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In the AdS3=CFT2 correspondence, we find some conformal field theory (CFT) states that have no bulk
description by the Bañados geometry. We elaborate the constraints for a CFT state to be geometric, i.e.,
having a dual Bañados metric, by comparing the order of central charge of the entanglement/Rényi entropy
obtained respectively from the holographic method and the replica trick in CFT. We find that the geometric
CFT states fulfill Bohr’s correspondence principle by reducing the quantum Korteweg-de Vries hierarchy
to its classical counterpart. We call the CFT states that satisfy the geometric constraints geometric states,
and otherwise, we call them nongeometric states. We give examples of both the geometric and
nongeometric states, with the latter case including the superposition states and descendant states.
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I. INTRODUCTION

The anti-de Sitter (AdS)/conformal field theory (CFT)
correspondence conjectures that the bulk quantum gravity
is equivalent to the boundary CFT [1]. In the semiclassical
limit of bulk theory, a CFT state is believed to be dual to a
bulk geometry if the quantum fluctuation can be mini-
mized. We call such a kind of CFT states the geometric
states. Thus, it is easy to see that the superposition of two
geometric states cannot be geometric because the super-
position principle should not hold for the bulk classical
gravity [2]. Despite there being many discussions on the
criterion for a CFT state to be geometric, e.g., Refs. [3,4]
and a review in Ref. [5], it still lacks a concise criterion that
one can adopt to check for more generic cases. For
example, in AdS5=CFT4 correspondence, people know
that the vacuum state of SUðNÞ gauge theory admits only
planar correlators in the large N limit, which is then dual to
classical gravity in pure AdS5 space. In this case, the
quantum fluctuation of nonplanar diagrams is suppressed,
and a bulk geometry is emerging as the holographic dual.

However, there is no clear planar limit for arbitrary excited
states.
The situation becomes sharper in three-dimensional (3D)

AdS gravity, which is dual to a two-dimensional (2D) CFT
[6], and thus the bulk Bañados geometries [7] are deter-
mined by the expectation value of the stress tensor of dual
2D CFT states in the large central charge c limit. Due to the
topological nature of 3D AdS gravity, we can state that the
2D geometric states should be described by the Bañados
geometries. The primary states and canonical ensemble
states are known to be described by the Bañados geometries
as can be verified by the match of entanglement entropy
and its holographic dual [8,9] in the Bañados-Teitelboim-
Zanelli black hole [10] background. Here, c plays a similar
role as N in the AdS5=CFT4; however, there is no analog of
the planar limit even for the vacuum state to define the
suppression of quantum fluctuation. Naively, one can
require the standard deviation/uncertainty of any local
operator to be small as the criterion for the suppression
of quantum fluctuation, and thus the geometric states.
However, the question is what the exact suppression order
of these standard deviations/uncertainties should be in the
large c expansion. We need a concise criterion to check for
more generic (non)geometric states, at least in AdS3=CFT2.
In this work, we formulate such a criterion by comparing

the nonlocal observables such as entanglement entropy
and Rényi entropy with their holographic duals [8,9,11].
If the CFT state is geometric, then its entanglement/Rényi
entropy calculated á la the replica trick [12–15] should
agree with the corresponding holographic dual calculated
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from the dual Bañados geometries. Otherwise, it is non-
geometric. Moreover, by short-interval expansion, we can
turn this criterion into the constraints on the standard
deviation of the stress tensors and its higher order cousins
in terms of Korteweg-de Vries (KdV) charges. This will
then tell precisely how much the quantum fluctuation
should be suppressed for a state to be geometric. With
such a concrete criterion, we indeed find some new non-
geometric states, which are descendant states.
Our paper is organized as follows. In Sec. II, we state

explicitly our criterion for the geometric CFT states. In
Sec. III, we derive the conditions for geometric CFT states
on the expectation values of quasiprimaries. In Sec. IV, we
demonstrate a correspondence principle for the KdV
charges for the geometric CFT states. We then give the
examples for the geometric CFT states and nongeometric
CFT states in Secs. V and VI, respectively. Finally, we
conclude our paper in Sec. VII with discussions on our
geometric state conditions and the connected correlation
functions characterizing the suppression of quantum fluc-
tuations. Besides, we elaborate technical details in various
Appendixes. In Appendix A, we give the more explicit
details of the conditions given in Sec. III for geometric CFT
states. In Appendix B, we elaborate the derivation of the
conditions in Sec. III and Appendix A. In Appendix C, we
give the detailed check for a coordinate-dependent example
of the geometric state discussed in Sec. V. In Appendix D,
we elaborate the check of nongeometric descendant states
discussed in Sec. VI.

II. CRITERION FOR GEOMETRIC CFT STATES
IN BAÑADOS GEOMETRY

Due to the topological nature of 3D Einstein gravity, i.e.,
that there is no bulk propagating degree of freedom, the
bulk geometry is completely determined by the asymptotic
boundary constraints; this led Bañados to conjecture that all
the vacuum asymptotically AdS3 solutions of 3D Einstein
gravity are completely classified by the boundary con-
formal symmetries. Applying this conjecture to AdS=CFT
correspondence, it leads to the Bañados geometries, which
are determined by the expectation value of the stress tensor
with respect to the dual CFT state. More precisely, the form
of the Bañados geometry takes the form [7]

ds2 ¼ dy2

y2
þ Lρ

2
dz2 þ L̄ρ

2
dz̄2 þ

�
1

y2
þ y2

4
LρL̄ρ

�
dzdz̄;

ð1Þ

where we set the AdS radius to unity R ¼ 1 so that the bulk
Newton constant GN is related to the central charge c of the
dual CFT by c ¼ 3

2GN
[6].

