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We study the de Sitter (dS) swampland conjecture in the Dirac-Born-Infeld (DBI) inflation model. We
obtain the dS swampland bound for the relativistic regime using Bousso’s entropy bound argument and
proper distance. It restricts mPl∇V=V by some positive constant depending on warping and the field range.
In the specific case of the DBI model driven by the quadratic potential, the model-dependent backreaction
argument is interpreted as a natural bound for the slow-roll parameter. This shows that quasi-dS spacetime
in the DBI model is a result of tuning.
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I. INTRODUCTION

Recently, various criteria for the low-energy effective
field theory (EFT) admitting a consistent UV completion in
quantum gravity have been proposed (for a review, see
Ref. [1]). Among these “swampland conjectures,” the de
Sitter (dS) swampland conjecture [2] rules out (meta)stable
dS vacua from the string landscape by imposing bounds on
the gradient of potential,

mPl
j∇Vj
V

≥ c; or

m2
Pl

minð∇i∇jVÞ
V

≤ −c0; ð1Þ

for some positive constants c and c0 of order 1 [3]. As
pointed out in Ref. [3], the bounds are supported by
Bousso’s covariant entropy bound [4], provided the entropy
is dominated by the rapidly increasing number of states
along some parameter. This requirement is guaranteed by
another swampland conjecture, the distance conjecture [5].
It states that as a scalar field traverses along the trans-
Planckian geodesic distance towers of light states descend
from UV.
Implicit in the arguments of Ref. [3] is that the dS

swampland conjecture imposes constraints on the rate of
change of the curvature radius or, equivalently, Hubble
parameter H. In quasi-dS spacetime, which lasts for a

sufficiently large number of e-folds, these constraints are
written as conjectured bounds for slow-roll parameters,

ϵH ¼ −
_H

H2
; η̃H ¼ _ϵH

HϵH
: ð2Þ

They measure deviation of the spacetime geometry from
dS, reflecting the instability of dS isometries under dynam-
ics of scalar fields. Such an instability implies that quasi-dS
spacetime is a result of fine-tuning, unless there is a specific
symmetry reason. This fact already appeared as a difficulty
in supergravity model building for inflationary cosmology,
namely, the η problem [6].1

In Refs. [2,3], constraints on ðϵH; η̃HÞ were stated in
terms of the potential as Eq. (1) by assuming the action
comprises a quadratic kinetic term and potential only,
though the results of Ref. [3] applies more generally. In
this case, slow-roll parameters ðϵH; η̃HÞ are related to
“potential slow-roll parameters”

ϵV ¼ m2
Pl

2

�
V 0

V

�
2

; ηV ¼ m2
Pl
V 00

V
ð3Þ

by ϵV ≃ ϵH and ηV ≃ 2ϵH − η̃H=2; hence, bounds for
ðϵH; η̃HÞ are equivalent to those for ðϵV; ηVÞ. On the
contrary, such an equivalence is no longer the case when
higher-derivative terms are taken into account. The poten-
tial may not be an essential ingredient (as in kinematically
driven inflation [12]) or can be steep (as in Dirac-Born-
Infeld (DBI) inflation [13]) to achieve quasi-dS spacetime.
In these PðX ¼ −1=2ð∂ϕÞ2;ϕÞ-type models [14], quasi-dS
spacetime parametrized by small slow-roll parameters
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1For previous discussions on the dS swampland conjecture
in the context of inflationary cosmology, see, e.g., Refs. [7–10].
For studies on the entropy argument in Ref. [3], see, e.g.,
Ref. [11].
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ðϵH; η̃HÞ is not a result of small potential slow-roll para-
meters ðϵV; ηVÞ. From this, we expect that the dS swamp-
land bound from Ref. [3] has a nontrivial form, rather than
naively given by Eq. (1).
The purpose of the present work is to explore the results

