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Implementing Wilsonian renormalization group transformations in an iterative way, we develop a
nonperturbative field theoretical framework for strongly coupled quantum theories, which takes into account
all-loop quantum corrections organized in the 1/N expansion. Here, N represents the flavor number of
strongly correlated quantum fields. The resulting classical field theory is given by an effective Landau-
Ginzburg theory for a local order parameter field, which appears in one-dimensional higher spacetime. We
confirm the nonperturbative nature of this field theoretical framework for the Kondo effect. Intriguingly, we
show that the recursive Wilsonian renormalization group method can explain nonperturbative thermodynamic

properties of an impurity, consistent with Bethe ansatz for the whole temperature region.
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I. INTRODUCTION

Non-Fermi liquid physics near the metallic quantum
criticality [1,2], the nature of metal-insulator transitions [3],
the emergence of exotic quantum liquids in the vicinity of
heavy-fermion quantum criticality [4,5], and the physics of
rare events in strongly disordered systems [6] are all
beyond the perturbative theoretical framework. Simply
speaking, we do not have a theoretical framework on
how to calculate correlation functions for these problems.
The AdS,,,/CFT,,; duality conjecture [7-13] with a
spatial dimension d claims to solve these problems in a
nonperturbative way. We may translate this duality con-
jecture in the version of condensed matter physics as
follows: putting Landau-Ginzburg effective field theories
on curved spacetime manifolds with an extra dimension
and solving classical equations of motion for order param-
eter fields with Einstein’s equations of motion for metric
components, one can find not only ground states but also
correlation functions nonperturbatively.
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This remarkable conjecture appealed to both high-
energy and condensed matter physics communities [14].
Superconductivity in strongly correlated electrons [15], the
Kondo effect [16—19], non-Fermi liquids [20], fractional
quantum Hall phases [21], and metal-insulator transitions
[22] have been discussed within the holographic duality
conjecture. Even experimental data have been compared with
theoretical results of this nonperturbative framework [23].
However, it is completely unknown what the connection is
between ultraviolet (UV) degrees of freedom (d.o.f.) in
strongly coupled quantum field theories and infrared (IR)
emergent fields in weakly correlated classical field theories
on curved spacetimes with an extra dimension. In particular,
the role of the emergent extra dimension in nonperturbative
solutions of strongly coupled quantum field theories remains
speculative, resulting in the impression that physical per-
spectives are unclear in the holographic description.

In this study, we propose one concrete realization of the
holographic duality conjecture, implementing Wilsonian
renormalization group transformations [24] in a recursive
way. In other words, starting from an effective ultraviolet
(UV) boundary quantum theory, we derive its corresponding
IR bulk classical field theory, which appears naturally in one-
dimensional higher spacetime. It turns out that the emergent
extra dimension can be identified with an energy scale of the
renormalization group transformation. We show that an
effective bulk equation of motion encodes all-loop quantum
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corrections through the extra dimension, organized in the
1/N expansion [25], where N represents the flavor number
of strongly correlated quantum fields. Applying this recur-
sive Wilsonian renormalization group method to the Kondo
problem [26], we succeed in describing the crossover regime
from a weakly correlated local moment fixed point at high
temperature to a strongly coupled local Fermi-liquid fixed
point at low temperature in a nonperturbative way, where the
characteristic energy scale is given by the Kondo temper-
ature. Impurity thermodynamics in our nonperturbative
description is qualitatively well matched with the Bethe
ansatz for the Kondo effect [27].

We would like to point out that our method to implement
Wilsonian renormalization group transformations in a
nonperturbative way is parallel to that of Lee’s approach
[28]: Wilsonian renormalization group transformations
give rise to double-trace operators, but such interaction
terms are translated into single-trace operators with appro-
priate order parameter fields through the Hubbard-
Stratonovich transformation, where these order parameter
fields are classical variables. However, there exist two
essential different aspects between these two formulations.
First, the previous study takes into account renormalization
group transformations in real space while the present study
implements them in momentum space. Second, the pre-
vious emergent gravity description recovers the result of a
mean-field theory for the O(N) vector model in the large-N
limit while our nonperturbative field theoretical framework
gives rise to resummation of higher-order quantum correc-
tions for the Kondo effect beyond the result of a mean-field
theory. Involved with the first issue, the former starts from
an insulating UV fixed point, where the kinetic-energy term
to describe hopping of electrons is considered as a
perturbation at the UV fixed point. On the other hand,
we start from a metallic UV fixed point, where interaction
terms are taken into account as perturbations at the metallic
fixed point. It is certainly easier to see the connection
between the field theoretical approach and the emergent
gravity formulation since both field theoretical and gravity
descriptions are based on the same UV fixed point. This is
the reason why the present study could reveal physics of the
extra dimension clearly. Associated with the second issue,
bulk fields identified with order parameter fields are
integrated out, responsible for higher-order quantum cor-
rections. On the other hand, such bulk fields are taken into
account as background fields, and thus a mean-field theory
is reproduced in the previous approach. To integrate over
bulk d.o.f. is an essential ingredient of our present study
beyond all existing investigations. We point out recent
developments in the derivation of the holographic duality
conjecture from field theoretical perspectives based on
how to implement Wilsonian renormalization group
transformations [29-46].

Recently, we proposed an emergent geometric descrip-
tion for a topological phase transition in the Kitaev

superconductor model, which allows us to extract out
an emergent metric structure [47]. Based on the
Ryu-Takayanagi formula with such a metric tensor [48],
we calculated holographic entanglement entropy.
Interestingly, it turns out that this entanglement entropy
reproduced the Cardy formula [49] perfectly not only at but
also near the quantum critical point [47].

The present manuscript is organized as follows. We start
from a strongly coupled quantum-mechanics theory to
describe the Kondo problem, introduced in Sec. IL
Resorting to the Wilsonian renormalization group analysis,
we find an effective classical field theory in the large-N
limit. Here, N corresponds to the number of flavors, more
precisely, the spin degeneracy. It turns out that this novel
large-N classical theory appears in one-dimensional higher
spacetime, given by (1+ 1)D Landau-Ginzburg-type
quantum field theory for the hybridization order parameter.
The emergence of this large-N classical field theory in one-
dimensional higher spacetime is the holography structure in
this study. This is one of the main points in our study,
introduced in Sec. IIT A. Based on this effective classical
field theory in (1 + 1)D, we investigate thermodynamic
properties of this Kondo problem for the range of whole
temperatures. We compare both specific heat and spin
susceptibility for the impurity dynamics from our emergent
holographic description with Bethe ansatz results, dis-
cussed in Sec. IIIB. An essential point is that our
renormalization group procedure seems to be one path
integral reformulation for the Wilsonian numerical renorm-
alization group structure, where the whole procedure is
discussed in Secs. [IVA-IV C. The connection between our
path integral formulation and the numerical renormaliza-
tion group method has been discussed in Sec. IV E. This
serious comparison, in spite of its “speculative” nature,
reveals the origin for the emergence of the extra dimension.
In particular, we demonstrate explicitly that the evolution of
the local order parameter through the extra dimension
introduces quantum corrections order by order reorganized
in the 1 /N expansion for the boundary quantum-mechanics
theory. See Sec. IVD. Our path integral reformulation
shows that summing up such quantum corrections non-
perturbatively in the all-loop order gives rise to a novel
large-N field theory in the holographic structure. Section V
discusses how to calculate the thermodynamics in the
Kondo problem from our holographic dual field theory.
One important question which remains is how we find a
structure of curved spacetime in this effective classical field
theory. This curved nature of spacetime turns out to be
essential to encode effects of strong correlations in the
original conjecture for holography. In Secs. IVA-IV C, we
discuss how to extract out an emergent metric structure
from this effective classical field theory. Unfortunately, this
translation from a field theory to an Einstein equation has
not been resolved clearly in the present study. The research
direction for geometric translation deserves further serious
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investigations. Section VII concludes this study with a
detailed summary.

II. THE KONDO PROBLEM: AN EFFECTIVE
QUANTUM-MECHANICS THEORY FOR THE
KONDO EFFECT

The meaning of the Kondo problem is as follows. An
impurity spin is weakly correlated with itinerant electrons
at high temperatures and thus, the perturbation theory
works perfectly well above the Kondo temperature. On
the other hand, spin flip scattering become stronger due
to the non-Abelian nature of effective interactions, decreas-
ing the temperature to approach the Kondo temperature.
Finally, the effective interaction parameter renormalizes to
diverge at the Kondo temperature. As a result, the pertur-
bation theory breaks down below the Kondo temperature.
The Kondo problem is how to describe the strong coupling
fixed point, starting from the weak coupling fixed point,
which is certainly beyond the perturbative theoretical
approach.

We start from the path-integral representation for the
Kondo problem, given by

Z- / De, (k. 7)DS(z)e™>,

§ = =S4[S(2)]

_ 7(17{/ (ji’)‘d ik, 7) (a, —p+ %) c,(k,7)
0

Ji [ dkdk
— AN a k, a kl, : . 1
+ N T calk, )65k 7) - S(7) (1)

Here, c,(k,7) is an electron field, where the spin degen-
eracy is extended from o= (1,]) to 6=(1{|)®
(1,...,N). S(z) describes an impurity spin, where
Sp[S(7)] is its Berry-phase action. J is the Kondo coupling
constant, scaled by N for the 1/N expansion. In this paper
|

Z— / De, (k. 2D, () Db(z) DA(z)e,

we use the Einstein convention, where the symbol of spin
summation is omitted for simplicity.

