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The symmetry of the generalized Polychronakos-Frahm chain is obtained from the Dunkl-operator
deformation of the unitary algebra, which describes the symmetry of the generalized Calogero model.
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I. INTRODUCTION

Integrable chains with inverse-square interactions were
first introduced by Haldane and Shastry for equidistantly
localized spins on a cycle [1,2]. The Haldane-Shastry
model extends the nearest-neighbor Heisenberg chain to
long-range interactions, preserving the integrability. It can
be considered also as a discrete analog of the integrable
Calogero-Sutherland system describing particles confined
on a cycle with a trigonometric inverse-square interaction
[3]. The rational version of the latter had been proposed
earlier and solved by Calogero [4]. A related discrete
system was suggested and studied by Polychronakos and
Frahm [5,6]. There are various integrable extensions of
Calogero-type systems, in particular, to hyperbolic and
elliptic potentials, particles with internal spin degrees of
freedom (d.o.f.) [7], finite reflection groups, Coulomb
potential [8], etc. (see Refs. [9,10] for a review).
Apart from the Liouville integrals [11], the unbound

Calogero system (Calogero-Moser model) possesses addi-
tional integrals of motion ensuring maximal superintegra-
lility [12–14]. This property is retained in the presence of
the oscillator [15] and Coulomb potentials including the
spaces with constant curvature [16].
There is an elegant way of solving and constructing

integrals for quantum systems based on the Dunkl
exchange operator [17]. The inverse-square (Calogero)
interaction is hiding in the covariant derivative provided
by such an operator [18,19]. The related connection is flat
but includes the two-particle exchanges, making the con-
structed Hamiltonian, called sometimes a generalized
Hamiltonian, and related observables essentially nonlocal.
The unwanted exchanges disappear on the bosonic or

fermionic states, recovering the original Calogero
Hamiltonian. Likewise, the symmetries and wave functions
of the generalized Hamiltonian are Dunkl-operator defor-
mations of those for the underlying system without the
inverse-square interaction. Once they are constructed, the
integrals of motion of the original Calogero Hamiltonian
are recovered as symmetric polynomials in symmetry
generators of the generalized system.
In this context, the generalized Calogero Hamiltonian

remains invariant with respect to the Dunkl-operator
deformation of angular momentum generators. In addition,
the hidden symmetry is provided by the Dunkl analog of
the Fradkin tensor. Both of them form an extension of the
conventional unitary symmetry of an isotropic oscillator
[20] (see also a closely related description [21]). The
hidden symmetry of the generalized Calogero-Moser sys-
tem with a Coulomb potential is provided by a Dunkl
deformed Runge-Lenz vector [16,22]. Recently, a Dunkl
analog for the Dirac operator and its symmetries has been
investigated [23].
At the equilibrium point corresponding to the potential

minimum, the dynamical variables become frozen. The
Hamiltonian reduces to the generalized Polychronakos-
Frahm chain with the coordinate exchanges instead of the
spin ones. The application of the exchange operators to
discrete systems has a long story. Using them, the commut-
ing invariants for the Haldane-Shastry and Polychronakos-
Frahm spin chains have been constructed, proving the
integrability [5,24]. The symmetry was expanded to the
(non-Abelian) Yangian algebra [25,26]. Its generators may
be obtained from the symmetry algebra of the parental
Calogero-Sutherland and Calogero models. Because of the
loss of continuous variables, this map eliminates a lot of
symmetries. In particular, the quantum determinant of the
Yangian algebra, which combines the commuting integrals
containing the Hamiltonian, become a trivial constant in the
freezing limit. Instead, the power-series expansion in
Plank’s constant was applied to the quantum determinant.
Then, the first-order term provides the discrete models with
another set of Liouville integrals [27,28]. This fact suggests
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that the conservation laws for the integrable chains with
inverse-square interactions have more elaborate structure
than those for their dynamical counterparts and are needed
for further study.
In this article, we describe the symmetry of the N-site

generalized Polychronakos-Frahm chain stressing out on its
relation to the UðNÞ symmetry of the isotropic oscillator,
which is responsible for the maximal superintegrability.
We start from the Dunkl-operator deformation of the
unitary group generators, which provides the dynamical
and hidden symmetries for the generalized Calogero model.
At the lowest potential values, the dynamical d.o.f. become
limited to the discrete jumps between degenerate minima
giving rise to a chain model. We continue by extracting the
conserving quantities for the discrete system from the
deformed unitary generators, wherein the diagonal ele-
ments correspond to the previously constructed integrals.
Algebraic relations between the reduced generators are
derived also. The symmetric combinations of the invariants
produce integrals of the Polychronakos-Frahm chain. We
finish by inspecting the Coulomb confining potential in this
context. The analog of the Runge-Lenz vector vanishes at
the discrete level and does not lead to a conservation law.

