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In this work we present sets of solutions for rotating charged boson stars with different coupling values.
By adopting local comoving coordinates, we are able to find expressions for the effective hydrodynamic
quantities of the fluids as seen by this class of observers. We show that not only is the energy density
nonzero at the center, for the uncharged case it has a local maximum at the core from which it decreases
until the point of local minimum where its variation is discontinuous. For the first time (to our knowledge),
it is reported how rotating boson stars, charged and uncharged, are completely anisotropic fluids featuring
three different pressures. Furthermore, the character of the electromagnetic fields is analyzed.
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I. INTRODUCTION

Gravitationally bound complex scalar fields minimally
coupled to gravity, now coined boson stars, have been first
realized half a century ago [1,2]. One year later, it was
shown that quantized real scalar fields give rise to the same
equations of motion when treated semiclassically [3]. The
gauged generalizations of boson stars, based on the theory
with a local Uð1Þ symmetry, came to be known circa
twenty years thereof [4]. The more delicate case of rotating
stars was found in the 1990s [5,6] by solving the set of fully
nonlinear partial differential equations after a perturbative
approach for slow rotation [7] turned fruitless. Thereafter,
boson stars became the subject of extensive studies of
gravitational physics in the strong regime.
The initial setup of a free massive scalar field gave way

to systems with interacting potentials that rendered more
massive and astrophysically relevant stars, like the repul-
sive quartic interaction [8] and the sixtic potential [9] for
which solutions were named solitonic stars, for they would
exist even in Minkowski spacetime as a self-binding soliton
called Q-Ball [10,11]. The solitonic boson star has later
been shown to give an appropriate description of what an
axion star could be [12].
Rotating boson stars are extremely interesting for their

unique properties which highly distinguish them from the
more commonly investigated astrophysical objects such as
black holes and neutron stars. For instance, their angular
momentum is quantized [6], J ¼ ℏmN, where m is a
rotation integer and N the particle number. Their family
of solutions, stability analysis, existence in higher dimen-
sions, and excited states are reported in [13–21]. Moreover,
the topology of the scalar field changes upon rotation as it
is then distributed along a torus as required by regularity.

As a result, the maximum of their energy density happens
off center warping spacetime in an unusual way, and the
dynamics of particles freely falling in their spacetime takes
a very peculiar form [22,23]. It has recently been shown
[24] that when the gtt component of the metric contains a
local maximum, which occurs in the surroundings of
rotating boson stars, a ring of points is formed where
particles initially at rest remain at rest due to an exclusive
inertial phenomenon.
In what concerns charged boson stars, their stability,

quasibound states around black holes, behavior when
critically charged and analytical approximations have
broadly appeared in the literature [25–29]. Likewise, the
case of charged compact bosons stars, where the scalar field
vanishes outside a finite region, has received considerable
attention [30–34]. However, the general case when both
rotation and charge are present has been less investigated.
The system in absence of gravity is discussed in [35], while
some properties of rotating charged boson stars in an
asymptotically flat spacetime are described in [36], and
in four dimensional anti de-Sitter spacetime in [37]. The
existence of solutions for hairy Kerr-Newman black holes
has also been reported and analyzed in [38].
In this paper we revisit the general case of charged

rotating boson stars and construct sets of solutions for
different charges and rotation number. A new approach in
terms of the hydrodynamic quantities of the fluids is given
in local comoving coordinates, so that one can appreciate
unambiguously how a certain class of observers measures
the energy density and different pressures of the star and
how they relate to each other.
The paper is organized as follows. In Sec. II we present

the model that describes our system, obtain the partial
differential equations and provide the necessary boundary
conditions required for solving it and give the expressions
for the conserved quantities that arise from the solutions.*lucas.gardai.collodel@uni-oldenburg.de
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The numerical setup is briefly described in Sec. III, wherewe
give the results for the observables for the different parameter
sets we solved for.Wemove to local coordinates in Sec. IVin
order to define the energy density and pressures of our fluids,
which are then calculated for a selected number of solutions.
In Sec. V, the invariants of the electromagnetic field are
presented, in comparison to those of a Kerr-Newman black
hole. For illustration purposes, wemove to local zero angular
momentum frames and calculate the components of the
electric and magnetic fields. Our conclusions are drawn in
Sec. VI. The metric signature is taken to be ð−;þ;þ;þÞ,
Greek indices represent coordinate indices, while Latin
indices are used for the vierbein basis. We use geometrical
units such that c ¼ ℏ ¼ 8πG ¼ 1.