In order to describe the Kondo effect and deal with the
Berry-phase action, it is conventional to write an impurity
spin with the Abrikosov fermion variable in the Sp(/V)
representation, given by

$(2) = 5 Filouf (), @

where these fermions should satisfy the single occupancy
constraint

f5@)f,(z) = NS (3)

with NS = 1 [26]. Inserting this expression into the Kondo
model, we obtain

Z- / De, (k, 7D, (t)DA(z)e™>,

S = 7&{/%&(1@ 7) (a, —u +%> c,(k,7)
0

+ fi(@)(8, = iA(2)f,(7) + iNSA()

Jg i
- LDl | (@

where the Fiertz identity for the inner product of Pauli spin
matrices has been used and renormalization of the chemical
potential at the impurity site has not been considered, since
it is not relevant for the Kondo effect. 1(z) is a Lagrange
multiplier variable to impose the above constraint, and
co(r) = [ %cg(k, 7) is an electron field at the impu-
rity site.

Considering physical processes in the Kondo problem, it
is natural to take a hybridization order parameter b(7),
where the partition function is given by

/ d 2
S = {dr{/%c;(k, 7) (6, —u —|—§—m> e, (k. 7) + fi(2)(0, — iA(z))f,(z) + iINSA(z)
7 b oF N s
= b(1)f5(1)c,(7) = b (7)o (7) f5(7) +Eb (T)b(f)}~ (5)

It is straightforward to see

[
in the mean-field approximation, which explains why this
bosonic variable is called the hybridization order parameter.

Performing the functional integration for conduction
electron fields, we obtain an effective quantum-mechanics
theory for the Kondo effect,
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where Z, is the partition function of conduction electrons
and

1 .
Ge(r) = /gze"“”Gc(iw%

6. (iw) = / (ddk 1

27)% iw + p —

7 = —inNpsign(w)

2m

is the electron Green’s function with the density of states
Np. If we perform the saddle-point approximation for the
hybridization order parameter, we obtain a mean-field
theory for the Kondo effect [26]. Unfortunately, this
mean-field theory gives rise to a continuous phase tran-
sition, regarded to be an artifact of the mean-field theory. In
order to overcome this artifact, 1 /N corrections have been
|

p

Z = ZCZ£ / Dfa(T>Db(T’ Z) eXp |:_
0

N
+ NSA+ ]—bT(T, 0)b(, O)} -

K JK

o\éﬁ o\‘m

Here, Z, is the partition function, which results from
contributions of high-energy fluctuating fields in the
Wilsonian renormalization group approach. z is an extra
dimension, where z; — 1/A corresponds to the low-energy
limit. In the Wilsonian renormalization group approach,
high-energy fluctuations in the momentum space of A —
dA\ < k < A are integrated out to renormalize the dynamics
of low-energy excitations. It turns out that dz is identified
with dA/A%. vp is the Fermi velocity and A, (A,) is the
high-momentum (high-frequency) cutoff of conduction
electrons (hybridization order parameter) in the Wilsonian
renormalization group analysis. All details are given in
Sec. IV. We point out that the saddle-point approximation
for the hybridization order parameter is taken into account,
essentially the same as its Gaussian integration. As a result,
we obtain an effective Landau-Ginzburg field theory for the
hybridization order parameter after the Gaussian integra-
tion of the fermion variable, which appears with an extra
dimension. Below, we claim that this effective field theory
introduces not only 1/N but also quantum corrections of all
orders in the 1/N expansion.

p
i / df{”N N (0.5 (2,2))(0.b(x. 2)) +

K

|
introduced into the mean-field theory [25]. It turns out that
the hybridization order parameter vanishes due to 1/N
corrections. On the other hand, the local Fermi-liquid
physics has been claimed to be still preserved, demon-
strated by thermodynamic properties. In this study we
propose how to solve this strongly coupled quantum-
mechanics problem in a nonperturbative way, and the
meaning of the nonperturbative way will be clarified in
Sec. IV D.

III. MAIN RESULTS

A. An effective Landau-Ginzburg field theory for the
Kondo effect: Emergence of an extra dimension

We find an effective field theory

dr{ / d7 f5(1)b(z.27)G.(z = T )b (7' 24) fo(7) + f5(2) (0, — A) f ()

INSN
v FA%

mLa@m@Jﬁ} (8)

|
Considering the variation of an effective energy func-

tional with respect to b(z,z), we obtain an equation of

motion for the hybridization order parameter field

2SNpJx

_ang , il il S
(e Z>+MFA,,A§

0.:b(z,2) = 0. 9)

In addition, we can also obtain a similar relation for b(z, z)
with an additional minus sign, which corresponds to the
Hermitian conjugation of Eq. (9). The above equation
represents the diffusion equation in one dimension. The
appearance of the diffusion equation in this extra dimension
has interesting physical implications, which will be dis-
cussed in Sec. V.
The UV boundary condition is given by

1
0! (e 2) o o 0) =0 (10)
where the linear derivative in z results from the boundary

term of the second-order derivative in z. The IR boundary
condition is
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ﬂAb 8

P b (7, 2)

=z

p
+ / di'G.(t=7)b' (7. 2;)Gp(7 —7) =0, (11)
0

where the spinon Green’s function G(r—7')=
—(T.[f,()f5(z)]) is given by the solution of

(0, = )Gz —7')
p
b(ezy) [ dG e )Gy )
0
= —5(1’ - ‘L"). (12)

T, is the time-ordering operator and the spin summation is
not performed. The Lagrange multiplier is determined by
the spinon number-constraint

G(r—=0) =S, (13)

where i1 is replaced with A for the saddle-point analysis.
We solve these coupled equations [Egs. (9), (10), (11), and
(13) with Eq. (12)] in Sec. V after presenting the derivation
of our effective Landau-Ginzburg field theory with an extra
dimension in Sec. IV.

B. The Kondo effect in the nonperturbative field
theoretical framework: Impurity thermodynamics

It is interesting to observe that the effective Landau-
Ginzburg theory of Eq. (8) allows the saddle-point approxi-
mation for the hybridization field b(z,7) in the large-N
limit, giving rise to Egs. (9), (10), and (11). Surprisingly,
this large-N limit can describe the nonperturbative physics
of the Kondo effect, as will be shown below. In other words,
summing all loop quantum corrections organized in the
1/N expansion gives rise to a completely different large-N
effective Landau-Ginzburg theory, the large-N limit of
which describes a nonperturbative saddle point.

Solving the classical diffusion equation of Eq. (9) with
both boundary conditions of Egs. (10) and (11), and
substituting the solution into Eq. (8), we find an effective
free-energy functional for the Kondo effect, the most
singular part of which is given by

N
Fimp=—=> In [—iw — A+ C — izNpsign(o)

P
(ol =5}
+ NSO (14)

Here, the Gaussian integration for the spinon variable in

Eq. (8) has been performed. D = % is an effective

diffusion coefficient of Eq. (9), and C and « are constants of
the hybridization order parameter field determined by self-
consistent equations [Eq. (60)]. This expression implies
that an effective Kondo temperature is

ro v, oy Cens(2) s YO) V.

where C is the solution of Eq. (61).

It is straightforward to obtain the specific heat coefficient
Yimp(T) and the impurity spin susceptibility im,(7),
given by

N T P (1
yimp(T) ~ ﬂ'TK dw aTZ tan <5> s (16)
and
N T »
o (T) & — Y . q
)flmp( ) 71'TK da)f(a)) (602 + 1)2 ( 7)

In the zero temperature limit, we have

N 1
Yimp %TT_K’

which is typical for the Kondo effect [26]. Indeed, we
reproduce the local Fermi-liquid physics, given by the
Wilson ratio at zero temperature:

any,
W= T Kimp 5 (19)
3 7imp

At finite temperatures, we solve Eq. (61) and perform the
w-integration in Egs. (16) and (17) numerically. Details are
shown in Sec. V. Figure 1 shows that our effective field
theory describes the crossover behavior from the decoupled
local moment fixed point to the local Fermi-liquid fixed
point quite successfully. In order to confirm this aspect, we
compare our results with the Bethe ansatz solution for the
single impurity Kondo model [26,27]. See Fig. 2. Although
both the high and low temperature limits in the impurity
thermodynamics coincide between our nonperturbative
effective field theory and the Bethe ansatz, there exist
discrepancies in the vicinity of the Kondo temperature,
i.e., the crossover regime. We point out that the renorm-
alization group transformation does not take into account
the wave-function renormalization for the impurity fermion
variable, as will be discussed below. We suspect that this
poor man’s scheme for renormalization is responsible for
such discrepancies.
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FIG. 1. (a) Linear-log plot of the impurity specific heat
coefficient [Eq. (16)] as a function of temperature. (b) Linear-
log plot of the impurity spin susceptibility [Eq. (17)] as a function
of temperature. The Wilson ratio is plotted in the inset. The
vertical dotted line denotes 7/Tx = 1.
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FIG. 2. (a) Linear-log plot of the impurity specific heat as a
function of temperature. (b) Linear-log plot of the impurity spin
susceptibility multiplied by temperature 7. Solid black (red
dotted) lines are our (Bethe ansatz) results.