of Ref. [3] in the context of the DBI inflation model in
which a more generic form of the dS swampland conjecture
in terms of Eq. (2) (implicit in Ref. [3]) applies. In the DBI
model, inflation is driven by a modulus of the probe brane
moving toward a warped anti-de Sitter (AdS) throat in high
speed, so higher-derivative terms in the DBI action play the
crucial role. Also, masses of open string fluctuations and
Kaluza-Klein (KK) modes are proportional to the modulus,
realizing the situation similar to what the distance con-
jecture states. This enables us to find the dS swampland
bound through the arguments in Ref. [3].
In addition, we point out that in the case of quadratic

potential a natural bound for ϵH can be obtained from
the IR cutoff for the modulus. The IR cutoff here is
introduced to protect the EFT from descent of KK modes
near the throat. This in fact is a part of so-called model-
dependent backreaction argument restricting the viable
DBI model. Indeed, it turns out that the original DBI
model is easily spoiled by two types of backreaction:
(1) Model dependent backreaction [15] is a deformation

of the warp factor by the backreaction from the
potential. Combined with the IR cutoff, this excludes
the DBI model driven by the simple quadratic
potential, V ¼ ð1=2Þm2ϕ2, unlessm is much heavier
than the typical mass scale of light particles living on
the brane.

(2) Model-independent backreaction [16] is deforma-
tion of the warp factor by Hubble expansion of the
brane world volume.2 The position of the throat is
shifted, and the modulus speed is uncontrollably
boosted such that acceleration stops before a suffi-
cient amount of e-folds.

As shown in Ref. [16], reduction of the model-independent
backreaction effect through nonrenormalizable terms or
interaction with bulk fields is regarded as a tuning similar
to the attempt to solve the η problem. It is another way to
reveal difficulty in quasi-dS spacetime construction. On the
other hand, the model-dependent backreaction argument
provides a bound for ϵH parametrizing the tuning for
quasi-dS spacetime in terms of the modulus mass.
Finally, in the nonrelativistic regime, the warp factor is

interpreted as a potential; hence, we can apply the dS
swampland conjecture to it. From this, we obtain the upper
limit of the dS swampland bound value.

II. DE SITTER SWAMPLAND CONJECTURE
FOR HUBBLE PARAMETER

We begin our discussion with the dS swampland con-
jecture from Bousso’s entropy bound as studied in Ref. [3].
Suppose there are towers of states of which the masses
depend on some parameter φ as m ¼ m0 exp½−αφ�. That
means that as φ becomes larger than 1=α light degrees of
freedom descend from UV, invalidating EFT. From this,
we expect that the number of light degrees of freedom
increases as NðφÞ ¼ nðφÞ exp½βφ� for some positive con-
stant β to dominate the Hilbert space, hence entropy. The
behavior dN=dφ > 0 is reflected in the condition for the
number of towers nðϕÞ, dn=dφ ≥ 0, and the exponential
factor, which is determined by the details of model.
On the other hand, the geometry of the Universe close

to dS has the curvature radius given by 1=H. Then, the
entropy can be written as S ¼ NpðmPl=HÞq with positive p
and q as an ansatz [3]. When φ ≫ 1=α, the entropy Swould
eventually saturate its upper limit, given by the Gibbons-
Hawking entropy bound SGH ¼ 8π2m2

Pl=H
2. This leads to

the generic dS swampland bound [3],

−
1

H
dH
dφ

¼ p
2 − q

1

N
dN
dφ

>
pβ

2 − q
≡ cent: ð4Þ

We note that for NðφÞ not to be suppressed under the large
curvature radius orH ≪ mPl, q < 2 needs to be satisfied, so
the rhs is positive. Even if the Universe is dynamical, it can
be approximated as a stable state close to dS, i.e., quasi-dS,
provided small ðϵH; η̃HÞ is maintained for the sufficiently
large number of e-folds. In this case, the lhs of Eq. (4) can
be rewritten in terms of the slow-roll parameter ϵH
as −ð1=HÞdH=dφ ¼ ϵHðH= _φÞ.
We note that in the argument to obtain Eq. (4), an ex-

