANCHI I GEOMETRY AND RELATED
KEY QUANTITIES

We review here some useful definitions for the Bianchi I
model in the Ashtekar variables. Everything in this section
holds for GR, effective LQC and effective QRLG.

A. Line element

We choose cartesian comoving coordinates ðt; xbÞ and
unitary lapse function. The Bianchi I geometry is then
associated to the following line element:

ds2 ¼ −dt2 þ
X
bc

qbcðtÞdxbdxc ¼ −dt2 þ
X
b

ðabðtÞdxbÞ2;

ð1Þ

where abðtÞ are the scale factors for the spatial directions
b ¼ 1, 2, 3.

B. Simplectic structure

The Hamiltonian formulation of the geometry (1) closely
follows the one implemented for the FLRW case [24].
Once a fiducial cuboidal cell V of coordinate sides L̃i is
introduced, a parametrization of the phase-space associated
to the geometry is provided by the Ashtekar variables, i.e.,
by the connection Ai

aðtÞ and the densitized triad Ea
i ðtÞ [25]:

Ai
aðtÞ ≔

ciðtÞ
L̃i ẽia; Ea

i ðtÞ ≔
piðtÞ
Ṽ

L̃iẽai ; ð2Þ

where ẽia ¼ δia and ẽai ¼ δai are, respectively, the ortho-
normal flat fiducial cotriad and triad field adapted to V,

qbc ¼
X
ik

abẽibacẽ
k
cδik;

and L̃j are the set of coordinate lengths defining the
coordinate volume Ṽ ¼ L̃1L̃2L̃3 of the fiducial cell, which
is related to the physical volume3 V as

V ¼ a1a2a3Ṽ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p
: ð3Þ

Connections and triads are diagonal matrices whose entries
satisfy the following Poisson bracket:

2For both the “volume counting” [5] and “area counting” [6]
statistical regularizations.

3In QRLG this quantity is taken to be the volume of the biggest
observable region of the universe, as explained in [6].
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fci; pjg ¼ 8πγδij; ð4Þ

which defines the simplectic structure for the geometrical
sector of the model. The pj are related to the scale factors
ak as follows (we choose a positive orientation)

pi ¼ L̃jL̃kjajakj i ¼ 1; 2; 3 i ≠ j ≠ k: ð5Þ

Finally, when the geometry is sourced by a scalar field, the
phase-space gets enlarged and coordinatized by the 8-tuples
ðci; pi;ϕ; pϕÞ, where

fϕ; pϕg ¼ 1: ð6Þ

C. Dynamics and energy density

Hereafter we will refer to the case of the Bianchi I
geometry filled with a massless scalar field ϕ.
The dynamics is generated by the following Hamiltonian

constraint:

Cðci; pi; pϕÞ ≔ HBIðci; piÞ þHϕðpϕ; piÞ ≈ 0; ð7Þ

where HBI ≔ Hgr;Hlqc; H generically refers to the geo-
metrical sector in GR, LQC and QRLG, respectively (for
their actual definitions see the following sections), and

Hϕ ≔
p2
ϕ

2V
; ð8Þ

is the kinetic energy of the field ϕ, the only contribution
coming from the matter sector. The Hamilton’s equations
follow:

ċi ¼ 8πγ
∂C
∂pi

; ṗi ¼ −8πγ
∂C
∂ci ;

ϕ̇ ¼ ∂Hϕ

∂pϕ
; ṗϕ ¼ −

∂Hϕ

∂ϕ : ð9Þ

Soon we will be interested in evaluating the field energy
density ρ along the physical motions. It is given by the ratio

ρ ≔
Hϕ

V
≈ −

HBIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p : ð10Þ

D. Directional Hubble rates, expansion scalar and shear

The main kinematical quantities are the directional
Hubble ratesHi ≔ ȧi=ai. In terms of the triads (5) they read

Hi ¼
1

2

�
−
ṗi

pi
þ ṗj

pj
þ ṗk

pk

�
i ¼ 1; 2; 3; i ≠ j ≠ k;

ð11Þ

and from them two more useful quantities are built: the
expansion scalar θ,

θ ≔
1

V
dV
dt

¼
X
i

Hi; ð12Þ

and the shear σ2,

σ2 ≔
X
i

H2
i −

θ2

3

¼ 1

3
½ðH1 −H2Þ2 þ ðH2 −H3Þ2 þ ðH3 −H1Þ2�; ð13Þ

which clearly vanishes in the isotropic limit.

III. CLASSICAL AND EFFECTIVE-LQC
CONSTRAINTS FOR BIANCHI I

In the following sections we will compare the dynamics
of the QRLG model to the one provided by LQC. For this
purpose and in order to understand the choice of the initial
conditions for the dynamical problem, we recall here the
Hamiltonian constraints for the Bianchi I geometry in GR
and LQC.
The classical Bianchi I universe is associated to the

constraint4 Cgr,

Cgr ≔ Hgr þHϕ

≔ −
1

8πγ2
ðc2p2c3p3 þ c1p1c3p3 þ c1p1c2p2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1p2p3

p

þ p2
ϕ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p ≈ 0; ð14Þ

where the pi follow from the general definition (5) and
the connections are proportional to the directional Hubble
rates:

ci ¼ γLiHi; ð15Þ

being Li ≔ aiL̃i. Note that (15) strictly holds in GR and
it is only approximately true in LQC and QRLG in the
classical limit pi ≫ 1, ci ≪ 1, where we will choose the
initial conditions for the dynamical problem for both LQC
and QRLG (see below).
The effective μ̄-LQC of Bianchi I is obtained [25,27] by

replacing the classical connections in (14) according to the
“polymeric prescription”, i.e.,:

ci →
sinðμ̄iciÞ

μ̄i
ð16Þ

4Hereafter we will deliberately loose track of covariance/
contravariance using only downstairs indices.
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where

