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In this paper we study the dissipative effects and decoherence induced on a particle moving at constant
speed in front of a dielectric plate in quantum vacuum, developing a closed-time-path (CTP) integral
formulation in order to account for the corrections to these phenomena generated by finite temperatures.
We compute the frictional force of the moving particle and find that it contains two different contributions:
a pure quantum term due to quantum fluctuations (even present at vanishing temperatures) and a
temperature-dependent component generated by thermal fluctuations (the bigger the contribution, the
higher the temperature). We further estimate the decoherence timescale for the internal degree of freedom
of the quantum particle. As expected, decoherence time is reduced by temperature; however, this feature is
stronger for large velocities and for resonant situations. When the particle approaches relativistic speed,
decoherence time becomes independent of temperature. The finite temperature corrections to the force or
even in the decoherence timescale could be used to track traces of quantum friction through the study of the
velocity dependence since the sole evidence of this dependence provides an indirect testimony of the
existence of a quantum frictional force.
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I. INTRODUCTION

One of the most exciting features of modern quantum
field theory consists of the nontrivial structure of the
vacuum state and the zero-point or vacuum fluctuations
[1]. Among the most remarkable observable consequences
of quantum vacuum fluctuations, we can mention the
Casimir static force between neutral objects that has been
experimentally demonstrated [2–7]. A less celebrated and
renowned phenomenon is the appearance of a dissipative
force when two neutral lossy bodies are placed at a short
distance and set into relative parallel motion at constant
speed [8–15]. This force is known as quantum friction
(QF) and is said to be due to the exchange of Doppler-
shifted virtual photons. However, its prediction has inspired
a lengthy debate on its origin [16,17]. Due to its short range
and small magnitude, precision measurements of quantum
forces are incredibly difficult and the quantum frictional
force has eluded experimental detection so far. A great deal
of effort has been placed lately into trying to find conditions
that would enhance the force, such as considering non-
parallel motion [18], and using promising 2D materials
belonging to the graphene family [19–21]. Even though
many studies have found some situations for which the force
would be increased by several orders of magnitude, its

experimental demonstration is still to come. Lately, some
authors suggested tracking traces of quantum friction
through the dependence upon the velocity of some other
measurable property of the system [22,23].
Frictional and normal Casimir forces are not the only

effects of vacuum quantum fluctuations. For any quantum
system, the influence of the environment plays a role at a
fundamental level: the system’s dynamics can no longer be
described in terms of pure quantum states and unitary
evolution. From a practical point of view, all real systems
interact with an environment to a greater or lesser extent,
which means that we expect their quantum evolution to be
altered by decoherence. In the particular case of vacuum
fluctuations it is important to note that vacuum field is an
environment that cannot be switched off: all matter will
unavoidably interact with the electromagnetic vacuum. In
that fashion, some of us have investigated the possibility of
detecting quantum friction through the decoherence of the
internal degree of freedom of a particle that moves in front of
an imperfect plate [24], finding that velocity-dependent
corrections to the decoherence time can be relevant for
certain choices of the material and the particle’s polar-
izability. Traces of quantum friction in the decoherence
timescale could, under some circumstances, be easier to
detect than the frictional force itself. The loss of coherence of
the particle’s dipolar moment becomes relevant in any
Ramsey interferometry experiment,where the depolarization
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of the atom could be macroscopically observed by means of
the Ramsey fringes. In the case of a Rydberg atom, this
phenomenon could be also observed as a decay of the Raby
oscillations [25,26]. In our present study, we examine the
thermal corrections to the frictional effect on the one side; and
on the other, we focus on how the decoherence time’s
dependence upon velocity is modified by the environmental
temperature. It is important to note that this further consid-
eration of the thermal corrections represents a more real
scenario for experimental purposes than the previous analy-
sis at T ¼ 0 done in [24].
This article is a further contribution and extension of

previous works by ourselves and collaborators. We shall
consider a particle moving in front of a dielectric plate and
thoroughly study the decoherence process of the particle’s
internal degree of freedom. Herein we shall deal with a
more realistic scenario in 3þ 1 dimensions and account for
thermal corrections in the nonrelativistic regime. Not only
shall we compute the decoherence time, but the frictional
force aswell, and study thevelocity-dependent corrections in
this framework. It is important to stress that the main
approach used throughout this manuscript is the develop-
ment of a closed-time-path (CTP) integral formulation
[27,28]. This shall be done with a dual purpose: (i) to
calculate a general expression for the frictional force of the
moving particle and (ii) as a tool to evaluate the decoherence
time of the internal degree of freedomof the quantumparticle
in interaction with the vacuum field and the dielectric mirror.
TheCTPmethod has been used in quantum field theory as an
approach to nonequilibrium descriptions of dynamical prob-
lems, where dissipative effects arise at the macroscopic level
after coarse-graining the detailed information in one or more
subsystems, by tracing out those degrees of freedom. In fact,
this method presents a combination of both quantum field
theory and statistical mechanics.
This article is organized as follows. In Sec. II, we present

the microscopic model and use the CTP approach to
functionally evaluate the in-in generating functional. In
Sec. III, we evaluate the thermal corrections to the quantum
frictional force and analyze the force dependence with the
velocity at different temperatures of the fields. In Sec. IV
we further calculate the influence functional which allows
us to estimate decoherence times in Sec. V. Finally, we
include a Conclusions section.