ponential decrease of masses along some parameter is
assumed. Such a behavior of masses is guaranteed by the
distance conjecture. Here, the parameter φ is identified with
the geodesic distance in field space.3 Typically, exponents
α and β are given by order 1 such that the descent
of states from UV becomes evident after Planckian ex-
cursion of the scalar along the geodesic. AsmPlφ corresponds
to the variation of the scalar field with the canonical
kinetic term, in the absence of higher-derivative terms
in the action, φ describes the well-known slow-roll
inflation. From relations mPl _φ ≃ −V 0=3H and ϵH ≃ ϵV ,
we obtain ðH= _φÞϵH ≃ ðmPl=2ÞjV 0j=V, so Eq. (4) becomes
mPljV 0j=V > cent, as Eq. (1) states. Since the typical value of
cent is of order 1, ϵV , and hence ϵH, cannot be small enough to
maintain quasi-dS spacetime, contradicting our assumption.
It suggests that inflation is not preferred by quantum gravity.2In the DBI model, the energy density is dominated by the

potential, so deformation of the warped factor by Hubble
expansion includes that by the potential. Whereas model-depen-
dent backreaction focuses on the viable field range for EFT to
exclude the specific quadratic potential, model-independent
backreaction considers generic effects of the Hubble parameter.

3We note here the subtlety that the physically relevant distance
during inflation is the dynamical field range traversed by the
inflaton in a multidimensional field space [17], which can be
different from the geodesic distance.
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In the DBI model we will study, on the other hand,
infaton is the brane modulus, and the masses of open string
fluctuations as well as KK modes of particles living on the
brane are proportional to it. They descend exponentially in
terms of the proper distance in extra-dimensional space,
rather than geodesic distance in field space defined by the
quadratic kinetic term. Therefore, in our discussion, we
take the proper distance as the parameter φ to apply for the
bound, Eq. (4).4

III. DBI INFLATION MODEL

In this section, we review essential features of the DBI
inflation model, as studied in Refs. [13,19]. Let the probe
D3-brane in type-IIB string theory move toward a throat of
the warped AdS bulk background generated by a stack of N
D3-branes. Given the distance of the probe brane from the
throat r≡ α0ϕ, where α0 is the Regge slope representing
ðstring lengthÞ2, the metric is given by

ds2

α0
¼ f−1=2ðϕÞ½−dt2þaðtÞ2dx⃗2� þf1=2ðϕÞ½dϕ2þϕ2dΩ2

5�:
ð5Þ

Here, fðϕÞ ¼ 2λ=ϕ4 is the warp factor, with λ ¼ Ng2YM
being the ’t Hooft coupling for the gauge interaction on the
brane. Assuming spatial homogeneity, the effective action
for ϕ is written as

S¼−
1

g2YM

Z
d4x

ffiffiffiffiffiffi
−g

p ½f−1ðϕÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−fðϕÞ _ϕ2

q
∓1�þVðϕÞ

�
:

ð6Þ

The first term comes from the DBI action, which contains
the gravitational interaction. From this, one finds that the
speed of ϕ cannot be arbitrarily large but restricted to be
f _ϕ2 ≤ 1 [20]. The second term, the Chern-Simons term,
describes the exchange of the four-form Ramond-Ramond
(RR) sector field between branes, where the upper (lower)
minus (plus) sign is assigned for the probe (anti-)D3-brane.
While a gauge symmetry in this case is given by Uð1Þ×
UðNÞ, when the probe brane reaches the AdS throat, it is
enhanced to UðN þ 1Þ. Then, the Higgsed gauge bosons as
well as matters which are bifundamental under Uð1Þ ×
UðNÞ become massless as their masses are given by ϕ.
Higher-derivative terms are the effect of these particles in
the virtual loop.