II. THEORETICAL SETTING

In this section the action for charged boson stars and the
corresponding Einstein and field equations are presented.
The Ansätze for the metric, the boson field, and the
electromagnetic potential are given and the boundary
conditions for regular, asymptotically flat solutions are
considered. Also, the conserved charges and their inter-
relations are discussed.

A. Action

The system is described by a complex gauged scalar field
minimally coupled to gravity,

S ¼
Z �

R
2
−
1

2
gμν½ðDμΦÞðDνΦÞ� þ ðDμΦÞ�ðDνΦÞ�

− UðjΦjÞ − 1

4
FμνFμν

� ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where R is the curvature scalar, Φ is the complex scalar
field, U is the self-interaction potential of the scalar field,
Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field tensor and
Dμ ≡∇μ þ iqAμ is the covariant derivative that minimally
couples the scalar field to the gauge potential Aμ endowing
the system with U(1) local symmetry.
Variation of the action with respect to gμν leads to the

Einstein’s field equations,

Gμν ≡ Rμν −
1

2
Rgμν ¼ Tμν; ð2Þ

where the energy momentum tensor reads

Tμν¼−gμν
�
1

2
gσλ½ðDσΦÞðDλΦÞ�þðDσΦÞ�ðDλΦÞ�

þUðjΦjÞþ1

4
FσλFσλ

�

þ½ðDμΦÞ�ðDνΦÞþðDμΦÞðDνΦÞ��þFμσFνλgσλ: ð3Þ

The field equations of the scalar field are obtained by
variation of the Lagrangian with respect to Φ�

DμDμΦ ¼ ∂U
∂jΦj2Φ; ð4Þ

and variation of the Lagrangian with respect to the gauge
potential yields the Maxwell equations

∇νFνμ ¼ qjμ ð5Þ

with conserved electromagnetic current

jμ ¼−iðΦ�∂μΦ−Φ∂μΦ�Þþ2qjΦj2Aμ; ∇μjμ ¼ 0: ð6Þ

B. Ansätze

We are interested in stationary axisymmetric boson star
solutions. We adopt the quasi-isotropic Lewis-Papapetrou
metric in adapted spherical coordinates ðt; r; θ;φÞ, for
which the line element reads

ds2¼−fdt2þ l
f

�
gðdr2þ r2dθ2Þþ r2sin2θ

�
dφ−

ω

r
dt

�
2
�
;

ð7Þ

where metric functions f, l, g, and ω are functions of r and
θ only. This spacetime then possesses two Killing vector
fields, namely ξ ¼ ∂t, and η ¼ ∂φ. In this spacetime, the
only off diagonal nonzero components of Einstein’s tensor
are Gtφ and Grθ (and their symmetric counterparts), from
which it follows that the gauge potential has only two
nontrivial contributions, A ¼ Vðr; θÞdtþ Cðr; θÞdφ. The
usual Ansatz for the boson field [6]

Φðt; r; θ;φÞ ¼ ϕðr; θÞeiωstþimφ; ð8Þ

fixes the gauge. Here the boson frequency ωs and the
winding number m are real constants and furthermore m is
an integer due to the identification ΦðφÞ ¼ Φðφþ 2πÞ.
One could instead work with a real scalar field, and the
parameters ωs and m would then appear in the boundary
conditions for Aμ. On the other hand, there is no single
valued function hðxμÞ ¼ R

Aμdxμ for which the gauge
transformation Φ → ΦeihðxμÞ, Aμ → Aμ − i

q ∂μhðxμÞ makes
Aμ trivial everywhere for Fμν ≠ 0. It is worth noticing that
there is a screening mechanism in this system due to the
ϕ2AμAμ term in the Lagrangian, which corresponds to a
position dependent mass term.
In the absence of gravity, this is the simplest interacting

gauge theory one can write down. Indeed, if one is
interested in Q-balls, which are bound through their self-
interaction, one must adopt nonrenormalizable potentials
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[10,39,40]. It was pointed out in [12], based on the
pioneering work [3], that real quantized scalar fields yield
the same equations of motion as those of complex scalar
fields in an entirely classical approach. In this sense, the
axion when described by a real quantized scalar field would
not give rise to the oscillatons [41] when coupled to gravity,
which are time dependent solutions of a gravitationally
bound real scalar field obtained through the classical
approach. Instead, axion stars are realized by solitonic
boson stars. The axion potential is given by