μ̄i ≔
ffiffiffiffiffiffiffiffiffiffiffi
ΔLQG

p ffiffiffiffiffiffiffiffiffiffi
pi

pjpk

r
i ≠ j ≠ k ð17Þ

and ΔLQG ¼ 5.22 is the LQG area gap. The resulting
effective constraint Clqc reads

5:

Clqc ≔ Hlqc þHϕ

≔ −
1

8πγ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p
�
sinðμ̄2c2Þ sinðμ̄3c3Þ

μ̄2μ̄3
p2p3

þ cyclic terms

�
þ p2

ϕ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p ≈ 0: ð18Þ

IV. THE QRLG-BIANCHI I MODEL

The effective Hamiltonian we introduce here is the one
provided by QRLG within the “area counting” statistical
regularization scheme [6]. Its expression is given by the
expectation value of the (reduced) scalar constraint ĤR over
a classical mixture of coherent states based on cuboidal
graphs with different number of nodes Ai. The mixture is
described by the following density matrix:

ρ̂A ≔
Y
i

XAmax
i

Ai¼1

�
Amax
i

Ai

�
jAi; ji; θiihAi; ji; θij; ð19Þ

where jAi; ji; θii are the Thiemann’s coherent states in the
kinematical space of QRLG [9], peaked on both the
intrinsic and extrinsic geometry of the classical Bianchi I,
i.e., on the QRLG fluxes Ei ¼ 8πγl2Pji and holonomies
hl ¼ eiθljl . The maximum number of nodes contained in
the physical area pi is

Amax
i ¼ 2pi

Δ0 ð20Þ

where Δ0 ¼ 6.03 is the “area counting” area gap in QRLG6

and the expectation value

Hdisc ≔
Trðρ̂AĤRÞ
Trρ̂A

ð21Þ

explicitly reads:

HdiscðfAmax
i ðpiÞg;fcigÞ

¼−
1

8πγ2

�Q
i

PAmax
i

1

�
Amax
i

Ai

��
H̃ðfAmax

i ðpiÞg;fcig;fAigÞ
Q

i

PAmax
i

1

�
Amax
i

Ai

� ;

ð22Þ

where

H̃ ≔ A1

ffiffiffiffiffiffiffiffiffiffi
p2p3

p1

r
sin

 
c2

ffiffiffiffiffiffiffiffiffiffi
A2

A1A3

s !
sin

 
c3

ffiffiffiffiffiffiffiffiffiffi
A3

A1A2

s !

þ cyclic terms: ð23Þ
For Ai ≫ 1 we will use the continuous approximation7 for
the binomials considering the following expression

Hðfpig;fcigÞ

≔−
1

8πγ2
½Qi

R 2pi=Δ0
1 e−

Δ0
pi
ðAi−

pi
Δ0Þ2dAi�H̃ðfpig;fcig;fAigÞQ

i

R 2pi=Δ0
1 e−

Δ0
pi
ðAi−

pi
Δ0Þ2dAi

:

ð24Þ

as our Hamiltonian for the geometrical sector. Including the
contribution of the matter sector, we find the total constraint

Cqrlg ≔ H þHϕ ≈ 0; ð25Þ
which completes the definition of our model.

A. ρ, θ and σ2 explicit expressions for the model

In this section we provide the explicit expressions for the
phase-space functions (10), (12), (13) for the constraint
(25). The analytical bounds and the numerical evolutions
along physical motions for those quantities, are discussed
in Sec. VI.

1. Energy density

After a sign change, the ratio between (24) and the
physical volume V gives the energy density

ρðfpig; fcigÞ

¼ 1

8πγ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffipxpypz

p

×
½Qi

R 2pi=Δ0
1 e−

Δ0
pi
ðAi−

pi
Δ0Þ2dAi�H̃ðfpig; fcig; fAigÞQ

i

R 2pi=Δ0
1 e−

Δ0
pi
ðAi−

pi
Δ0Þ2dAi

:

ð26Þ
5We neglect holonomy corrections. Those are expected to be

subleading for super-Planckian volumes, condition that is always
met in our numerical simulations, see Sec. V.

6Which is slightly greater then the usual LQG-value
ΔLQG ¼ 5.22, as explained in [6].

7Note that already for Ai > 12 we have good agreement with
the exact expression (22) (see Figs. 10 and 11), thus, in Sec. V the
dynamics has been studied within the continuous approximation.
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2. Expansion scalar

From the very definition (12) and the Hamilton’s
equations (9), the expansion scalar reads

θ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pip2p3

p
dt

¼ −
8πγ

2

X
j

1

pj

∂C
∂cj

¼ −
8πγ

2

X
j

1

pj

∂HBI

∂cj ; ð27Þ

and for HBI ¼ H we obtain the actual expression for the
QRLG model:

θ¼ 1

2γ

hQ
i

R 2pi=Δ0
1 e−

Δ0
pi
ðAi−

pi
Δ0Þ2dAi

iP
j
1
pj

∂H̃
∂cj ðfpig;fcig;fAigÞQ

i

R 2pi=Δ0
1 e−

Δ0
pi
ðAi−

pi
Δ0Þ2dAi

ð28Þ

where

1

pj

∂H̃
∂cj ðfpig; fcig; fAigÞ

¼
X
i;k

ffiffiffiffiffiffiffiffiffi
pk

pipj

r ffiffiffiffiffiffiffiffiffiffi
AjAi

Ak

s
cos

 
cj

ffiffiffiffiffiffiffiffiffiffi
Aj

AiAk

s !
sin

 
ck

ffiffiffiffiffiffiffiffiffiffi
Ak

AiAj

s !

i ≠ j ≠ k; ð29Þ
e.g., the j ¼ 1 component is

1

p1

∂H̃
∂c1¼

ffiffiffiffiffiffiffiffiffiffi
p3

p1p2

r ffiffiffiffiffiffiffiffiffiffi
A1A2

A3

s
cos

 
c1

ffiffiffiffiffiffiffiffiffiffi
A1

A2A3

s !
sin

 
c3

ffiffiffiffiffiffiffiffiffiffi
A3

A1A2

s !

þ
ffiffiffiffiffiffiffiffiffiffi
p2

p1p3

r ffiffiffiffiffiffiffiffiffiffi
A1A3

A2

s
cos

 
c1

ffiffiffiffiffiffiffiffiffiffi
A1

A2A3

s !
sin

 
c2

ffiffiffiffiffiffiffiffiffiffi
A2

A1A3

s !
:

3. Shear

Finally, using (9) and (13), we find the following
expression for the shear:

σ2 ¼ ð8πγÞ2
3

�� ∂H
p1∂c1 −

∂H
p2∂c2

�
2

þ
� ∂H
p2∂c2 −

∂H
p3∂c3

�
2

þ
� ∂H
p3∂c3 −

∂H
p1∂c1

�
2
�
: ð30Þ

V. EFFECTIVE DYNAMICS: NUMERICAL STUDY

Here we address the effective dynamics of our model
(25). In order to understand the choice of possible initial

conditions, we first briefly review the Bianchi I dynamics
in GR.

A. Initial conditions and Kasner indices

As it is well known (e.g., see [28]), when the classical
Bianchi I geometry is sourced by a massless scalar field, the
possible initial conditions for its associate Cauchy problem
divide into the sets (of the starting points) of “Kasner-like”
and “Kasner-unlike” solutions. Below we briefly review
them following the notation of [27].
A straightforward computation reveals the vanishing of

the following Poisson brackets:

fpϕ; Cgrg; fpici; Cgrg ∀ i; ð31Þ

to which we associate the four constants of motion pϕ, pici,
which can be parametrized as

pϕ ≔
ffiffiffiffiffiffi
8π

p
Kϕ; pici ≔ 8πγKi ð32Þ

where Kϕ ≔ kkϕ, Ki ≔ kki and k a constant such that

k1 þ k2 þ k3 ¼ �1: ð33Þ

The four real numbers fkϕ; kig are called Kasner indices
and in terms of them the vanishing of Cgr reads

k2ϕ þ k21 þ k22 þ k23 ¼ 1: ð34Þ

Without loss of generality, we can stick to the case
P

iki ¼
þ1 and kϕ > 0. Kasner indices divide into two sets: the one
where one ki is negative and the other two are positive,
which is called “Kasner-like”, and the one where
ki > 0 ∀ i, called “Kasner-unlike” (note that this set
includes also the isotropic case ki ¼ 1=3, i ¼ 1, 2, 3).
Classically, for both sets the singularity is not avoided as it
is clear from the general solution (35), which we give below
for the scale factors (from which piðϕÞ and ciðϕÞ can be
immediately obtained using (5) and (15)):

aiðϕÞ ¼ aiðϕ0Þe
ffiffiffiffi
8π

p ki
kϕ
ðϕ−ϕ0Þ: ð35Þ

In order to compare the dynamics provided by QRLG with
the LQC one, we choose the same set of initial conditions
for the Cauchy problem associated to the Hamilton’s
equations (9). This is a first order differential problem
which admits a unique solution once seven initial con-
ditions8 fpið0Þ; cið0Þ; pϕg are chosen such that Cðpið0Þ;
cið0Þ; pϕÞ ¼ 0. To be sure that this common set fulfills
(approximately) both the LQC and QRLG constraints (18),
(25), we choose a set associated to a classical universe,

8For which we use a shorthand notation, e.g., cið0Þ ≔
ciðϕ0Þ ¼ ciðt0Þ.
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i.e., pi ≫ 1, ci ≪ 1 (μici ≪ 1) where we know that the two
constraints match. In this regime also GR holds and the
possible initial conditions are those we were referring
before, i.e., isotropic, Kasner-like and Kasner-unlike. For
all these sets we follow the same strategy: we choose the
same values of fpið0Þ; cið0Þg for both models and obtain
pϕlqc, pϕqrlg by imposing Clqcð0Þ ¼ 0 and Cqrlgð0Þ ¼ 0,
respectively.