We consider a holographic CFT on a cylinder with
complex coordinate w and spatial period L in a state with
density matrix ρ, and the cylinder can be mapped to a

complex plane with coordinate z by the conformal trans-
formation z ¼ e

2πiw
L . The functions LρðzÞ and L̄ρðz̄Þ in the

Bañados geometry are respectively holomorphic and anti-
holomorphic and are related to the expectation value of the
stress tensor on the plane with respect to the dual CFT state

hTðzÞiρ ¼ −
c
12

LρðzÞ; hT̄ðz̄Þiρ ¼ −
c
12

L̄ρðz̄Þ: ð2Þ

Given a Bañados geometry which is dual to a CFT state
ρ, one can then evaluate the holographic entanglement/
Rényi entropy á la the prescriptions in Refs. [8,9,11]. Both
the holographic entanglement and Rényi entropies are
given by the area law formula. If we consider a CFT state,
for which hTðzÞiρ and hT̄ðzÞiρ are of order c, then the
metric of the dual Bañados geometry is of order c0 in the
large c expansion and should be independent of c in
the large c limit. Thereby, the area of minimal surface or
cosmic brane should be independent of c so that the
holographic entanglement/Rényi entropies should be of
order c due to the relation c ¼ 3

2GN
. Based on the above

result, we now formulate our criterion for the geometric
CFT states. For a 2D CFT state of order c stress tensor
expectation value to be holographic dual to a Bañados
geometry, the entanglement/Rényi entropy obtained from
CFT calculations should be at most order c in the large c
limit. Otherwise, we call the CFT state nongeometric.

III. CONSTRAINTS FOR GEOMETRIC
CFT STATES

Based on our proposed criterion for the geometric CFT
states, i.e., that the entanglement/Rényi entropy should be
at most of order c in the large c limit, we would like to
extract the necessary constraints by explicitly evaluating
the entanglement/Rènyi entropy. The prescription of evalu-
ating entanglement/Rényi entropy is based on the replica
trick [16], which leads to an n-fold CFT that we call CFTn.
However, there is usually no closed form of entanglement/
Rényi entropy for generic excited states. Instead, we will
evaluate in the short-interval expansion, similar to what has
been done in Refs. [12–15]. By assuming dominance of the
vacuum conformal family in the operator product expan-
sion (OPE) of twist operators [17–20] in the large c limit,
the entanglement/Rényi entropy takes the formal form in
terms of the series of expectation values of CFTn quasipri-
mary fields ΦK that are constructed by operators in the
vacuum conformal family of the original one-fold CFT.
Since the contributions from the holomorphic and anti-
holomorphic sectors decouple and are similar, in this paper,
we only consider the contributions from the holomorphic
sector.
We consider the short interval A ¼ ½w;wþ l� with

l ≪ L, and from the OPE of twist operators, we get the
short-interval expansion of the Rényi entropy,
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SðnÞA;ρ ¼
cðnþ 1Þ
12n

log
l
ϵ

−
1

n − 1
log

�X
K

dK
X∞
r¼0

arK
r!

lhKþrhΦðrÞ
K ðwÞiρ

�
: ð3Þ

The summation of K is over all the CFTn holomorphic
quasiprimary operators ΦK , with conformal weight hK ,
which are constructed from the holomorphic quasiprimary
operators in the original one-fold CFT. The forms of ΦK to
level 8, which are constructed from T at level 2; A at level
4; B and D at level 6; and E, H, and I at level 8 as well as
their corresponding OPE coefficients dK , can be found in
Ref. [21]. There is the coefficient arK ¼ Cr

hKþr−1=C
r
2hKþr−1.

Requiring that the Rényi entropy of A in state ρ is of at
most order c, we get the constraints for the one-point
functions up to level 6,

hTiρ ¼ cαðwÞ þ βðwÞ þ γðwÞ
c

þO

�
1

c2

�
;

hAiρ ¼ c2αðwÞ2 þ cδðwÞ þ ϵðwÞ þO
�
1

c

�
;

hBiρ ¼ c2½α0ðwÞ2 − 4

5
αðwÞα00ðwÞ� þOðcÞ;

hDiρ ¼ c3αðwÞ3 þ 3c2αðwÞ½δðwÞ − αðwÞβðwÞ� þOðcÞ;
ð4Þ

with αðwÞ, βðwÞ, γðwÞ, δðwÞ, and ϵðwÞ being arbitrary order
Oðc0Þ holomorphic functions.
We write the conditions (4) as the suggestive forms

lim
c→∞

hAiρ − hTi2ρ
c2

¼ 0; ð5Þ

lim
c→∞

hDiρ − 3hAiρhTiρ þ 2hTi3ρ
c2

¼ 0: ð6Þ

Recall that A ¼ ðTTÞ − 3
10
∂2T with (� � �) denoting the

normal ordering;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hAiρ − hTi2ρ

q
plays the role of standard

deviation of T with respect to the geometric state ρ, and
thus (5) tells that it should be smaller than order c in the
large c limit. Similarly, D ¼ ðTðTTÞÞ þOðT2Þ; thus,
Eq. (6) suggests that the uncertainty of cubic quantum
fluctuation of T should be also not larger than order c.
There are more constraints at higher orders of l. See
Appendixes A and B for more details.
Note that these constraints are in analogy to the planar

limit of the large N expansion in four-dimensional Yang-
Mills theory for the vacuum state. However, we are
considering the excited state of large c 2D CFTs, and
there is no known planar limit for this case. Instead, our
simple criterion serves as a guide for the analogy quantum
suppression and yields the precise constraints for the

geometric states. Next, we will justify the semiclassical
nature of the geometric states for the physical observables
in the sense of Bohr’s correspondence principle.