IV. DERIVATION OF THE NONPERTURBATIVE
FIELD THEORY WITH AN EXTRA DIMENSION
FOR THE KONDO EFFECT: CONTINUOUS
APPLICATIONS OF WILSONIAN
RENORMALIZATION GROUP
TRANSFORMATIONS

A. The first iteration of Wilsonian renormalization
group transformations
We recall Eq. (5),

Z- / De, (k, 7)Df.,(t)DA(z)DbO ()5,

S = //jdr{/%ci(k, 7) (8, —pu+ %) c,(k,7)
0

+ fe(2)(9: — iA(x))f,(7) + iNSA(z)
= b0 (1) f5(2)co(1) = b0 (2)cd (x) fo(2)

+ N ot (2)p0) (1) }
Jk

where the superscript (0) has been introduced into the
hybridization order parameter.

An essential point of the present study is introducing
quantum corrections into the mean-field theory through
continuous applications of Wilsonian renormalization
group transformations. However, it is not straightforward
to deal with a discrete spectrum at finite temperatures in the
renormalization group analysis. In order to implement
Wilsonian renormalization group transformations beyond
the mean-field theory, we focus on the zero temperature
limit, i.e., f — oo, as follows:

W= / De, (k. 9)Df, () DA(£)DbO) ()5,

S = 7 dr{ / (‘21:; cl(k,7) (a, —u+ f;) c, (k. 1)
0

+ fa(2)(0; = id(1))f,(7) + iNSA(z)
= b0 (@) f3(2)¢,(z) = b0 (2)c5(x) fo(2)

N
+ —b(())T(r)b(O)(r)}. (20)
Jk

Here, we still work in Euclidean time.

To prepare for the Wilsonian renormalization group
transformation, we separate all field variables into low-
and high-energy d.o.f. For the conduction electrons, we set
Caa)(k) = Caa)(k>®[(k - Ac + dAc)(_Ac + dAc - k)]

+ Caw(k)g{(Ac - |k|)(‘k| - AC + dAc)]
= clu (k) + b (0) @

where A, is a momentum cutoff and k is a momentum
transverse to the Fermi surface. More precisely, we
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considered g, = % —um~vp-(k—kp)=vpk as usual,
where kp is a Fermi momentum and vy =ky/m is a
Fermi velocity. High-energy electron fields living
within the momentum window of A, —dA, < [k| < A.
|

faw = fawG(Af - dAf -

= fow + o
b, = b,0O(A, — dA, — |®|) + b,O[(A), —
= bl + b,
Aot = Aopay O(A, — dA; —
= /1(11)_“}, + /Ii‘)_m/,

|a)‘) + waG[(Af -

|w - O)/D + )“w—(u’@[(A/I -

are integrated over to renormalize hybridization fluctua-
tions. Low- and high-energy d.o.f. for spinon, holon
(hybridization), and spinon chemical potential are
given by

@) (jo] = Ay + dAy)]
]) (o] = Ay + dAy)]

o —o[)(|o — | = Ay + dA)]

essentially the same as the case of electron fields but in the frequency space. All integral regions given by dA, dAs, dA,,

and dA; are set to be equal, i.e., vpdA, = dAy = dA, =

dAi =

dA.

Integrating over high-energy variables and taking rescaling of all low-energy fields to return the cutoff into an original

value, we obtain

W= Wh/ch(k, 7)Df,(t)DA(z) Db (1)e~5,

p

S = /dr{/(;li’)‘dcj;(k,f) <8T—M+;;>c{,(k,r) + fi(z)(8, -
0

Ol (2)f3(x)e,(x) = O ()ca(2)f,(x) +

+ 9.6 () f5(2)0,(f ()b (7)) + g},bO)(

Compared to Eq. (20), the integration over high-energy
fields gives rise to the last three terms in the effective action
with the multiplication of a factor W), into the partition
function. Here, W, is the partition function of high-

energy d.o.f. Coefficients are given by g, = 2%%,
gh = koo As, and gj = % 4% An essential aspect of this

effective ﬁeld theory is that locality in time is preserved in
spite of the Wilsonian renormalization group transforma-
tion. Since this is an important point in the present study,
we discuss this issue more carefully.

Ay
2 1 do/
S == usth - sk == [ 5
Ay/b
where ¢?(iw) = —<b£?)hb,€?)hT> =

@ — w/b, the cutoff is restored to A,, which results in

Ik

(7)cq(t

(/ f”‘” cw— w>92(1w1)< dza; ”w

‘]K dA Ap/b da) It Ap/b dw// I+
=N </ Zfﬂwcfyw—Ah ﬁcmv_,\bffywu + (Ap = =Ap),

- JW’( is the high-frequency holon propagator and b ~ 1 4+ §A/A. Rescaling the frequency

iA(7))fs(7) + INSA(7)
01 ()02

)b ()b () - %f@w@d@ﬂ@} (22)

Consider the Kondo vertex with the high-energy mode of
the b-field:

mt / /
h| l‘}
_/E g o—w wfzm)

Performing the Gaussian integration for high-frequency
holon (hybridization) fields in the second cumulant, we
obtain

m f 00C oo

(23)

—w flg/ @ )

(24)
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Jx dA Ay dw Ay dw”
S<2> - - _K_ / - ¢l)-Tg) / / ”; P I
K N 2rx o0 f C(Sw—A,, T ¢ -A, f (

— —A). (25)

Here, we neglect higher order terms in dA. Fourier transforming to the time domain, we obtain

SP = =650 [ de [ eI e @) + (A = =)
0 0
ol ORI ) (26)
0

An essential point is that the fast oscillating term
given by e*+(*=7) enforces the locality in the Kondo
vertex.

One can show that the locality also holds for the
other potential scattering term in the same way.
g b (7)c,(z)ch(z)b V)T (7) originates from the integration
of high-frequency spinon variables in the Kondo-vertex
term. This renormalization gives rise to nonmagnetic
potential scattering for low-energy electron fields, which
has nothing to do with the Kondo effect.

The time derivative in g6 (2)f5(2)d,(f,(z)b O (z))
comes from the propagator of high-energy conduction
|

s® — _1(<S?mp2> _ <Simp>2)

mp 2 nt nt

dw do’ oy .+
- —~ _b ’ ! ’
/ 2 ( 2r @ faw+w /

|
electrons. Consider the Kondo vertex with the high-energy

mode of the c-field:
dk
/ (277.')d Cﬁw—w’ (k)

/ d')‘d ety (k)b (27)

Similar to the previous case, performing the integration for
high-momentum conduction electron fields in the dA — 0
limit and rescaling all low-frequency fields to recover the
cutoff into an original value, we obtain

oot Gt )

Ng d\ [dw do’ (0)! . / dao" o)t
2__ - _b / / - ! //b /"
,UF A2 / 277'. < 277'. w f()'(l)“r(l} ( lw) 27[ o+ w
e NpdA | 0)( ) £t 0
Rescaling 2—=— ) f5(2)0:(f4(2)b " (2)), (28)
U I\
|
where is the control parameter in the integration procedure for
high-energy d.o.f. The same strategy can be found in the
L - —iw functional renormalization group procedure [51].
gu (k. i) = ={cg, (k) cou (k) = 2N pvpdA To finalize the first iteration of Wilsonian renor-

* + v3A2

is the high-momentum electron propagator and @ << vpA,
has been utilized from the second equality to the third [50].

We note that the integration of the high-frequency
spinon-chemical potential variable A"  has not been
introduced in this renormalization group procedure since
this chemical potential renormalization for spinons does not
give any serious effects on the Kondo effect. Of course, one
can take into account its role in principle. Except for this
aspect, our renormalization group procedure should be
regarded as an “exact” one up to the linear order of dA,
where higher powers of dA are all neglected. Actually, dA

malization group transformations, we

O)(2)£5(2)0(f ()0

approximate
(7)) in the following way:

O (@) f5(2)0:(f,(2)b V(7))
O (2)£h(2)f, ()0,607 (7). (29)

9.0 (2)b O (2) f1(2)D,f,(r) is involved with wave-
function renormalization for the spinon variable. Here,
we do not take into account the wave-function renormal-
ization for the spinon variable. In this respect this derivation
is a poor man’s version [26].
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Inserting this time-derivative term for holon fields into the above partition function, Eq. (22), and performing Hubbard-
Stratonovich transformations with appropriate order parameters, we obtain

W= Wh/DCG(k, 7)Df ,(1)DA(z) Db (1) DV (2) Dn'V (2) Dy (7) DpM) (7) DS (z)e 5,

:7@{/g@gmﬁma—u+§g%wﬂ+fmwa—umyxﬂ+wmw
0

W(0)fa(x)eq (1) = b (2)ci (@) fo(2) + JK(b“”(T)—5b““(f))(b(”(7)—519“)(7))

+ 0. (6 (2) = 86 () (). (6 (2) = 36 (1) + i () (1 (5) = F5(2)fo(2))
+ gl b0(@) = 86 @)V (@) (B (2) = 8611 (2)) + iy (D) (pV(5) = €, (2)eh(2))

L b (2)sb0) (7)) (30)
9
Here, n(”(r) = fl(r) f,(r) is introduced into the B. Continuous applications of
above expression, where the canonical conjugate variable Wilsonian renormalization
¢V () plays the role of a Lagrange multiplier to impose group transformations
this constraint. In the same way p!)(z) = c,(7)ch(z) is One may repeat the previous renormalization group

taken into account with its canonical conjugate pair 1//(')(1). procedure: separating low- and high-energy d.o.f. for
Another double-trace operator, — QIZ fT (z ) (7)e +( )f, (1), electron fields and others with the superscript index (1),
" decomposed ‘o —sb(z) fT (2)ey(z) - integrating over high-energy fields, and taking rescaling of

() + sy (1)t ) all low-energy fields to return the cutoff into an original
b (z)cs(7)f4(7) + ﬁ‘sb (z)8b'"(z). In the above ex-  yaje, one finds the following expression for the partition

pression we defined b(V(7) = b (z) +6b(V(z) and  function:
changed the integration field from () (z) to bV (7).