II. THE SYSTEM

We shall consider a neutral particle coupled to a vacuum
field, whose center of mass traverses with a velocity v
relative to the dielectric plate as shown in Fig. 1. The
particle moves in a macroscopic, externally fixed, unidi-
mensional trajectory, in a plane parallel to the plate. The
distance a between the particle and the plate is also kept
constant by an external source. The vacuum field is
considered to be a nonmassive real scalar field ϕðxÞ that
interacts with the internal degrees of freedom of the plate

ψðxÞ. We call x1 the direction of movement of the particle
and x3 the direction perpendicular to the plate. We also
consider the particle with an internal degree of freedom
named q, which interacts with the vacuum field.
We may write the classical action for the system as

S½ϕ;ψ ; q� ¼ Svac0 ½ϕ� þ Spl0 ½ψ � þ Spart0 ½q�
þ Splint½ϕ;ψ � þ Spartint ½ϕ; q�: ð1Þ

The first three terms on the right-hand side of (1) are
the corresponding action of the plate, the particle and the
vacuum field, respectively. The last two terms contain the
field-plate and the field-particle interactions. Neglecting
boundary terms, the Klein-Gordon action for the vacuum
field is given by

Svac0 ½ϕ� ¼ −
1

2

Z
dxϕðxÞ½∂μ∂μ − iϵ�ϕðxÞ: ð2Þ

The internal degree of freedom of the particle interacts with
the vacuum field trough a current JðxÞ which contains
both the information about the position and trajectory of the
particle and the strength of the coupling. This interaction
term is, then,

Spartint ½ϕ; q� ¼
Z

dxϕðxÞJðxÞ: ð3Þ

We use, for the treatment of this problem, the CTP method
[27] and the Feynman-Vernon influence functional (IF)
[29]. While working on the CTP or in-in formalism, the
different terms of the action must be integrated along a
temporal path that is suitable for real-time evaluations (the
Schwinger-Keldysh contour).
We wish to consider finite temperatures, particularly

the thermal equilibrium scenario in which all the subsys-
tems (vacuum field, particle and material) are at the same
inverse temperature β. In order to consider such thermal
initial states, the integration path must be changed to the
Kadanoff-Baym contour C, which differs from Schwinger-
Keldysh in having an extra branch along the imaginary axis
which goes from −τ − iϵ to −τ − iβ [30]. When integrating
over the different fields, onemust also evaluate them along it.

FIG. 1. A scheme of the system under consideration, where
ϕðxÞ is the vacuum field, ψðxÞ are the internal degrees of freedom
of the plate, and qðtÞ is the internal degree of freedom of the
particle, which follows a macroscopic trajectory in the x1
direction.
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A single time representation can be achieved by doubling
the degrees of freedom of the system. If the sources and
fields are assumed to be the configurations JþðxÞ,ϕþðxÞ on
the first branch and J−ðxÞ, ϕ−ðxÞ on the second branch, by
considering them as independent fields, we can then write
the in-in generating functional as a functional integral
over fields along a single time interval, where the boundary
condition ϕþjτ ¼ ϕ−jτ ¼ ϕoutðτ; xÞ implies that the inte-
grals cannot be done independently. This representation
enables us to write the integrand in the familiar way

Zin−in½J� ¼
I

Dϕe−i
R

dxðϕT K̂
2
ϕ−ϕJÞ; ð4Þ

where now, in contrast with the usual in-out generating
functional, the differential operator K̂ is a 2 × 2matrix. The
integration over the vacuum field ϕ can be easily done,
resulting in the known expression,

Zin−in½J� ¼ e−
1
2

R
dxdx0JαðxÞGαβðx;x0ÞJβðx0Þ; ð5Þ

where a summation is assumed over repeated indexes, and
the free field propagatorGαβðx; x0Þ is a 2 × 2matrix. In this
case, the free propagator for a massless scalar field is given
in momentum space by

Gð0ÞðkÞ ¼
� 1

k2þiϵ −2πiδðk2Þθð−k0Þ
−2πiδðk2Þθðk0Þ −1

k2−iϵ

�

− 2πinBðjk0jÞδðk2Þ
�
1 1

1 1

�
; ð6Þ

where nB is the Bose distribution nBðjk0jÞ ¼ 1

ejk0 j=T−1
, with

T ¼ 1=β. We are working with units such that kB ¼ ℏ ¼ 1.
We aim to obtain the in-in effective action of the system Γ,
which is defined as

eiΓ ¼
Z
C
DϕDψDqeiS½ϕ;ψ ;q�: ð7Þ

Rather than integrating over every degree of freedom
simultaneously, it is convenient to introduce a partial result
by integrating out the degrees of freedom of the plate and
the particle so that the whole information about them is
contained in an effective interaction term of the form
Svacint ½ϕ� ¼ Svacpl þ Svacpart. As we are assuming locality in the
microscopic interactions, we know Svacpl;part depends on ϕðxÞ
only for xμ inside the region defining the respective
element. Thus, under the assumption that, either exactly
(as in the model we consider) or approximately, Svacpl;part is
quadratic, we have [31]

Svacint ½ϕ� ¼ −
1

2

Z
dxdx0ϕðxÞVðx; x0Þϕðx0Þ; ð8Þ

with

Vðx; x0Þ ¼ Vpartðx; x0Þ þ Vplðx; x0Þ; ð9Þ

and

Vpartðx; x0Þ ¼ δðx3 − aÞδðx2Þδðx1 − vx0Þ
× δðx − x0Þgðx0 − x00Þ ð10Þ

Vplðx; x0Þ ¼ δðx3Þδðx3 − x03Þλðxk − xk0Þ; ð11Þ

where the functions gðx0Þ and λðxkÞ depend on the micro-
scopic models, and xk refers to the coordinates which are
parallel to the plate ðx0; x1; x2Þ. These effective potentials
can be determined by considering a specific microscopic
model or even introduced ad hoc based on particular
assumptions. In any case, the integral over ϕ becomes a
Gaussian:

Zin−in ¼
Z

Dϕe−
i
2

R
dxdx0ϕðxÞK̂ϕðx0Þ: ð12Þ

The differential operator K̂ appearing on Eq. (12) is

K̂ ¼ K̂0ðx; x0Þδðx − x0Þ − Vplðx; x0Þ − Vpartðx; x0Þ;

where K̂0 is the differential operator for a free field without
considering either the plate or the particle. We want to find
K̂−1 such that K̂K̂−1 ¼ δðx − x0Þ. Considering this chal-
lenge, we notice that the effective potentials Vðx; x0Þ are
proportional to some coupling constants λ and g between
the vacuum field and the internal degrees of freedom of the
plate and particle. If these couplings are weak, we can
obtain a perturbative expression in λ and g for K̂−1:

Gαβ ¼ Gð0Þ
αβ þ Gð0Þ

αγ V
pl
γδG

ð0Þ
δμ V

part
μν Gð0Þ

νβ þ part ↔ pl: ð13Þ

The integrals involved in the contractions were omitted to
simplify the notation. By functionally integrating (12) over
ϕ we obtain the effective action for the whole system.

