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We have derived the differential equation governing the evolution of the photon sphere for dynamical
black hole spacetimes with or without spherical symmetry. Numerical solution of the same depicting
evolution of the photon sphere has been presented for Vaidya, Reissner-Nordström-Vaidya and de Sitter
Vaidya spacetimes. It has been pointed out that evolution of the photon sphere depends crucially on the
validity of the null energy condition by the infalling matter and may present an observational window to
even test it through black hole shadow. We have also presented the evolution of the photon sphere for
slowly rotating Kerr-Vaidya spacetime and associated structure of black hole shadow. Finally, the effective
graviton metric for Einstein-Gauss-Bonnet gravity has been presented, and the graviton sphere has been
contrasted with the photon sphere in this context.
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I. INTRODUCTION AND MOTIVATION

Black holes are one of the fascinating and inevitable
consequences of general relativity and have often provided
profound insights into the fundamental nature of spacetime
at both classical and quantum level. Ever since the pioneer-
ing work of Bekenstein and Hawking, black hole physics
has received a tremendous amount of attention and theo-
retical success over the last few decades [1–7]. However,
the observational evidence for black holes remained elusive
till the recent detection of gravitational waves, which is best
described by the merger of two black holes [8–11]. Besides,
in recent years strong evidence from a wide range of
astrophysical data have come up for the existence of super-
massive black holes at the center of most of the galaxies
[12–14], which also hints toward the presence of black
holes. However all these tests including the detection of
gravitational waves provided indirect evidence for black
holes, while a direct detection of a black hole would
correspond to the observation of black hole shadow, a direct
probe of the photon sphere around the black hole [15–29].
Loosely speaking the black hole shadow is due to strong
gravitational lensing effect [30–41], near the photon sphere,
which is defined as the set of directions in the observer’s
sky, from which no signal from distant source reaches the
observer. This effect can in principle be observed from
Earth, providing a definitive test of existence of black holes
and for this very purpose, the Event Horizon telescope is

being designed to observe the shadow like structure around
the supermassive object at the center of our galaxy [42–45].
Various other interesting aspects of the photon sphere and
shadow has been extensively studied by numerous authors
[46–62]. However, black holes are in general not stationary
since they continuously accrete matter and grow in size.
Therefore it is very much desirable to understand how the
photon sphere evolves when one goes beyond the sta-
tionary consideration [46]. This corresponds to a nontrivial
generalization of the notion of the photon sphere, which
rather than being determined by an algebraic equation turns
out to be governed by a second order differential equation.
In this paper, we will study the evolution of the photon
sphere for rotating and nonrotating black holes by solving
the associated differential equation for various dynamical
black hole models, leading to several nontrivial results.
Further insights can be gained when one considers

theories beyond general relativity. Although general rela-
tivity seems to be tremendously successful in macroscopic
length scale, it is reasonable to believe that, it is only an
effective theory of a more general theory. Such a theory is
expected to contain higher curvature corrections to the
Einstein-Hilbert action, and the Lovelock theory represents
one such unique generalization with the field equations
containing at most second derivative of the metric [63–67].
The causal structure of Lovelock theories are different
from that of general relativity [68–75]. This is because
the characteristics hypersurfaces determining the causal
structure of a system are null surfaces for the case of
Einstein’s equation, however in Lovelock theories, the
background metric receives correction, and the character-
istics hypersurfaces turn out to be null with respect to a
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different effective metric. Thus one can safely say that
gravity propagates at the speed of light in general relativity
but in Lovelock theories, gravity propagates at speed
different than light. Therefore one can ask, how the
graviton circular null geodesics moving in the effective
metric for Lovelock theories are different from that of the
photon. This difference can be used as another probe of the
presence of higher curvature terms over and above general
relativity. In this work, we consider the Einstein-Gauss-
Bonnet gravity, which incorporates the first order correc-
tion to the gravity Lagrangian over and above general
relativity and present the evolution of photon and graviton
sphere in a dynamical black hole spacetime by explicitly
calculating the effective graviton metric.
The paper is organized as follows: InSec. II we provide a

derivation of the evolution equation for the radius of photon
sphere for a dynamical spherically symmetric black hole. In
Sec. III, as an illustration of the analytical method, we solve
this equation numerically in three different settings—(a)
Schwarzschild Vaidya black hole, (b) Reissner-Nordström-
Vaidya black hole and finally (c) Schwarzschild de Sitter
Vaidya black hole for various suitable choices of the mass
and charge functions. Using appropriate mass and charge
profiles, we find a novel relationship between the evolution
of the photon sphere and null energy condition of the
inflowing matter to the black hole. Our result shows that not
only the event horizon but the photon sphere and hence
shadow are sensitive to the null energy condition. This is
a significant result because of several reasons—(a) unlike
the event horizon, there is no reason for the evolution
of the photon sphere to be somehow related to null energy
condition and (b) the black hole shadow is observable by a
distant observer and hence provides observational evidence
for the violation of null energy condition. Subsequently, in
Sec. IV we present the evolution for the shadow of a
dynamical spherically symmetric black hole and present the
evolution by plotting the shadow at various instance of
time. In Sec. V we extend our analysis beyond spherical
symmetry, i.e., for a rotating black hole, namely the Kerr-
Vaidya black hole in slow rotation limit. The absence of
spherical symmetry in the solution makes the problem
considerably challenging, but in the slow rotation limit, we
have derived the differential equation governing the photon
sphere. Evolution of black hole shadow has also been
studied. Finally, in Sec. VI we generalize our analysis to
Einstein-Gauss-Bonnet theory and provide a derivation of
the effective graviton metric in the dynamical context and
have studied the evolution of the graviton sphere and
corresponding shadow, which has been contrasted with the
photon sphere.
Notations and Conventions:Wehave set the fundamental

constants c and ℏ to unity, and we will work with mostly
positive signature convention.As per our notation, a “prime”
will denote derivative with respect to the radial coordinate
“r” while “dot” over a quantity implies derivative with

respect to “v.” All the derivatives with respect to the affine
parameter “λ” along the null geodesic will be displayed
explicitly.

II. PHOTON SPHERE IN A SPHERICALLY
SYMMETRIC DYNAMICAL SPACETIME

In this section, we will explicitly derive a second-order
differential equation governing the dynamical evolution
of the photon sphere in a general static and spherically
symmetric spacetime. However before going into the gory
details of the derivation it is instructive to recall the
derivation of the photon sphere for static spacetimes as a
warm up exercise. Even though the location of the photon
sphere can be determined in numerous possible ways (see,
e.g., [16,46]), in what follows we will adopt a procedure
which can be straightforwardly generalized to the dynami-
cal context. In the context of static spacetime, we write
down the metric using ingoing null coordinate v, leading to

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2dΩ2
2: ð2:1Þ

The spherical symmetry allows us to choose a particular
plane in the spacetime, which for convenience is chosen to
be the equatorial plane with θ ¼ π=2. In this spacetime,
there exists one null geodesic on the equatorial plane,
which is circular. This is essentially the photon sphere,
projected on the equatorial plane, yielding a circle, known
as photon circular orbit. Since the trajectory of null geo-
desics (equivalently, photons) are circular in nature, we can
set r ¼ constant≡ rph. Being null geodesic, additionally
we have ds2 ¼ 0, which from Eq. (2.1) gives rise to,�

dϕ
dv

�
2

¼ 1

r2ph
fðrphÞ: ð2:2Þ

Similarly, starting from the metric in Eq. (2.1), one can
write down the radial geodesic equation for null trajecto-
ries, which reads,

d2r
dλ2

−
∂f
∂r

�
dr
dλ

��
dv
dλ

�
þ 1

2
f
∂f
∂r

�
dv
dλ

�
2

− rf

�
dϕ
dλ

�
2

¼ 0:

ð2:3Þ

However our interest is mainly in understanding the
circular null geodesic and hence we may use the fact that
r ¼ rph ¼ constant, leading to both _r ¼ 0 and ̈r ¼ 0. Thus
with these results taken into account, Eq. (2.3) for circular
null geodesics become,�

dϕ
dv

�
2

¼ 1

2rph

∂fðrÞ
∂r

����
rph

: ð2:4Þ

Thus one can immediately equate Eqs. (2.2) and (2.4),
leading to an algebraic equation for the radial coordinate
rph, which reads,
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rph
∂fðrÞ
∂r

����
rph

¼ 2fðrphÞ: ð2:5Þ

As evident, Eq. (2.5) represents well-known equation for
the radius of photon sphere in a static and spherically
symmetric spacetime. As a cross verification of this result,
one may resort to Schwarzschild spacetime and hence
substituting fðrÞ¼1−ð2M=rÞ one easily obtains rph¼3M.
This sets the stage for our subsequent discussion regarding
photon sphere for dynamical black holes.
A physical scenario where a dynamical black hole may

exist correspond to a situation when the black hole is fed by
accretion disk surrounding it or the black hole is radiating
matter, possibly an evaporating black hole. The metric
ansatz associated with such a dynamical black hole is an
obvious generalization of Eq. (2.1), which reads,

ds2 ¼ −fðr; vÞdv2 þ 2dvdrþ r2dΩ2: ð2:6Þ

Even though the structure of the metric is very much similar
to the one presented in Eq. (2.1), the photon orbits will be
completely different. This is because the spacetime is no
longer static and as a consequence the radius of the photon
sphere cannot taken to be constant and it must change with
time (or the ingoing null coordinate v). So we can model
the radius of the photon sphere to be a function of ingoing
time (v) for accreeting matter and outgoing time (u) for
radiating matter. Note that by virtue of spherical symmetry
the photon sphere cannot depend on other coordinates. Let
us start with the ingoing case first, which can be trivially
generalized to the radiating case. As described earlier, here
we have rph ¼ rphðvÞ. In the dynamical case as well it is
possible to follow an identical route as that of the static
case, e.g., one first writes down the equation for ds2 ¼ 0
and couples it with radial null geodesic equation. This
results into the desired evolution equation for the radius of
the photon circular orbit in the equatorial plane, which
reads (for a derivation see the Appendix A),