IV. QUANTUM TO CLASSICAL KDV EQUATION
AND CHARGES FOR GEOMETRIC

CFT STATES

The geometric state constraints relate the expectation
values of operators in the vacuum family quasiprimaries.
We will show that these constraints in fact reduce the
quantum KdV equation and charges to their classical
counterparts.
For demonstration, we write down the quantum KdV

currents up to level 6 [22–24],

J2 ¼ T; J4 ¼ ðTTÞ; J6 ¼ ðTðTTÞÞ− cþ 2

12
ðT 0T 0Þ;

ð7Þ

with the parentheses denoting the normal ordering oper-
ators. In terms of the quasiprimary operators and their
derivatives, we obtain

J2 ¼ T; J4 ¼ Aþ 3

10
T 00;

J6 ¼ D −
25ð2cþ 7Þð7cþ 68Þ

108ð70cþ 29Þ B

−
2c − 23

108
A00 −

c − 14

280
Tð4Þ: ð8Þ

These currents form the mutually commuting KdV charges

Q2k−1 ¼
Z

L

0

dw
L

J2kðwÞ; ð9Þ

which constitute the integrability hierarchy of the quantum
KdV equation

_T ¼ 1 − c
6

T 000 − 3ðTTÞ0 ¼ −
5cþ 22

30
T 000 − 3A0: ð10Þ

Using the leading order geometric state constraints (4), we
set αðwÞ ¼ UðwÞ=6 and get the classical KdV equation

_U ¼ U000 þ 6UU0: ð11Þ

Note that ∂t, which we denote by a dot, has been rescaled
from the quantum KdVequation to its classical counterpart.
In the large c limit, a natural definition of the classical

counterpart of quantum KdV currents with respect to state
ρ is

Jρ2kðwÞ≡ lim
c→∞

6k

ck
hJ2kðwÞiρ: ð12Þ
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Using the leading order of (4), we can then turn Jρ2k into the
standard classical form

Jρ2 ¼ U; Jρ4 ¼ U2; Jρ6 ¼ U3 −
1

2
U02: ð13Þ

Their associated KdV charges constitute the integrability
hierarchy of the classical KdV equation (11). This reflects
Bohr’s correspondence principle for these geometric states
by reducing these KdV conserved currents into their
classical counterparts.
In the textbook [25], the quantum to classical reduction

for the KdV equation is obtained by simply replacing the
KdV current operator with its classical counterpart without
referring to the associated state. This does not work if
the associated CFT state is nongeometric, as we discuss in
this paper.

V. EXAMPLES OF GEOMETRIC CFT STATES

In Refs. [26–29], it has been shown that the Rényi
entropy in the primary excited state

ρϕ ¼ 1

αϕ
jϕihϕj ð14Þ

is of order c if the conformal weight hϕ is at most of order c,
so the expectation values of quasiprimaries should satisfy
all the geometric state constraints (4). This is also consistent
with the calculation [13,14] from the OPE of twist
operators to order l8.
Even without an explicit check as is done for the primary

states, we can argue that some particular states should
satisfy the geometric state constraints. For example, the
thermal states which are dual to Bañados-Teitelboim-
Zanelli black holes thus should also be geometric.
Similarly, the states which are conformally related to the
vacuum state on the plane, denoted by j0i, should also be
geometric. In the bulk, these states are dual to the Bañados
geometries, which can be transformed to pure AdS3 by the
coordinate transformation dual to the boundary conformal
map. These states include the thermal state and the conical
defect state.
In quantum mechanics, the wave packet state behaves

like a classical particle. This motivates us now to check if a
wave packet state can also have the bulk description.
Explicitly, the state considered has the density matrix

ρϕðw0Þ ¼
1

αϕ

�
L
π
sin

πðw̄0 − w0Þ
L

�
2hϕ

ϕðw0Þj0ih0jϕðw̄0Þ

¼ 1

αϕ

�
1 − z0z̄0

z̄0

�
2hϕ

ϕðz0Þj0ih0jϕð1=z̄0Þ: ð15Þ

Note that w0 is a position on the cylinder and z0 is a

position on the plane with the relation z0 ¼ e
2πiw0
L . Since

ϕðz0Þj0i ¼ ez0L−1 jϕi, the above state can be understood as a
coherent sum of the primary state jϕi and its global
descendants. We check that the one-point functions in
the state ρϕðw0Þ satisfy the constraints (4). See Appendix C
for details. This is consistent with the fact that on the
cylinder the locally excited state is dual to a moving particle
in AdS3 [26,30], i.e., that there exists a bulk geometric
description.