W= W%/Dca(k» 7)Df,(7)DA(r) Db (2) D'V () Dn'™) (7) Dy V) (2) Dp'V) (2) Db (7)™,

S = 7 dr [ / (jj[’;d ci(k.7) (a, —u+ ;;) (k. T) + fi(2)(0, — iA(z))f,(z) + iNSA(z)
0

= bW (D) fe(2)co(2) = bV (2)ch (7)o (2) +%(b“ (7) = 8 (2)) (b1 (2) — 8b11)(2))
+ .61 (2) = 81 (2))n V) (1), (b (2) = 8607 (2)) + i) (2)(nV (z) = f5(2) (1))
= g4(6M(2) =861 (2))p ) (2) (b7 (2) = 86V (2)) + iy (2) (0 (2) = ¢, (2)a(x))

1
+— 86T (2)5b (1)
9

+ 9.6 (@) f5(2)0,(fo(D)b V1 (1)) + g3 bV (2)eo(2)ci(2)bV T (2) = ghf 1 () ey ()ed(2)f, (1) | (31)

Note that, as before, we have three terms in the last line with the same coefficients, g, gf;l , and gZ, but with the replacement
of the superscript from (0) to (1) of the fields.

Neglecting the wave-function renormalization for the spinon variable and implementing Hubbard-Stratonovich
transformations with appropriate order parameters once again, we find
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W=Ww; / Dc,(k,7)Df,(t)DA(t) Db (1) f[[DW) (z)Dn™) (z) Dy ™) (2) Dp™) (z) DEH™) (7)) €5,

w=1
= [l [

= b (0)f5(t)e, (1) = b (2)ci(2) fo(7) + JE (62)1(z) = 627 (2) = 8611 (7)) (b (x) = 66 (z) = 6b1 (7))

+ 906 (2) = 862 (2) = 61 (2))n) (1), (b7 (z) = 56 (2) = 66V (7)) + i) (2) (n) (z) ~ f5(2) f(2))
36 ()M (2) (P (2) = 67 (z) = 8617 (2)) + iV () (pM) (2) = ¢, (2)ch (7))

+ ib b7 (2)561 (z) + g. (6@ (z) = 862 ()0 (2)0.(6)(7) = 36127 (7)) + i) (2) () (2) = f2(7) £, ()

k 'S
)d cl(k,7) <5‘, —u+ %> (k. T) + fi(2)(0, — iA(z))f,(z) + iINSA(z)

=
—~
&
©
—
<\
~—
|
I~2]
&
©
—~
i)
~—
|

+ g, (6% (2) = 663 (2))p® (1) (6P (z) = 861 (2) + i) (2)(pP (7) = ¢(2)ca(2)) + ;—,,5b(2”(f)5b(2> @ (32

where the integration field is changed from b(")(7) to b (z) = bV (7) + 6b?) (7).
Now, it is straightforward to implement Wilsonian renormalization group transformations continuously. As a result, we

obtain

f

W= W{:/Dc (k,7)Df,(z)DA(t) Db H Dn™) () Dy™) (2)Dp™) (z) DSb™) (7)] e,
by d 2
s— [ ar [ | Gaettie) (a, e ;‘—m) olle )+ FLE)(0. — i2(2)) (1) + INSA(E) = B (2) £ (), (7)
0
S S
@ et £ () + N (i) — i) ) (50 (7) — W) (¢
T O ) + 3 (B01(6) = Y- 0b(0)) (10(e) = Y ab )

L f f f
Y (66 = 30600 )0 (870 = 32010 ) + X w0 = o))
w=1 w=w w=w w=1
1<
+5 > 8b ()b (7)} (33)
In w=1

The final step 1s changlng the integration fields from 5)(z) and 6b™)(7) with w = 1, ..., f to b (z) and b (7) =
O (z) + 3w, 6b"(z) with w = 1,..., f. As a result, the partition function and the effective action become
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W =W} [ Desler)Ds(0)DADO 1) [T106)(0)0n) ()4 2D ()5 (1)),

w=1

/ ddkc T - k—zc T iz — Mt T)+ i ) — b () fi()e,(x
5= /d[/ Hs5) (0= -t 5. Jeollor) 4 36O, = ) Fl5) + INSA(E) = B DDl

— b ()b (€) o e) b ()0 r>+chbW1<r ") (2)0,b0 1 +Zw M (z) = S50 o(2))

I
f
36D+ 3 6 1) ol
w=1 w=1
+ézf:(1)(w)f(7) — b= () (b™)(z) — b(W—l)(T»} (34)
h w=1

C. Emergence of an extra dimension

In order to confirm the emergence of an extra dimension, we reformulate the previous expression of the partition function
as follows. First, we consider

f f i (w) T
3 igt )0 (0) = £ o(e) = D LD
w=1 w=1

uv

)

n)(2) = f5(2)f4 () = /dzifﬂ(T,Z)(n(f’Z) ~fe@)fs(2),  (35)

0

where a,,, is a length scale of the UV cutoff, regarded to be lattice spacing in the z-direction. In the last line of the equation,
we took into account n(z, z = wa,,) = n")(7) and ¢(z,z = wa,,) = ¢"")(z)/a,,. The upper limit of the integration is
zy = fay,. Second, we consider

l f (b(w)T(T) _ b(w—l)j-(f))(b(w) (T) _ plw- T(T (w— 1)T(T) pw) (T) _ b(w—l)(T)

b
L gh w=1 Ay Ayy

_ [ o212 (20022 -

where 72 = ¢%/a,, and b(z, z = wa,,) = b () have been introduced. In Eq. (35) the cutoff length scale a,,, seems to be
determined arbitrarily. This is not true. We recall gh J" dA . Then, we have 1/3? « a,,/dA. We also point out that all these

calculations are controlled in the A — 0O limit. In order to define Eq. (36) consistently in this controllable limit, we are
forced to take the equation of a,,, = ¢, dA, where ¢, 1S a positive constant, set to be ¢, = 1 for simplicity. Identifying dA

with dz, i.e., dA = dz = a,,, we have §) = Equivalence between dA and dz indicates that the extra dimension may be

r:NA
regarded as the scale of renormalization group transformations. As a result, we reach the following expression for the
partition function of the Kondo effect:

W= Wi/DcG(k, 7)Df ,(t)DA(7)Dep(t,z) Dn(t, 2) Dy (7, 2) Dp(t, 2) Db(7, 2)e 5,

) 5 ' . | '
s = / a| / 3 €b,5) (0= -t 5 Jeollor) 4 F1(6)Os = 2))F(5) + INSA(S) = bl 2) o)l

- bi(z, zf)cl(r)fo(r) + ;\,](bT(T, 0)b(z,0) + . / dzb(z,z)n(r,2)0.b"(z,7) + / dzigp(z,2)(n(r,2) — i) f,(7))
0 0
+g1 [ deb(z,2)p(z,2)b (2, 2) + [ dziy(z,2)(p(7,2) = c,(z)ch(7)) + ; dz0.b"(7,2)0.b(7,z)|. (37)
3 / i |
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Here other fields and couplings are taken into account similarly as p(z,z = wa,,)
(T)/amn gc - gc/am} - 2]VF/(HFA ) and g{z - gf/auv -

= p(w) (T); W(T’ = Wam)) =
lﬂvv-O/(”A%)

Focusing on the Kondo effect, where nonmagnetic potential scattering for electrons is neglected, we can simplify the

above as

W= W‘Z/Dc(,(k, 7)Df,(t)DA(t)Dg(z, z)Dn(z,z)Db(t, z)e™5,

¥ 'k k2 . . :
5— / r [ | et (a, S ﬁ) olle )+ FH() (0, = IA(0)) () + INSAE) - b(z,2) fi(0)e, (7)

if

if

— b (. 2)ch (@) fle) + %bwa 0)b(z.0) + . / dzb(z, 2)n(z.2)0,b' (z.2) + / dzig(z.2)(n(z.2) - £1(0)f (7))
0

if
1
+7 [ 0. 0.0t z>]
h
0

Working out the path integral of [ Dg(z,z), we obtain n(z, z)

0

(38)

= NS with the introduction of the number

= f4(0)f,(7)

constraint. Taking the path integral of [ Dc,(k,7), we obtain the final expression of the partition function for the Kondo effect

— W)z, [ D.(DAEIDb(r. e

[Se]

0
f

K
0

where the electron propagator is recalled as

[ dk
Gc(lw)=—/w<c

_/ d'k 1 -
2n)! io+p -

in the frequency space. The spin summation is not
performed. This effective action, Eq. (39), is one of the
main results in this study, shown in Sec. Il A.