II. GENERALIZED CALOGERO MODEL

The Calogero model is an integrable system of one-
dimensional identical particles interacting by an inverse-
square potential and bound by an external harmonic force.
It is given by the Hamiltionain [4],

ĤC ¼ 1

2

XN
i¼1

ðp̂2
i þ x2i Þ þ

X
i<j

gðg ∓ ℏÞ
x2ij

: ð1Þ

Here, p̂i ¼ −ιℏ∂i is the momentum operator, g is a
coupling constant, and the −ðþÞ sign in the potential
corresponds to the bosons (fermions). We use a conven-
tional notation for the particle distance, xij ¼ xi − xj. The
oscillator frequency is set to unity.
Most properties of the Calogero model (and its various

extensions), like (super)integrability, spectrum, wave func-
tions, and conservation laws are conditioned by its slightly
modified version known as a generalized Calogero
Hamiltonian [18,19],

Ĥ ¼ 1

2

XN
i¼1

ðp̂2
i þ x2i Þ þ

X
i<j

gðg − ℏMijÞ
x2ij

: ð2Þ

It includes a permutation operator Mij, which exchanges
the coordinates of ith and jth particles. At a first glance,
such a modification may look rather strange due to its
nonlocality but for the identical particles it just reduces to
the standard Calogero Hamiltonian (1). The advantage of
the above Hamiltonian is the representation in terms of the
deformed momentum operator with a derivative replaced
with the Dunkl operator,

Ĥ ¼ 1

2

XN
i¼1

ðπ̂2i þ x2i Þ; ð3Þ

π̂i ¼ p̂i þ
X
j≠i

ιg
xij

Mij: ð4Þ

The latter can be considered as a kind of flat nonlocal
covariant derivative with the following algebra [17]:

½π̂i; π̂j� ¼ ½xi; xj� ¼ 0; ½xi; π̂j� ¼ ιŜij; ð5Þ

Ŝij ¼ ðδij − 1ÞgMij þ δij

�
ℏþ g

X
k≠i

Mik

�
: ð6Þ

At the g → 0 limit when the Calogero inverse-square
potential is absent, the operators π̂i, Ŝij are mapped to
the p̂i and ℏδij, correspondingly, and the above relations
are reduced to the Heisenberg algebra commutation rules.
A Dunkl-operator analog of lowering-rising operators is

defined in the standard way [7,18,19],

â�i ¼ xi ∓ ιπ̂iffiffiffi
2

p ; ð7Þ

½âi; âj� ¼ ½âþi ; âþj � ¼ 0; ½âi; âþj � ¼ Ŝij: ð8Þ

The generalized Hamiltonian can be expressed in terms of
them,

Ĥ ¼ 1

2

X
i

ðâþi âi þ âiâ
þ
i Þ ¼

X
i

âþi âi þ
ℏN
2

− S: ð9Þ

Here, by S, the rescaled invariant of the permutation group
algebra is denoted

S ¼ −g
X
i<j

Mij; ½S;Mij� ¼ 0: ð10Þ

As a result, the lowering-rising operators obey a standard
spectrum generating relations [7,19],

½Ĥ; â�i � ¼ �ℏâ�i : ð11Þ

So, any bilinear combination,

Êij ¼ âþi âj; ð12Þ

satisfies the conservation law,

½Ĥ; Êij� ¼ 0: ð13Þ

The elements Êij are Dunkl-operator deformations of the
unitary group generators. Together with permutations Mij,
they provide entire algebra of symmetries for the
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generalized Calogero model. In addition, the following
quadratic relation takes place among Êij and Ŝij [20]:

ÊijðÊkl þ ŜklÞ ¼ ÊilðÊkj þ ŜkjÞ: ð14Þ

The latter implies, in particular, the following commutation
relation:

½Êij; Êkl þ Ŝkl� ¼ ÊilŜkj − ŜilÊkj: ð15Þ

As a consequence, the diagonal elements are closed
under commutation. Unlike the Cartan algebra, they are not
Abelian but obey a simple commutation,

½Êii; Êkk� ¼ ðÊii − ÊkkÞŜik: ð16Þ

The above algebra ensures that the power sums form a
system of Liouville integrals of the Calogero system [18],

Êk ¼
X
i

Êk
ii; ½Êk; Êl� ¼ 0: ð17Þ

The generalized Hamiltonian itself is expressed in terms of
the first member in this family,

Ĥ ¼ Ê1 − Sþ Nℏ
2

: ð18Þ

Moreover, it is a unique Casimir element (up to a
nonessential constant term) of the Dunkl-deformed uðNÞ
algebra [20].
Remember that the same algebra (16) describes also the

symmetries of the generalized Hamiltonian related to the
Sutherland model [18], an analog of the Calogero-Moser
system with trigonometric interactions [3].
The antisymmetric combinations of Êij yield the Dunkl

angular momentum components [13,29],

L̂ij ¼ Êij − Êji ¼ xiπ̂j − xjπ̂i: ð19Þ

Together with permutations, they produce a deformation of
soðNÞ algebra with a unique Casimir element given by the
Dunkl angular momentum square L̂2 ¼ P

i<jL̂
2
ij shifted by

a permutation invariant term [20],

L̂2 ¼ L̂2 þ S2 − ℏðN − 2ÞS; ½L̂ij; L̂2� ¼ 0: ð20Þ

It can be considered as a generalized angular Calogero
Hamiltonian, which is reduced to the angular part of the
Calogero model for identical particles [30],

Ĥ ¼ −
ℏ2

2

�
∂2
r þ

N − 1

r
∂r

�
þ r2

2
þ L̂2

2r2
with r¼

ffiffiffiffiffi
x2

p
:

ð21Þ

The symmetric combinations of the deformed uðNÞ
generators produce a Dunkl-operator deformation for the
well-known Fradkin tensor [31],

Îij ¼ Êij þ Êji − Ŝij ¼ π̂iπ̂j þ xixj: ð22Þ

Remember that the angular momentum and Fradkin tensor
describe, respectively, the dynamical and hidden sym-
metries of the N-dimensional isotropic oscillator [32].
The diagonal algebra (16) has an Abelian basis obtained

by applying a shift to its elements. The shift is a tail
composed of exchange operators [26],

D̂i ¼ Êii − Ŝi; Ŝi ¼
Xi−1
j¼1

Ŝij; ð23Þ

where Ŝ1 ¼ 0 is supposed. Together with permutations, the
elements D̂i satisfy the defining relations of degenerate
affine Hecke algebra,

½D̂i; D̂j� ¼ 0; ½D̂k; Ŝjjþ1� ¼ 0 if k ≠ i; iþ 1;

D̂iþ1Ŝjjþ1 − Ŝjjþ1D̂i ¼ g2: ð24Þ

Note that the tails Si satisfy the same relations; i.e., the
above equations remain true upon the substitution D̂i → Ŝi.
As a result, the modified diagonal elements can be
considered as an analog of Liouville integrals for the
generalized Hamiltonian (2), which may be expressed
via them using the representation (9),

Ĥ ¼
X
i

D̂i þ
ℏN
2

: ð25Þ

The higher-order power sums define the higher
Hamiltonians,

D̂k ¼
X
i

D̂k
i : ð26Þ

The second member, D̂2, corresponds to the generalized
Calogero-Sutherland model. Note that in contrast to the
previous integrals (17), the permutation invariance is not
evident but can be verified. More familiar are the mono-
mials given by the generating function

Q
iðu − D̂iÞ [26]. In

general, any symmetric polynomial in D̂i is permutation
invariant and reduced to the constant of motion of the
Calogero model (1) for indistinguishable particles.
More symmetric polynomial may include the nondiag-

onal components of the generators Êij. The permutations
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can be used in such expressions as well. Here are some
simplest examples of such integrals,

X
i;j

Îkij;
X
i;j

L̂2k
ij ;