VI. EXAMPLES OF NONGEOMETRIC
CFT STATES

From our discussions, we see that there is an infinite
tower of constraints for a state to be geometric. Then, it
seems that it should be quite easy to have nongeometric
states by violating one of the infinite number of constraints.
The reason why we did not know any example of non-
geometric states is partly due to lack of principle of check
as proposed in this work and partly due to the technical
involvement of evaluating the geometric state constraints.
In the following, we will consider some examples of
nongeometric states, for which we know how to evaluate
the associated one-point functions of the vacuum family
quasiprimary operators to check (4).
As discussed in the Introduction, one expects the super-

position of primary states will not be geometric because the
bulk gravity is classical, so the superposition principle does
not work. Now, we would like to check this explicitly.
Let us choose jϕ1i and jϕ2i as two primary states with

conformal weights hϕ1
¼cϵϕ1

þOðc0Þ, hϕ2
¼cϵϕ2

þOðc0Þ,
and ϵϕ1

≠ ϵϕ2
. We consider the superposition state

cosðθÞjϕ1i þ eiψ sinðθÞjϕ2i: ð16Þ
The constraints (4) are satisfied separately for the states
jϕ1i and jϕ2i; however, they are violated for the super-
position state (16). This means that the superposition of two
primary states is nongeometric, as we expect. It is straight-
forward to generalize the above result to superposition
states

P
i cijϕii with jϕii’s being different primary states.

Other examples that do not satisfy the constraints (4) are
some descendant states

jϕðmÞi with hϕ þm ∼OðcÞ;
jϕ̃i with hϕ ∼OðcÞ;
jϕ̃ðmÞi with hϕ þm ∼OðcÞ;
jTðmÞi with m ∼OðcÞ;
jAðmÞi with m ∼OðcÞ; ð17Þ

where ϕ is a primary operator and ϕ̃ is a quasiprimary
operator with the definition ϕ̃≡ ðTϕÞ − 3

2ðhϕþ1Þϕ
00. Note

that we have not yet normalized these descendant states
properly. By hϕ þm ∼OðcÞ, we mean that either hϕ or m
can be of order Oðc0Þ or OðcÞ, but the sum hϕ þm is of
order OðcÞ. See more details in Appendix D.
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Among the examples of nongeometric states, the super-
position states can be understood intuitively. On the other
hand, we have no immediate understanding as to why the
descendant states lack the bulk classical geometric descrip-
tions. In Ref. [31], the descendant states are understood as
the dressings of gravitons on the particle’s worldline. It is
hard to see why some of the dressings cannot be back-
reacted geometrically, especially for the case with m being
Oðc0Þ. We may then ask if these states will turn to be
geometric if quantum gravity effects are taken into account.
In the context of perturbative quantum gravity by including
higher derivative curvature terms, the answer is no because
these terms are of higher orders in GN ∼ 1=c, so they can
only yield subleading order 1=c corrections to the Bañados
geometry, and the holographic entanglement/Rényi entro-
pies remain order c. Therefore, we are forced to accept the
existence of these nongeometric states, or the quantum
gravity correction should be nonperturbative.
Moreover, in the context of quantum thermalization and

canonical typicality [32,33] the nongeometric states are
obviously the atypical states because their entanglement/
Rényi entropies are quite different from the ones of thermal
states. Using the result in Ref. [34], it can be shown that
there are more descendant states than the primary ones at
high levels in the large c limit [35]. If most of these
descendant states are nongeometric, one would then expect
the canonical typicality to fail for 2D large c CFTs.

VII. CONCLUSIONS

In this work, based on (holographic) entanglement
entropy, we have formulated a criterion to check if a 2D
CFT state can have a bulk geometric description or not.
Moreover, we derive the explicit constraints for an explicit
check and find that all the primary states are geometric
along with the discovery of some nongeometric states.
In this concluding section, we elaborate the relation

between our geometric state conditions and the connected
correlation functions, which characterize the suppression of
the quantum fluctuations.
In statistical mechanics, the connected correlation func-

tion or Ursell function of multivariate random variables is
defined by

UnðX1; X2;…; XnÞ ≔
∂
∂ξ1

∂
∂ξ2…

∂
∂ξn loghe

P
i
ξiXiijξi¼0;

ð18Þ

where h� � �i means taking the expectation value of the
variables. For our purpose, we take Xi to be the stress
energy tensor TðziÞ at point zi and the expectation value to
be h…iρ. We denote the connected correlation functions of
T by Uρ

nðTðz1Þ; Tðz2Þ;…; TðznÞÞ, and the first few of them
are given by

Uρ
1ðTðz1ÞÞ ¼ hTðz1Þi;

Uρ
2ðTðz1Þ; Tðz2ÞÞ ¼ hTðz1ÞTðz2Þiρ − hTðz1ÞiρhTðz2Þi;

Uρ
3ðTðz1Þ; Tðz2Þ; Tðz3ÞÞ ¼ hTðz1ÞTðz2ÞTðz3Þiρ − hTðz1ÞiρhTðz2ÞTðz3Þiρ − hTðz2ÞiρhTðz1ÞTðz3Þiρ