From Eq. (5), we define the dimensionless proper
distance in the ϕ direction as ds ¼ −ð2α02λÞ1=4mPldϕ=ϕ, or

ϕ ¼ ϕ0 exp

�
−

s

ð2α02λÞ1=4mPl

�
: ð7Þ

Here, the negative sign indicates that ϕ gets smaller as the
probe brane approaches the AdS throat. That means that,
before reaching the AdS throat (ϕ ¼ 0), ϕ travels along
infinitely long proper distance s=mPl, and when it exceeds
the AdS radius ð2α02λÞ1=4, masses of gauge bosons and
bifundamentals become small enough. At the same time, as
we will see, the tower of KK modes also descends from the
UV. This suggests regarding the proper distance s as the
parameter φ in Eq. (4).
To see the effects from higher derivatives of ϕ in detail,

we define the boost factor in a way similar to that in special
relativity,

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðϕÞ _ϕ2

q : ð8Þ

The relativistic limit corresponds to γ ≫ 1. The equations
of motion for the probe brane are given by [13]5

3H2 ¼ ρ

g2YMm
2
Pl

; 2
ä
a
þH2 ¼ −

p
g2YMm

2
Pl

;

ρ ¼ f−1ðγ − 1Þ þ V; p ¼ γ − 1

γ
f−1 − V;

ϕ̈þ 3f0

2f
_ϕ2 −

f0

f2
þ 3H

γ2
_ϕþ

�
V 0 þ f0

f2

�
1

γ3
¼ 0: ð9Þ

From them, one finds the condition for the Universe to
accelerate:

2
ä
a
¼ 1

g2YMm
2
Pl

�
2

3
V −

ðγ − 1Þðγ þ 3Þ
3γ

f−1
�
> 0: ð10Þ

Therefore, even in the relativistic regime γ ≫ 1, the scale
factor aðtÞ accelerates, provided the “large V parameter”
defined by

cV ≡ γ

fV
ð11Þ

is much smaller than unity, such that the potential gives the
dominant contribution to the energy density.

IV. DS SWAMPLAND CONJECTURE IN
DBI-RELATIVISTIC REGIME

Now, we observe the dS swampland conjecture in the
relativistic regime. To see this, we first find how ϵH is

4In the DBI model, the field range of the brane modulus is
sub-Planckian, given by gYMmPl=

ffiffiffiffi
N

p
, which can be read off from

the throat volume contribution to Planck mass [18]. This is a
different situation from what distance conjecture considers, in
which the scalar travels the Planckian distance along the geodesic
until the descent of light particles. 5For the probe antibrane, V is replaced by V þ 2f−1.
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written in terms of the large V parameter cV. From time
derivatives of the first in Eq. (9) and γ, with the help of the
last in Eq. (9), we obtain _ϕ2 ¼ −2g2YMm2

Pl
_H=γ [13]. Then,

ϵH in the regime γ ≫ 1 is given by

ϵH ¼ −
_H

H2
¼ 3

2

ðγ2 − 1Þ=γ
fV þ γ − 1

≃
3

2

cV
1þ cV

: ð12Þ

Evidently, cV ¼ 0 corresponds to dS spacetime. For
cV ≪ 1, the Universe accelerates, and the probe brane
has a quasi-dS geometry satisfying ϵH ≃ ð3=2ÞcV ≪ 1.
Moreover, the value of ϵH converges to 3=2 for large
cV , so the dS swampland condition in the relativistic regime
is written as ϵH ∼Oð1Þ, rather than ϵH > Oð1Þ as naively
expected from Eq. (1). The consideration above suggests
that the large V parameter cV is a good slow-roll parameter
measuring the deviation of spacetime from dS, which is
equivalent to ϵH in quasi-dS. Then, the dS swampland
conjecture for the DBI model in the relativistic regime can
be given by the bound for cV.
We also note that when we trade the time dependence

of H into ϕ dependence, HðϕÞ, _H ¼ H0 _ϕ gives _ϕ ¼
−2g2YMm2

PlH
0=γ, from which we obtain γ2 ¼ 1þ

fð2g2YMm2
PlH

0Þ2. Since the energy density is dominated
by V, the first equation of motion gives 6g2YMm

2
PlHH0 ≃ V 0,

and then the relativistic condition reads [13]