̈rphðvÞ þ _rphðvÞ
�

3

rphðvÞ
fðrphðvÞ; vÞ −

3

2

∂f
∂r

����
rphðvÞ;v

�

−
2

rphðvÞ
f_rphðvÞg2

þ 1

2

�
fðrphðvÞ; vÞ

∂f
∂r

����
rphðvÞ;v

−
∂f
∂v

����
rphðvÞ;v

�

−
1

rphðvÞ
fðrphðvÞ; vÞ2 ¼ 0: ð2:7Þ

On the other hand for a radiating black hole spacetime, the
metric is best described in terms of the outgoing null
coordinate u, in terms of which the spacetime metric takes
the following form,

ds2 ¼ −fðr; uÞdu2 − 2dudrþ r2dΩ2: ð2:8Þ

In this context as well the photon circular orbit is not
located at a fixed radial distance, rather it varies with
the outgoing null coordinate u. Thus in this context,
r ¼ rphðuÞ. Following the path laid down in the context
of accreting black hole it is straightforward to determine the
differential equation governing rphðuÞ for radiating black
hole as well. The corresponding equation for the evolution
of the photon sphere becomes,

̈rphðuÞ − _rphðuÞ
�

3

rphðuÞ
fðrphðuÞ; uÞ −

3

2

∂f
∂r

����
rphðuÞ;u

�

−
2

rphðuÞ
f_rphðuÞg2

þ 1

2

�
fðrphðuÞ; uÞ

∂f
∂r

����
rphðuÞ;u

þ ∂f
∂u

����
rphðuÞ;u

�

−
1

rphðuÞ
fðrphðuÞ; uÞ2 ¼ 0: ð2:9Þ

Thus Eqs. (2.7) and (2.9) represent the general equation
governing the evolution of the radius of photon sphere
around a dynamically evolving black hole, either accreting
or radiating. An entirely different approach has been taken
in Ref. [46] to arrive at the same second order differential
equation. As evident, unless we specify the form of the
metric function fðr; vÞ it is not possible to solve the above
differential equation and hence determine the location of
the photon circular orbit rphðuÞ. Our aim, in the subsequent
sections, will be to study the behavior of rphðvÞ (or, rphðuÞ)
evolution for various choice of fðr; vÞ.
As an aside, let us point out two more radii of significant

interest in the dynamical black hole spacetime under
consideration. The first one correspond to the apparent
horizon, whose location can be determined by solving the
equation fðr; vÞ ¼ 0, leading to rah ¼ rahðvÞ. While the
event horizon being a null surface, satisfies a differential
equation, namely ðdr=dvÞ ¼ ð1=2Þfðr; vÞ [76,77]. Thus
given a particular spacetime, with a certain fðr; vÞ, one can
immediately determine the location of the event and
apparent horizon, besides the photon circular orbit. We
will explore these results as well in the next sections.

III. APPLICATION: PHOTON SPHERE IN VAIDYA
AND REISSNER-NORDSTRÖM-VAIDYA

SPACETIMES

In the previous section,we have elaborated on the location
of the circular photon orbit as well as event and apparent
horizon in a dynamical black hole spacetime. In this section,
we apply the formalism developed above in the context of
two well known dynamical black hole spacetimes, namely
the Vaidya spacetime and Reissner-Nordström-Vaidya
spacetime. In the case of Vaidya spacetime, the black hole
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mass changes with time, while for Reissner-Nordström-
Vaidya both mass and charge of the black hole changes with
time. We will first discuss the case of Vaidya spacetime and
hence determine the circular photon orbit along with event
and apparent horizon in it, before taking up the Reissner-
Nordström-Vaidya spacetime. Finally, we will comment on
the possible modifications pertaining to the presence of
positive cosmological constant.

A. Photon sphere in Vaidya spacetime

As a first illustration of the method developed above, let
us consider the case of Vaidya spacetime, which is basically
a black hole spacetime accreting null fluid. This, in turn,
demands the black hole mass to be changing with time.
Since we are primarily interested in an accreting black hole,
we can write down the Vaidya spacetime in the ingoing null
coordinate as [78],

ds2 ¼ −
�
1 −

2MðvÞ
r

�
dv2 þ 2dvdrþ r2dΩ2: ð3:1Þ

If the above metric is supposed to be a solution of Einstein
gravity, one can determine the associated energy momen-
tum tensor by computing the Einstein tensor. Since Einstein
tensor depends on derivatives of the metric, it immediately
follows that the energy-momentum tensor associated with
the Vaidya spacetime corresponding to Eq. (3.1) takes the
form,

Tab ¼
1

4πr2
dMðvÞ
dv

δvaδvb: ð3:2Þ

Interestingly, if we demand the above energy-momentum
tensor to satisfy the null energy condition, it follows that
dMðvÞ=dv ≥ 0 constraint must hold. This is expected, as
the flow of matter satisfying energy condition is supposed
to increase the black hole mass. Thus one can immediately
write down the differential equation governing the evolu-
tion of the photon sphere in this spacetime following
Eq. (2.7). As anticipated, this equation has no analytical
solution possible and must resort to numerical techniques.
However, solving the second order differential equation
requires two boundary data, and we may use future
boundary conditions for the accreting scenario. In particu-
lar, throughout this work we will assume that at late times
the black hole settles down to a stationary configuration
and we may use the following boundary conditions:
(a) rphðv0Þ ¼ 3Mðv0Þ and (b) _rphðv0Þ ¼ 0, where v0 is
some future time where the mass function approaches a
constant value, i.e., _Mðv0Þ ¼ 0. Moreover, the location of
the apparent horizon in this spacetime is straightforward
to work out and corresponds to rap ¼ 2MðvÞ, while event
horizon can be determined by solving ðdr=dvÞ ¼
ð1=2Þf1 − ð2MðvÞ=rÞg with appropriate future boundary
conditions [77].

The above presents the theoretical framework necessary
to discuss the evolution of the photon sphere in Vaidya
spacetime. To illustrate the evolution in an explicit manner,
we focus our attention particularly to smoothly varying
mass function. For that matter, we start with the following
choice of the mass function,

MðvÞ ¼ M0

2
f1þ tanhðvÞg; ð3:3Þ

which has the nice property that, it approaches to a con-
stant value M0, in the asymptotic future (i.e., v → ∞) and
allows one to impose future boundary conditions, i.e.,
rphðv → ∞Þ ¼ 3M0 and _rphðv → ∞Þ ¼ 0, to obtain the
evolution of the photon sphere. Identically one can also
study the behavior of the apparent horizon and the event
horizon in the Vaidya spacetime. The result of such an
analysis due to the mass function, written down in
Eq. (3.3), is depicted in Fig. 1. As evident the photon
circular orbit along with event and apparent horizon
asymptote to constant values. In particular, the apparent
horizon, in the dynamical context, lies within the event
horizon and ultimately coincides with the event horizon.
To further grasp the theoretical result derived earlier, we

have considered a few other examples of smoothly increas-
ing mass functions, e.g., MðvÞ ¼ ðM0=2Þf2 − sechðvÞg,
which asymptotically approaches M0. In a similar manner,
by imposing the future boundary conditions rphðv → ∞Þ ¼
3M0 and _rphðv → ∞Þ ¼ 0 in Eq. (2.7), one can obtain the
corresponding evolution of photon sphere. We illustrate the
result for the mass function presented above along with
some other mass functions in Fig. 2. As expected, in all of
them the photon sphere ultimately settles down to a
radius 3M0.
As promised, at this stage let us consider the case of a

black hole that is radiating matter, which can be modeled
by a smoothly decreasing mass function. We would like to
emphasize that, although such a process does not occur
classically, it does occur quantum mechanically and noth-
ing prevents us from modeling the black hole by a radiating
mass function without worrying about the underlying
phenomenon. The evolution of the photon sphere in case
of a radiating black hole spacetime can be obtained by
solving Eq. (2.9) with the past boundary condition, i.e., one
assumes the black hole to be static to start with. One such
radiating mass function takes the following form

MðuÞ ¼
�
M0

2

�
½1 − tanhðuÞ�: ð3:4Þ

As evident, the black hole starts with a constant value of
mass, M0 in the far past (denoted by u → −∞) and allows
one to impose past boundary conditions rphðu → −∞Þ ¼
3M0 and _rphðu → −∞Þ ¼ 0, to obtain the evolution of the
photon sphere. We illustrate this result along with the
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FIG. 1. The evolution of the radius of the photon sphere, event, and apparent horizon has been presented for the mass function written
down in Eq. (3.3). The figure on the top left panel shows the variation of this mass function with the advanced null coordinate v, while
the top right panel shows the evolution of the radius of photon sphere projected on the equatorial plane. On the other hand, the evolution
of both the event and apparent horizon has been presented in the bottom panel. In all these cases the respective radii asymptote to the
static values (M0 has been set to unity).
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FIG. 2. This figure also presents the variation of the radius of the photon sphere projected on the equatorial plane. The top left panel
shows the evolution of the photon sphere for mass functionMðvÞ ¼ M0f2 − sechðvÞg with the choice of M0 ¼ 1. The rest of the plots
starting from top right and then to bottom left and bottom right panel shows the evolution of the photon sphere for mass functions
MðvÞ ¼ 2=f1þ sechðvÞg, MðvÞ ¼ 1þ tanhðv2Þ and MðvÞ ¼ 0.5ftanhðvÞ þ cothð1þ vÞg, respectively.
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evolution of the event horizon and apparent horizon in
Fig. 3. As evident, all the radii start from their static values
and decrease dynamically as the black hole evaporates by
radiating matter. This is expected, as the size of the photon
sphere must decrease as the mass function decreases. In the
next section, we will extend this result to a Reissner-
Nordström-Vaidya spacetime, involving a time-dependent
mass and charge function.

B. Reissner-Nordström-Vaidya spacetime

Having understood the evolution of the photon sphere in
the case of Vaidya spacetime, we shall now take over the
case of a black hole with a time-dependent charge and
mass, thus depicting Reissner-Nordström-Vaidya space-
time. A physical scenario where this may arise is in the case
of a black hole accreting both mass and charge. Hence in
this context, it is more suitable to describe the dynamical
black hole in the ingoing null coordinate v, in which the
spacetime geometry is given by Eq. (2.6), with the
following identifications,

fðr; vÞ ¼ 1 −
2MðvÞ

r
þQðvÞ2

r2
; Av ¼

QðvÞ
r

: ð3:5Þ

Here MðvÞ and QðvÞ are the respective mass and charge
functions, with Av being the electromagnetic gauge field.