-k, ia))cj,(k, iw))

—inNpsign(w)

p

S—/d /dr’f(, b(t.27)G (r =7 )b™ (7, 24) fo (7 +Zd [

—|—Jﬁb+(1,0)b(r,0)] —|—/d1/dz [NSgcb(T,z)(?,bT(r, ) —I—%asz(az)azb(r, 21,
g
0

—iA(2))f,(z) + INSA(7)

(39)
h

D. The role of the extra dimension in the effective
Landau-Ginzburg field theory: Introduction of
quantum corrections of all orders in the 1/N expansion

Based on the demonstration of this subsection, we claim
that the effective Landau-Ginzburg field theory Eq. (8)
takes into account quantum corrections of all orders in the
scheme of the 1/N expansion.

1. Discretization

In order to figure out the role of the emergent extra
dimension in the effective Landau-Ginzburg field theory,
we discretize the z-coordinate as follows:

p
7=2.7] / Df,,<r>Dbo<r>niiIDbm)exp[— / dr{ / 42 £ (00 (2)G(t= VBTV fole) + £5(2) (0, = 2)f ()

0 0

+NSA+—— b*( )by (z }+dAZ/ {%

w=1

(bl(7) =

As clarified in Sec. IV C, dA Z{V: , corresponds to ;' dz.

ANSN

bT
’UFA2

w— 1( ))(bw(f)_

b () 20 b (9028, () |

(40)
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Taking the f = O limit, it is straightforward to see that this effective field theory is reduced to the mean-field theory

Z=7, / Df,(z)exp [— 7 d{] 7' f5(2)bo(2)Go(x = 7)bo() fo(2) + fo(2)(0: = A) fo(z) + NSA+ xbé(r)b()(r) H :
0

0

Performing the Gaussian integration for the fermion variable, we obtain an effective partition function in the large-N limit:

p
Z=7,exp [Ntr,,/ln((a,—/l)a(r—r’)+b0(r)Gc(T—T’)bg(r/))— / dT{NSH;ibg(T)bO(T)H =exp(—pF[by(7)]). (41)

Here, F[by(7)] is the mean-field free energy for the Kondo effect. It is easy to find the mean-field equation for the
hybridization order parameter [26].

2. Quantum corrections up to the 1/N order

Now, we take f = 1. Introducing
by(z) = bo(7) + 6b, (7) (42)
into the effective Landau-Ginzburg field theory, we obtain

B B
2= 2.2, [ DfDI () exr [— / dr{ [ 2510 Bule) + 80,265 = ) (B4(2) + 38 ()1 (2)
0

0

. N . NA, . 2NSN .
+ fH(2)(0, = A)f,(t) + NSA + T by (7)bo(7) + ’JTK y [i’ b’ (2)6b, (7) + dATA%FbO (2)8,b}(7) H ) (43)

This effective partition function gives rise to coupled equations for both hybridization order parameters of by(z) and 6b, (7).
Solving the equation for §b, (7), one represents it as a function of by (7). Inserting this expression into the equation for by (7),
we obtain an equation for the hybridization order parameter by (7) with the introduction of quantum corrections in the 1/N
expansion.

Equivalently, we perform the Gaussian integration for the 6b,(z) variable and obtain

p B
Z-727, / D, (z)exp [— / df{ / 42 F3(2)bo(2) Gt = 2)BL(E )V fo(F) + F5(2)(, = )1, (z) + NSA
0 0

N 2NSN NA
+ 3L bl(eI0n(e) + N by ()0,8}(6) | =t n (g e = ) 4 UG5 = 211(2) )
p p p p NA
+{dT{dT’{dT”{dTW{fj;(T)GC(T—T”)bg(’[//)fg(fﬂ) <ﬁ5(1—1’)
-1
LG = A (@)) S IEIG =)}, (44)

Finally, the Gaussian integration of the fermion variable results in the effective action
Seit = SNowo T Siyn + AS) )y (45)

Here,
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B
2
Sy = =Ntry In((9; — 2)8(7 — ) + by ()G (v — 7' )by (7)) + / dT{NS/I + Jﬁ bi(t)by(z) + dA ZVSA;F bo(f)arbg(r)}
K FiXe

0
(46)

is the effective action in the large-N limit, which results from the integration of the spinon variable and gives rise to the
mean-field equation. Also,

T[NAb
TedA

Siy =ty ln< 8(t—7) + NG (t—7)G(7 —T)) (47)

is the 1/N correction for the effective free energy, which comes from the integration of the fluctuating hybridization order
parameter 5b; (z) and leads the hybridization order parameter by(7) to vanish beyond the mean-field approximation [25].
The last part of

s s p s
A
ASI/N:/dT/d‘L'//dT”/dTW G.(t—7")by(")Gs (7" = 7") i 5(r—17)
TedA
o o 0 0

-1
+ G (t1=7)Gy(7' = T)) bo(7")G (7" =) G(7 - T)} (48)

describes a shift of the order parameter from the original mean-field value in the presence of the 1/N correction. It should
appear with self-consistency. However, this shift term is not taken into account usually for the analysis without self-
consistency, which is also in the order of 1/N.

3. Quantum corrections up to the 1/N? order

We consider f = 2. Introducing

by (1) = by(t) + b, (7),
by(7) = by(7) + b, (7)
— by(2) + 6y (z) + 8by(7) (49)

into the effective Landau-Ginzburg field theory, we obtain
p p
Z=27.7} / Df . (t)DSb,(t)Débs(7) exp [— / dr{/ de' £5(2) (bo(7) + b, (z) + 6b5 (7)) G (7 — 7') (b (7')
0 0

ﬂNAb
TdA

+8b1(7) + 8b3(7)) fo(7') + f5(2)(D: = ) f5(z) + NSA+ % by(2)bo(7) + 8b}(2)5b, ()

JTNAb
TedA

INSN
v FA%

INSN
v FA%

+ b3 (7)6bs (7) + dA by (7)0,b} (7) + dA (bo(7) 4 6by(2))(0,b}(z) + D,6b (7)) H . (50)

Now, we have three coupled equations for by(z), 6b,(7), and &b, (7).
Performing Gaussian integrals for 6b(z) and 6b,(7), we obtain an effective action

Seff:SN—>00+81/N+Sl/N2+ASI/N+AS]/N2' (51)

Here,
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N
Sy =ty ln{JKdA

XGf(

is the 1/ N? correction in the effective action, in particular,
the last term in the logarithm. AS, /52 is a shift term in the
1/N? order, which will not be shown here due to its
complex expression.

4. A nonperturbative large-N effective field theory

It is remarkable to obtain a nonperturbative large-N
effective field theory with an emergent extra dimension,
summing all loop quantum corrections organized in the
1/N expansion. Frankly speaking, we do not understand
why this nonperturbative large-N effective field theory with
an emergent extra dimension should arise from our recur-
sive Wilsonian renormalization group transformations.
Furthermore, we do not have a clear physical picture on
how this recursive Wilsonian renormalization group trans-
formation method takes into account such nonperturbative
physical effects. It is necessary to understand the math-
ematical structure more deeply.

E. Comparison between the Wilson’s numerical
renormalization group approach and our recursive
Wilsonian renormalization group method

One cautious person may point out several correspond-
ences between the Wilson’s numerical renormalization
group approach and our recursive Wilsonian renormaliza-
tion group method. Actually, we believe that our recursive
Wilsonian renormalization group method can be regarded
to be one mathematical reformulation of the Wilson’s
numerical renormalization group analysis in the path
integral representation.