B. The isotropic case (ISO)

The chosen initial conditions for the isotropic case are:
pið0Þ ¼ 108=3, cið0Þ ¼ 5 × 10−5=3, pϕqrlg ¼ 101.789 60,

and pϕlqc ¼ 101.789 98. In Fig. 1 we show the dynamics
of the scale factor a3, as it evolves in the relational time ϕ
and in the cosmological time t (the evolution along the
other directions is exactly the same). After the bounce
(which occurs approximately at the same time tB ¼ −16,
ϕB;lqc ≈ 0.16, ϕB;qrlg ≈ 0.18) the QRLG-Bianchi evolution
shows a significant departure from the LQC one. In
particular, looking at the left panel of Fig. 1, we see the
two evolutions start differing from each other already a bit
before the bounce.
For the QRLG model, ϕðtÞ approaches a constant value

after the bounce time, i.e., for t < −16 (see Fig. 2). This
explains why the piðϕÞ (aiðϕÞ) have a faster evolution than
the piðtÞ (aiðtÞ), indeed, as the field reaches the plateau the
dynamics “accumulates” around ϕ ≈ −0.3. In particular,
the scale factor grows linearly in time t (with slope −4.491)
after the bounce, explaining the vanishing behavior of the
scalar curvature R,

R ¼ 2

�
H1H2 þH2H3 þH3H1 þ

X
i

äi
ai

�
; ð36Þ

in the far past (see the right panel of Fig. 3). As already
observed in [27], the LQC evolution bridges two classical
Bianchi I solutions, as it is clear from the dashed

FIG. 1. Comparison between the QRLG dynamics (solid line) and the one provided by the LQC (dashed line) for isotropic initial
conditions. Left panel: a3 vs the relational time ϕ. Right panel: a3 vs the cosmological time t. In contrast to the LQC case, the QRLG
evolution after the bounce is not longer Kasner unlike.

FIG. 2. Evolution of the field ϕ vs t for the ISO case.

FIG. 3. Comparison between the QRLG (solid line) and the LQC (dashed line) dynamics for isotropic initial conditions. Left panel: the
volume V vs the cosmological time t. Right panel: the scalar curvature R vs t. Similar behaviors are found for the KUL and KL cases.
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trajectories after and before the bounce in Fig. 1. This is not
the case for the QRLG model, which is very peculiar.
Going backwards in time, the QRLG Bianchi I universe
starts as an initial classical Bianchi I and after the bounce
undergoes an expansion that it is neither KL nor KUL, i.e.,
it never approaches the classical solution (35) for any
Kasner index set. As we will see, this turns out to be a
general feature of the QRLG dynamics, observed also in
the evolutions associated to KUL and KL initial conditions
(see Figs. 4, 6 and 7).

C. The Kasner-unlike (KUL) case

Here we show the dynamics associated to the following
anisotropic set of initial conditions: p1ð0Þ¼108=3, p2ð0Þ ¼
3.5 × 108=3, p3ð0Þ ¼ 10 × 108=3, c1ð0Þ ¼ 12.5 × 10−5=3,
c2ð0Þ¼30×10−5=3, c3ð0Þ¼15×10−5=3, pϕlqc¼1616.8821,
and pϕqrlg ¼ 1616.7799. In Fig. 4 the physical areas9 pi

and the scale factors ai are plotted in the left and right
panel, respectively. We see that the LQC model joins two
classical Bianchi I universes associated to (initial) Kasner

indices kið0Þ and (final) Kasner indices ki, such that10

ki ¼ kið0Þ − 2=3. Instead, the QRLG evolution starts as
a classical Bianchi I with kið0Þ like LQC but departs from
the latter after the bounce and accelerates (going back-
wards in the relational time ϕ). In Fig. 5 the volume and the
scale factors are plotted as they evolve in the cosmological
time t, where the evolutions are power laws.

D. The Kasner-like (KL) case

Finally, we present the anisotropic case associated to
an initially contracting direction, e.g., to a negative c2ð0Þ.
The chosen initial conditions for this case are p1ð0Þ ¼
4 × 108=3, p2ð0Þ ¼ 8 × 108=3, p3ð0Þ ¼ 3 × 108=3, c1ð0Þ ¼
30 × 10−5=3, c2ð0Þ ¼ −10−5=3, c3ð0Þ ¼ 20 × 10−5=3, and
pϕqrlg ¼ 891.9694, pϕlqc ¼ 891.982 09. Even though the
evolutions of the areas pi (showed in the left panel of
Fig. 6) are similar to those of the KUL case, the scale
factors (plotted in the right panel of the same figure) reveal
a peculiar feature: each directional scale factor is non-
vanishing, contrary to what we observe for the LQC model

FIG. 4. Comparison between the QRLG (solid line) and the LQC (dashed line) dynamics for Kasner unlike initial conditions. Left
panel from top to bottom: p3, p2, p1 vs the relational time ϕ. Right panel from bottom to top: the scale factors a3, a2, a1 vs the relational
time ϕ. The Kasner indices for the LQC evolution are: k1ð0Þ ¼ 0.0467, k2ð0Þ ¼ 0.3925, k3ð0Þ ¼ 0.5608 and k1 ¼ −0.6203,
k2 ¼ −0.2741, k3 ¼ −0.1056.

FIG. 5. Comparison between the QRLG (solid line) and the LQC (dashed line) dynamics for Kasner unlike initial conditions. Left
panel: V vs t. Right panel from top to bottom: scale factors a1, a2, a3 vs the cosmological time t. The inset depicts the evolution of a2 and
a3 vs t.