X
i<j

ÎkijMij;
X
i;j

ÎkiiL̂
2l
ij : ð27Þ

III. GENERALIZED POLYCHRONAKOS-FRAHM
CHAIN

Let us set the interaction constant to unity, g ¼ 1. In the
current section, we consider the generalized Calogero
model at the equilibrium point, where the (classical)
confining Calogero potential takes its minimal value,

∂V
∂xi ¼ 0; VðxÞ ¼

XN
i¼1

x2i
2
þ
X
i<j

1

x2ij
: ð28Þ

The coordinates are given by the roots of the Nth-order
Hermite polynomial [6]. All roots differ, so there are N!
equivalent minima connecting by the coordinate exchanges
Mij. These are only allowed evolutions in the frozen
system.
Consider the expansion of the Hamiltonian (2) in powers

of Plancks constant,

Ĥ ¼ V þ ℏHð1Þ −
ℏ2∂2

2
: ð29Þ

The first-order term can be considered as a generalized
Polychronakos-FrahmHamiltonian,where the spin exchange
operator is replaced by the coordinate exchange [5],

Hð1Þ ¼
X
i<j

1

x2ij
Mij: ð30Þ

The SUðnÞ symmetric spin chain is recovered from the above
Hamiltonian after the replacement of the coordinate permu-
tations with spin exchange operators so that

HPF ¼
X
i<j

Pij

x2ij
: ð31Þ

Here,Pij permutes the ith and jth spins, which take values in
the fundamental representation of the SUðnÞ group. Both
Hamiltonians become identical on the bosonic (fermionic)
states provided that the particles are endowed with additional
spin d.o.f. Then the entire wave function must be symmetric
(antisymmetric) under simultaneous exchanges of coordi-
nates and spins for bosons (fermions). A permutation of
spatial coordinatesMij can be replaced by the spin exchange
operators Pij and −Pij in the bosonic and fermionic cases,
respectively. Note that the projection inverts the order of
permutations so that the operatorMijMkl must be substituted
by PklPij.

Let us now construct the constants of motion of the chain
Hamiltonian (30) by applying the ℏ expansion to the
integrals of the original dynamical model (2) at the
equilibriumpoint. They do not provide directly the invariants
of the SUðnÞ spin chain (31). In order to get them, one needs
to carry out symmetrization over all particles prior to the
projection. For instance,Hð1Þ stays invariant under a selected
coordinate exchange,Mij, butHPF does not preserve its spin
counterpart, Pij. However, both Hamiltonians preserve the
symmetrized version given by the element S (10).
The Dunkl momentum (4) and permutation matrix (6)

can be presented as follows:

π̂i ¼ πi − ιℏ∂i with πi ¼
X
j≠i

ι

xij
Mij; ð32Þ

Ŝij ¼ Sij þ ℏδij with Sij ¼ ðδij − 1ÞMij þ δij
X
k≠i

Mik:

ð33Þ

Here and in the following, the superscript is omitted in the
zeroth-order term of any operator, so that π0i ¼ πi. In that
limit, the canonical commutation relations resemble their
original form (5),

½πi;πj� ¼ 0; ½xi;πj� ¼ ιSij; Sij ¼
8<
:
−Mij; if i≠ j;P
k≠i

Mik; otherwise:

ð34Þ
Recall now that the particle coordinates are set by the

roots of the Hermite polynomial, which imposes certain
algebraic relations on them (see, for example, [27,33]). As a
result, the discrete Dunkl momenta are not independent any
more but undergo additional algebraic constraints. In
particular, the following relations hold among the fixed
phase space variables:

X
i

xi ¼
X
i

πi ¼
X
i

Sik ¼ 0; ð35Þ

x2 ¼ π2 ¼
X
i<j

2

x2ij
¼ 1

2
NðN − 1Þ; x · π ¼ −π · x¼ −ιS:

ð36Þ

In general, all relations between the operators of the
dynamical Calogero system are preserved at the ℏ ¼ 0
limit. In particular, the frozen lowering-rising operators

a�i ¼ xi ∓ ιπiffiffiffi
2

p ; â�i ¼ a�i � ℏffiffiffi
2

p ∂i ð37Þ

obey a rule similar to the commutations of the deformed
Heisenberg algebra (8) [5],
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½ai; aj� ¼ ½aþi ; aþj � ¼ 0; ½ai; aþj � ¼ Sij: ð38Þ

Because of the minimum condition (28), the spectrum
generating relation (11) remains valid for the generalized
Polychronakos-Frahm chain too [5],