− hTðz3ÞiρhTðz1ÞTðz2Þiρ þ 2hTðz1ÞiρhTðz2ÞiρhTðz3Þiρ: ð19Þ

We could also generalize to operator ∂mT, for examples,

Uρ
2ð∂Tðz1Þ; ∂Tðz2ÞÞ ¼ h∂Tðz1Þ∂Tðz2Þiρ

− h∂Tðz1Þiρh∂Tðz2Þiρ
Uρ

2ð∂2Tðz1Þ; Tðz2ÞÞ ¼ h∂2Tðz1ÞTðz2Þiρ
− h∂2Tðz1ÞiρhTðz2Þiρ: ð20Þ

We derive the geometric conditions on the cylinder
with coordinate w and spatial period L, but now it is
convenient to work on the complex plane with coordinate z.
We would like to show that the geometric conditions are
invariant under a conformal map z ¼ fðwÞ. After perform-

ing a conformal map z ¼ fðwÞ on the relation SðnÞA;ρðwÞ∼
loghσnðw1Þσ̃nðw2Þiρn , we then have

SðnÞA;ρðzÞ ∼ loghσnðz1Þσ̃nðz2Þiρn þ hn logðf0ðw1Þf0ðw2ÞÞ;
ð21Þ

where hn ¼ c
24
ðn − 1=nÞ. Therefore, the requirement

SðnÞA;ρðwÞ ∼OðcÞ is equivalent to SðnÞA;ρðzÞ ∼OðcÞ. We further
use the OPE of twist operators on the plane with the
coordinate z and get exactly the same conditions for the
one-point functions of quasiprimary operators with ΦKðwÞ
replaced by ΦKðzÞ. By a conformal map z ¼ e2πiw=L, the
cylinder is mapped to the complex plane. If the conditions
on the plane are justified, it leads to the justification of the
conditions on the cylinder.
On the complex plane, one may rewrite the first geo-

metric state condition (B5) as

1

2πi

I
z2

dz1
z1 − z2

�
lim
c→∞

Uρ
2ðTðz1Þ; Tðz2ÞÞ

c2

�
¼ 0: ð22Þ

Similarly, for the condition (B11), we have
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hDiρ − 3hAiρhTiρ þ 2hTi3ρ
¼ hðTðTTÞÞiρ − 3hðTTÞiρhTiρ
þ 2hTi3ρ þ

9

10
ðhð∂2TTÞiρ

− h∂2TiρhTiρÞ þOðcÞ ð23Þ

and the condition

1

2πi

I
z3

dz1
z1 − z3

1

2πi

I
z3

dz2
z2 − z3

lim
c→∞

1

c2

×

�
Uρ

3ðTðz1Þ; Tðz2Þ; Tðz3ÞÞ þ
9

10
Uρ

2ð∂2Tðz2Þ; Tðz3ÞÞ
�

¼ 0: ð24Þ

For the condition (B10), it is given by

1

2πi

I
z2

dz1
z1 − z2

lim
c→∞

1

c2

�
Uρ

2ð∂Tðz1Þ; ∂Tðz2ÞÞ

−
4

5
Uρ

2ð∂2Tðz1Þ; Tðz2ÞÞ
�
¼ 0: ð25Þ

Higher order conditions (B12), (B13), and (B14) can also
be rewritten as the connected correlation functions. We will
not show them here.
The geometric state conditions are in analogy to the

planar limit of the correlation function of largeN expansion
in four-dimensional Yang-Mills theory in a vacuum state.
However, there is no solid argument to justify this analog.
If one requires a stronger condition than the connected
correlation functions of the scaled operator T=c,

Uρ
nð∂m1Tðz1Þ=c;∂m2Tðz2Þ=c;…;∂mnTðznÞ=cÞ∼Oð1=cn−1Þ;

ð26Þ

for any integer n and m1;…; mn. It is just

Uρ
nð∂m1Tðz1Þ; ∂m2Tðz2Þ;…; ∂mnTðznÞÞ ∼OðcÞ: ð27Þ

The conditions (22), (24), and (25) will be satisfied. One
could check the higher order conditions; they all should
be satisfied. Note that the conditions we find are a criterion
for generic excited states, not just for vacuum. We have
checked that (27) is right for a primary state and thermal
state up to n ¼ 3. It begs a quantum gravity interpretation
of these conditions.
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APPENDIX A: CONDITIONS FOR GEOMETRIC
CFT STATES

The conditions for geometric CFT states are expressed
as one-point functions of quasiprimary operators in the
vacuum family. We would like to summarize the definitions
of these quasiprimary operators up to level 8; more details
can be found in Refs. [15,20]. At level 2, we have the
quasiprimary operator T. At level 4, we have

A ¼ ðTTÞ − 3

10
∂2T: ðA1Þ

We use (XY) to denote normal ordering ofX and Y, and on
the complex plane, it is defined as

ðXYÞðzÞ ¼ 1

2πi

I
z

dw
w − z

XðwÞYðzÞ: ðA2Þ

At level 6, we have two quasiprimary operators:

B ¼ ð∂T∂TÞ − 4

5
ð∂2TTÞ − 1

42
∂4T;

D ¼ ðTðTTÞÞ − 9

10
ð∂2TTÞ − 1

28
∂4T þ 93

70cþ 29
B: ðA3Þ

At level 8, we have three quasiprimary operators,

E¼ð∂2T∂2TÞ−10

9
ð∂3T∂TÞþ10

63
ð∂4TTÞ− 1

324
∂6T;