Unlike the Vaidya solution, which for static case is a
solution of vacuum Einstein’s equations, the static case for
Reissner-Nordström-Vaidya solution requires support from
Maxwell stress tensor. In particular, the total action of the
static scenario, besides the Einstein-Hilbert term also has
the FμνFμν coupling. However in the dynamical situation,
besides the Maxwell field, we also need some additional
contribution from the matter sector, which takes the
following form as Einstein’s equations are assumed to hold,

8πText
μν ¼ 1

r3
f2r _MðvÞ − 2QðvÞ _QðvÞgδvμδvν : ð3:6Þ

As evident the above energy-momentum tensor is associ-
ated with some sort of null fluid and it obeys the null energy
condition, i.e., Text

μν kμkν ≥ 0 for the null vector kμ ¼
ð∂=∂vÞμ if,

2r _MðvÞ − 2QðvÞ _QðvÞ ≥ 0; ð3:7Þ

holds [79]. Clearly the null energy condition is obeyed for
all r ≥ ðQ _Q= _MÞ≡ rcs, where rcs denotes the critical sur-
face within which the null energy condition may get
violated. Thus for such spacetime, where Eq. (3.7) is not
satisfied, there exist regions where the null energy con-
dition is violated as well.
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FIG. 3. This figure demonstrates the evolution of the photon sphere with retarded null coordinate u for radiating black holes, whose
masses are decreasing with time. The top left panel shows the variation of the mass function with u, while that on the top right panel
shows the evolution of the radius of the photon sphere. On the other hand, on the bottom left panel, we have plotted the evolution of the
event and the apparent horizon. As expected, they all started from a constant value and gradually decreased as the black hole mass
decreases. Here also M0 has been set to be unity.
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From the Hawking’s area theorem [4], we know that the
radius of the event horizon can decrease for infalling
matter, which admits violation of the null energy condition.
Therefore, in the presence of a critical surface rcs, this
essentially boils down to the question that, whether the
event horizon lies inside or outside the critical surface and
the evolution of the event horizon would behave accord-
ingly. One can also choose the mass and charge profile in
such a way that the critical surface crosses the event horizon
at some value of the ingoing null coordinate. In such a case,
one would expect the event horizon first to increase and
then decrease as the critical surface crosses it. Interestingly,
it turns out that the evolution of the photon sphere is also
affected by the violation of the null energy condition, which
is counterintuitive. Since unlike the event horizon there is
a priori no reason for the photon sphere to be somehow
related to the null energy condition. This curious phe-
nomenon has been explicitly demonstrated in this section,
i.e., we have shown that the evolution of the photon sphere
is related to the location of the critical surface. Therefore,
since the photon spheres can be probed by an external
observer, it may provide an observational evidence to the
violation of the null energy condition.
Having described the basic structure, let us now illustrate

the evolution of the photon sphere by studying various
mass and charge profile and the location of their respective
critical surface. As argued earlier, we restrict our attention
to smoothly varying mass and charge functions. This is

important since to provide a future boundary condition one
need to know the entire evolution of the spacetime. Our
choice of mass and charge functions are particularly
motivated from [79], however, in addition, we have also
studied some different mass and charge functions as well.
One such mass and charge function can be written down as,

MðvÞ ¼ M0

2

�
1þ 1

2
f1þ tanhðvÞg

�
and

QðvÞ ¼ Q0f1 − tanhðvÞg: ð3:8Þ

One can immediately substitute the mass and charge
functions introduced above in Eq. (3.7), which will ensure
that for arbitrary choices of M0 and Q0 the null energy
condition will hold and hence the critical surface does not
exist. This, in turn, implies that the photon sphere
along with the apparent and the event horizon smoothly
increases. The differential equation satisfied by the photon
sphere requires future boundary conditions to solve
for, e.g., rphðv → ∞Þ ¼ ð1=2Þð3M0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2

0 − 8Q2
0

p
along

with _rphðv → ∞Þ ¼ 0. The evolution of the photon sphere
associated with the above mass and charge functions along
with boundary conditions have been presented in Fig. 4.
For completeness, let us consider another situation in

which both the mass and charge function, namelyMðvÞ and
QðvÞ, are such that there exists a critical surface but lies
within the event horizon. Since to an outside observer, the
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FIG. 4. The top left panel shows the mass and charge function. The top right panel shows the evolution of the radius of photon sphere.
In the bottom left panel, we have plotted the evolution of event horizon and apparent horizon. The bottom right panel shows the
evolution of photon sphere, apparent horizon, event horizon and critical surface together for the choice of mass and charge profile in
Eq. (3.8).

UNDERSTANDING PHOTON SPHERE AND BLACK HOLE … PHYS. REV. D 99, 104080 (2019)

104080-7



region within the event horizon is a black box; it is not
possible to probe possible violation of null energy con-
dition. This can be achieved by the following choice of
mass and charge profile,

MðvÞ ¼ M0

2
½1þ tanhðvÞ� and QðvÞ ¼ Q0MðvÞ2=3:

ð3:9Þ

Again, we solve the differential equation presented in
Eq. (2.7) using the future boundary conditions to obtain
the evolution of the photon sphere, and the result is
illustrated in Fig. 5. The presence of a critical surface is
evident from Fig. 5; however, it remains within the event
horizon. In this case, the photon sphere along with the event
and apparent horizon grow, ultimately it asymptotes to the
static values at late times.
Given the previous scenario, it is straightforward to come

up with a different choice of the mass and charge function
for which the critical surface actually lies completely
outside the photon sphere. This makes it prone to outside
observers. An immediate corollary of the above feature
being both the photon sphere and the event horizon
decrease as they evolve. This is because both of them lie
in a region where the null energy condition is violated. This
can be realized by considering both MðvÞ and QðvÞ to be
proportional to 1þ tanhðvÞ, and the result for certain
choices of the mass and charge parameters have been

presented in Fig. 6. The fact that the photon sphere
along with event and apparent horizon decreases with
the advanced null coordinate v for certain choices of the
mass and charge function is also evident from Fig. 6.
The previous two examples harbor critical surfaces, such

that the event horizon and the photon sphere are either
completely inside or outside the critical surface. It is
certainly possible to come up with a certain mass and
charge functions MðvÞ and QðvÞ, such that there exists a
critical surface, which initially starts being within the event
horizon and eventually crosses both event horizon and
photon sphere. Therefore one should expect the event
horizon first to grow (since null energy condition is
satisfied for some time) and eventually starts decreasing.
One should also expect to observe the teleological nature of
event horizon in this situation [77], i.e., to see the event
horizon starts growing even before it crosses the critical
surface. These theoretical expectations are borne out by the
plot presented in Fig. 7. The same result can also be derived
for the photon sphere as well, i.e., first, it grows for some
time and then starts decreasing. Such a situation also comes
out of the numerical solution of the differential equation
governing the evolution of the photon sphere, illustrated
in Fig. 7.
As a final illustration of the relation between null energy

condition of external matter and evolution of photon sphere
for Reissner-Nordström-Vaidya black holes, consider
another choice of M and Q for which the critical surface
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FIG. 5. The top left panel shows the mass and charge function. The top right panel shows the evolution of the radius of photon sphere.
In the bottom left panel, we have plotted the evolution of event horizon and apparent horizon. The bottom right panel shows the
evolution of photon sphere, apparent horizon, event horizon and critical surface together for the choice of mass and charge profile in
Eq. (3.9).
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crosses the event horizon, but not the photon sphere.
Such mass and charge functions take the form, MðvÞ ¼
0.5f1þ tanhðvÞg as well as QðvÞ ¼ 0.3f1 − tanhð1 − vÞg,
respectively. For this particular choice, the critical surface
starts within the event horizon and eventually crosses it, and
hence the event horizon grows for some time and then starts
decreasing. However, the critical surface for this case does
not cross the photon sphere at any point in the future, and
hence the photon sphere always lies in a region where the
null energy condition is satisfied. Therefore the photon
sphere can not probe this violation and always increases.
This result is illustrated in Fig. 8.

C. Schwarzschild-de Sitter spacetime

As a final example of our method developed in Sec. II, in
this section, we shall determine the evolution of the photon
sphere surrounding a black hole in the presence of a
positive cosmological constant, with its mass being a
function of time (or, ingoing null coordinate v for an
accreting black hole). The metric structure is identical to
Eq. (2.6), with fðr; vÞ ¼ 1 − f2MðvÞ=rg þ ðΛ=3Þr2. Since
for the static case with constant mass, the photon sphere
does not depend on the presence of the cosmological
constant [80], it is interesting to look for any effect
of the cosmological constant in the dynamical context.
To our surprise, it turns out that for a dynamical

Schwarzschild-de Sitter black hole, i.e., for black hole
mass changing with time, the evolution of the photon
sphere indeed depends on the value of the cosmological
constant Λ. Again, an analytic solution for the evolution of
the photon sphere turned out to be difficult to achieve,
however numerically one can indeed solve for the evolution
of the photon sphere. This is what we illustrate next by
numerically solving the evolution equation for photon
sphere with various choices of the mass function for both
accreting and radiating black holes.
As an example of the Schwarzschild de Sitter black hole

accreting matter, we consider the mass to be a smoothly
increasing function of the ingoing time v and using which
we solve Eq. (2.7) to obtain the evolution of the photon
sphere for different values of the cosmological constant. To
that end we start with the mass functions MðvÞ ¼
ðM0=2Þf1þ tanhðvÞg and MðvÞ ¼ ðM0=2Þf2 − sechðvÞg
and solve the evolution equation using the future boundary
conditions, rphðv → ∞Þ ¼ 3M0 and _rphðv → ∞Þ ¼ 0. The
result of such an evolution is clearly illustrated in Fig. 9 for
different choices of the cosmological constant Λ.
The above result is interesting in its own right since

the photon sphere in the dynamical context depends
on the cosmological constant, unlike the static scenario.
Moreover, black holes are never in perfect equilibrium,
and thus a dynamical study of the photon sphere can be
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FIG. 8. The top left panel shows the variation of the mass and charge function MðvÞ ¼ 0.5f1þ tanhðvÞg as well as QðvÞ ¼
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considered as one of the effective tools to explore
the value of the cosmological constant of the universe.
Here we emphasize that such illustration can also be
realized for Reissner-Nordström -de Sitter black hole
having a nonzero time-dependent charge as well. Also,
note that the event horizon and cosmological horizon of a
static Schwarzschild-de Sitter black hole always lies inside
and outside the photon sphere, respectively. Not surpris-
ingly, this result in the dynamical context holds during the
entire course of evolution and have been presented
in Fig. 9.