γ2 ≃ 1þ fg2YMm
2
Pl
ðV 0Þ2
3V

≃
2

3
ϵVg2YMfV ≫ 1: ð13Þ

That means that during the quasi-dS evolution the potential
is rather steep, contrary to the situation in the absence of
higher-derivative terms in which quasi-dS is a result of the
almost flat potential. Combining this with Eq. (11), the
definition of cV , we obtain the relation for γ ≫ 1 [19],

cVγ ≃
4

3
g2YMm

2
Pl

�
H0

H

�
2

≃
2

3
g2YMϵV: ð14Þ

This shows that large γ ≫ 1 and perturbatively small
g2YM < 4π allow for cV ≪ 1, i.e., quasi-dS unless ϵV is
much larger than γ=g2YM ≫ 1.
From the discussion so far, we find how the generic dS

swampland bound in Eq. (4) appears in the DBI model.
Putting the first two terms in Eq. (14) as well as the
definition of the proper distance s0 ¼ −ð2α02λÞ1=4mPl=ϕ
into dH=ds ¼ H0=s0 in the lhs of Eq. (4), we obtain the dS
swampland bound

ðcVγÞ1=2 > ðmPlð2α02λÞ1=4Þ
�
gYMmPl

ϕ

�
2ffiffiffi
3

p cent: ð15Þ

The first term in the rhs corresponds to the characteristic
constant for the proper distance, the AdS radius. As for
gYMmPl=ϕ, the throat volume contribution to mPl sets the

bound gYMmPl=ϕ >
ffiffiffiffi
N

p
[18]. Therefore, ðcVγÞ1=2 or,

equivalently, gYMmPl∇V=V [from the first and third terms
in Eq. (14)] is bounded by the AdS radius and gYMmPl=ϕ
bound in addition to cent, rather than simply bounded by
cent only. Whether quasi-dS is allowed, i.e., cV can be still
smaller than unity under the dS swampland bound, is
determined by the tuning between the rhs of Eq. (15) and γ.
We close this section with comments on the condition

that η̃H remains small. Taking the time derivative on
Eq. (14) gives the expression for η̃H under γ ≫ 1 and
cV ≪ 1 as

η̃H ¼ 2g2YMmPl

γ

�
2
H02

H2
− 2

H00

H
þ γ0

γ

H0

H

�

¼ 3ϵH −
g2YMm

2
Pl

γ

V 00

V
−
2g2YMm

2
Pl

γ

V 0

ϕV
; ð16Þ

where for the last equality ϕ derivatives on 3g2YMm
2
PlH

2 ≃ V
and γ2 ¼ ðg2YMm2

Pl=3ÞfðV 02=VÞ are taken. The last term,
which can be rewritten as ðgYMmPl=ϕÞðϵH=γÞ1=2, can be
made small through tuning between gYMmPl=ϕ (bounded
by

ffiffiffiffi
N

p
) and ðϵH=γÞ1=2 (much smaller than 1). Also, in the

second term, sizeable m2
Pl∇2V=V is allowed in quasi-dS

spacetime, as long as it is much smaller than γ=g2YM.
Indeed, for the potential in the form of V ∼ ϕp, we simply
obtain η̃H ¼ ½pðp − 2Þ=p2�ϵH. Then, for the constant and
quadratic potential, η̃H vanishes, and for other values of p,
the bound for η̃H comes from that for ϵH.