9For which unitary fiducial lengths L̃i have been chosen. 10Confirming what already observed in [27].
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where a1 goes to zero after its bounce (see the bottom
dashed line in the right panel).
In closing, a natural question arises: why after the

bounces the QRLG model does not follow a semiclassical
Bianchi I evolution if its volume goes back to macroscopic
values? A look at its Hamiltonian (24) is enough for the
answer. Indeed, the QRLG Hamiltonian is an integral
function whose next-to-the leading order contribution for

large volumes provide a first order correction to the Bianchi
I LQC Hamiltonian that is proportional to the semiclassical
parameter μ0ici, where μ0i ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0pi=ðpjpkÞ

p
, i ≠ j ≠ k. A

straightforward computation reveals [6] that the ratio of this
correction over the magnitude of a sin2-term in the LQC
Hamiltonian (18) goes like V−2=3μ0ici. Thus, for finite
volumes V, both models match only when μ0ici → 0. In
the right panel of Fig. 8 we clearly see that this is no longer

FIG. 6. Comparison between the dynamics of QRLG (solid line) and LQC (dashed line) for Kasner-like initial conditions. Left panel
from top to bottom: p1, p3, p2 vs the relational time ϕ. Right panel from top to bottom: evolution of the scale factors a2, a3, a1 vs the
relational time ϕ. The Kasner indices for the LQC evolution are: k1ð0Þ ¼ 0.6978, k2ð0Þ ¼ −0.0465, k3ð0Þ ¼ 0.3488 and k1 ¼ 0.0311,
k2 ¼ −0.7133, k3 ¼ −0.3178. Note that the scale factors in the QRLG model are nonvanishing in all directions, contrarily to what
happens in the LQC case where a1 goes to zero.

FIG. 7. Comparison between the dynamics of QRLG (solid line) and LQC (dashed line) for Kasner like initial conditions. Left panel:
V vs t. Right panel from top to bottom: the evolution of the scale factors a2, a3, a1 vs t. The inset depicts the evolution of a3 and a1 vs t.

FIG. 8. Comparison between the dynamics of QRLG (solid line) and LQC (dashed line) for Kasner like initial conditions. Left panel:
evolution of the field ϕ vs the cosmological time t. Right panel from top to bottom: evolution of the semiclassical parameters μ1c1, μ3c3,
μ2c2 vs t, where μ ≔ μ̄, μ0. Similar behaviors are obtained for the ISO and KUL cases.
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true for ϕ ≪ ϕB ≈ 0.3. For macroscopic times, the LQC
evolution matches the GR one. The closer we are to ϕ ≈ π
the better the LQC Hamiltonian is approximated by the
classical one (14), but the QRLG model does not because
its infinite contributions coming from the integral (24)
are Oð1Þ.

E. Technical details

Two strategies have been followed. On the one hand, we
numerically solved the system of equations (9) by means of
a fourth order Runge-Kutta Merson method in order to
obtain p2, p3, c1, c2 and c3, both for the QRLG and LQC
model. In the first case, H of (7) is given by (24), while in
the second case, Hlqc is provided by (18). On the other
hand, we have obtained p1 directly from (7), which is
regarded as an integral equation for p1, by means of the
Trust-Region Dogleg method implemented in the function
fsolve of MATLAB® [29]. For the QRLG case, we
evaluated the integrals by using the functions inte-
gral1, integral2 and integral3 encoded in
MATLAB®, which make use of a global adaptive quadrature
rule based on a Gauss-Kronrod scheme. We retained the
default values for the absolute the relative tolerances, being
10−10 and 10−6 respectively. For the QRLG case, we have

chosen Δt ¼ 0.0158 for all the three cases analyzed, i.e.,
the ISO, KL, KUL case. As far as LQC concerns, we
selected Δt ¼ 0.05 for both the ISO and KUL case, and
Δt ¼ 0.0016 for the KL one, where the complete system of
equations (9) have been solved to obtain p1 as well. The
choice of the time step and the strategy of the solution are
dictated by the necessity of keeping the Cqrlg of the order of
at least 10−8, trying to minimize the computational time.
The initial conditions of the simulations, together with the
values of pϕ used for QRLG and LQC are listed in Table I.
In Fig. 9 (left panel) we show the evolution of theCqrlg vs

t for the KL case. It can be seen that the values of Cqrlg are
very low, precisely of the order of 10−9 or less. However,
we want to remark that the way we solved the dynamical
problem always delivered small values of Cqrlg. This
happens because p1 is computed directly from (25). In
order to strengthen the reliability of our results, we
compared the numerical solution obtained with this strategy
with the one given by the solution of the complete system
of equations (9), which does not depend on (25). We like to
stress the fact that independently on the approach chosen to
solve the problem, the dynamics must always be confined
to the surface constraint within strict tolerances, i.e.,
Cqrlg ≈ 0. In case that the dynamics departs from the
constraint surface, Cqrlg would strongly deviate from 0
with the second procedure. Therefore, a comparison
between the numerical solutions of the governing equations
obtained with the two strategies immediately indicates
whether the solution computed with the first method is
correct, since both solutions must match. Figure 9 (right
panel) depicts the percentage of the relative difference of
the volume computed with both strategies. It can be seen
that the numerical results match well during the whole
period of the evolution, with a maximum relative difference
of approximately 2.7%. In addition, the numerical solution
obtained by calculating p1 directly from (25) gives Cqrlg of
the order of 10−9 or less. Instead, the solution obtained
by solving the complete system of equations (9) delivered
Cqrlg of the order of 10−4 with the chosen time step and

TABLE I. Initial conditions for the three cases discussed in the
main text. α ≔ 104, β ≔ 5 × 10−3.