IV. SHADOW OF A SPHERICALLY SYMMETRIC
DYNAMICAL BLACK HOLE

In the previous sections, we have determined the location
of the circular photon orbit on the equatorial plane, which
can be used along with spherical symmetry to determine the
photon sphere. However, as far as observational implica-
tions are considered, the photon sphere leads to a certain
patch of the sky around the black hole to be unobservable.
Loosely speaking, the photon sphere casts a shadow, which
corresponds to a set of directions in the observer’s sky from
which light from distant sources does not reach the
observer. This is what is meant by shadow of a black hole
[15–29], and the evolution of photon sphere would be
ultimately reflected in the evolution of shadow, which one
should expect to be observed by the Event Horizon
Telescope. In this section, taking a cue from our earlier
discussion, we will illustrate the evolution of the black hole
shadow as the mass and/or charge of the black hole changes
with time. We will first work with a general spherically
symmetric dynamical spacetime in the ingoing null coor-
dinate vwith an arbitrary choice of fðr; vÞ. This can also be
generalized in a simple manner to the case of outgoing null
coordinate u. Also, in the subsequent sections, we present a
generalization of this result to rotating black holes. The
geometry of the spacetime we are interested in is given by
Eq. (2.6) in which the motion of a test particle is described
by the following Lagrangian,

L ¼ 1

2

�
−fðr; vÞ

�
dv
dλ

�
2

þ 2

�
dv
dλ

��
dr
dλ

�
þ r2

�
dθ
dλ

�
2

þ r2sin2θ

�
dϕ
dλ

�
2
�

ð4:1Þ

At this stage, we would like to remind the reader that, a
“prime” and “dot” over any quantity represents derivative
with respect to the radial coordinate r and the ingoing time
v respectively. As evident from the Lagrangian presented
above, it is independent of the azimuthal coordinate ϕ but
depends on the ingoing null coordinate v. Thus the angular
momentum is conserved, but the energy is not. However,
we can still define a quantity Eðr; vÞ, such that,

Eðr; vÞ ¼ −fðr; vÞ
�
dv
dλ

�
þ
�
dr
dλ

�
and

L ¼ r2sin2θ

�
dϕ
dλ

�
: ð4:2Þ

Given the above equations one can determine dv=dλ and
dϕ=dλ respectively, in terms of Eðr; vÞ and L. This leads to
the following expressions,�

dv
dλ

�
¼ 1

fðr; vÞ
��

dr
dλ

�
− Eðr; vÞ

�
and�

dϕ
dλ

�
¼ L

r2sin2θ
: ð4:3Þ

Since we are interested in the trajectory of the photons, we
have to work with the condition ds2 ¼ 0, which implies
vanishing of the Lagrangian “L” in Eq. (4.1). Finally, use of
Eq. (4.3) results into the following differential equation
involving both (dr=dλ) and (dθ=dλ), such that,

r2
�
dr
dλ

�
2

− r2E2ðr; vÞ þ r4
�
dθ
dλ

�
2

fðr; vÞ þ L2fðr; vÞ
sin2θ

¼ 0

ð4:4Þ
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FIG. 9. Variation of the photon sphere with the advanced time coordinate v has been presented for dynamical Schwarzschild de Sitter
spacetime. The left panel shows the evolution of photon sphere for mass function behaving as MðvÞ ¼ M0f1þ tanhðvÞg and the right
panel represents the evolution of photon sphere for mass function MðvÞ ¼ M0f2 − sechðvÞg. We have chosen M0 ¼ 1 and for two
possible choices of the cosmological constant, taken to be 0.01 and 0.09.
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The radial and the angular part of the above equation
separates out naturally, which is basically achieved by
introducing the Carter constant K [81], such that the
evolution equations for θ and r becomes,

r4
�
dθ
dλ

�
2

¼ K − cot2θL2;

r2
�
dr
dλ

�
2

¼ E2r2 − ðK þ L2Þfðr; vÞ: ð4:5Þ

At this point, we would like to emphasize that for static
case one has r ¼ constant ¼ rph and hence drph=dλ ¼ 0.
This would give rise to the shadow around a static
spherically symmetric black hole. But since we are dealing
with dynamical situations, we have r ¼ rphðvÞ and hence
ðdrphðvÞ=dλÞ ¼ _rphðvÞfdv=dλg. Then using Eq. (4.3) we
obtain,

K þ L2 ¼ EðrphðvÞ; vÞ2rphðvÞ2
fðrphðvÞ; vÞ

×

�
1 −

�
_rphðvÞ

fðrphðvÞ; vÞ − _rphðvÞ
�

2
�
: ð4:6Þ

It is instructive to define the following two quantities
ηðvÞ≡ K=EðrphðvÞ; vÞ2 and ξðvÞ≡ L=EðrphðvÞ; vÞ and
the above equation reduces to,

ηðvÞþξðvÞ2¼αðvÞ2þβðvÞ2

¼ rphðvÞ2
fðrphðvÞ;vÞ

�
1−

�
_rphðvÞ

fðrphðvÞ;vÞ− _rphðvÞ
�

2
�
:

ð4:7Þ
Where α and β are the celestial coordinates that span the
two-dimensional plane (known as the celestial plane)
perpendicular to the line of sight with respect to the
observer and defined at spatial infinity [15]. More precisely,
each ray of light that reaches the observer from a distant
source corresponds to a point ðα0; β0Þ in the celestial plane.
The complement of these set of points in the ðα; βÞ plane
defines the shadow. For consistency, one might check that
in the static limit, i.e., _rph ¼ 0 we recover the expression of
shadow around the static black hole. In Fig. 10, we
illustrate the location of shadow at a different instance
of time for various choice of mass and charge profile.

V. KERR-VAIDYA IN THE SLOW
ROTATION LIMIT

In this section, we would like to understand the evolution
of the circular photon orbit as well as that of black hole
shadow for a dynamical black hole with rotation. The
situation we will consider in this work corresponds to the
Kerr-Vaidya metric. However, a general computation is
difficult in this case, since in the Hamilton-Jacobi

formalism, the radial and angular part does not get separated.
This is because, the dynamical Kerr-Vaidya spacetime has
only one Killing field, related to the angular coordinate ϕ.
This prompts us to consider the slow rotation limit [82],
where such a separation is achievable and under this
assumption, we will discuss the evolution of the circular
photon orbit along with the nature of shadow it casts.

A. Evolution of photon circular orbit

The main aim of this section is to provide the desired
equation governing the evolution of the photon circular
orbit on the equatorial plane for Kerr-Vaidya metric. As
emphasized earlier, for arbitrary values of the rotation
parameter it is very difficult to determine the governing
differential equation. Thus we will concentrate on the
situation in which the rotation parameter is constant and
small, so that terms of Oða2Þ can be neglected. In this slow
rotation limit the Kerr-Vaidya metric on the equatorial
plane takes the following form [82],

ds2 ¼ −
�
1 −

2MðvÞ
r

�
dv2 þ 2dvdr − 2adrdϕ

−
4MðvÞa

r
dvdϕþ r2dϕ2: ð5:1Þ

Since we are interested in the motion of a photon on the
equatorial plane, we have substituted θ ¼ π=2 in the
general metric ansatz to arrive at Eq. (5.1). As a first step
towards determining the trajectory of the photon on the
equatorial plane one requires to set ds2 ¼ 0. This results
into the following differential equation,

r2
�
dϕ
dv

�
2

þ
�
dϕ
dϕ

��
−2a

�
dr
dv

�
−
4MðvÞa

r

�

þ 2

�
dr
dv

�
−
�
1 −

2MðvÞ
r

�
¼ 0: ð5:2Þ

The above result holds true for any null trajectory, geodesic
or not. However, we are interested in the null geodesics on
the equatorial plane of the Kerr-Vaidya solution, for which
it is important to write down the corresponding Lagrangian,
which takes the following form,

L¼−
1

2

�
1−

2MðvÞ
r

��
dv
dλ

�
2

þ
�
dv
dλ

��
dr
dλ

�

−a

�
dr
dλ

��
dϕ
dλ

�
−
2MðvÞa

r

�
dv
dλ

��
dϕ
dλ

�
þ1

2
r2
�
dϕ
dλ

�
2

:

ð5:3Þ

Here λ is the affine parameter associated with the null
geodesics.Given the aboveLagrangian one can immediately
compute various derivatives of the Lagrangian, resulting
into the following geodesic equations,

MISHRA, CHAKRABORTY, and SARKAR PHYS. REV. D 99, 104080 (2019)

104080-12



d2v
dλ2

− a
d2ϕ
dλ2

¼ −
1

r2
MðvÞ

�
dv
dλ

�
2

þ 2aMðvÞ
r2

�
dv
dλ

��
dϕ
dλ

�
þ r

�
dϕ
dλ

�
2

ð5:4Þ

d2r
dλ2

−
�
1 −

2mðvÞ
r

�
d2v
dλ2

−
2aMðvÞ

r
d2ϕ
dλ2

¼ −
1

r
dM
dv

�
dv
dλ

�
2

þ 2MðvÞ
r2

�
dv
dλ

��
dr
dλ

�

−
2MðvÞa

r2

�
dr
dλ

��
dϕ
dλ

�
ð5:5Þ

r2
d2ϕ
dλ2

− a
d2r
dλ2

−
2MðvÞa

r
d2v
dλ2

¼ 2a
r
dM
dv

�
dv
dλ

�
2

−
2MðvÞa

r2

�
dv
dλ

��
dr
dλ

�

− 2r

�
dr
dλ

��
dϕ
dλ

�
: ð5:6Þ

At this stage it is important to remind us of our goal,
which is to construct an equation involving double deriva-
tive of r with respect to the ingoing null coordinate v,
which will not involve terms like ϕ̈. Keeping this in mind,
we first eliminate the term involving ðd2r=dλ2Þ in
Eqs. (5.5) and (5.6) to arrive at,
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FIG. 10. This figure represents the time evolution of shadow casted by a spherically symmetric black hole with respect to
various mass and charge functions. The top left and right panel shows the evolution of shadow for mass functions 1þ tanhðvÞ,
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− a
d2v
dλ2