A. Microscopic model

In this section we must characterize the system under
study. We have defined so far a real massless scalar field ϕ
which interacts with another field ψ , describing the internal
degrees of freedom of a plate (but in fact could be
associated to any other system that we might be interested
in). When we integrate those degrees of freedom out, we
obtain a nonlocal effective potential Vðx; x0Þ that contains
the information about the characteristics of the plate and
particle. Hence we consider a thin infinitesimal plate
occupying the x3 ¼ 0 plane, with internal degrees of
freedom that behave as one-dimensional harmonic oscil-
lators, one at each point of the mirror. They have
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generalized coordinates QðxkÞ taking values in an internal
space. No coupling between the oscillators is included. We
do consider a linear coupling between each oscillator and
the vacuum field. The terms in the system action depending
on Q,

Spl0 ¼ 1

2

Z
dxδðx3Þ½ _QðxkÞ − ðΩ2 − iϵÞQ2ðxkÞ�

and

Splint ¼ q
Z

dxδðx3ÞQðxkÞϕðxÞ;

result in a Gaussian functional integral to find Svacpl ½ϕ� and
therefore the effective potential Vpl, which will be a 2 × 2
matrix given, in momentum space, by [31]

Vpl
αβðkk; k0k; x3; x03Þ ¼ ð2πÞ3δð3Þðkk − k0kÞλαβðk0Þ

× δðx3 − x03Þδðx3Þ: ð14Þ

The particle is considered to be punctual, moving along the
x1 axis with a constant velocity v at a fixed distance x3 ¼ a
above the plate, and interacting locally in position with
the vacuum field; then the current JðxÞ in Eq. (3) will have
the form

JðxÞ ¼ gqðx0Þδðx1 − vx0Þδðx2Þδðx3 − aÞ; ð15Þ

where g is the coupling constant between the vacuum and
the internal degree of freedom of the particle. Therefore,
the effective potential corresponding to the particle
becomes [31]

Vpart
αβ ðkk;k0k;x3;x03Þ¼2πδðx3−x03Þδðx3−aÞgαβ

×ðk0−vk1Þδðk0−vk1−ðk00−vk01ÞÞ;

with

λαβðk0Þ ¼ λ2

 1
ðk0Þ2−Ω2þiϵ − π

Ω iδðk0 þ ΩÞ
− π

Ω iδðk0 − ΩÞ −1
ðk0Þ2−Ω2−iϵ

!

− 2πiλ2nBðjk0jÞδððk0Þ2 −Ω2Þ
�
1 1

1 1

�
; ð16Þ

and

gðk0Þ ¼ g2
 1

ðk0Þ2−ω2
0
þiϵ − π

ω0
iδðk0 þ ω0Þ

− π
ω0
iδðk0 − ω0Þ −1

ðk0Þ2−ω2
0
−iϵ

!

− 2πig2nBðjk0jÞδððk0Þ2 − ω2
0Þ
�
1 1

1 1

�
: ð17Þ

Here ω0 is some characteristic frequency of the particle
internal degree of freedom q, and Ω is the characteristic
frequency of the harmonic oscillators constituting the plate.
The case of a mirror imposing “perfect,” i.e., Dirichlet

boundary conditions can be obtained by taking particular
limits in the definition of Eq. (14). This Dirichlet limit may
be reached by assuming λ2=Ω2 → ∞ in the propagators (it
would be similar for Neumann boundary conditions). It is
easy to check that Vpl

αβðkk;k0k;x3;x03Þ¼ λ̃2δð3Þðkk−k0kÞδðx3−
x03Þδðx3Þ, with λ̃2 → ∞, implies Dirichlet boundary con-
ditions. As it can be seen below, the quantum frictional
force is zero in the Dirichlet limit. The microscopic model
for the material is a toy model in which absorption is
neglected.

III. FINITE TEMPERATURE FRICTIONAL FORCE

When the particle and the plate are in relative motion,
there is an energy transfer to the system [24]. Therefore,
energy conservation implies that there should be some
force performing mechanical work when moving the
particle. Moreover, since this motion has a constant speed,
the force has to be dissipative in nature. However, the
system is not completely closed because the particle is
forced to move with constant speed and is moreover kept at
a fixed height for external agents (that are not further
considered in the calculations).
In order to find an expression for that force, we compute

the mean value of the energy-momentum tensor tμν in
vacuum and in the steady regime htμνi ¼ h0injtμνj0ini. The
frictional force between the particle and the plate can be
obtained by means of the point-splitting technique as

F ¼ lim
x→aþ

ht13ðxÞi − lim
x→a−

ht13ðxÞi; ð18Þ

where

ht13ðxÞi ¼ lim
x0→x

h∂1ϕðxÞ∂ 0
3ϕðx0Þi

¼ 1

2
lim
x0→x

Z
dp0

2π

d2pk
ð2πÞ2 ðip1Þ∂ 0

3G1ðp0; pk; x3; x03Þ:

ð19Þ

Here, G1ðx; x0Þ ¼ h0injϕðxÞϕðx0Þj0ini is the Hadamard’s
two-point function, which is related to Feynman propa-
gator Gþþðx; x0Þ ¼ h0injTϕðxÞϕðx0Þj0ini by G1ðx; x0Þ ¼
2ℑðGþþðx; x0ÞÞ. Expanding the Feynman propagator
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Gþþðx; x0Þ as in Eq. (13), it is possible to compute every
contraction exactly, thus obtaining a perturbative expres-
sion for the desired component of the energy-momentum
tensor. It is clear from Eq. (18) that the dissipative force is
given by the discontinuity of ht13ðxÞi at x ¼ a. The
derivatives can be easily calculated by writing the different
terms of the effective propagator, corresponding to different
orders in the coupling constants, in momentum space. As
the free propagator is continuous at x ¼ a, it does not
contribute to the force. It can also be shown that the only
nonvanishing contribution to the force comes from those
terms of Eq. (13) with ν ¼ β ¼ þ, since the terms with
ν ¼ − are continuous at x3 ¼ a. The force is then given by