The Wilson’s numerical renormalization group analysis
consists of (a) division of the energy support of the bath
spectral function into a set of logarithmic intervals;
(b) reduction of the continuous spectrum to a discrete
set of states (logarithmic discretization); (c) mapping of the
discretized model onto a semi-infinite chain, where an
impurity lies at one end and effective bath fermions appear
in the other side; (d) iterative diagonalization of this chain,
increasing the size of the chain and attaching bath fermions
onto the original chain; and (e) further analysis of the
many-particle energies, matrix elements, etc., calculated
during the iterative diagonalization, which yields informa-
tion on fixed points and static and dynamic properties of the
quantum impurity model [52]. On the other hand, recursive
Wilsonian renormalization group transformations are per-
formed in the following way. (i) We introduce an order

s p

Ay 8(t=7) + NG (t=7)G(7 — 1) —i—dAZNS[]\VFa 5(z - )—/df///dr’”Gc(r—r”)

Up
0 0

A -1
///) Ty ( mo_ T”) + GC(T”' _ T”)Gf(f” _ T///) % Gc( m _ )Gf(‘t _ ‘L') (52)
JdA

parameter field to diagonalize the corresponding effective
Hamiltonian in the saddle-point approximation. (ii) We
separate slow and fast d.o.f. for all variables, including
order parameter fields. (iii) Integrating over fast d.o.f. to
renormalize the dynamics of slow d.o.f. and rescaling both
the UV cutoff to return to its original value and all slow
functional variables to make the resulting effective action
invariant, we finish the first iteration procedure of the
Wilsonian renormalization group analysis, where effective
interactions still exist for slow d.o.f. (iv) To deal with
these effective interactions, we perform the Hubbard-
Stratonovich transformation once again and obtain an
effective theory with essentially the same order parameter
field but in the second iteration step. (v) We repeat exactly
the same procedures of (ii) and (iii) and find an effective
theory in terms of slower d.o.f. after the second iteration
procedure. This procedure gives rise to recursive renorm-
alization group transformations, where a renormalized
(hybridization) order parameter in the first depth is utilized
to renormalize the (hybridization) order parameter in the
second depth. This recursive structure of renormalization
group transformations is responsible for the introduction
of all-loop quantum corrections, organized in the 1/N
expansion.

Now, let us make correspondences between the Wilson’s
numerical renormalization group approach and the recur-
sive Wilsonian renormalization group method. The loga-
rithmic discretization procedure (a) and (b) may be
identified with the separation of slow and fast d.o.f. with
a logarithmic cutoff (ii), regarded to be a typical procedure
of the Wilsonian renormalization group transformation.
(c) Mapping of the discretized model onto a semi-infinite
chain corresponds to (i) and (iv) the introduction of an order
parameter field through the Hubbard-Stratonovich trans-
formation, regarded to be a method of matrix diagonaliza-
tion. Although (c), (i), and (iv) are important in the
technical aspect, they are not essential in the view of
principle. A crucial point is on the correspondence between
(d) iterative diagonalization of this semi-infinite chain
model and (iii) and (v) recursive Wilsonian renormalization
group transformations, which is the core of the renormal-
ization group transformation.

In the Wilson’s numerical renormalization group
approach, one diagonalizes the effective semi-infinite chain
Hamiltonian with the size N, where an impurity lies at one
end and effective bath fermions appear in the other side.
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Then, one attaches effective bath fermions into the chain
Hamiltonian of the size N at the N + 1 site, where an
effective hopping integral is reduced in a logarithmic way
and determined by the mapping procedure of the discre-
tized model onto a semi-infinite chain. Now, one can
diagonalize the N + 1 effective chain Hamiltonian and
obtain the flow of the eigenvalue as a function of the size N.
During this diagonalization procedure, one may perform
truncation to reduce the size of the total Hilbert space for
the exact diagonalization. We argue that this numerical
renormalization group structure is in parallel with the
present recursive renormalization group transformation.
In particular, the renormalized (hybridization) order param-
eter in the (f — 1)th iteration is utilized to renormalize the
(hybridization) order parameter in the fth iteration, where
the exact diagonalization procedure of the numerical
renormalization group analysis corresponds to the integra-
tion of high-energy modes of all field variables in the
dA — 0 limit. In this respect the size of the effective chain
Hamiltonian may be identified with the emergent extra
dimension of the recursive renormalization group method.

Unfortunately, the above discussion is qualitative or
speculative. To make the correspondence more quantita-
tively, we need to construct recursion equations for two
successive eigenvalues and eigenstates between the Nth
and (N + 1)th effective chain Hamiltonians in the numeri-
cal renormalization group structure. Then, we may perform
the continuation of the size variable and obtain nonpertur-
bative renormalization group flows in the numerical
renormalization group method. One may find a structure
of the holographic duality conjecture in these recursion
equations along the emergent extra dimension, compared
with the present theoretical framework. This would be an
interesting future direction of research.

V. THE KONDO EFFECT IN THE
NONPERTURBATIVE FIELD
THEORETICAL FRAMEWORK

The mean-field theory for the Kondo effect describes the
local-Fermi liquid fixed point well, where the hybridization
order parameter becomes finite below the Kondo temper-
ature [26]. On the other hand, it gives rise to a second-order
phase transition, which should be regarded as an artifact of
the mean-field theory. Introducing quantum corrections at
the leading order of the 1/N expansion into the mean-field
theory, the hybridization order parameter turns out to
vanish for all temperatures, where the nature of the local
Fermi-liquid fixed point is not perfectly clarified [25].

We claim that this nonperturbative physics would be
encoded into our effective Landau-Ginzburg description for
the Kondo effect beyond the 1/N framework, where the
evolution of the hybridization order parameter is given by
the diffusion equation in the emergent spacetime with an

extra dimension. Given the UV boundary condition
Eq. (10), renormalization of the hybridization order param-
eter occurs through the diffusion equation (9). Finally, the
diffusive evolution matches or is constrained by the IR
boundary condition Eq. (11). In particular, the diffusive
dynamics along the direction of the extra dimension would
erase the memory of the emergent low-energy d.o.f., giving
rise to short-range correlations in time. It turns out that this
scale determines the Kondo temperature.

A. Solution for the nonperturbative renormalization
group equation: Hybridization order parameter

We recall Eq. (9),
9,b"(z,z) = DI*b(z,2),
where

I avp A, A2

D —
NS3.3  2SNpJg

(53)

may be identified with an effective diffusion constant.
We consider

bi(r.z) = e‘C’{A cos <\/IE)Z> + Bsin (\/Ez) } (54)

as a trial solution of this effective diffusion equation. A, B,
and C will be determined by both UV and IR boundary
conditions.

The UV boundary condition Eq. (10) fixes the relation
between A and B. As a result, we obtain

(6.9 = 8ee{ Coon(1/S2) (| S) )
(55)
where a = Jg/(NG2) = nAy,.

Applying the IR boundary condition Eq. (11) into this
solution, we obtain

(n(l5) - V5(15)
+ Ngﬁ{a\/gcos <\/ng) + Sin<\/l§)zf> }
x %;Gc(iw)Gf(iw -C)=0. (56)

Performing the Fourier transformation in Eq. (12),
we find
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G(iw) = {iw Y - Bz{a\/gcos <\[ng~> + Sin(\/ng) }2Gc(iw + C)}_l. (57)

Inserting the spinon Green’s function into Eq. (56), we obtain

(el ) oo (V ) vt om () on ()

1 —inNpsign(w)

X

=0, (58)

B; iw—+A—C+ iﬂNFBz{a\/%cos(\/%zf) + sin<\/ng) }zsign(a))

which determines C. Below, we show that the amplitude B of the hybridization order parameter is scaled out. The constraint

equation is given by

1

=, (59)

which determines A. We recall § = 1/2.

E; iw—+A—C+ iﬂNsz{a\/g cos(\/ng) + sin(\/%zf)}Zsign(a))

Introducing Np — % and Jx — JgB? into these coupled equations, one can show that B disappears as follows:

(el ) Voo (Vo ) v om () -on ()

1 —inNpsign(w)

=0,

) B,Zm iw+1-C+ iﬂNF{(l\/%COS(\/%Zf) + sin<\/ng) }2sign(w)

1 1

E%: iw+1—-C+ iﬂNF{a\/gcos(\/ng) + sin<\/ng) }2Sign(a))

These coupled equations describe the Kondo effect in a
nonperturbative way.

The second equation of Eq. (60) leads to A = C for all
temperatures. This is due to the condition of half filling
with particle-hole symmetry. Inserting this relation into the
first equation of Eq. (60), we obtain

L—a%sin(\/%zf) + \/%cos(\/%zf) 1 (6
NG, a\/gcos<\/ng> + Sin(\/ng)

with

1
= 5 ) "inNpsign(w) {ia’ + inN psign(w)

iw

ol el )T

In order to solve this order-parameter equation at finite
temperatures, we set the cutoff z, = fdA as z; = A -T
with A > T. The renormalization group procedure should

= . (60)

|

be terminated at a given temperature. This finite-
temperature termination is introduced into the cutoff
phenomenologically. However, it turns out that the reduc-
tion effect is not serious as long as A > T.

0.10

0.08

0.06

C/A

0.04 ¢

0.02 ¢

0.00!
0.01 0.1

S |

10 100 1000

T/Tx

FIG. 3. Linear-log plot of the order parameter C/A in terms of
T/Tg for JgyA = 1.05 and Nr/A = 0.1. Here, T is an effective
Kondo temperature, introduced from our field theoretical frame-
work. C is nearly constant at low temperatures less than the Kondo
temperature and gradually increases above the Kondo temperature.
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Solving this equation, we obtain C as a function of
temperature as shown in Fig. 3, where the temperature axis
is scaled by the Kondo temperature. Considering the self-
energy correction in the spinon’s Green’s function, it is
natural to take the Kondo temperature as

e v o Beos(|[5) sn D)V o

where C is the solution of Eq. (61) at 7 = 0. Figure 3
shows that C is nearly constant at low temperatures less
|

than the Kondo temperature and gradually increases above
the Kondo temperature.