þ
�
r2 −

2MðvÞa2
r

�
d2ϕ
dλ2

−
a
r
dM
dv

�
dv
dλ

�
2

þ
�
2rþ 2Ma2

r2

��
dr
dλ

��
dϕ
dλ

�
¼ 0: ð5:7Þ

Further, eliminating (d2ϕ=dλ2) between Eqs. (5.7) and
(5.4), we obtain the following differential equation for vðλÞ
at the lowest order in the rotation parameter,

d2v
dλ2

þMðvÞ
r2

�
dv
dλ

�
2

−
2MðvÞa

r2

�
dv
dλ

��
dϕ
dλ

�

− r

�
dϕ
dλ

�
2

þ 2a
r

�
dr
dλ

��
dϕ
dλ

�
¼ 0: ð5:8Þ

From the above equation it is straightforward to read off the
expression for (d2v=dλ2), which as substituted in Eq. (5.4),
yields,

a
d2ϕ
dλ2

¼ −
2a
r

�
dr
dλ

��
dϕ
dλ

�
: ð5:9Þ

Finally, we can use both the expressions for (d2v=dλ2)
along with (d2ϕ=dλ2) from Eqs. (5.8) and (5.9) in order to
rewrite Eq. (5.5) in the following form,

d2r
dλ2

¼
�
−
MðvÞ
r2

�
1 −

2MðvÞ
r

�
−
1

r
dM
dv

��
dv
dλ

�
2

þ 2M
r2

�
dr
dλ

��
dv
dλ

�
−
2MðvÞa

r2

�
dr
dλ

��
dϕ
dλ

�

þ 2MðvÞa
r2

�
1 −

2MðvÞ
r

��
dv
dλ

��
dϕ
dλ

�

þ ðr − 2MÞ
�
dϕ
dλ

�
2

−
2a
r

�
dr
dλ

��
dϕ
dλ

�
: ð5:10Þ

Note that as desired, the above equation does not involve
any factors of (d2v=dλ2) or (d2ϕ=dλ2). Thus one can
easily change the variable of differentiation from the
affine parameter λ to the ingoing null coordinate v, such
that ðd2r=dλ2Þ¼ðdv=dλÞ2ðd2r=dv2Þþðdr=dvÞðd2v=dλ2Þ.
Performing this transformation of variable we finally arrive
at the following differential equation for the photon circular
orbit on the equatorial plane rph ¼ rphðvÞ,

d2rphðvÞ
dv2

þ
�
−

3M
rphðvÞ2

drphðvÞ
dv

þ M
rphðvÞ2

�
1−

2MðvÞ
rphðvÞ

�
þ 1

rphðvÞ
dM
dv

�
þ
�
rphðvÞ

�
drphðvÞ
dv

�
− ½rphðvÞ−2M�

��
dϕ
dv

�
2

þ
�
4MðvÞa
rphðvÞ2

drphðvÞ
dv

−
2a

rphðvÞ
�
drphðvÞ
dv

�
2

þ 2a
rphðvÞ

�
drphðvÞ
dv

�
−

2Ma
rphðvÞ2

�
1−

2MðvÞ
rphðvÞ

��
dϕ
dv

¼0: ð5:11Þ

However, the above equation is not sufficient to
determine the evolution of the photon circular orbit, as
the differential equation depends on the (dϕ=dv) term as
well. Thus we need to determine (dϕ=dv) in terms of r and
(dr=dv), which can be derived separately from Eq. (5.2).
This yields,

dϕ
dv

¼ a
rphðvÞ2

drphðvÞ
dv

þ 2Ma
rphðvÞ3

� 1

rphðvÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
rphðvÞ

− 2

�
drphðvÞ
dv

�s
: ð5:12Þ

Thus one need to solve both Eqs. (5.12) and (5.11)
simultaneously in order to determine the evolution of the
photon circular orbit rph ¼ rphðvÞ. Combining both of these
equations and keeping terms up to linear order in the
rotation parameter, i.e., neglecting terms depending on
Oða2Þ, we obtain the following final form for the evolution
equation of the photon circular orbit in the slow rotation
limit,

r̈phðvÞþ
3_rphðvÞ
rphðvÞ

þ
_MðvÞ
rphðvÞ

−
9MðvÞ_rphðvÞ

rphðvÞ2
−
2_rphðvÞ2
rphðvÞ

−
1

rphðvÞ
þ 5MðvÞ
rphðvÞ2

−
6MðvÞ2
rphðvÞ3

� 6a
rphðvÞ3

�
ð2MðvÞ2−MðvÞrphðvÞ

þ2MðvÞrphðvÞ_rphðvÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rphðvÞ−2MðvÞ−2rphðvÞ_rphðvÞ

rphðvÞ3
s �

þOða2Þ¼0: ð5:13Þ

This is the differential equation governing evolution of the
photon circular orbit on the equatorial plane. Thus in order
to determine the location of the photon circular orbit we
need to solve the above equation with the boundary
condition, that for mass functions MðvÞ, asymptoting to
a finite value, rphðvÞ at late times must coincide with the
photon circular orbits of Kerr black hole. This must hold for
both the retrograde orbit and the prograde orbit.
Moreover, in the slow rotation limit, one can work out

the matter stress tensor responsible for the evolution of the
black hole mass with time. For this purpose, we point out
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the nonvanishing components of the Ricci tensor for
Kerr-Vaidya metric, which reads, Rvv ¼ ð2 _m=r2Þ and
Rvϕ ¼ ð3 _ma=r2Þ. Interesting the Ricci scalar associated
with the Kerr-Vaidya metric is Oða2Þ and hence does not
contribute in the slow rotation limit. Thus in this context the
matter stress tensor has only ðv; vÞ and ðv;ϕÞ as the
nonvanishing components. It turns out that in the slow-
rotation limit there exists a vector, vi¼ð1;0;0;ð3=2Þasin2θÞ
such that vivi ∼Oða2Þ ∼ 0 and the stress-energy tensor can
be written as [82],

Tij ¼
_M

4πr2
vivj: ð5:14Þ

Thus up to linear order in the rotation parameter, the Kerr-
Vaidya model indeed represents a rotating black hole
accreting null fluid and hence just like the Reissner-
Nordström-Vaidya spacetime the evolution of photon sphere
in this slowly rotating Kerr-Vaidya geometry is intimately
connected to the null energy condition.
To illustrate our result by solving Eq. (5.13) numerically

we need to impose appropriate boundary conditions. Such
boundary conditions may be determined for various
choices of smoothly increasing mass functions, which
asymptotes to a constant value for the mass parameter.
In this case for prograde photon orbit one may set the
boundary conditions to be rphðv → ∞Þ ¼ r− and
_rphðv → ∞Þ ¼ 0, where r∓ correspond to the location of
the photon circular orbit for prograde (or, retrograde)
motion in stationary context [83,84]. With these boundary
conditions, the growth behavior of the photon sphere has
been obtained for mass functions satisfying the above
criteria, which has been presented in Fig. 11.

B. Shadow casted by slowly rotating
Kerr-Vaidya black hole

In the previous section, we had determined the differ-
ential equation governing the evolution of the photon orbits
on the equatorial plane. Following which, in this section,
we will obtain an expression for the shadow region of

slowly rotating dynamical black hole, described by the
metric ansatz written down in Eq. (5.1). As in the case of
spherically symmetric spacetime, here also we start with
the Lagrangian of a particle moving in a Kerr background,
which up to OðaÞ can be written as,

L ¼ 1

2

�
−fðr; vÞ

�
dv
dλ

�
2

þ 2

�
dv
dλ

��
dr
dλ

�

− 2asin2θ

�
dr
dλ

��
dϕ
dλ

�
−
4Ma
r

sin2θ

�
dv
dλ

��
dϕ
dλ

�

þ r2
�
dθ
dλ

�
2

þ r2sin2θ

�
dϕ
dλ

�
2
�
: ð5:15Þ

As evident, the above Lagrangian is independent of the
angular coordinate ϕ, resulting into a conserved angular
momentum L. However, in the dynamical context, there is
no conserved energy. Still we can introduce a quantity E,
which in this context is dependent on both r and v, such
that

Eðr;vÞ¼ ∂L
∂ðdv=dλÞ

¼−fðr;vÞ
�
dv
dλ

�
þ
�
dr
dλ

�
−
2Ma
r

sin2θ

�
dϕ
dλ

�
ð5:16Þ

L ¼ ∂L
∂ðdϕ=dλÞ

¼ −asin2θ −
2Ma
r

sin2θ

�
dv
dλ

�
þ r2sin2θ

�
dϕ
dλ

�
ð5:17Þ

Note that the variation of Eðr; vÞ is determined by the
equation ðdE=dλÞ ¼ ð∂L=∂vÞ. In the static situation the
Lagrangian is independent of v and hence Eðr; vÞ is a
constant of motion. From the above two equations, i.e.,
from Eqs. (5.16) and (5.17) we can immediately solve for
(dv=dλ) and (dϕ=dλ) leading to the following expressions,
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FIG. 11. This figure illustrates the evolution of prograde photon orbits for the choice of mass functions MðvÞ ¼ 1þ tanhðvÞ[left
panel] and MðvÞ ¼ 2 − sechðvÞ[right panel]. The rotation parameter “a” has been chosen to be 0.01.
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dv
dλ

¼ ðdr=dλÞ − Eðr; vÞ
fðr; vÞ −

2MaL
fðr; vÞr3 ð5:18Þ

dϕ
dλ

¼ L
r2sin2θ

þ a
r2

�
dr
dλ

�
þ 2Ma½ðdr=dλÞ − Eðr; vÞ�

fðr; vÞr3 :

ð5:19Þ

Since we are interested in the trajectory of photons, we can
set the line element to be vanishing, which in turn results
into L being zero. Then in that expression we can use
Eqs. (5.18) and (5.19) to express everything in terms of
(dr=dλ), (dθ=dλ), Eðr; vÞ and L. Hence up to OðaÞ, we
obtain,

r2
�
dr
dλ

�
2

− r2Eðr; vÞ
�
Eðr; vÞ þ 4MaL

r3

�

þ r4fðr; vÞ
�
dθ
dλ

�
2

þ fðr; vÞL2

sin2θ
¼ 0: ð5:20Þ

The above equation can be easily separated into the radial
and angular part by introducing the Carter constant K [81],
such that the angular part takes the following form,

r4
�
dθ
dλ

�
2

¼ K − L2 cot2 θ: ð5:21Þ

Substituting this in Eq. (5.20) and rearranging terms, we
obtain the radial equation to be,�

dr
dλ

�
2

¼ Eðr; vÞ
�
Eðr; vÞ þ 4MaL

r3

�

−
fðr; vÞ
r2

ðK þ L2Þ: ð5:22Þ

In the static case, for circular orbit is at a fixed radius and
one would set r ¼ rph and _r ¼ 0. For the dynamical case,
the radius of circular orbit would be dependent on the
ingoing null coordinate v, we have r ¼ rphðvÞ and hence
ðdr=dλÞ ¼ _rphðvÞðdv=dλÞ. Since we want to use it in
Eq. (5.22), we need an expression for ðdv=dλÞ2, which
can be obtained from Eq. (5.18)�
dr
dλ