F ¼ lim
x0→x

Im
Z

dv du dz dy ∂1G
ð0Þ
þαðx; yÞVpl

αβðy; zÞ

× Gð0Þ
βγ ðz; uÞVpart;γþðu; vÞ½ lim

x0
3
→aþ

∂ 0
3G

ð0Þ
þþðv; x0Þ

− lim
x0
3
→a−

∂ 0
3G

ð0Þ
þþðv; x0Þ� þ part ↔ pl: ð20Þ

By Fourier transforming the Klein-Gordon propagators and
the potentials in the parallel coordinates, both the derivative
∂30 and the limit for x3 → a can be explicitly computed.
When doing so, the terms in Eq. (20) with x3 ¼ 0 vanish.
This procedure adds a factor of ð−1Þ on the remaining term,
resulting in a simplified expression for the force:

F ¼ − lim
x0→x

Im
Z

dkk
ð2πÞ3 ð−ik

1ÞGð0Þ
þαðkk; a; 0Þ

× λαβðk0ÞGð0Þ
βγ ðkk; 0; aÞgγþðk0 − vk1Þ: ð21Þ

The integrand consists of eight combinations of the α, β
and γ indexes. These possible combinations lead to a total
of 64 terms, most of which vanish due to parity consid-
erations, or as a result of the Heaviside and Dirac delta
functions appearing in the propagators and potentials. The
whole contribution to the force can be seen to come fromonly
11 of those terms. The combination fα; β; γg ¼ fþ − −g
is completely nonvanishing, while the combinations
fα; β; γg ¼ fþ þ −g; f−þ −g and f− − −g have one non-
vanishing term each.
Replacing the propagators and functions g and λ with

their explicit expressions, making use of the Sokhotski-
Plemelj theorem [32] and the properties of the delta
function, the frictional force is found to be

F ¼ −a2λ2g2
ω̃0 − Ω̃
4ω̃0Ω̃

F1 −
a2λ2g2

4ω̃0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p F2 −
a2λ2g2

16ω̃0Ω̃
F3

ð22Þ

with

F1 ¼
Z

dk̃2
2π

θ½ζ−ðk2Þ�
�
cos2

�
1

v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ−ðk2Þ

q ��
4nBðΩ̃Þ3 þ nBðΩ̃Þ2

ϑ
þ nBðΩ̃Þð4nBðΩ̃Þ þ 2Þ − nBðω̃0Þffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ−ðk2Þ
p ffiffiffi

ϑ
p

�

− cos

�
2

v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ−ðk2Þ

q �
1

4

nBðΩ̃Þ − nBðω̃0Þ
ζ−ðk2Þ

�
; ð23Þ

F2 ¼
Z

dk̃2
2π

k̃1dk̃1nBðjk̃1v − ω̃0jÞp:v:
�

1

ðk̃1v − ω̃0Þ2 − Ω̃2

�
θ½ζðk1; k2ÞÞ� sinð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζðk1; k2Þ

p
Þffiffiffiffiffiffiffiffiffiffiffi

ζðk1Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζðk1; k2Þ
p and ð24Þ

F3 ¼ −
Z

dk̃2
2π

�
ðω̃0 − Ω̃Þ nBðΩ̃Þ − nBðω̃0Þ

ζ−ðk2Þ
e
−2
v

ffiffiffiffiffiffiffiffiffiffiffiffi
−ζ−ðk2Þ

p
θ½−ζ−ðk2Þ� þ ðω̃0 þ Ω̃Þ nBðΩ̃Þ þ nBðω̃0Þ þ 1

ζþðk2Þ
e−

2
v

ffiffiffiffiffiffiffiffiffiffiffiffi
−ζþðk2Þ

p �
; ð25Þ

where ζðk1;k2Þ¼ðk̃1v−ω̃0Þ2−k̃21−k̃22, ζðk1Þ ¼ v2ððk̃1v−
ω̃0Þ2 − k̃21Þ þ ω̃2

0, ζ�ðk2Þ ¼ v2Ω̃2 − ðω̃0 � Ω̃Þ2 − v2k̃22 and
ϑ ¼ v2Ω̃2 − ðω̃0 − Ω̃Þ2. In order to write Eq. (22), we have
defined the dimensionless variables k̃1 ¼ ak1 and k̃2 ¼
ak2, and parameters Ω̃ ¼ aΩ, ω̃0 ¼ aω0. Thus, the dimen-
sional dependence is concentrated in the factor a2λ2g2.
With the dimensions of each constant ½λ� ¼ m3=2, ½g� ¼
m1=2 and ½a� ¼ m−1, the force is found to have the right
dimensions. The parameter β (the inverse of the temper-
ature) was redefined as β

a → β, rendering it dimensionless as
well. The theta function θðv2Ω̃ − ðω̃0 − Ω̃Þ2 − v2k̃22Þ that
appears on F1 enforces that the whole term vanish unless

Ω̃ >
ω̃0 − v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̃2
0 − ð1 − v2Þk̃22

q
1 − v2

; ð26Þ

Ω̃ <
ω̃0 þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̃2
0 − ð1 − v2Þk̃22

q
1 − v2

: ð27Þ

Considering the extreme situations, these conditions im-
pose the restriction ω̃0

1þv < Ω̃ < ω̃0

1−v which, in the limit of
v ≪ 1, is rarely satisfied. The behavior of the force will
then be given, for nonrelativistic motion of the particle, by
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F ≈ −
a2λ2g2

4ω̃0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p F2 −
a2λ2g2

16ω̃0Ω̃
F3: ð28Þ

In Fig. 2 we show the dissipative (frictional) force on the
particle as a function of the dimensionless velocity v. It can
be seen that the force develops two different contributions:
one contribution is purely quantum, is generated by the
quantum fluctuations of the electromagnetic vacuum, and is
present even at vanishing temperature. The other contri-
bution, produced by thermal fluctuations, grows with
temperature and is dominant at high temperatures. For
small but nonvanishing temperatures, however, both con-
tributions are of the same order, and a detection of a
frictional force at relatively high velocities and small finite
temperatures would imply both a detection of a thermal
dissipative force and a quantum frictional force. For very
small velocities both components vanish, since the energy
supplied to the system by moving the particle is not
sufficient to excite the internal degrees of freedom of the
material (which requires a finite amount of energy deter-
mined by the characteristic frequency Ω) and be thus
dissipated [33]. For velocities slightly higher than this
threshold, the thermal component is the one that grows
more rapidly, which is not surprising since the quantum
frictional force, at this order in perturbation theory, is
vanishingly small for small velocities [9,13]. However, it is
worth remarking that at larger velocities there is definitively
a purely quantum contribution, present even at vanishing
temperatures, but that thermal fluctuations enhance the total
frictional force and become the main contribution for
higher temperatures.
From an expansion in powers of the velocity v, it is

possible to find that our results for the friction force predict
a linear velocity dependence.