½Hð1Þ; a�i � ¼ �a�i : ð39Þ

However, unlike the dynamical case, the discrete
Hamiltonian is not expressed via lowering-rising operators
[see Eq. (9)].
The constants of motion of the generalized Calogero

model (12) have terms up to the second order in their
expansion,

Êij ¼ Eij þ ℏEð1Þ
ij −

ℏ2

2
∂i∂j: ð40Þ

The relations (39) imply conservation of the constant
terms,

Eij ¼ aþi aj; ½Hð1Þ; Eij� ¼ 0: ð41Þ

For the Dunkl angular momentum (19), the ℏ2 part
vanishes, while the ℏ term corresponds to the usual angular
momentum operator in quantum mechanics,

L̂ij ¼ Lij − ιℏðxi∂j − xj∂iÞ; Lij ¼ xiπj − xjπi: ð42Þ

A similar expansion for the Fradkin tensor is more
complex,

Îij ¼ Iij þ ℏIð1Þij − ℏ2∂i∂j; Iij ¼ xixj þ πiπj: ð43Þ

The first order operator-valued coefficient is given by

Ið1Þij ¼ 1

x2ij
Mijþ

X
k≠i;j

� ∂i

xjk
Mjkþ

∂j

xik
Mik

�
for i≠ j; ð44Þ

Ið1Þii ¼
X
k≠i

1

xik

�
∂i þ ∂k −

1

xik

�
Mik: ð45Þ

As was discussed above, the algebraic relations between
the symmetry generators of the dynamical system remain
true at the freezing limit. In particular, the most general
relation (14) and its consequences (15), (16) are reduced,
respectively, to the following equations:

EijðEkl þ SklÞ ¼ EilðEkj þ SkjÞ; ð46Þ

½Eij; Ekl þ Skl� ¼ EilSkj − SilEkj; ð47Þ

½Ei; Ek� ¼ ðEi − EkÞSik: ð48Þ

The power sums of diagonal elements yield Liouville
integrals of the Polychronakos-Frahm chain [5],

Ek ¼
X
i

Ek
ii; ½Ek; El� ¼ 0; ½Hð1Þ; Ek� ¼ 0: ð49Þ

The first element of this set is rather trivial, E1 ¼ Sþ NðN−1Þ
2

,
as is easy to get using the Eqs. (36) and (37). The higher rank
Ek have more complicated expressions.
For the dynamical system, the quadratic relations (14)

are the only constraints which the symmetry generators Êij
obey [20]. However, there are a lot of other restrictions on
them at the equilibrium point. For example, the Eqs. (35)
imply the sum vanishing rules,

X
i

Eik ¼
X
i

Eki ¼
X
i

Lik ¼
X
i

Iik ¼ 0: ð50Þ

In the dynamical case, the angular Calogero Hamiltonian
(20) plays an important role among constants of motion. In
the absence of an oscillator potential, it maps the Liouville
set to additional integrals. However, in the equilibrium
limit, the angular part does not produce a new integral but
just is expressed via trivial ones. Using the relations (35),
(36), (19), and (51), it is easy to verify that the operator
L̂2 is a scalar at the equilibrium. Its ℏ-linear coefficient
reproduces the chain Hamiltonian as was argued earlier [30],

L2 ¼ r4; Lð1Þ
2 ¼ 2r2Hð1Þ ð51Þ

with r2 ¼ 1
2
NðN − 1Þ (36).

Let us calculate also a chain analog of the Fradkin’s
tensor square. It corresponds to the second (k ¼ 2) member
of the first sequence presented in (27),

X
i;j

I2ij ¼
X
i≠j≠k

Mijk−2S2þ1

2
NðN−1ÞðN2−Nþ4Þ: ð52Þ

Here, Mijk is a cyclic permutation of the marked three
coordinates. It also is expressed through the invariants of
the permutation group algebra. Nevertheless, we expect
that higher degree power sums from (27) at the equilibrium
give rise to nontrivial integrals of motion for the chain
Hamiltonians (30), (31).
Finally, consider the shifted diagonal elements (23). At

the freezing level, they also commute

½Di;Dj� ¼ 0; Di ¼ Eii − Si: ð53Þ
Together with permutations, they form also degenerate
affine Hecke algebra (24) (with g ¼ 1). Contrary to the
nonshifted case (41), (49), the related symmetric poly-
nomials, Dk ¼