�
2

¼ Eðrph;vÞ2
½fðrph;vÞ− _rphðvÞ�2

þ 4MaLEðrph;vÞ
rphðvÞ3½fðrph;vÞ− _rphðvÞ�2

ð5:23Þ
where we have kept terms up to OðaÞ. Finally substituting
this result in Eq. (5.22) we obtain,

fðrp; vÞ
rpðvÞ2

fηþ ξ2g ¼ 1þ 4Ma
rpðvÞ3

ξ

�
1 −

_rpðvÞ2
½fðrp; vÞ − _rðvÞ�2

�

−
_rpðvÞ2

½fðrp; vÞ − _rpðvÞ�2
: ð5:24Þ

Here following the spherically symmetric scenario, we have
introduced two new quantities, namely, η ¼ K=Eðr; vÞ2 and
ξ ¼ L=Eðr; vÞ. These quantities can be written down
trivially in terms of the celestial coordinates α and β
introduced in the previous section, such that the last equation
reduces to,

α2 þ β2 ¼ rpðvÞ2
fðr; vÞ

�
1 −

4Ma
rpðvÞ3

α

�
1 −

_rpðvÞ2
½fðr; vÞ − _rpðvÞ�2

�

−
_rpðvÞ2

½fðr; vÞ − _rðvÞ�2
�
: ð5:25Þ

The above equation represents the shadow of a Kerr-Vaidya
black hole in the slow rotation limit. Note that, the shape of
the shadow in this limit is still circular, as that of the
spherically symmetric case. This is because of the fact that,
in the slow rotation limit, the line element posses spherical
symmetry, i.e., r ¼ const and v ¼ const surfaces are still
sphere. However, because of the small but nonzero value of
the rotation parameter a, the shadow of a slowly rotating
Kerr-Vaidya and Vaidya black hole are indeed different,
which is clearly depicted in Fig. 12 for a reasonable choice of
the mass function.
It is easy to verify the consistency of the above

expression, depicting black hole shadow in the slow
rotation limit, to other situations discussed in the paper
or in the literature. The first test of consistency corresponds

a=0.1

a=0

−10 −5 0 5 10

−10

−5

0

5

10

α

β

FIG. 12. This figure presents the comparison between shadow
casted by a Kerr-Vaidya black hole with rotation parameter a ¼
0.1 to that of a Vaidya black hole (a ¼ 0) for the choice of mass
function MðvÞ ¼ 1þ tanhðvÞ at the ingoing time v ¼ 2. Note
that, the shadow of slowly rotating Kerr black hole is still
spherical, but with center shifted.

MISHRA, CHAKRABORTY, and SARKAR PHYS. REV. D 99, 104080 (2019)

104080-16



to the nonrotating case, i.e., with a ¼ 0, where Eq. (5.25)
becomes,

α2 þ β2 ¼ rpðvÞ2½fðrp; vÞ − 2_rpðvÞ�
½fðrp; vÞ − _rpðvÞ�2

ð5:26Þ

which exactly matches with Eq. (4.7), the expression for the
nonrotating dynamical black hole. Second for the stationary
slowly rotating case, we have _rphðvÞ ¼ 0 and we have the
following equation governing the photon sphere,

αðvÞ2 þ βðvÞ2 ¼ r2p
fðrpÞ

�
1 −

4Ma
r3p

α

�
: ð5:27Þ

As one can immediately verify this exactly matches
with the shadow of a stationary black hole in the slow
rotation limit [19]. Finally, it is possible to study the case
for a static nonrotating black hole, where both _rphðvÞ ¼ 0

and a ¼ 0. In this limit also we recover the earlier result,
i.e., α2 þ β2 ¼ ðr2ph=fðrphÞÞ.

VI. EFFECTIVE GRAVITON METRIC IN
GAUSS-BONNET GRAVITY

Our discussion so far has been at the level of general
relativity, i.e., we have considered the time evolution of the
photon sphere and shadow around dynamical black holes
that are solutions of Einstein’s equation. Now we would
like to extend our analysis to theories beyond general
relativity. Particularly, we would be interested in the
Lanczos-Lovelock correction, which is unique generaliza-
tion over the Einstein-Hilbert action in dimensions higher
than four, with the field equation containing at most second
derivative of the metric [63–66]. Lanczos-Lovelock theo-
ries are interesting in many respect and possess some
unique properties that are not present in GR. One such
feature is the existence of superluminal propagating modes,
and hence the issue of causality is far from obvious in
Lanczos-Lovelock theories.
It is well known that, in a theory of gravity where higher

order curvature terms are considered, the gravitational
degree of freedoms (d.o.f.) propagates at a different speed
than that of the background ones. Here we shall refer the
background metric as the photon metric, and its correction
due to the higher curvature terms as the effective graviton
metric. Such results have been studied extensively by
numerous authors in the static case [68–75], by explicitly
obtaining effective graviton metric. This is ultimately a
consequence of the fact that, the causal structure of a
system of partial differential equation is determined by the
characteristics hypersurface, which turns out to be non-null
for Lanczos-Lovelock theories [70,73]. As a result, grav-
iton and photon attain different speed of propagation and
consequently different radius of circular null orbit and
shadow. In this section, we would like to understand how

these results generalize to the dynamical context, which will
enable us to compare the evolution of photon and graviton
sphere. We start by presenting an explicit calculation of the
graviton effective metric for five-dimensional Einstein-
Gauss-Bonnet gravity(a Lovelock theory), which admits
black hole solutions [65,85]. For computational ease, with-
out giving up any physical insights, we study the limiting
case of small Gauss-Bonnet coupling constant and distinctly
obtain the evolution of graviton and photon sphere. This
analysis also enables us to understand the shadow cast by
graviton and photon and their respective evolution. Let us
start with the Lanczos-Lovelock Lagrangian,

L ¼
Xkmax

k¼0

λkLk ð6:1Þ

where,

Lk ¼
1

2k
δaba1b1…akbk
cdc1d1…ckdk

Rab
cdRa1b1

c1d1…Rakbk
ckdk ð6:2Þ

For such higher curvature corrections, the form of
effective metric has been obtained (Eq. (2.24) of [74])
for arbitrary order Lovelock terms. The strategy developed
in [74], is to start with a background metric and study its
tensor perturbation. The effective metric is then identified
by looking for the coefficient of the second-order derivative
of the transverse-traceless perturbation hab in the linearized
theory, which represents the gravitational d.o.f. For Gauss-
Bonnet correction of Einstein-Hilbert Lagrangian, the
effective metric takes the form,

½Gb
d�∇b∇dhpq ¼ ½ðδpabqcd − δpqδabcdÞ − λ2ðδpaba1b1qcdc1d1

Ra1b1
c1d1

− δpqδ
aba1b1
cdc1d1

Ra1b1
c1d1Þ�∇b∇dhca ð6:3Þ

Note that, the first term in the right-hand side is the
background metric gab and the second term, i.e., the coef-
ficient of λ2 corresponds to the Gauss-Bonnet correction. In
Ref. [74], the above form of the effective metric for graviton
d.o.f. was obtained by assuming the backgroundmetric to be
static. Here in our analysis, since we are interested in
obtaining the effective graviton metric in the dynamical
case, we start with the following background metric ansatz,

ds2 ¼ −fðr; vÞdv2 þ 2dvdrþ r2dΩ2
D−2: ð6:4Þ

The nonvanishing components of the Riemann tensor for
this line element are given by,

Rvr
vr ¼ −

f00ðr; vÞ
2

; ð6:5Þ

Rij
kl ¼ 1 − fðr; vÞ

r2
δklij ; ð6:6Þ
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Rαi
αj ¼ −

f0ðr; vÞ
2r

δji ; ð6:7Þ

Rvi
rj ¼ −

_fðr; vÞ
2r

δji : ð6:8Þ

The indices i; j; k; l; etc ¼ 1; 2;…ðD − 2Þ denotes the
angular coordinates, while α ¼ ðv; rÞ. Equation (6.8) rep-
resents the additional contribution to theRiemann tensor due
to the time dependence of the metric. Now by following an
identical line of calculation in [74], we can obtain various
components of the effective graviton metric,1 i.e.,

Gv
v ¼ 1 − 2λ2

�
ðD − 4Þ

�
f0ðr; vÞ

r

�

− ðD − 4ÞðD − 5Þ
�
1 − fðr; vÞ

r2

��
; ð6:9Þ

Gr
v ¼ 2λ2ðD − 4Þ

_fðr; vÞ
r

; ð6:10Þ

and, the other components of the effective metric remains
the same as that of the static case derived in [74]. Note that,
Gvv ¼ Gv

vgvv þ Gr
vgrv and Grv ¼ Gv

v. Therefore, the effec-
tive graviton metric finally takes the form,

ds2eff ¼ Gvvdv2 þ 2Grvdvdrþ Gijdxidxj: ð6:11Þ

In our analysis, we are interested in the graviton circular null
orbit, for which case we have to work with the condition
ds2eff ¼ 0. This further allows us to divide the line element by
Grv and write the effective graviton metric in a somewhat
simplified and more intuitive form, i.e.,

ds2eff ¼
Gvv

Grv
dv2 þ 2dvdrþ Gij

Grv
dxidxj: ð6:12Þ

Using Eqs. (6.9) and (6.10), and defining α ¼ λ2ðD − 4Þ×
ðD − 3Þ, this finally reduces to,

ds2eff ¼ −
�
fðr; vÞ − 2αr _fðr; vÞ

ðD − 3Þr2 þ 2α½ð1 − fðr; vÞÞðD − 5Þ − rf0ðr; vÞ�
�
dv2 þ 2dvdrþ gðr; vÞdΩ2

D−2; ð6:13Þ

where gðr; vÞ ¼ Gij=Gv
v. In five-dimensions, the effective

metric takes the following form,

ds2eff ¼ −
�
fðr; vÞ − α _fðr; vÞ

r − αf0ðr; vÞ
�
dv2 þ 2dvdr

þ
�
1 − αf00ðr; vÞ
1 − αf0ðr;vÞ

r

�
dΩ2

3: ð6:14Þ

The above expression of the effective graviton metric is
analogous to Eq. (2.6) and allow us to obtain the evolution
of the radius of graviton circular null orbit by proceeding in
a similar approach developed in Sec. II as that of the
photon. Again for consistency, one might check that, in the
static limit we have _fðr; vÞ ¼ 0 and the photon and
graviton event horizon coincides but they possess different
radius of the circular null orbit, which is in agreement with
all earlier results [71,72,74]. With Eq. (6.14) as the effective
graviton metric, we are now set to obtain the evolution of
graviton sphere for the various choice of mass functions.