Initial conditions

ISO case KUL case KL case

p1ð0Þ α2=3 p1ð0Þ α2=3 p1ð0Þ 4α2=3

p2ð0Þ α2=3 p2ð0Þ 3.5α2=3 p2ð0Þ 8α2=3

p3ð0Þ α2=3 p3ð0Þ 10α2=3 p3ð0Þ 3α2=3

c1ð0Þ βα1=3 c1ð0Þ 2.5βα1=3 c1ð0Þ 6βα1=3

c2ð0Þ βα1=3 c2ð0Þ 6βα1=3 c2ð0Þ −0.2βα1=3
c3ð0Þ βα1=3 c3ð0Þ 3βα1=3 c3ð0Þ 4βα1=3

pϕqrlg 101.789 60 pϕqrlg 1616.7799 pϕqrlg 891.969 40
pϕlqc 101.789 98 pϕlqc 1616.8821 pϕlqc 891.982 09
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FIG. 9. Left panel: evolution of the Cqrlg vs t where p1 has been obtained from (25). Right panel: percentage of the relative difference
of the volume obtained with the two methods vs t. In one case p1 is computed from (25) while in the other case p1 is computed from (9)
together with p2, p3, c1, c2 and c3 by means of the fourth order Runge-Kutta-Merson method.
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tolerances of the integrals. By utilizing this strategy for the
QRLG case, the order of Cqrlg does not decrease signifi-
cantly when the time step Δt is reduced. Thus, we have
chosen to solve p1 from (25) in all the simulations for all
the QRLG cases, even if the computational time required
was higher, since the trust-region dogleg method is an
iterative technique. This fact is more severe for the QRLG
case, since numerical simulations required several days on
a common workstation, while in the LQC case the
computational time was just of the order of seconds.

VI. ANALYTICAL UPPER BOUNDS FOR THE
QRLG-BIANCHI I MODEL

Here we prove that energy density, expansion scalar and
shear are bounded phase space functions along the effective
dynamics provided by the QRLG constraint (22). To begin
with, let us introduce the following quantity (where
b ≔ c=

ffiffiffiffi
p

p
):

HFLRW
disc;A ðAmaxðVÞ;bÞ

≔−
3

8πγ2

�
Δ0Amax

2

�
1=2

P
Amax

1

�
Amax

A

�
Asin2½bðΔ0Amax

2A Þ1=2�
P

Amax

1

�
Amax

A

� ;

ð37Þ

which is the effective QRLG-Hamiltonian for the FLRW
model, as provided by the (area counting) statistical
regularization scheme [6]. In order to show the boundness
of the energy density ρdisc for the QRLG-Bianchi I model,
i.e., of (26) with Gaussians replaced by binomials as in
(22), we will use as a preliminary lemma the boundness
of the energy density associated to (37), which we
proove below.

A. Energy density upper bound
for the QRLG-FLRW model

The energy density for the FLRW model is given by the
ratio of (37) over the volume V ¼ ðΔ0 Amax

2
Þ3=2 [6], followed

by a sign change, i.e.,

ρFLRWdisc;A ¼ 3

8πγ2

�
Δ0Amax

2

�
−1 1

2A
max − 1

XAmax

1

�
Amax

A

�

× Asin2
�
b

�
Δ0Amax

2A

�
1=2
�

ð38Þ

where we have used

XAmax

1

�
Amax

A

�
¼ 2A

max − 1: ð39Þ

Clearly, the following holds:

ρFLRWdisc;A ≤
3

8πγ2

�
Δ0Amax

2

�
−1 1

2A
max − 1

XAmax

1

�
Amax

A

�
A ð40Þ

and using

XAmax

1

�
Amax

A

�
A ¼ Amax2A

max−1; ð41Þ

we find

ρFLRWdisc;A ≤
3

4Δ0πγ2
max
Amax≥1

SðAmaxÞ; ð42Þ

having called

SðAmaxÞ ≔ 2A
max−1

2A
max − 1

; ð43Þ

which is a decreasing monotonic sequence whose maxi-
mum value is 1, reached at Amax ¼ 1. Thus, we end up with
the following upper bound:

ρFLRWdisc;A ≤
3

4Δ0πγ2
: ð44Þ

B. Energy density upper bound for
the QRLG-Bianchi I model

For Bianchi I we use expression (22), change its sign and
divide it by the volume

V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p ¼
�
Δ0

2

�
3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Amax
1 Amax

2 Amax
3

p
:

Proceeding analogously to the QRLG-FLRW case, we
arrive at the following inequality for the QRLG-Bianchi I
energy density:

ρ ≤
1

4Δ0πγ2
3max
Amax
1

≥1
SðAmax

1 Þ; ð45Þ

where S is the sequence (43). Thus, we find the same bound
we had for the isotropic case, i.e.,

ρ ≤
3

4Δ0πγ2
¼ 0.6874: ð46Þ

C. Expansion scalar and shear upper bounds

For the sake of clarity, here we start working within the
continuous approximation. In order to show the boundness
of θ and σ2, it is enough to find an upper bound for the term
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∂H
pj∂cj, as it is clear from expressions (27) and (30). From the

definitions (24) and (29), it follows that

���� ∂H
pj∂cj

����≤ 1

8πγ2
X
i;k

ffiffiffiffiffiffiffiffiffi
pk

pjpi

r hQ
i

R 2pi=Δ0
1 e−

Δ0
pi
ðAi−

pi
Δ0Þ2dAi

i ffiffiffiffiffiffiffi
AjAi

Ak

q
Q

i

R 2pi=Δ0
1 e−

Δ0
pi
ðAi−

pi
Δ0Þ2dAi

i≠ j≠k: ð47Þ

For any given j, the r.h.s. is a sum of two terms which is
symmetric under k ↔ i, e.g., for j ¼ 1 we have