B. Impurity thermodynamics

Performing the Gaussian integration for the spinon
variable in the effective Landau-Ginzburg field theory
Eq. (8) and introducing the nonperturbative solution
Eq. (55) of the hybridization order parameter into the
effective Landau-Ginzburg field theory Eq. (8), we find the
free-energy functional for the Kondo effect as follows:

N N N C C . C 2
F = _Zfﬁln Z,— EanC — ﬂZIn{—ia) —-1+C- iﬂNF{a\/;cos< sz) + sm<\/;zf> } s1gn(co)}

iw

NS N (& [C . C 1 /D . C a a C
+NS/H_?UFA§ (1-e /’C){z \/;sm(Z\/;zf) —2\/;s1n(2\/;zf> +5 =5 cos <2\/;zf> } (64)

Here, the hybridization order parameter field is determined
by its self-consistent equations [Eq. (60)].

In order to figure out thermodynamics of the Kondo
effect, we focus on the most singular sector, given by

N
Fimp = —EZIH [—la)—/l-k C—- iﬂNFSigIl(C())

({5 () v

which is nothing but Eq. (14). This expression implies that
the effective Kondo temperature is

- 1Co 1Co . Co\ |2
T,(—ﬂNF{a DCOS( D>+Sln< D ,

f

|

as discussed earlier. Based on this effective free-energy
functional, we describe nonperturbative thermodynamics
in this exactly screened Kondo problem, as discussed
before.

VI. IMPLICATION FOR THE
HOLOGRAPHIC DUALITY CONJECTURE:
HOW TO FIND AN EMERGENT
METRIC STRUCTURE

A. Hamilton-Jacobi formulation:
Induced boundary metric

Finally, we discuss how to extract out the emergent
metric structure. We recall the partition function

p
NA 2NSN
Wir(zy) = /DfG(T)Db(T, 7) exp {— / dz/dr{nj b (0.b%(2,2))(0.b(z,2)) + . AzFb(r, 2)0,b(z, Z)}
0 0 K Fiie
p p N
- [ as{ [ arsi(op(s.2,)6.(6 = 201 @ 2 )Fol) 4 UG = DFA) 4 NS+ 50 (2 050}
0 0 K
(65)
We point out that this partition function should not depend on the scale of zy, i.e.,
d
—InWg(zs) = 0. (66)

de

As a result, we obtain the following equation:
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p

NA 2NSN
0= / dr{ﬂ L (b (,24))(0b(z, 24)) + o
Jx : - vpA2

b(T, Zf)abe (T, Zf)

s

+N/dr’8fb(1,zf)Gc(T—T')b+(r',zf)Gf(T'—1)—|—N/dr'b(r,zf)Gc(r—1’)8fb'1'(r’,zf)Gf(T’—T)}. (67)

Here, 0;b(z, zs) is a short-handed notation for 0.b(z, z)| —

The Hamilton-Jacobi formulation consists of three types
of equations [11,12]. The first are equations that counter-
terms should satisfy, the second is the Hamilton-Jacobi
equation, and the third are equations to define the energy-
momentum tensor. We emphasize that the Hamilton-Jacobi
equation is just a reformulation of our equations of motion,
that is, the UV boundary condition, the bulk equation of
motion, and the IR boundary condition, which will be
clarified below. The only thing that does not seem to take
into account is the issue on counterterms. Since we are
dealing with an effective field theory defined in the cutoffs
of vpA.> Ay, Ay, there do not exist any divergences,
which reflects the procedure of the Wilsonian renormali-
zation group structure.

The Callan-Symanzik equation (66) can be rewritten as
the Hamilton-Jacobi equation [10-13]

H+8fSIR :0

The bulk “Hamiltonian” is identified with

H /d'z‘{ﬂNAb

2NSN
+ 7 b(z.21)0.b' (7, Zf)}’
UFAC

be (T, Zf))(afb(l', Zf))

and the IR effective action is given by

S = 7 dT{fji(T)arfo'(T)

b
+/df’f§(f)b(f, 27)Ge(7 = T’)bT(T’,Zf)fa(T’)},

0

which defines the energy-momentum tensor. This IR
effective action is also discussed below.

Recalling the IR boundary condition given by Eq. (11),
the Hamilton-Jacobi equation can be more simplified as
follows:

0

o This is nothing but the Hamilton-Jacobi equation.

p
0= /dT{ZIUVSZVF b(t.27)0,b" (7, 25)

Ftie

B

+ Nb(z,z¢) / dv'G.(t=7)0;b" (7, 24)Gy(7 — T)}
0
(68)

We would like to emphasize that this renormalization group
equation can be regarded as one reformulation of the IR
boundary condition [Eq. (11)] with the bulk equation of
motion [Eq. (9)].

Applying J; into the IR boundary condition [Eq. (11)],
we obtain

ﬂ'Ah
(9217
Jk
p

+ /dT’GC(T —7)0;b" (7, 24)G (7 —7) = 0.
0

(z.2y)

Replacing 97b"(z,z;) with a time-derivative term via the

bulk equation of motion [Eq. (9)], we find

2SN

—A; b(z, zf)abe (7, zf)
Vp

p
b(r,zs /dT/GL t—=7)0;b" (7, 24)Gp(7 —7) = 0.
0

(69)

Applying [$° dr to both terms, the resulting equation is
nothing but Eq. (68), which implies the self-consistency of
our formulation.

An idea is to compare Eq. (68) with the renormalization
group equation [10-13]

YT + B{O) =0, (70)

where an anomaly term does not arise in this Kondo
problem. Here, either a subscript or superscript f
denotes z = zy. y(}o is an induced metric and T{;O is an
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energy-momentum tensor at z = zy. 3, is a f-function of a
coupling constant in the renormalization group analysis and
(Oy) is a vacuum expectation value of an observable O,
at z =1z £

The f-function of the hybridization order parameter field
is given by

Br=0sb'(z,2)
B
— K 4G (e = (e 2)G (7 — 1) (T1)
JTAI, ’ !

where the last equality results from the IR boundary
condition. The vacuum expectation value of the hybridi-
zation order parameter is given by

(/ (dd) 01,0

p
~N / 4G (z )b 2))G, (7 7). (72)
0

As a result, we identify

p

p
N/d’rb(r,zf /dT/GC t—=7)0;b" (7. 2;)G (7 — 1)
0 0

with
p
[ a0,
0
where
dk
0, = / 2 bk, 7)f,(2)
f (2 )
and 7 < 7.

The above correspondence gives rise to

p p

2NSN
/ deyort, — VSV / deb(z.2,)0.b' (z.2)).
UFAc
0

Jg [ dt [°dr"G (1 —7)G

or more strongly,

oS, 2NN

b =—-b(r.27)0,b" (7. 2;), (73)

F c

guaranteed by Eq. (69).
Substituting the IR boundary condition Eq. (11) into
Eq. (65), the effective IR action further reduces to

p

sw= | dr{fl'(r)affﬁ(r)
0

p

+ [ aesbtante zf>cc<r—r’)bf(rcz»fg(r/)},
0
(74)

where the Lagrange multiplier field A is integrated out,
giving rise to the number constraint f}(7)f, () = NS
Then, it is straightforward to read the corresponding energy
as follows:

B
Ty = / 47 (F(0)b(x. 3G (r — )b (2, 2) £ (7))

0
s
= Nb(z,z; /d’r’GC t—=7)b (7, 2)G (7 — 7).
0

(75)

which is nothing but the time component of the energy-
momentum tensor.

Inserting the IR effective Hamiltonian [Eq. (75)] into the
energy-momentum tensor part [Eq. (73)] of the renormal-
ization group equation and resorting to the renormalization
group equation (68) with the IR boundary condition
[Eq. (11)], we reach the following expression for the time
component of the metric tensor:

(T =D 2)G (7" = )G (7 —T)

o

T, Zf) = —”Ab

J§ddG (=)' (7, 24)G(7 — 1)

(76)

Inserting the nonperturbative solution Eq. (55) for the hybridization order parameter into the above expression and
performing the Fourier transformation into the frequency space, we obtain
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’5 LG (i + Q)G (iw).  (77)

00 _
ro(zp) = ——
! ﬂAhﬂ iw

We already saw the right-hand side in Eq. (58). Using this

result, we obtain

NpJg Af
ﬂ'Ab TK

r(z) == (78)

We recall

T N Ccos C + sin g ’
KR TNF D sz .

The Ward identity in Eq. (70) represents the renormal-
ization group flow of the boundary quantum field theory,
which describes the relationship between physical quan-
tities at the renormalization scale z;. The effective metric
y O at the energy scale z ¢ can be determined by solvmg this
Ward identity if we know other quantities such as TOO, By
and (Oy), actually given by equations of motion and IR
effective field theory. One thing we should note is that the
renormalization group flow must satisfy the Ward identity
regardless of the renormalization scale z;. This fact implies
that we can see how y?o changes as the renormalization
scale runs from the UV to IR scale. From the holographic
point of view, the radial coordinate of the dual geometry
can be matched to the energy scale of the dual field theory.
More precisely, when the boundary of the dual geometry is
located at zy, the dual field theory is defined at the
renormalization scale z; and the effective metric y
corresponds to the metric of the boundary spacetlme
Therefore, the renormalization group flow of the dual field
theory can be understood by changing the boundary
position on the dual geometry side [11,12].