A. Photon vs graviton sphere

Before addressing the more complicated case of graviton
sphere, which requires some special care, first, we would
like to study the time evolution of the photon sphere in

five-dimensional Einstein-Gauss-Bonnet theory. Gauss-
Bonnet term represents the quadratic order Lanczos-
Lovelock correction to general relativity. Such a theory
admits spherically symmetric black hole solution, which in
terms of the ingoing coordinate has the form [65,86,87],

ds2 ¼ −fðr; vÞdv2 þ 2dvdrþ r2dΩ2
3 ð6:15Þ

where,

fðr; vÞ ¼ 1þ r2

2α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αMðvÞ

r4

r �
: ð6:16Þ

Here dΩ2
3 ¼ dθ2 þ sin2 θdϕ2 þ sin2 θ sin2 ϕdψ2 represents

the volume of the three-dimensional sphere spanned by the
angular coordinates ðθ;ϕ;ψÞ and α is the Gauss-Bonnet
coupling constant. Note that, by virtue of the spherical
symmetry, one can always set θ ¼ ψ ¼ π=2 and restrict
only to the equatorial orbits for which the evolution
equation is of the same form as Eq. (2.7), with fðr; vÞ
replaced by Eq. (6.16). For accreting matter, i.e., increasing
mass, we solve this differential equation with respect
to the future boundary conditions rphðv → ∞Þ ¼ ffiffiffi

2
p ðM2 −

MαÞ1=4 and _rphðv → ∞Þ ¼ 0 to obtain the time evolution
of the radius of the photon sphere around a Einstein-Gauss-
Bonnet black hole. Similarly, for the outgoing coordinate
we solve Eq. (2.9) with respect to the boundary conditions1For a complete derivation refer to Appendix B.
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rphðu→−∞Þ¼ ffiffiffi
2

p ðM2−MαÞ1=4 and _rphðu → −∞Þ ¼ 0.
For the evolution of shadow we use Eq. (4.7) with the
choice of fðr; vÞ in Eq. (6.16). The results are illustrated
in Fig. 13.
Having discussed the evolution of the photon sphere in

the context of five-dimensional Gauss-Bonnet gravity, now
let us move to the more interesting case of graviton circular
null orbit. To that end, we start with the effective graviton
metric given in Eq. (6.14) which is of the form,

ds2eff ¼−feffðr;vÞdv2þ2dvdrþgðr;vÞ;dΩ2
D−2: ð6:17Þ

Following an identical line of calculation as in Sec. II, we
can obtain the following second order differential equation
which governs the evolution of graviton sphere,

̈rgrðvÞ þ
1

2
½_rgrðvÞg0ðr; vÞ − _gðr; vÞ − feffðr; vÞg0ðr; vÞ�

×

�
feffðr; vÞ − 2_rgr

gðr; vÞ
�
−
3

2
_rgrðvÞf0effðr; vÞ

þ 1

2
½feffðr; vÞf0effðr; vÞ − _feffðr; vÞ� ¼ 0: ð6:18Þ

For consistency, one might check that when gðr; vÞ ¼ r2,
we recover the previously derived Eq. (2.7). Our aim here is
to obtain the time evolution for the graviton sphere and
understand how it is different from that of the photon
sphere. As emphasized earlier, for computational simplic-
ity, we restrict our attention to the small value of the Gauss-
Bonnet coupling constant, α. This does not ruin any
physical insights since the distinction between the photon
and graviton sphere would be still significant. Hence in this
limit we have,

feffðr;vÞ¼ 1−
MðvÞ
r2

þ
�
MðvÞ2
r6

−
_MðvÞ
r3

�
αþOðα2Þ

ð6:19Þ

gðr; vÞ ¼ r2 þ 8MðvÞa
r2

þOðα2Þ: ð6:20Þ

Now we feed in these OðαÞ expressions of feffðr; vÞ and
gðr; vÞ in Eq. (6.18) to obtain the evolution of the graviton
sphere for a given choice of smoothly increasing mass
function. In order to solve Eq. (6.18) numerically, one
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FIG. 13. This figure illustrates the evolution of the photon sphere and shadow around a five-dimensional Gauss-Bonnet black hole for
the various choice of coupling constant α. The top left and right panel shows the evolution of photon sphere formðvÞ ¼ 1þ tanhðvÞ and
mðvÞ ¼ 1 − tanhðuÞ, respectively. In the bottom left and right panel we have plotted the corresponding evolution of shadow.
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requires two future boundary conditions. Therefore, first
we need to derive an expression for the radius of graviton
sphere in the static limit, i.e., by setting _feffðr; vÞ ¼
_gðr; vÞ ¼ 0 in Eq. (6.18), which further reduces to,

gðrÞf0ðrÞ − fðrÞg0ðrÞjr¼Rgr
¼ 0: ð6:21Þ

Up to OðαÞ, this leads to the following algebraic equation,

r6 − 2r4M − 8r2Mαþ 4M2αjr¼Rgr
¼ 0: ð6:22Þ

Note that, when α ¼ 0, we obtain Rgr ¼
ffiffiffiffiffiffiffi
2M

p
, which is

precisely the radius of photon sphere for the five-dimen-
sional Schwarzschild black hole. Therefore, this allows us
to expand the solution of the above algebraic equation
around

ffiffiffiffiffiffiffi
2M

p
as,

Rgr ¼
ffiffiffiffiffiffiffi
2M

p
þ AαþOðα2Þ ð6:23Þ

with A being some unknown factor to be determined by
substitutingRgr in Eq. (6.22) and keeping terms up toOðαÞ.
This leads to,

Rgr ¼
ffiffiffiffiffiffiffi
2M

p
þ 3α

2
ffiffiffiffiffiffiffi
2M

p þOðα2Þ: ð6:24Þ

This represents the radius of the graviton sphere around a
static spherically symmetric Gauss-Bonnet black hole in

the limit when the coupling constant is small. Now, with the
boundary condition rgrðv→∞Þ¼Rgr and _rgrðv→∞Þ¼0,
we solve Eq. (6.18) to obtain the evolution of graviton
sphere. We illustrate this result in Fig. 14 for the choice of
mass function MðvÞ ¼ 1þ tanhðvÞ.
From Fig. 14, we see a distinction between the evolution

of photon and graviton sphere. Note that, as the Gauss-
Bonnet coupling constant α becomes smaller and smaller,
both photon and graviton sphere approach each other,
which one should expect. This implies, for a five-
dimensional Schwarzschild black hole, there is no dis-
tinction between photon graviton sphere. It is not surprising
since the effective metric contribution comes from the
higher curvature correction, which is here is the Gauss-
Bonnet correction. Similarly one can follow an identical
approach developed in Sec. IV to obtain the dynamical
evolution of the graviton shadow with respect to the
effective graviton metric, which reads,

αðvÞ2 þ βðvÞ2 ¼ gðrg; vÞ
feðr; vÞ

�
1 −

�
_rgðvÞ

feðr; vÞ − _rgðvÞ
�

2
�
:

ð6:25Þ

Again, for consistency one might set gðr; vÞ ¼ r2 to
recover the evolution equation of photon shadow. The
shadow casted by the graviton lensing is clearly different
than that of the photon and we illustrate this distinction
in Fig. 15.
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FIG. 14. In this figure we compare the evolution of photon and graviton sphere around a five-dimensional Gauss-Bonnet black hole for
the choice of mass function MðvÞ ¼ 1þ tanhðvÞ and the coupling constant α ¼ 0.01ðtop leftÞ, 0.001(top right), 0.000 01(bottom),
respectively.

MISHRA, CHAKRABORTY, and SARKAR PHYS. REV. D 99, 104080 (2019)

104080-20



VII. CONCLUSION

Conclusive evidence toward the existence of black holes
is building up with detection of gravitational waves and
existence of supermassive compact objects at the center of
most of the galaxies. However, the most direct test in this
respect will be the detection of black hole shadow, a dark
region surrounding the black hole due to the existence of a
photon sphere. Since most of the astrophysical black holes
are accreting it is legitimate to understand the evolution of
the photon sphere in the context of dynamical black holes.
In this work, we have achieved this goal, i.e., determining
the evolution of the photon sphere and black hole shadow
in the context of dynamical black holes. Starting from a
spherically symmetric situation, we have derived the
differential equation governing the evolution of the photon
sphere and have subsequently applied it for Vaidya,
Reissner-Nordström-Vaidya and de Sitter Vaidya space-
time. For Vaidya spacetime, an appropriate mass function
results in a well-behaved evolution of the photon sphere. It
is clear that as the mass function grows the photon sphere
should also grow. On the other hand, in Reissner-
Nordström-Vaidya spacetime, there can be well-behaved
mass and charge functions violating the null energy
condition. Then it appears that in those situations besides
the event and apparent horizon the photon sphere also starts
decreasing in radius. This feature is counterintuitive, and it
is interesting that violation of energy condition is so
ingrained in the evolution of the photon sphere, that its
nature changes. Furthermore, interestingly, for de Sitter

Vaidya spacetime the photon sphere starts depending
on the choice of the cosmological constant, unlike the
Schwarzschild-de Sitter spacetime, where the photon
sphere did not depend on the choice of the cosmological
constant. As evident from the above discussion, in the
dynamical context, the shadow of the black hole will also
get modified, which is also borne out by our computation of
black hole shadow as well. The same story continues to
hold for rotating spacetimes as well. However, in the
dynamical contexts, it turns out that the Hamilton-Jacobi
equation is not separable unless slow-rotation limit is
assumed. Thus in the slow rotation limit, we have presented
the evolution equation of the photon sphere and have
demonstrated the same using numerical analysis. Besides,
the evolution of the black hole shadow has also been
presented. So far we have been considering dynamical
solutions within the framework of general relativity, which
subsequently have been generalized to dynamical solutions
for Einstein-Gauss-Bonnet gravity, the first nontrivial
correction over and above general relativity, which keeps
field equations second order. In this context besides the
photon sphere, we have also studied the evolution of
graviton sphere. This is because, the photon moves in null
trajectory, while the graviton does not in theories of gravity
beyond general relativity. But one can circumvent this
problem by arguing that there is some effective metric
different from the actual one, where gravitons propagate
along null lines. The fact that photon and graviton sphere
differs has been demonstrated explicitly, along with their
evolution as the black hole accretes matter.
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APPENDIX A: DERIVATION OF THE
EVOLUTION EQUATION FOR PHOTON SPHERE