V. cV BOUND FOR QUADRATIC POTENTIAL

Since various particles become massless as the probe
brane approaches the throat, EFT for the DBI inflation is
no longer valid near the throat. Moreover, the warp factor
can be deformed by the backreaction of large V on the
background. Juan Maldacena argued that, given quadratic
potential V ¼ ð1=2Þm2ϕ2, for values of ϕ which do not
alter the warp factor, the large V condition cV ≪ 1 is easily
spoiled and hence quasi-dS spacetime is difficult to realize
[15] (see Ref. [21] for a review of the argument). As will
be clear, his argument sets the bound for cV in another
way, revealing the nature of the quasi-dS spacetime as a
tuning. This can be regarded as another version of the dS
swampland bound, limited to the DBI model driven by the
quadratic potential.
To begin with, suppose some of the massless string

excitations on the brane obtain masses, say, m0 through,
e.g., the supersymmetry breaking. Now, the KK mass gap
for the particles living on the brane at r ¼ α0ϕ is given by
mKK ¼ ð1=ðα0 ffiffiffiffiffi

2λ
p Þ1=2Þ × ðr=ðα0 ffiffiffiffiffi

2λ
p Þ1=2Þ, i.e., the inverse

of the AdS radius multiplied by the warp factor. Hence, as
pointed out in Ref. [15], when r gets close to zero, so does
mKK, resulting in degeneracy of all KK modes of masses
m2

n ¼ m2
0 þ n2m2

KK (n ∈ Z) to m2
0. Even worse, KK modes
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of massless particles like (unbroken) gauge bosons degen-
erate to zero mass.
For this reason, EFT for particles with masses around

and below m0 are intact by such overcrowding of KK
modes, providedm0 < mKKðr ¼ rIRÞ. Then, the range of ϕ
is restricted as [15]

ϕ2 > ϕ2
IR ¼ r2IR

α02
> m2

02λ; ð17Þ

from which Ref. [15] found a bound for cV,

cV ¼ γ

fV
¼ γ

ϕ4

2λ

2

m2ϕ2
¼ γϕ2

λm2
> 2γ

�
m0

m

�
2

: ð18Þ

Therefore, unless the modulus mass m is considerably
heavier than m0, we have V < γf−1, inconsistent with
the large V condition. While the m → ∞ limit corresponds
to dS spacetime, m cannot be arbitrarily large, as the DBI
model is based on EFT, which is valid below the mass scale
ϕ. In addition, γ ≫ 1 also prevents cV from being small
enough. If m ≃m0, the slow-roll parameter cV is forced to
be larger than 2γ ≫ 1, and quasi-dS spacetime is not
allowed. Comparing Eq. (18) with Eq. (14), we find that
the cV bound is converted into the bound for mPl∇V=V as

mPl
V 0

V
¼

ffiffiffiffiffiffiffiffi
2ϵV

p
>

ffiffiffi
6

p
γ

gYM

�
m0

m

�
: ð19Þ

To explain the natural hierarchy between m and m0,
Ref. [21] suggested that these two masses are generated in
different ways. For example, m and m0 may come from
gauge and gravity mediation, respectively. In any case, the
cV bound from the model-dependent backreaction argu-
ment shows that quasi-dS spacetime is a result of tuning
between small m0=m and large γ.

VI. DS SWAMPLAND CONJECTURE IN
DBI-NONRELATIVISTIC REGIME

In the nonrelativistic regime (fðϕÞ _ϕ2 ≪ 1), since higher-
derivative terms are suppressed, the action given by Eq. (6)
is expanded as

S ¼ 1

g2YM

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
_ϕ2 − f−1 � f−1 − V þ � � �

�
: ð20Þ

To find the dS swampland bound from Eq. (4), we consider
−ð1=HÞdH=ds ¼ ϵHðH= _sÞ. We note from Eq. (20) that the
canonically normalized modulus field is ϕ=gYM, so Planck
mass mPl in equations of motion for ϕ appears as a
combination gYMmPl, as can already be found in Eq. (9).
Also, in the nonrelativistic limit, the potential slow-roll
parameter ϵV is related to ϵH by ϵH ¼ g2YMϵV. Using the
equation of motion _ϕ ≃ −V 0=3H, the dS swampland bound
in the nonrelativistic regime is written as