B. How to find bulk metric

The next question is how to find the bulk metric consistent
with the boundary metric given by the Hamilton-Jacobi
formulation. Frankly speaking, we do not know how to
figure out the bulk metric in the Hamilton-Jacobi formu-
lation. Here, we propose another way and discuss consis-
tency with the induced boundary matric.

We recall an effective bulk action

p p
NA
Sbulk:/dZ/dT{ﬂ g(@sz(T,Z))(azb(T,Z))
TM
0 0

ONSN,
v FA%

_I_

b(z,2)0,b' (z, z)}, (79)

which describes the evolution of the hybridization order
parameter as a function of an energy scale. A mass

parameter M? has been introduced, the reason of which
will be discussed below.

Our strategy is to compare this effective bulk action with
the canonical form of a spin 0 bosonic field theory on a
curved spacetime and to read out both metric components
of g,, and g.,. Unfortunately, our effective action contains a
linear time-derivative term. Since the canonical form of the
spin 0 bosonic field theory on a curved spacetime does not
take the linear time-derivative term, we cannot compare our
effective action with the canonical form of general covari-
ance. In this respect we consider a reformulation with UV
completion for this nonrelativistic effective action. We
consider the following effective action:

Sut = / dz 7 {Z”NAb (0. (+.2)) (0.b(z. 7))

n (2N SAN) (0:b(x.2))(0,b' (z.2))

+ M?b(7,7)b' (7, z)}, (80)

where the second-order time derivative term has been
taken into account with the introduction of a mass term.
Considering the M? — oo limit, keeping only the positive-
energy part, and throwing away the huge mass term of the
boson field, we return to our original nonrelativistic
effective field theory.

It is natural to consider the following canonical form:

s s

Setr :/dz/df\/gﬂgzz

0 0
27TNAb ZZ
Jk

(stsz> (0,65, ) (0,0 (2. 2))

(0:0%(r.2))(9;b(t.2))

+ M?b(z,2)b" (z, z)} (81)

where metric components have been introduced. It is
straightforward to read out both metric components as
follows:

Ger = J7e = 1, 9z =9z = L. (82)
Then, the question is how this Euclidean metric can be
consistent with the induced metric found from the Callan-
Symanzik equation in the previous subsection. Although
we cannot prove our speculation, we suspect that a general

coordinate transformation leads the boundary metric to be
the Euclidean in the bulk.
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C. From strongly coupled quantum field theory to Einstein’s gravity formulation

Now, we discuss how to derive Einstein’s theory of general relativity as a dual description of a strongly coupled quantum
field theory. We start from an effective field theory

Z= / Db(T7 Z)Dgn(fv Z)Dgzz(T’ Z)a(gﬂ'(T’ Z) - g;r[b(f’ Z)])é(gzz(77 Z) - gzz [b(T’ Z)D

s

p
exp [—/dz/dr 9::(1,2)9.. (7, z){wgu(az)(azbwa 2))(0.b(z.7))
0

K
0
2NSNf
UFA%

) 2g”(f, 2)(0.b(7,2))(0.b"(7,2)) + M*b(z,2)b" (7, 2) H . (83)

Both metric components of g¢i[b(z,z)] and g¢.[b(z,z)] are found from the comparison between the effective Landau-
Ginzburg field theory with an extra dimension and the canonical form of the corresponding field theory as discussed in the
previous subsection. In the Kondo problem (perfect screening [26]), they do not depend on the hybridization order
parameter, given by the Euclidean metric. In the present subsection, we put our discussion in a more general setup.
Utilizing the Lagrange multiplier field, we can exponentiate the delta-function constraint and obtain the following

expression:

s p

Z = [ Dbt 2)Dg(s.2)Dg.c (5. DT (5. DT.c(5:2) ex {— [ &= [ ar/ae 0w

{%JLKA})Q (7.2)(0.b"(7,2))(9:b(z.2)) + <

2NSNg
UFAg

0 0

)2g"<r, (@,b(z.2))(@,b'(x.2))

M2, ) (2. 2) = Tao(r 2) (g (5. 2) — ™ [b(e. )]) = iT o (2.2) (2. 2) — g [b(z. 2)]) H R

where T,(7,z) and T, (z, z) are Lagrange multiplier fields.
Integrating over metric fields ¢°*(z, z) and ¢%*(z, z), we find

2NSNfg
UFA%

2 (9,5, 2)) (9:b(r. ). (85)

To(e2) = ( )z@bu, 2)(O.7(x.2)).

T, (T’ Z) =

In this respect these Lagrange multiplier fields may be
identified with energy-momentum tensors as collective
fields.

The last step is to integrate out the order parameter field.
Formally, such a procedure is expected to result in

Z— / Dy, (2. 2)Dg..(t.2)T oo (2. 2)To. (2. 2)

B p

exp [_ / dz / A PP )
0 0

{'Ceff {glw(f’ Z), T;m (T’ Z)] - iTTT(T’ Z)gTT(T’ Z)

T (), z)}} . (86)

Here, Lek[¢"(7.2),T,,(7.2)] would contain the Einstein-
Hilbert action in the presence of energy-momentum tensor
collective fields.

VII. SUMMARY

Our emergent holographic description with an extra
dimension turned out to be a Landau-Ginzburg theory of
local order parameter fields, renormalized by quantum
corrections and described by Wilsonian renormalization
group transformations. The extra dimension is identified
with the number of iterations of renormalization group
transformations. Here, we derived an effective field theory
of a hybridization order parameter field for the Kondo
effect, living on the spacetime with an extra dimension
given by Wilsonian renormalization group transformations.
In order to reveal the physics of this extra dimension, we
took the limit of z; = dz — 0 and showed that the resulting
equation of motion for the hybridization order parameter is
reduced to that of a mean-field theory with leading
quantum corrections in the 1/N expansion of the field
theoretical approach, where N is spin degeneracy. This
demonstration not only serves as a solid background of the
present approach but also implies a nonperturbative frame-
work with full quantum corrections in the z; — co limit.
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It was rather unexpected to observe that the locality of
the effective field theory is preserved in recursive
Wilsonian renormalization group transformations. It is
natural to expect the appearance of nonlocal interactions
in the Wilsonian renormalization group transformation.
Indeed, nonlocal effective interactions arise generically.
However, we find that such effective interactions depend
on the UV cutoff, where nonlocal correlations vanish in
the infinite limit of the UV cutoff. In other words,
nonlocal correlations can be expressed as local terms
through the gradient expansion when the UV cutoff is
large enough.

Based on this effective field theory, we obtained a classical
equation of motion in the large-N limit, which describes how
the hybridization order parameter field evolves as a function
of the energy scale, identified with the extra dimension. In
addition to this equation of motion, UV and IR boundary
conditions were naturally constructed to fix the resulting
configuration of the hybridization order parameter field in
the extra dimension unambiguously. Solving these coupled
equations of motion, we found the hybridization order
parameter field as a function of both time and the energy
scale of the extra dimension. It turned out that this solution
reproduces the local Fermi-liquid fixed point in the absence
of any phase transitions at finite temperatures. In addition,
we investigated thermodynamic properties in more detail and
compared them with those of the Bethe ansatz method. As a
result, we could show that our nonperturbative theoretical
framework is consistent with the essentially exact solution,
which describes the crossover behavior from the decoupled
local moment fixed point to the local Fermi-liquid fixed
point quite successfully. This reflects the nonperturbative
nature of our formulation.

We also discussed how to extract out an emergent metric
structure from this effective field theory. Resorting to the
Hamilton-Jacobi formulation derived from our effective
free-energy functional, we could read the f-function for the
evolution of the hybridization order parameter and its
vacuum expectation value. It turned out that the Callan-
Symanzik equation for the effective free energy just
reformulates our coupled equations of motion, i.e., the
bulk equation of motion for the order parameter field and
the UV and IR boundary conditions, which confirms the
internal consistency of our formulation. Based on this
reformulation, we could find an induced metric.

Finally, we compared our recursive Wilsonian renormal-
ization group structure with Wilson’s numerical renormali-
zation group method. In particular, we argued that recursive

Wilsonian renormalization group transformations are in
parallel with the recursive exact diagonalization procedure
of the numerical renormalization group structure. As a result,
we identified the size N of the numerical renormalization
group transformation with the emergent extra dimension z of
our recursive renormalization group transformation. This
implies that the theoretical framework of recursive renorm-
alization group transformations can be applied to various
problems of strongly correlated systems as the numerical
renormalization group method is. In particular, it would be
interesting to apply the present theoretical framework to
various Kondo problems such as the case of overscreening
and the presence of competing Hund interactions.
Furthermore, the correspondence between the recursive
Wilsonian renormalization group structure and Wilson’s
numerical renormalization group method should be more
clarified based on the analytic construction for recursion
equations of renormalization group flows in the numerical
renormalization group structure.
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