IV. INFLUENCE FUNCTIONAL

Herein, we shall obtain the generating functional of the
particle by integrating out those degrees of freedom
corresponding to the plate and the vacuum field in Eq. (7):

Z½q� ¼ eiðS
part
0

½q�þSIF½q�Þ: ð29Þ

All of the information about the effect of the environ-
ment on the particle is contained in SIF½qþ; q−�. The
dynamics of the system (particle) under the influence of
the environment (vacuum field and plate) is described by
the Feynman-Vernon IF F which is defined by

F ½qþ; q−� ¼ eiSIF½qþ;q−� ≔
Z
C
DφE eiS½φE;q�; ð30Þ

where φE represents any environment variable [29]. After
performing the integral over the plate field ψðxÞ we will get
an effective action for the vacuum field and, as a conse-
quence, a modified vacuum field propagator. Following the
steps performed to get Eq. (13) we find

Gαβ ¼ Gð0Þ
αβ þ Gð0Þ

αγ V
pl
γδG

ð0Þ
δβ : ð31Þ

Explicitly computing (29), the influence action can be
found to be

SIF ¼ −
1

2

Z
dxdx0JαðxÞGαβðx; x0ÞJβðx0Þ; ð32Þ

where summation is assumed over repeated indexes, and Jα
are the currents appearing in the coupling between the
particle and the field (3). Considering the perturbative
expansion for the propagator (31), the influence action can
be expanded as

SIF½qþ; q−� ¼ Sð1ÞIF ½qþ; q−� þ Sð2ÞIF ½qþ; q−�; ð33Þ

where Sð1ÞIF is obtained considering the free Klein-Gordon

propagator Gð0Þ
αβ , and Sð2ÞIF is obtained from the second term

in the expansion (31), Gð1Þ
αβ . It is useful to define

ΔJðxÞ ¼ JþðxÞ − J−ðxÞ
2

ð34Þ

ΣJðxÞ ¼ JþðxÞ þ J−ðxÞ
2

: ð35Þ

By writing Eq. (3) in terms ofΔJ and ΣJ and exploiting the
definition and properties of the different CPT propagators,
one obtains, for each term in the expansion for the influence
action (33), the expression [29]

FIG. 2. Dissipative force, as a function of the relative velocity v
between the plate and the particle, for ω̃0 ¼ 0.03, Ω̃ ¼ 0.01,
a ¼ 10−6 ½m� and T as defined in Sec. II.
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SðiÞIF ½qþ; q−� ¼ −
1

2

Z
dxdx0fΔJðxÞ½Gþþðx; x0Þ

−G−−ðx; x0Þ −G−þðx; x0Þ
þGþ−ðx; x0Þ�ΔJðx0Þ þ 2ΔJðxÞ½Gþþðx; x0Þ
þG−−ðx; x0Þ þ G−þðx; x0Þ
þGþ−ðx; x0Þ�ΣJðx0Þg: ð36Þ

By using some further considerations concerning the
properties of the in-in propagators, it is possible to define
the noise (diffusion) kernel associated to fluctuations and
considered as a source of decoherence effects,

Niðx; x0Þ≡ −iðGþþðx; x0Þ −G−−ðx; x0ÞÞ
¼ 2ℑGþþðx; x0Þ; ð37Þ

and the dissipation kernel

Diðx; x0Þ≡ 1

2
½Gþþðx; x0Þ þ G−−ðx; x0Þ

þG−þðx; x0Þ þGþ−ðx; x0Þ�
¼ 2θðx0 − x00ÞℜGþþðx; x0Þ: ð38Þ

Both kernels are real quantities, and the dissipation kernel
is explicitly causal [29]. Considering these definitions, the
terms i ¼ 1, 2 in the perturbative expansion of the influence
action become

SðiÞIF ½qþ; q−� ¼ −
Z

dxdx0½iΔJðxÞNiðx; x0ÞΔJðx0Þ

þ 2ΔJðxÞDiðx; x0ÞΣJðx0Þ�: ð39Þ

The equation of motion for the internal degrees of freedom
of the particle can be formally written as

q̈ðtÞ þ ω2
0qðtÞ þ

Z
dt0Dðt; t0Þqðt0Þ ¼ ξðtÞ; ð40Þ

where dissipation on the particle is originated in the kernel
D and fluctuations are generated by the stochastic force
ξðtÞ, that must fulfill hξðtÞi ¼ 0 and hξðtÞξðt0Þi ¼ Nðt; t0Þ.
Fluctuations enter into the equation of motion by means ofZ

DξP½ξ�e−i
R

dtΔqðtÞξðtÞ ¼ ei
R

dtdt0ΔqðtÞNðt;t0ÞΔqðt0Þ;

where P½ξ� is a Gaussian probability distribution for ξ.
From the expression in Eq. (15) proposed for the current