ϵ1=2H ¼ ϵ1=2V >
ffiffiffi
2

p
ðmPlð2α02λÞ1=4Þ

�
gYMmPl

ϕ

�
cent: ð21Þ

This, in fact, is the same as the γ ≃ 1 limit of Eq. (15).
On the other hand, Eq. (20) shows the exact cancellation

between gravitational and RR four-form potentials ∓ f−1

in the probe brane action, reflecting the Bogomolny-
Parasad-Sommerfeld nature of the D-brane. Hence, at least
in the nonrelativistic regime, the dS swampland conjecture
can be applied to the “potential” f−1. Then, Eq. (21)
becomes the condition cent < 2=½mPlð2α02λÞ1=4�.
As suggested in Ref. [7], one may try to impose Eq. (1)

on f−1 as a condition for ϕ even though the entropy bound
argument with the proper distance does not support it. This
conjectured bound is written as

gYMmPl
jðf−1Þ0j
f−1

¼ 4gYMmPl

ϕ
> c: ð22Þ

We recall that ϕ is interpreted as the mass of Uð1Þ ×UðNÞ
bifundamentals. Especially, since the bifundamentals
are charged under the unbroken Uð1Þ gauge symmetry,
the inequality is translated into gYM > cϕ=mPl ¼ c×
ðUð1Þ charged particlemassÞ=mPl. For c ∼Oð1Þ, the
inequality in Eq. (22) is more or less consistent with the
weak gravity conjecture (WGC) [22] in which the bound is
given by the extremal black hole charge-to-mass ratio of
order 1. Of course, this WGC-like bound is not as stringent
as the bound obtained in [18], which is given by
gYMmPl=ϕ >

ffiffiffiffi
N

p
, since almost static AdS background

requires large N.
The similarity between bounds in Eq. (22) and the

WGC is already found in another inflation model.
Indeed, the WGC has been used to constrain the slow-roll
in natural inflation [23] that makes use of the axionlike
pseudo-Goldstone boson as an inflaton. Given axion decay
constant fa with potential V ¼ V0 exp½−Sint� cosða=faÞþ
ðsuppressed higher harmonicsÞ, we have m2

PlV
00=V ∼

−m2
Pl=f

2
a as well as mPlðjV 0j=VÞ ∼mPl=fa, so fa needs

to be trans-Planckian to give quasi-dS spacetime, but the
(refined) dS swampland conjecture with c; c0 ∼Oð1Þ for-
bids it.6 At the same time, in the WGC, 1=fa and Sinst are
interpreted as charge and mass, respectively, giving a bound
fa × Sinst ≲mPl [25]. In order that terms containing higher
harmonics are sufficiently suppressed compared to the
leading term of the potential, we need Sinst ∼Oð1Þ, which
excludes the single field natural inflation (for the WGC in
the context of multifield natural inflation, see, e.g.,
Refs. [25,26]). Even though the origins are different, the
similarity between two conjectures in two inflationary

6There is an argument that the distance conjecture applies to
the axionlike particles through the saxion backreaction [24].
Then, the dS swampland conjecture for the axionlike particles is
supported by Ref. [3].
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scenarios in the nonrelativistic regime may imply an
equivalence argument based on quantum gravity.

VII. SUMMARY

Discussions so far show that in the DBI model Bousso’s
entropy bound argument provides the bound for ðcVγÞ1=2=
gYM ≃mPl∇V=V as Eq. (15) but it does not coincide with
the mPl∇V=V bound in the nonrelativistic regime. On the
other hand, the model-dependent backreaction argument is
interpreted as the cV bound in the case of quadratic
potential. From this, we find that quasi-dS spacetime is
a result of fine-tuning between the small mass ratio m0=m
and the large boost factor γ.
We note that in the DBI model the energy density is

dominated by the potential, resulting in a connection
between the dS swampland condition [Eq. (15)] and

mPl∇V=V bound. On the other hand, in the kinematically
driven inflation model [12], the potential is not required to
realize quasi-dS spacetime. The dS swampland bound in
this case is expected to be determined irrelevant to the
mPl∇V=V bound. This implies that we may have a more
generic bound for the PðX;ϕÞ-type model, but it is still
challenging to find out the parameter along which the mass
decreases exponentially in a sensible field range if it is sub-
Planckian.
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