���� ∂H
p1∂c1

����≤ 1

8πγ2
½I1ðp1ÞI2ðp2ÞI1ðp3ÞþI1ðp1ÞI2ðp3ÞI1ðp2Þ�

where

I1ðp1Þ ≔
1ffiffiffiffiffi
p1

p
R 2p1=Δ0
1 e−

Δ0
p1
ðA1−

p1
Δ0 Þ2 ffiffiffiffiffi

A1

p
dA1R 2p1=Δ0

1 e−
Δ0
p1
ðA1−

p1
Δ0 Þ2dA1

; ð48Þ

I2ðp2Þ ≔
ffiffiffiffiffi
p2

p
R 2p2=Δ0
1 e−

Δ0
p2
ðA2−

p2
Δ0 Þ2 1ffiffiffiffi

A2

p dA2R 2p2=Δ0
1 e−

Δ0
p2
ðA2−

p2
Δ0 Þ2dA2

: ð49Þ

I1 and I2 are integral functions whose inspection at their
boundaries is enough to understand whether they are
bounded or not. Their asymptotic behavior as pi → ∞
may be obtained with the Laplace method:

lim
p1→∞

I1ðp1Þ ¼
1ffiffiffiffiffi
Δ0p ; lim

p2→∞
I2ðp2Þ ¼

ffiffiffiffiffi
Δ0p
: ð50Þ

Still, the limits at pi ¼ Δ0
2

remain. At those points
the continuous approximation (24) is no longer reliable
(a priori) and the exact definition (22) must be taken into
account, which implies the inspection of the discrete
versions of functions I1 and I2, i.e.,

Idisc1 ðAmax
1 Þ≔

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amax
1 Δ0p ð2Amax

1 −1Þ
XAmax
1

1

�
Amax
1

A1

� ffiffiffiffiffi
A1

p
; ð51Þ

Idisc2 ðAmax
2 Þ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amax
2 Δ0p

ffiffiffi
2

p ð2Amax
2 − 1Þ

XAmax
2

1

�
Amax
2

A2

�
1ffiffiffiffiffi
A2

p ; ð52Þ

wherewe have used (20) and (39). The sequences Idisc1 ðAmax
1 Þ

and Idisc2 ðAmax
2 Þ are plotted in Figs. 10 and 11 together with

their continuous approximations (48), (49), from which we
easily read their maximum values: maxðIdisc1 Þ ¼ 0.576 ¼
1.414=

ffiffiffiffiffi
Δ0p

and maxðIdisc2 Þ ¼ 2.616 ¼ 1.065
ffiffiffiffiffi
Δ0p
.

Thus,

���� ∂H
pj∂cj

���� ≤ 1

8πγ2
2½maxAmax

1
≥1Idisc1 ðAmax

1 Þ�2 max
Amax
2

≥1
Idisc2 ðAmax

2 Þ

¼ 2.129ffiffiffiffiffi
Δ0p
4πγ2

: ð53Þ

From definition (27) we find the following upper bound for
the absolute value of the expansion scalar:

jθj ≤ 3
8πγ

2

2.129ffiffiffiffiffi
Δ0p
4πγ2

¼ 6.387ffiffiffiffiffi
Δ0p
γ
¼ 10.8375; ð54Þ

FIG. 10. The sequence Idisc1 ðAmax
1 Þ and its continuous approxi-

mation I1ðAmax
1 Þ defined in the text, together with their common

asymptote I1 ¼ 1=
ffiffiffiffiffi
Δ0p
. The maximum value of Idisc1 is 0.576,

reached at Amax
1 ¼ 1. Note the sequence starts matching its

continuous approximation already for Amax
1 > 10.

FIG. 11. The sequence Idisc2 ðAmax
2 Þ and its continuous approxi-

mation I2ðAmax
2 Þ defined in the text, together with their common

asymptote I2 ¼
ffiffiffiffiffi
Δ0p
. The maximum value of Idisc2 is 2.616

reached at Amax
2 ¼ 6 (the relative difference with the maximum

of I2 is only around 2%). Note the sequence starts matching its
continuous approximation already for Amax

2 > 12.
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from (30), the upper bound for the shear is found to be

σ2 ≤ 3
ð8πγÞ2

3

�
2maxAmax≥1

���� ∂H
pj∂cj

����
�

2

¼ 72.522
Δ0γ2

¼ 208.7998: ð55Þ

D. ρ, θ and σ2 along physical motions

Here we show the numerical evolutions of the quantities
ρ, θ, and σ2 along the physical motion (see Figs. 12 and 13)
associated to the KL set of initial conditions discussed
before (see Table I). Their maxima are reported in the
captions and they all respect the analytical bounds (46),
(54) and (55). ISO and KUL cases provide similar plots,
therefore we do not show them here. In particular, in the
QRLG model all the quantities turn out to reach a
maximum value that is significantly smaller than the one
reached in LQC. Their maximum relative difference
between the two models Δρ ≔ jρLQC − ρQRLGj=ρLQC;
Δθ ≔ jθLQC − θQRLGj=θLQC; Δσ2 ≔ jσ2LQC − σ2QRLGj=σ2LQC
are 16.76%, 11.09% and 28.61%, respectively.