JαðxÞ, ΔJðxÞ and ΣJðxÞ take the form

ΔJðxÞ ¼ gΔqðx0Þδðx1 − vx0Þδðx2Þδðx3 − aÞ ð41Þ

ΣJðxÞ ¼ gΣqðx0Þδðx1 − vx0Þδðx2Þδðx3 − aÞ: ð42Þ

We can thus define, for N ≡ N1 þ N2,

Nðt; t0Þ≡ g2
Z

dxdx0δðx1 − vtÞδðx2Þδðx3 − aÞNðx; x0Þ

× δðx01 − vt0Þδðx02Þδðx03 − aÞ

¼ 2g2Im
Z

dxdx0δðx1 − vtÞδðx2Þ

× δðx3 − aÞGþþðx; x0Þδðx01 − vt0Þδðx02Þδðx03 − aÞ;
ð43Þ

where we have used the notation t ¼ x0. Within our
model, we can then write explicit expressions for Ni and
Di (i ¼ 1, 2) as integrals in momentum space:

Niðt; t0Þ ¼ 2g2Im
Z

dk
ð2πÞ4 e

iðk0−vk1Þðt−t0ÞGði−1Þ
þþ ; ð44Þ

Diðt;t0Þ¼2g2Reθðt− t0Þ
Z

dk
ð2πÞ4e

iðk0−vk1Þðt−t0ÞGði−1Þ
þþ : ð45Þ

V. DECOHERENCE OF THE PARTICLE’S
INTERNAL DEGREES OF FREEDOM

Within the consistent histories approach to quantum
mechanics, quantum evolution can be considered as a
coherent superposition of fine-grained histories. If one
defines the c-number qðtÞ as specifying a fine-grained
history, the quantum amplitude for that history is ψ ½qðtÞ� ∼
eiS½qðtÞ� [34]. In the quantum open system approach that we
have adopted here, we are concerned with coarse-grained
histories,

Ψ½α� ¼
Z

DqeiS½qðtÞ�α½qðtÞ�; ð46Þ

where α½q� is the filter function that defines the coarse-
graining. At first instance this filtering corresponds to
tracing over all the degrees of freedom of the composite
environment. From this, we define the decoherence func-
tional for two coarse-grained histories as

D½qþ; q−� ¼
Z

DqþDq−eiðS½qþ�−S½q−�Þαþ½qþ�α−½q−�: ð47Þ

Decoherence means physically that the different coarse-
graining histories making up the full quantum evolution
acquire individual reality and may therefore be assigned
definite probabilities in the classical sense. A necessary and
sufficient condition for the validity of the sum rules of
probability theory (i.e., no quantum interference terms) is
ℜD½qþ; q−� ≈ 0 when αþ ≠ α− [35]. Such histories, which
can be assigned probabilities consistently as a result of the
absence of interference, are consistent histories. For our
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particular application, we wish to consider as a single
coarse-grained history all those fine-grained ones where the
solution qðtÞ remains close to a prescribed classical
configuration qcl. The filter function takes the form

αcl½q� ¼
R
DJei

R
dxJðqðtÞ−qclÞαcl½J�. We may write the

decoherence functional between two classical histories in
terms of the closed-path-time generating functional.
In principle, we can examine adjacent general classical
solutions for their consistency but, in practice, it is simpler
to restrict ourselves to particular solutions q� according to
the nature of the decoherence that we are studying. Having
considered all these issues, the decoherence functional
results in

D½qþcl ; q−cl� ≈ F ½qþcl ; q−cl�; ð48Þ
where F ½qþcl ; q−cl� ¼ eiSIF½q

þ
cl ;q

−
cl� is the Feynman-Vernon in-

fluence functional defined by Eq. (30). Recalling the
expression for the influence functional, once we have
chosen the classical solutions of interest, adjacent histories
become consistent at the time tD for which ℑSIFjtD ≈ 1. As
it has been noted, in practice the use of the decoherence
functional looks to be less restrictive than the master
equation, and suitable for problems in quantum field theory
as well.

A. Imaginary part of Sð1ÞIF

Let us recall the expression for N1ðt; t0Þ given by
Eq. (44), and consider two classical trajectories qclðtÞ
which differ in a phase factor:

ΔqclðtÞ ¼ q0 cosðω0tþ δÞ − q0 cosðω0tÞ: ð49Þ
We can write an expression for the imaginary part of the
influence action considering the particle in the presence of
the vacuum field (ignoring the plate), which is

ImðSð1ÞIF Þ¼−g2q20ð1−cosðδÞÞIm
Z

dtdt0
Z

dk
ð2πÞ4

×

�
1

k2þ iϵ
−2πinBðjk0jÞδðk2Þ

�
½eiðk0−vk1þω0Þðt−t0Þ

þeiðk0−vk1−ω0Þðt−t0Þ þeiðk0−vk1þω0Þteiðk0−vk1−ω0Þt0

þeiðk0−vk1−ω0Þteiðk0−vk1þω0Þt0 �: ð50Þ

Integration over the time variables results in Dirac delta
functions. The last two terms vanish, as the conditions
imposed by each of the multiplied deltas cannot be fulfilled
simultaneously. From each nonvanishing term, an infinite
δð0Þ is obtained, accounting for the total time of integration
T (time of flight of the particle). Taking then the limit ϵ → 0
we can use again the Sokhotski-Plemelj theorem [32]. We
can also absorb the term with ω0 → −ω0 by the use of a
change of variables k1 → −k1. Applying properties of
Dirac delta functions and changing fk2; k3g to cylindrical

coordinates, we can perform the integral over k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2Þ2 þ ðk3Þ2

p
and θk to find

ImSð1ÞIF ¼ g2q20T
2

ð1 − cos δÞ
Z

dk1ð2nBðjk1v − ω0jÞ þ 1Þ

× θððk1v − ω0Þ2 − ðk1Þ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1v − ω0Þ2 − ðk1Þ2

ζðk1Þ

s
:

ð51Þ

In the limit v ≪ 1, Eq. (51) reduces to

ImSð1ÞIF ≈
g2q20T
4

ð1− cosðδÞÞπω̃0

a

×

��
1þ9v2

8

�
ð2nBðω̃0Þþ1Þ−fðω̃0βÞv2

�
; ð52Þ

where

fðω̃0βÞ ¼ ω̃0β
nBðω̃0Þ2eω̃0β

4

�
8þ ω̃0β

eω̃0β þ 1

eω̃0β − 1

�
:

B. Imaginary part of Sð2ÞIF

Let us now recall the expression for N2ðt; t0Þ given by
Eq. (44), and consider the same two classical trajectories
qðtÞ. By inserting these results into Eq. (39), we are able to
write an expression for the imaginary part of Sð2ÞIF .