In this section we provide a complete derivation of the
evolution equation of the photon sphere, i.e., Eq. (2.7). For
ingoing case we have rph ¼ rphðvÞ. Hence,

drphðvÞ ¼
∂rphðvÞ
∂v dv ¼ _rphðvÞdv: ðA1Þ
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FIG. 15. This figure represents a snapshot of the evolution of
graviton and photon shadow at ingoing time v ¼ 2. The mass
function corresponding to this evolution is MðvÞ ¼ 1þ tanhðvÞ
and the coupling constant α is chosen to be 0.01.
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For null orbits we now put ds2 ¼ 0 from Eq. (2.6) but
keeping in mind that, now we do not have drph ¼ 0 rather
drph is given by Eq. (A1). This leads to the expression,

�
dϕ
dv

�
2

¼ 1

rphðvÞ2
fðrphðvÞ; vÞ −

2

rphðvÞ2
_rphðvÞ: ðA2Þ

Now for the metric in Eq. (2.6) we have the following
nonvanishing components of the Christoffel connection,

Γv
vv¼

1

2
f0ðr;vÞ; Γr

vv¼
1

2
½ _fðr;vÞþfðr;vÞf0ðr;vÞ�;

Γv
rv¼−

1

2
f0ðr;vÞ Γv

θθ¼−r; Γr
rθ¼

1

r
;

Γv
ϕϕ¼−rsin2θ; Γϕ

rϕ¼
1

r
Γθ
ϕϕ¼−cosθsinθ; Γϕ

θϕ¼ cotθ

and the geodesic equations can be written as,

d2r
dλ2

−
∂f
∂r

�
dr
dλ

��
dv
dλ

�
þ 1

2

�
f
∂f
∂r −

∂f
∂v

��
dv
dλ

�
2

− rf

�
dϕ
dλ

�
2

¼ 0 ðA3Þ

d2v
dλ2

þ 1

2

∂f
∂r

�
dv
dλ

�
2

− r

�
dϕ
dλ

�
2

¼ 0: ðA4Þ

Now we set r ¼ rphðvÞ for the evolution of the radius of
photon sphere. From Eq. (A1) we obtain,

d2rphðvÞ
dλ2

¼ _rphðvÞ
d2v
dλ2

þ ̈rphðvÞ
�
dv
dλ

�
2

¼ _rphðvÞ
�
rphðvÞ

�
dϕ
dλ

�
2

−
1

2

∂f
∂r

����
rphðvÞ;v

�
dv
dλ

�
2
�

þ ̈rphðvÞ
�
dv
dλ

�
2

: ðA5Þ

Now we plug in Eqs. (A2) and (A5) in Eq. (A3) to obtain

r̈phðvÞþ _rphðvÞ
�

3

rphðvÞ
fðrph;vÞ−

3

2

∂f
∂r

����
rphðvÞ;v

�

−
2

rphðvÞ
_rphðvÞ2þ

1

2

�
f
∂f
∂r

����
rphðvÞ;v

−
∂f
∂v

����
rphðvÞ;v

�

−
1

rphðvÞ
fðrphðvÞ;vÞ2¼ 0 ðA6Þ

Similar procedure can be carried out for the evolution
equation of photon sphere in terms of outgoing coordinate,
i.e., Eq. (2.8) to obtain Eq. (2.9).

APPENDIX B: DERIVATION OF THE
EFFECTIVE GRAVITON METRIC

We shall start with the Gv
v component, for which we set

b ¼ d ¼ v in Eq. (6.3) and obtain the correction as,

λ2ðδpava1b1qcvc1d1
− δpqδ

ava1b1
cvc1d1

ÞRa1b1
c1d1∇v∇vhca

¼ λ2


δp̂ â â1 b̂1
q̂ ĉ ĉ1 d̂1

− δpqδ
â â1 b̂1
ĉ ĉ1 d̂1

�
Râ1 b̂1

ĉ1 d̂1∇v∇vhĉâ ðB1Þ

Here â; b̂ ¼ 1; 2;…D − 1, are the spatial indexes, i.e., the
radial coordinate r and angular coordinates. We shall
denote the angular coordinates as i; j ¼ 1; 2;…D − 2. In
the above result we have used the identity,

δa1a2v…ak
b1b2v…bk

¼ δâ1 â2 …âk
b̂1 b̂2 …b̂k

ðB2Þ

Hence Eq. (B1) becomes,

λ2


4δp̂ â rb̂1

q̂ ĉ rd̂1
Rrb̂1

rd̂1 þ δp̂ â â1 b̂1
q̂ ĉ ĉ1 d̂1

Râ1 b̂1
ĉ1 d̂1 − 4δpqδ

ârb̂1
ĉrd̂1

Rrb̂1
rd̂1

− δpqδ
â â1 b̂1
ĉ ĉ1 d̂1

Râ1 b̂1
ĉ1 d̂1

�
¼ λ2



4δp̂ â ri

q̂ ĉ rjRri
rj þ δp̂ â ij

q̂ ĉ klRij
kl − 4δpqδâriĉrjRri

rj

− δpqδ
âij
ĉklRij

kl
�
∇v∇vhĉâ:

Note that, we are using gauge-invariant transverse and
traceless tensor perturbation, i.e., hμν¼hμi¼hii¼∇ihij¼0,
where μ, ν ¼ r, v. To understand the calculation further,
let us concentrate on the first term, i.e., δp̂ â ri

q̂ ĉ rj . Note that,
because of the antisymmetric properties of δ tensor, it
cannot have two same indexes either in the contravariant or
in the covariant position. Hence all other indexes in this
term apart from r are angular coordinates and so on for
other terms. Now we put the component of Riemann tensor
from Eqs. (6.5)–(6.7) to obtain,

λ2

�
4δp̂ âriq̂ ĉrj

�
−f0

2r

�
δji þδp̂ â ijq̂ ĉkl

�
1−f
r2

�
δklij −4δpqδâriĉrj

�
−f0

2r

�
δji

−δpqδ
âij
ĉkl

�
1−f
r2

�
δklij

�
∇v∇vhĉâ

¼ λ2

�
4δp̂ â iq̂ ĉ i

�
−f0

2r

�
þ2δp̂ â ijq̂ ĉ ij

�
1−f
r2

�
−4δpqδâiĉi

�
−f0

2r

�

−2δpqδ
âij
ĉij

�
1−f
r2

��
∇v∇vhĉâ

¼ λ2

�
4δp̂ âq̂ ĉ ðD−4Þ

�
−f0

2r

�
þ2δp̂ âq̂ ĉ ðD−4ÞðD−5Þ

�
1−f
r2

�

−4δpqδâĉðD−3Þ
�
−f0

2r

�

−2δpqδâĉðD−3ÞðD−4Þ
�
1−f
r2

��
∇v∇vhĉâ:
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Here it is understood that f is a function of r and v, i.e.,
f ¼ fðr; vÞ, which we have considered for simplicity.
Deriving the above result we have used the following
identities,

δijmklm ¼ ðD − 4Þδijkl; ðB3Þ

δijmn
klmn ¼ ðD − 4ÞðD − 5Þδijkl; ðB4Þ

δimn
jmn ¼ ðD − 3ÞðD − 4Þδij; ðB5Þ

δimjm ¼ ðD − 3Þδij; ðB6Þ
δijmno
klmno ¼ ðD − 4ÞðD − 5ÞðD − 6Þδijkl: ðB7Þ

Note that, the last two terms in the above expression do not
contribute, because they contain a δâĉ term, which multiplies
with hĉâ to give zero from the traceless condition. Hence we
are left with only,

λ2

�
4δp̂ â

q̂ ĉ ðD − 4Þ
�
−f0

2r

�
þ 2δp̂ â

q̂ ĉ ðD − 4ÞðD − 5Þ
�
1 − f
r2

��
∇v∇vhĉâ

¼ λ2

�
4ðδp̂q̂δâĉ − δp̂ĉ δ

â
q̂ÞðD − 4Þ

�
−f0

2r

�
þ 2ðδp̂q̂δâĉ − δp̂ĉ δ

â
q̂ÞðD − 4ÞðD − 5Þ

�
1 − f
r2

��
∇v∇vhĉâ:

Again using the fact that the δâĉ term does not contribute, we further get,

λ2

�
2δp̂ĉ δ

â
q̂ðD − 4Þ

�
f0

r

�
− 2δp̂ĉ δ

â
q̂ðD − 4ÞðD − 5Þ

�
1 − f
r2

��
∇v∇vhĉâ

¼ λ2

�
2ðD − 4Þ

�
f0

r

�
− 2ðD − 4ÞðD − 5Þ

�
1 − f
r2

��
∇v∇vhp̂q̂ :

The coefficient of the kinetic term we identify as the correction to the background metric and hence the ðv; vÞ component of
the effective metric is given by,

Gv
v ¼ 1 − 2λ2

�
ðD − 4Þ

�
f0

r

�
− ðD − 4ÞðD − 5Þ

�
1 − f
r2

��
: ðB8Þ

Now let us calculate Gr
v component. For this we set b ¼ r, d ¼ v in Eq. (6.3) to obtain,

λ2ðδpava1b1qcrc1d1
− δpqδ

ava1b1
crc1d1

ÞRa1b1
c1d1∇v∇vhca ¼ λ2½4δpavriqcrvjRvi

rj þ δpavijqcrkl Rij
kl − 4δpqδavricrvjRvi

rj − δpqδ
avij
crklRij

kl�∇v∇vhca:

Note that δpavriqcrvj ¼ −δpaiqcj and δ
pavij
qcrkl ¼ 0 in the above expression. The first identity is because of antisymmetric properties of

δ tensor. The second identity is because all other indexes apart from “v” in the contravariant position and index apart from
“r” in the covariant position are angular index. This gives zero when the determinant is taken. Using this and by replacing
the components of Riemann tensor, the above expression becomes,

λ2

�
−4δpaiqcj

�
− _f
2r

δji

�
− 4δpqδaicj

�
− _f
2r

δji

��
∇v∇vhca ¼ λ2

�
2δpaiqci

�
_f
r

�
þ 2δpqδaici

�
_f
r

��
∇v∇vhca

¼ λ2

�
2δpaqc ðD − 4Þ

�
_f
r

�
þ 2δpqδacðD − 3Þ

�
_f
r

��
∇v∇vhca:

The last term again does not contribute because of the traceless condition, and finally, we have [70],

Gr
v ¼ 2λ2ðD − 4Þ

_f
r
: ðB9Þ
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