Finally, note the evolution of θ in the relational time ϕ
(left panel of Fig. 13) is consistent with the dynamics
of ϕ, plotted in the left panel of Fig. 8. Indeed, as we
approach ϕ ¼ −0.0365, dϕ=dt ≈ 0 and thus dθ=dϕ≡
ðdθ=dtÞðdϕ=dtÞ−1 speeds up as observed. Moreover, the
“accumulation point” ϕ ¼ −0.0365 is reached for t → −∞
and there is no chance for θ to grow more than what
observed in Fig. 13.

VII. CONCLUSIONS

Since a complete theory of quantum gravity is still
lacking, insights about the Planck-scale physics rely on
several different approaches, such as the one pursued by
string theory [30,31], LQG [3,4], and non-commutative
geometry [32], only to cite a few. Even within a given
approach, mathematical ambiguities can arise when the
machinery of a given theory is applied to a symmetry
reduced system to perform computations. This is the
case of LQG, where several possible models for the
description of our primordial universe come from its
covariant [33–35], canonical [6,12,36] and group field
theory [37] formulation.

FIG. 12. Comparison between the QRLG (solid line) and the LQC (dashed line) model for Kasner-like initial conditions. Left panel:
evolution of the energy density ρ vs ϕ. Right panel: evolution of the shear σ2 vs ϕ. The maximum and the minimum values are:
ρmax
QRLG ¼ 0.1529, ρmax

LQC ¼ 0.1837, σ2max
QRLG ¼ 7.9670, and σ2max

LQC ¼ 11.1605.

FIG. 13. Comparison between the QRLG (solid line) and the LQC (dashed line) model for Kasner-like initial conditions. Left panel:
evolution of the expansion scalar θ vs ϕ. Right panel: evolution of the expansion scalar θ vs t. The maximum and the minimum values
are: θmax

QRLG ¼ 2.0712, θmax
LQC ¼ 2.2909, θmin

QRLG ¼ −2.0368, and θmin
LQC ¼ −2.2909.
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In this paper we have studied an anisotropic, homo-
geneous model for the quantum cosmology of Bianchi I
geometry in LQG within the QRLG framework and
compared it with effective LQC. The numerical simulations
of the evolution of the LQC-Bianchi I and the QRLG-
Bianchi I model have all been run starting from (approx-
imately) common initial conditions that correspond to a
classical Bianchi I universe. The LQC evolution is
observed to bridge two classical Bianchi I universes before
and after the bounces, in agreement with [27], whereas this
does not happen for the QRLG-model. Going backwards in
the relational time ϕ, the QRLG evolution starts departing
from the LQC one already a bit before the bounces. Those
occur only once in each direction, and then an accelerated
evolution of each scale factor is observed. The main result
is that the QRLG dynamics resolves the classical singu-
larity for all kind of initial conditions. In particular, the
scale factors turn out to vanish in all directions, contrary to
what happens in LQC. In the latter case, one of the scale
factor turns out to be vanishing in the far past for Kasner-
like initial conditions, confirming what already observed in
[27]. The simulations have been done for three different
kinds of classical initial conditions, namely the isotropic,
Kasner-like and Kasner-unlike ones. The reliability on the
observed singularity resolution in QRLG is strengthened by
the analytical upper bounds we have found for the energy
density, expansion scalar and shear.
Another difference between the QRLG-model and the

LQC one is that for isotropic initial conditions, the former
does not reduce to the QRLG-FLRW model, i.e., to the
emergent bouncing universe [5,6]. Instead, a LQC-Bianchi I
reduces to a LQC-FLRW. This is clear from the mathemati-
cal point of view, since a dynamics that starts with isotropic
conditions keep evolving isotropically and since the QRLG-
Bianchi I Hamiltonian does not reduce to the QRLG-FLRW
one in the isotropic limit pi → p, ci → c. Therefore, the
isotropic dynamics of the QRLG-Bianchi I must differ from
the ones of the QRLG-FLRW, as observed. Thus, contrary to

what happens for LQC, the prebounce phenomenological
traces of a QRLG primordial universe could be used in
principle to understand whether the late (isotropic) universe
comes from the isotropic QRLG-Bianchi I model or the
QRLG-FLRW one.
A comparison between the isotropic QRLG-Bianchi I

and the recently introduced Dapor-Liegener model [36]
comes natural, since both show a departure from standard
LQC before the bounce. Backwards in the cosmological
time t, the latter describes an isotropic universe that starts as
a contracting classical FLRW, undergoes a bounce and
expands forever according to a non-Friedmanian evolution
whose limit in the far past is exponential, i.e., driven by a
Planckian valued cosmological constant. Thus, both the
QRLG-Bianchi I and the Dapor-Liegener model do not exit
the quantum regime after the bounce but while the latter
here expands exponentially, the former does it only linearly.
In closing, our study has shown that QRLG offers a

viable alternative to the standard picture drawn by LQC,
providing a singularity-free model for anisotropic cos-
mology. Investigations both in the phenomenological and
theoretical side remain to be done in the near future, such
as computing the power spectrum of tensor and scalar
perturbations propagating on the QRLG-Bianchi I effec-
tive background, and addressing the quantum dynamics
by using a graph-changing Hamiltonian operator. The
former will (hopefully) provide crucial observable pre-
dictions for testing the effective scenario and the latter
deeper insights on QRLG-quantum dynamics beyond its
effective scheme.
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