Following the same procedure used to find ℑSð1ÞIF and the
frictional force (22), we can express it as an integral over
the dimensionless variables k̃1 and k̃2:

ImðSð2ÞIF Þ ¼ g2q20T
λ2a2

4
ð1 − cos δÞ½−S1 þ S2 þ S3�; ð53Þ

where the dimensionless terms Si are

S1¼
Z

dk̃2
v

2Ω̃
θ½ζ−ðk2Þ�

�
cos

�
2

v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ−ðk2Þ

q �
2nBðΩ̃Þþ1

ζ−ðk2Þ

þ2cos2
�
1

v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ−ðk2Þ

q �
8nBðΩ̃Þ3þ8nBðΩ̃Þ2þnBðΩ̃Þ

ϑ

�

S2¼
Z

dk̃2dk̃1
1

π

sinð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζðk1;k2Þ

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζðk1;k2Þ
p p:v:

�
1

ðk̃1v− ω̃0Þ2− Ω̃2

�

×

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζðk1;k2Þ
p þ2nBðjk̃1v− ω̃0jÞffiffiffiffiffiffiffiffiffiffiffi

ζðk1Þ
p �

θ½ζðk1;k2Þ�

S3¼
Z

dk̃2
v

2Ω̃
ð2nBðΩ̃Þþ1Þ

�
e−

2
v

ffiffiffiffiffiffiffiffiffiffiffiffi
−ζ−ðk2Þ

p

ζ−ðk2Þ
θ½−ζ−ðk2Þ�

−
e−

2
v

ffiffiffiffiffiffiffiffiffiffiffiffi
−ζþðk2Þ

p

ζþðk2Þ
�
; ð54Þ
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with ζ and ϑ defined as in Eq. (22). Again, the term S1

containing the theta function θðΩ̃2v2 − ðω̃0 − Ω̃Þ2 − k̃21v
2Þ

vanishes even for considerably high velocities of the
particle. Then, for a nonrelativistic motion, the imaginary

part of Sð2ÞIF simplifies to

ImðSð2ÞIF Þ ¼ g2q20T
λ2a2

4
ð1 − cosðδÞÞ½S2 þ S3�: ð55Þ

C. Estimation of the decoherence time of the particle

So far we have found a perturbative result for the
imaginary part of the influence action (valid up to second
order in λ and nonrelativistic velocities of the particle)
given by

ℑðSIFÞ∼
g2q20T
4

ð1−cosðδÞÞ
�
πω̃0

a

��
1þ9v2

8

�

×ð2nBðω̃0Þþ1Þ−fðω̃0βÞv2
�
þλ2a2½S2þS3�

�
:

We are now able to estimate the decoherence time for
the particle using the upper bound imposed by ℑSIF ∼ 1.
As we have detailed at the beginning of this section, the
decoherence time can be estimated as the time of flight of
the particle when this condition is satisfied, so

tD ∼
4

g2q20ð1 − cosðδÞÞ
�
πω̃0

a

�
1þ 9v2

8

�
ð2nBðω̃0Þ þ 1Þ

−
πω̃0

a
fðω̃0βÞv2 þ λ2a2½S2 þ S3�

�
−1
; ð56Þ

where S1 and S2 are given by Eq. (54). After numerically
performing the integrals appearing in Eq. (56), we present
our results in Fig. 3. Therein, we show the decoherence
times estimated made as a function of the relative velocity
of the particle to the plate, for different temperatures and for
a dimensionless coupling between the plate and the
vacuum a3=2λ ¼ 0.01.
There is a global factor A ¼ 4

g2q2
0
ð1−cosðδÞÞ which shows

that the decoherence time is reduced for larger values of the
coupling constant between the particle and the vacuum
field, and for certain values of the phase difference of the
classical trajectories under consideration [24]. The behav-
ior of the decoherence time plotted in Fig. 3 shows that for
any finite temperature (including zero-T) the particle’s
internal degrees of freedom suffers from decoherence
due to the presence of the plate and the vacuum field.
As expected, the particle at rest (v ¼ 0) exhibits the already
known behavior: smaller decoherence timescale for
higher temperatures, with the longest decoherence time-
scale for zero temperature [36]. As the velocity of the
particle is increased, the decoherence effects become more

appreciable and less temperature dependent, reaching a
similar value for every temperature as v tends to almost
relativistic values. This is due to the fact we are estimating
the decoherence time using an upper bound in the
decoherence functional. This bound is satisfied quickly
at high velocities at any temperature.
In Fig. 4, the decoherence time tD is shown as a function

of the plate’s characteristic dimensionless frequency Ω̃,
for different temperatures. For every temperature, the
decoherence time tends to a minimum value at Ω̃ ¼ ω̃0,
meaning that the decoherence is maximal at the resonant
case. The temperature dependence follows the same hier-
archy shown in Fig. 3. From the results shown above we
can see that, in this simple model, the decoherence time is
reduced by temperature and velocity, and this reduction is
stronger in resonant situations. The decoherence effects
could be maximized by an appropriate choice of the
particle’s fine-grained history (the phase difference δ in
our example) and the plate’s material [for a relation

FIG. 3. Estimation of the decoherence time, in units of a global
factor 4

g2q2
0
ð1−cosðδÞÞ as a function of the relative velocity between

the particle and the plate for fixed dimensionless frequencies
ω̃0 ¼ 0.03 and Ω̃ ¼ 0.01.

FIG. 4. Estimation of the decoherence time, in units of a global
factor 4

g2q2
0
ð1−cosðδÞÞ as a function of the dimensionless frequency of

the harmonic oscillators forming the plate, for a fixed relative
velocity v ¼ 0.01 and ω̃0 ¼ 0.03.
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between the λðωÞ function of the material and its dielectric
permittivity ϵðωÞ, see Refs. [37,38] ]. Even for finite
temperatures, we notice a velocity induced correction to
the decoherence time, which could be used as an indirect
way of detecting quantum friction. It is worth mentioning
that there is a subtle difference in the result obtained if we
had otherwise considered classical trajectories on phase but
with different amplitudes instead of considering two
classical trajectories differing in a phase (as some of us
have done in our previous work [13]). In that case, we
would have obtained a similar dependence on the param-
eters of the model as in Eq. (56), but the factor A would
have been different, with A ¼ 8

g2Δq2
0

.