P
iD

k
i , are scalars (multiples of identity)

and do not lead to a conservation law. At the same time, the
ℏ-linear terms of the dynamical integrals (26) form a family
of commuting nontrivial integrals (49),
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Dð1Þ
k ¼

X
i

Xk−1
l¼0

Dl
iD

ð1Þ
i Dk−l−1

i ; ½Dð1Þ
k ;Dð1Þ

l � ¼ 0; ð54Þ

where Dð1Þ
i ¼ 1

2
Ið1Þii . The first element of the family

describes the chain Hamiltonian: Dð1Þ
1 ¼ −2Hð1Þ. This

remarkable property was established first for the
Haldane-Shastry chain using the Yangian represtation
[28] and has been extended later to the Polychonakos-
Frahm chain [27].

IV. RELATION TO GENERALIZED
CALOGERO-COULOMB SYSTEM

One can start from another radial confining potential in
the dynamical system (2) in order to get its discrete analog
at the semiclassical limit (30). Apart from the oscillator
case, the Coulomb potential is preferable among others
since it leads to a superintegrable system as well [16],

ĤCoul ¼
XN
i¼1

π̂2i
2
−
1

r
: ð55Þ

So, there is a hope to extract more integrals for the chain
system as a reduction of the recently obtained Dunkl-
operator analog of the Runge-Lenz vector [22],

Âi ¼
1

2

X
j

fL̂ij; π̂jg þ
ι

2
½π̂i; Ŝ� −

xi
r
: ð56Þ

Together with the Dunkl angular momentum L̂ij, it yields
the Dunkl-operator deformation of the SOðN þ 1Þ group
generators, which describe the symmetry of the generalized
Calogero system with Coulomb potential (55) [22].
The equilibrium point is defined now by a solution of the

equations,

∂VCoul

∂yi ¼ 0; VCoulðyÞ¼−
1

ry
þ
X
i<j

1

y2ij
; r2y ¼ x2: ð57Þ

In order to separate it from the oscillator minimum (28), the
Coulomb point is marked by y. It can be obtained from the
oscillator point, given by zeros of Hermite polynomial (28),
by the map yi ¼ r3xi. The latter implies that ry ¼ r4.
Therefore, passing from the oscillator to Coulomb poten-
tial, the chain Hamiltonian (30) just undergoes a rescaling

Hð1Þ
Coul ¼ r−6Hð1Þ. Evidently, the Dunkl momentum trans-

forms as r−3πi → πi. The relations (35), (36) stay

unchanged apart from the first equation in (36), which
must be replaced now by

1

ry
¼ π2 ¼

X
i<j

2

y2ij
: ð58Þ

Using them, it is easy to verify that the Dunkl deformed
Runge-Lenz vector vanishes trivially at the Coulomb
equilibrium point,

Ai ¼
1

2

X
j

fLij; πjg þ
ι

2
½πi; S� −

yi
ry

¼ 0: ð59Þ

This fact eliminates the power sums Âk ¼
P

iÂ
k
i at the

equilibrium, Ak ¼ 0, but does not necessarily imply the
vanishing of the first-order operator in powers of ℏ.
Actually, the first two such operators are

Að1Þ
1 ¼ 0; Að1Þ

2 ¼ S=ry; ð60Þ

as can be derived from the definition (56). Note that the
square of the Dunkl Runge-Lenz vector may be shifted
certain way to become compatible with the Dunkl angular
momentum. Moreover, it provides a deformation of the
well-known relation between the angular momentum and
Runge-Lenz squares [22],

Â0
2 ¼ Â2 þ 2ℏSĤCoul; ½L̂ij; Â2� ¼ 0; ð61Þ

Â0
2 ¼ 2ĤCoulL̂2 þ

ℏ2ðN − 1Þ2
2

ĤCoul þ 1: ð62Þ

Applying the Taylor expansion with the coefficients written
in terms of y coordinates,

L2 ¼ ry; Lð1Þ
2 ¼ 2r2yH

ð1Þ
Coul; VCoul ¼ −

1

2ry
; ð63Þ

we obtain the vanishing condition, A0ð1Þ
2 ¼ 0, which is

equivalent to the second equation in (60).
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