H¼ð∂Tð∂TTÞÞ−4

5
ð∂2TðTTÞÞþ 2

15
ð∂3T∂TÞ− 3

70
ð∂4TTÞ

þ 9ð140cþ83Þ
50ð105cþ11ÞE;

I ¼ðTðTðTTÞÞÞ−9

5
ð∂2TðTTÞÞþ 3

10
ð∂3T∂TÞ

þ 81ð35c−51Þ
100ð105cþ11ÞEþ

12ð465c−127Þ
5cð210cþ661Þ−251

H:

ðA4Þ

APPENDIX B: DERIVATION OF GEOMETRIC
CONDITIONS

By requiring the Rényi entropy [Eq. (3) in the main text]
to be OðcÞ, we may get the following conditions, i.e., the
conditions for geometric states. With some calculations, we
get Rényi entropy up to Oðl8Þ,
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SðnÞA;ρ ¼
cðnþ 1Þ
12n

log
l
ϵ
þ C2
1 − n

l2 þ C3
1 − n

l3 þ 2C4 − C22
2ð1 − nÞ l

4 þ C5 − C2C3
1 − n

l5 þ 2C32 − 3C23 − 6C2C4 þ 6C6
6ð1 − nÞ l6

þ C7 þ C22C3 − C3C4 − C2C5
1 − n

l7 þ 4C8 − 4C2C6 − 4C3C5 − 2C24 þ 4C22C4 þ 4C2C32 − C42
4ð1 − nÞ l8 þOðl9Þ ðB1Þ

with

C2 ¼ bThTiρ; C3 ¼
bT
2
∂hTiρ;

C4 ¼ bAhAiρ þ bTThTi2ρ þ
3

20
bT∂2hTiρ

C5 ¼
1

30
bT∂3hTiρ þ

1

2
bA∂hAiρ þ

1

2
bTT∂hTi2ρ;

C6 ¼ bBhBiρ þ bDhDiρ þ bTAhTiρhAiρ þ bTTThTi3ρ þ bKKρ þ
1

168
bT∂4hTiρ þ

5

36
bA∂2hAiϕ þ

5

36
bTT∂2hTi2ρ;

C7 ¼
1

1120
bT∂5hTiρ þ

1

36
½bA∂3hAiρ þ bTT∂3ðhTi2ρÞ�

þ 1

2
½bB∂hBiρ þ bD∂hDiρ þ bTA∂ðhTiρhAiρÞ þ bTTT∂ðhTi3ρÞ þ bK∂Kρ�;

C8 ¼ bEhEiρ þ bHhHiρ þ bIhIiρ þ bTBhTiρhBiρ þ bTDhTiρhDiρ þ bAAhAi2ρ þ bTTAhTi2ρhAiρ þ bTTTThTi4ρ
þ bTKhTiρKρ þ bOOρ þ bPPρ þ bQQρ þ bRRρ þ

1

8640
bT∂6hTiρ þ

7

1584
bA∂4hAiρ þ

7

1584
bTT∂4hTi2ρ

þ 7

52
½bB∂2hBiρ þ bD∂2hDiρ þ bTA∂2ðhTiρhAiρÞ þ bTTT∂2hTi3ρ þ bK∂2Kρ�: ðB2Þ

The expectation values hXiρ ¼ hXðwÞiρ, X ¼ T;A;B;D; � � �, are functions of the coordinate w. The coefficients bK are
defined in Ref. [20] from the OPE coefficients dK of the twist operators and are constants depending on n and c. There are
also definitions

Kρ ¼ ð∂hTiρÞ2 − 4

5
hTiρ∂2hTiρ;

Oρ ¼ ∂hTiρ∂hAiρ −
2

9
hTiρ∂2hAiρ −

4

5
∂2hTiρhAiρ;

Pρ ¼ ð∂2hTiρÞ2 −
10

9
∂hTiρ∂3hTiρ þ

10

63
hTiρ∂4hTiρ;

Qρ ¼
7

9
hTiρKρ; Rρ ¼

7

11
hTiρKρ: ðB3Þ

At Oðl4Þ, we have

2C4 − C22 ¼
n2 − 1

720n3
½ðn2 − 1ÞðhAiρ − hTi2ρÞ þ 18n2∂2hTiρ� þOð1=cÞ: ðB4Þ

The last term is OðcÞ; we get the first condition,

lim
c→∞

hAiρ − hTi2ρ
c2

¼ 0: ðB5Þ

At Oðl5Þ, we have

C5 − C2C3 ¼
n2 − 1

2880n3
½5ðn2 − 1Þð∂hAiρ − 2hTiρ∂hTiρÞ þ 8n2∂3hTiρ� þOð1=cÞ: ðB6Þ
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This leads to the condition,

lim
c→∞

∂hAiρ − 2hTiρ∂hTiρ
c2

¼ 0: ðB7Þ

This is nothing but the derivative of (B5). At Oðl6Þ, we have

2C32 − 3C23 − 6C2C4 þ 6C6

¼ n2 − 1

60480n5

�
35ðhDiρ − 3hAiρhTiρ þ 2hTi3ρÞ þ 35ðhBiρ −Kρ − 2ðhDiρ − 3hAiρhTiρ þ 2hTi3ρÞ

− 5½∂2hAiρ − 2ð∂hTiρÞ2 − 2hTiρ∂2hTiρ�Þn2 þ 7ð5Kρ − 5ð∂hTiρÞ2 þ 4∂hTiρ∂2hTiρÞn3

þ 35

�
ðhBiρ −KρÞ − ðhDiρ − 3hAiρhTiρ þ 2hTi3ρÞ − 5ð∂2hAiρ − 2ð∂hTiρÞ2 − 2hTiρ∂2hTiρÞ −