VI. CONCLUSIONS

The study of the friction force on an atom moving
through the thermal radiation field in vacuum can be
extensively found in the literature, as for example in
Ref. [39]. It is usually considered that the dissipation of
the atom may be due to either the intrinsic radiation
reaction of the electromagnetic field or the dissipation in
the metal surface in which the atom is reflected. Radiation
reaction is an inescapable effect, but usually very small
compared to dissipation within metals [15]. If the surface is
metallic, the dissipation in the bulk is provided by the
resistivity of the metal or its conductivity. The dominant
loss mechanism of the atom is due to the damping also
provided by the surface; this can be thought of as the
dissipation of the image of the atom moving through the
bulk. Therefore, by using either the Kubo formalism or
the fluctuation-dissipation theorem, it can be found that the
frictional force is proportional to α2v3=ðσa10Þ for low
velocities, where α is the static polarizability of the atom
(assumed isotropic), v is its velocity parallel to the surface,
σ the conductivity, and a is the distance between the atom
and the surface [40]. The salient dependence is upon the
cube of the velocity and the inverse tenth power of the
distance. This friction force becomes appreciable only if
the atom is extremely close to the surface. It is noteworthy
that authors in Ref. [9] obtained a similar result as in
Ref. [8], by the use of a perturbative method. Therein, the
authors state that the linear velocity dependence found in
Ref. [8] is an artifact of the particular velocity profile
assumed. In Ref. [41] the authors have also obtained such a
linear dependence.
However, it is important to emphasize that the existing

literature on quantum friction force shows a different
velocity dependence as the considerations on the material
vary. Mainly, the frictional force critically depends on the
dissipative mechanism assumed in the material mirror. In
the vacuum radiation field of empty space (without the
presence of the plate), the atom would only suffer dis-
sipation due to radiation reaction. The latter is due to
emission and absorption of dipole radiation to obtain

equilibrium with its surroundings. Due to this, the oscil-
lations of the atomic polarization are damped, leading to
dissipation (altogether with the conductivity of the metal
plate). If this happens to be the dominant mechanism, the
frictional force on an atom traveling at constant v at a
distance a of the plate yields a result proportional to v5. The
change in power in velocity (with respect to the above
scenario) is due to different microscopic (or macroscopic)
models for the plate structure.
Herein, we have studied, using the CTP approach, the

corrections due to a finite temperature to the decoherence
and dissipative effects suffered by a particle that moves
above an imperfect mirror following a macroscopically
prescribed trajectory, parallel to the plate and with constant
velocity. We have explicitly calculated the frictional force,
finding that it develops two components of different
natures: (i) a pure quantum component, present even at
zero temperature and due exclusively to the existence of
quantum vacuum fluctuations and (ii) a temperature-
dependent component generated by the thermal fluctua-
tions of the vacuum field that increases with the velocity
becoming the main contribution at higher temperatures. We
have also found that, for small but finite temperatures, both
contributions are of the same order of magnitude. This
would imply that the quantum frictional component could
not be neglected.
It has been suggested that the thermal Casimir frictional

force might be experimentally detected. This is due to the
fact that thermal frictional force becomes significantly
enhanced with respect to the zero temperature case.
However, this conclusion might be unrealistic due to the
extremely small separations a considered. In this direction,
we have used an approach that enables us to introduce
thermal (and nonequilibrium) contributions in a micro-
scopically based model. In order to compute the frictional
force we have developed the CTP formalism applied to the
case of the particle coupled to the vacuum field and also to
the microscopic degrees of freedom of the material. We
have expanded up to fourth order, i.e., order two in the
coupling between the particle and the field times order two
in the expansion in the coupling strength with the mirror
degrees of freedom. The CTP formalism is essential to
obtain the correct result for h0injtμνj0ini at finite temper-
ature. The crucial point here is that, due to dissipation, the
in and out vacuum states are different. This is the reason
why the CTP formalism is not required to compute static
Casimir forces, while its use is unavoidable to compute the
force between the moving particle and the mirror [42]. We
have obtained analytical expressions for the force from our
first principles approach. The frictional force is shown in
Fig. 2. From an expansion in powers of the parallel velocity
v, we can see that our result predicts a linear behavior of the
force. This is in accordance with some of the references
above, and we believe that it is mainly due to the model
used to describe the microscopic structure of the mirror.
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In this sense, the absence of absorption in the material
could be responsible for this result. We expect that a more
general model, considering the mirror composed by a
dissipative but also absorbing material, could give more
conclusive answers about this aspect of quantum friction.
Finally, we have also calculated the decoherence time and

found its dependence upon both velocity and temperature.
We have found that while decoherence effects are enhanced
as both quantities are increased, the effect dependence upon
the temperature is more relevant for smaller velocities. This
contrasts with the result obtained for the frictional force,
which is highly dependent on the temperature for greater
velocities. This result implies that, for higher velocities, a
reduction in the decoherence time at any temperature would
be mainly the result of quantum vacuum fluctuations, and
thus the detection of such reduction would be an indirect
evidence of the existence of quantum friction. This fact was
presented, firstly, in Ref. [24], and it is now complemented
with the thermal corrections that appear to be relevant in the
determination of the decoherence effect over the internal

degree of freedom of the moving atom. We expect that, if
decoherence due to these frictional effects is enhanced,more
viable is the possible scheme to measure quantum friction
indirectly by measuring decoherence effects.
The approach described for the calculation of the fric-

tional force (and hence for decoherence effects) can be
generalized to the more realistic case of the electromagnetic
field at nonvanishing temperature. The nonlocal interaction
should be generalized accordingly and will involve the
derivatives of the potential vector Aμ on the position of the
mirrors. Also the inclusion of absorption into the material
model may be added. Work in this direction is in progress.
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