36

7
∂4hTiρ

�
n4

− 7ð5Kρ − 5ð∂hTiρÞ2 þ 4∂hTiρ∂2hTiρÞn5
�
þOð1=cÞ: ðB8Þ

By using the constraint (B5), we obtain

lim
c→∞

∂2hAiρ − 2ð∂hTiρÞ2 − 2hTiρ∂2hTiρ
c2

¼ 0: ðB9Þ

Therefore, we will have the following conditions at this order:

lim
c→∞

hBiρ −Kρ

c2
¼ 0; ðB10Þ

lim
c→∞

hDiρ − 3hAiρhTiρ þ 2hTi3ρ
c2

¼ 0: ðB11Þ

The expression of Oðl8Þ is too lengthy, so we just list the results at this order,

lim
c→∞

1

c2
½hIiρ − 4hDiρhTiρ − 3hAiρ2 þ 12hAiρhTi2ρ þ 6hTi4ρ� ¼ 0; ðB12Þ

lim
c→∞

1

c2
½45hHiρ − 65hBiρhTiρ þ 10hTiρ∂2hAiρ36hAiρ∂2hTiρ − 72hTi2ρ∂2hTiρ

− 45∂hAiρ∂hTiρ þ 90hTiρ½∂hTiρ�2� ¼ 0; ðB13Þ

lim
c→∞

1

c2
½hEiρ − ½∂2hTiρ�2 − 10=63ðhTiρ∂4hTiρ − 7∂3hTiρ∂hTiρÞ� ¼ 0: ðB14Þ

Without loss of generality, we assume the one-point functions hXiρ have the following forms,

hTðwÞiρ ¼
Xþ∞

k¼−1
c−ktkðwÞ; hAðwÞiρ ¼

Xþ∞

k¼−2
c−kakðwÞ; hBðwÞiρ ¼

Xþ∞

k¼−2
c−kbkðwÞ; hDðwÞiρ ¼

Xþ∞

k¼−3
c−kdkðwÞ;

hEðwÞiρ ¼
Xþ∞

k¼−2
c−kekðwÞ; hHðwÞiρ ¼

Xþ∞

k¼−3
c−khkðwÞ; hIðwÞiρ ¼

Xþ∞

k¼−4
c−kikðwÞ; ðB15Þ

WU-ZHONG GUO, FENG-LI LIN and JIAJU ZHANG PHYS. REV. D 99, 106001 (2019)

106001-8



where tkðwÞ, akðwÞ, bkðwÞ, dkðwÞ, ekðwÞ, and ikðwÞ are arbitrary functions of orderOðc0Þ. The above geometric conditions
give some relations among one-point functions hXiρ. The result is

hTiρ ¼ cαðwÞ þ βðwÞ þ γðwÞ
c

þO

�
1

c2

�
;

hAiρ ¼ c2αðwÞ2 þ cδðwÞ þ ϵðwÞ þO

�
1

c

�
;

hBiρ ¼ c2½α0ðwÞ2 − 4

5
αðwÞα00ðwÞ� þ cζðwÞ þOðc0Þ;

hDiρ ¼ c3αðwÞ3 þ 3c2αðwÞ½δðwÞ − αðwÞβðwÞ� þ cηðwÞ þOðc0Þ;

hEiρ ¼ c2
�
α00ðwÞ2 þ 10

63
½αðwÞαð4ÞðwÞ − 7α0ðwÞαð3ÞðwÞ�

�
þOðcÞ;

hHiρ ¼ c3αðwÞ
�
α0ðwÞ2 − 4

5
αðwÞα00ðwÞ

�
þ c2

�
−α0ðwÞ2βðwÞ − 2αðwÞα0ðwÞβ0ðwÞ þ 4

5
αðwÞ2β00ðwÞ

þ 8

5
αðwÞα00ðwÞβðwÞ þ α0ðwÞδ0ðwÞ − 4

5
α00ðwÞδðwÞ − 2

9
αðwÞδ00ðwÞ þ 13

9
αðwÞζðwÞ

�
þOðcÞ;

hIiρ ¼ c4αðwÞ4 þ 2c3αðwÞ2½3δðwÞ − 4αðwÞβðwÞ� þ c2½12αðwÞ2βðwÞ2 þ 4αðwÞ3γðwÞ
− 12αðwÞβðwÞδðwÞ þ 3δðwÞ2 − 6αðwÞ2ϵðwÞ þ 4αðwÞηðwÞ� þOðcÞ; ðB16Þ

with αðwÞ, βðwÞ, γðwÞ, δðwÞ, ϵðwÞ, ζðwÞ, and ηðwÞ being
arbitrary order Oðc0Þ holomorphic functions.

APPENDIX C: COORDINATE-DEPENDENT
EXAMPLE

Let us consider a state constructed by superposition
of the primary state and its global descendants (on the
complex plane),

jΨi ≔ N
X

cmj∂mϕi; ðC1Þ

where N is the normalization constant. For cm ¼ zm
m!
, we

could write jΨci as the “coherent” state, i.e.,

jΨci ¼ N ezL−1 jϕi; with N ¼ ð1 − z̄zÞh; ðC2Þ
where hϕ is the conformal dimension of ϕ. It is obvious
jΨci is a local state OðzÞj0i. We are interested in the
expectation value of ΦKðzÞ in jΨci. Generally, we have

hΨcjΦKðxÞjΨci ¼ N 2
X
s;t

c̄scth∂sϕjΦKðxÞj∂tϕi: ðC3Þ

For s ≥ t, we have

h∂sϕjΦKðxÞj∂tϕi ¼ xs−t−hΦK t!s!
Xs

m≥s−t
Cs−tþm
s−tþmþhΦK

−1

× Cm
mþhΦK

−1C
s−m
2hϕ−hΦK

þs−m−1; ðC4Þ

while for s < t,

h∂sϕjΦKðxÞj∂tϕi ¼ xs−t−hΦK t!s!
Xt

m≥t−s
Ct−sþm
t−sþmþhΦK

−1

× Cm
mþhΦK

−1C
t−m
2hϕ−hΦK

þt−m−1: ðC5Þ

From (C4) and (C5) into (C3), we get a simple result

hΨcjΦKðxÞjΨci ¼ CϕϕΦK

�
zz̄ − 1

ðx − zÞð1 − z̄xÞ
�

hΦK
: ðC6Þ

Using (C3)–(C5), we could calculate any state like the form
(C1) as long as we know the coefficients cn. One could
check that the one-point functions in the state jΨci do
satisfy all the geometric conditions. For example, the
condition (B13) is

45hHiρ − 65hBiρhTiρ þ 10hTiρ∂2hAiρ þ 36hAiρ∂2hTiρ
− 72hTi2ρ∂2hTiρ − 45∂hAiρ∂hTiρ þ 90hTiρ½∂hTiρ�2

¼ 18cϵϕð1845cϵϕ − 385cþ 28Þðzz� − 1Þ8
35ð105cþ 11Þðx − zÞ8ðxz� − 1Þ8 ∼OðcÞ;

ðC7Þ

where we define ϵϕ ¼ hϕ=c. But if we slightly change the
coefficients cm ¼ zm

m!
, it is very likely the corresponding

state will violate the constraints. At least in this example,
we can see the geometric conditions we find are highly
nontrivial.
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APPENDIX D: NONGEOMETRIC DESCENDANT
STATES

In the main text, we show that the primary states would
satisfy all the geometric conditions. Like the primary state,
descendant states can be viewed as descendant operators
acting on the vacuum. There are infinite descendant states
in a Verma module Vðh; cÞ. In this paper, we only focus on

some special examples that are calculable, e.g., the state
jψ1i ≔ ∂mϕð0Þj0i and jψ2i ≔ ∂m−2ϕ̃ð0Þj0i, where ϕ̃ ≔
ðTϕÞ − 3

4hþ2
∂2ϕ is the quasiprimary operator with con-

formal dimension hϕ þ 2.
We could calculate the one-point function hTi∂mϕ and

hAi∂mϕ by using the results in Ref. [35],

hTi∂mϕ ¼ π2½c − 24ðmþ cϵϕÞ�
6L2

;

hAi∂mϕ ¼ π4

180L4ðcϵϕ þ 1Þð2cϵϕ þ 1Þ ½10ð1 − 24ϵϕÞ2ϵ2ϕc4 þ ϵϕð480ð90m2 þ 28mþ 3Þϵ2ϕ − 6ð120mþ 29Þϵϕ þ 5Þc3

þ ð480ð30m3 þ 18m2 þ 3m − 1Þϵϕ − ð240m − 22ÞÞcþ 480mð6m2 − 1Þ�; ðD1Þ

where we define the order c0 constant ϵϕ ¼ hϕ=c. For the states with heavy descendant that is m ¼ m̃c, where m̃ ∼Oðc0Þ,
we have hϕ þm ∼ c and

lim
c→∞

hAi∂mϕ − hTi2∂mϕ
c2

¼ 8m̃π4ðm̃þ ϵϕÞð5m̃þ 8ϵϕÞ
L4ϵϕ

≠ 0: ðD2Þ

Even for m ∼Oðc0Þ, the condition (B12) is not satisfied, that is,

lim
c→∞

1

c2
ðhIi∂mϕ − 4hDi∂mϕhTi∂mϕ þ 12hAi∂mϕhTi2∂mϕhAi2∂mϕ − 6hTi4∂mϕÞ ¼

6144π8mðmþ 1Þϵ2ψ
L8

≠ 0; ðD3Þ

for m ≠ 0. For the state jψ2i with m ∼Oðc0Þ, we have

lim
c→∞

1

c2
ðhIi∂mϕ̃ − 4hDi∂mϕ̃hTi∂mϕ̃ þ 12hAi∂mϕ̃hTi2∂mϕ̃

hAi2∂mϕ̃ − 6hTi4∂mϕ̃
Þ

¼ 768π8½8ðm2 − 3mþ 10Þϵϕ2 þ 16ϵϕ þ 1�
L8

≠ 0:

We will not give the explicit results for state j∂mTi and j∂mAi.
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7, 12472 (2016).

[12] B. Chen, J.-B. Wu, and J.-j. Zhang, Short interval expansion
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