UaðΦÞ ¼ mafa

�
1 − cos

�
Φ
fa

��
; ð9Þ

where ma is the axion mass and fa is the decay constant.
In the semiclassical approach, the field is quantized,
Φ → Φ̂ ¼ Φ̂þ þ Φ̂−, and in order to appreciate the action
of the potential on the different states and calculate the
expectation value of energy-momentum tensor hTμ

νi, the
self-interaction potential is Taylor expanded,

UaðΦÞ ∼m2
a

2
Φ2 −

1

4!

m2
a

f2a
Φ4 þ 1

6!

m2
a

f4a
Φ6 − � � � : ð10Þ

It is shown in [12] that the solutions do not depend
strongly on the number of terms considered in the above
expansion, as long as the quartic term is present with the
correct minus sign. Because we are interested in a theory
with a lower bound for the energy, we consider yet the
next term in the expansion above adopting the sixtic
potential, which also gives rise to Q-balls in the absence of
gravity,

UðjΦjÞ ¼ ϕ2ðm2
b − aϕ2 þ bϕ4Þ; ð11Þ

with m2
b ¼ 1.1, a ¼ 2, and b ¼ 1. We will keep the boson

frequency ωs, the gauge coupling parameter q, and the
winding number m as free parameters, which determine
the charged rotating boson star solutions.

C. Boundary conditions

When the Ansätze for the metric, the scalar field, and the
gauge field are substituted in Eqs. (2), (4), and (5) the
general field equations reduce to a system of coupled
nonlinear partial differential equations in r and θ. In order
to find asymptotically flat and regular solutions boundary
conditions need to be imposed on the functions, respec-
tively their normal derivatives, at the origin and in the
asymptotic region, as well as along the symmetry axis.
Also, for solutions with even parity boundary conditions in
the equatorial plane are imposed.

At the origin, regularity requires that

∂rfjr¼0 ¼ 0; ∂rljr¼0 ¼ 0; gjr¼0 ¼ 1; ωjr¼0 ¼ 0;

ϕjr¼0 ¼ 0; ∂rVjr¼0 ¼ 0; Cjr¼0 ¼ 0: ð12Þ

Since our spacetime is asymptotically Minkowski, we need
the scalar and electromagnetic fields to be zero at spatial
infinity,

fjr→∞ ¼ 1; ljr→∞ ¼ 1; gjr→∞ ¼ 1; ωjr→∞ ¼ 0;

ϕjr→∞ ¼ 0; Vjr→∞ ¼ 0; Cjr→∞ ¼ 0; ð13Þ

where we stress again that the values of V and C are set by
the gauge.
On the symmetry axis, the elementary flatness conditions

sets gjθ¼0 ¼ 1. The other fields are, once again, determined
as to guarantee regularity,

∂θfjθ¼0 ¼ 0; ∂θljθ¼0 ¼ 0; gjθ¼0 ¼ 1; ∂θωjθ¼0 ¼ 0;

ϕjθ¼0 ¼ 0; ∂θVjθ¼0 ¼ 0; Cjθ¼0 ¼ 0; ð14Þ

and one can appreciate how rotation brings the nontrivial
scalar field to possess nontrivial topology.
Finally, because we are describing a system with even

parity, all angular derivatives must vanish on the equatorial
plane,

∂θfjθ¼π=2 ¼ 0; ∂θljθ¼π=2 ¼ 0; ∂θgjθ¼π=2 ¼ 0;

∂θωjθ¼π=2 ¼ 0; ∂θϕjθ¼π=2 ¼ 0; ∂θVjθ¼π=2 ¼ 0;

∂θCjθ¼π=2 ¼ 0: ð15Þ

D. Conserved quantities

Charged boson stars are characterized by physical
observables like mass M, angular momentum J, electric
charge Q, respectively particle number N, as well as dipole
moment μ. Here we discuss the interrelation of these
quantities and how they are obtained. In a stationary
asymptotically flat spacetime, the Komar expression pro-
vides a way to calculate global quantities directly asso-
ciated with the Killing vectors. The mass and the angular
momentum

M ¼ 2

Z
Σ
RμνnμξνdV; J ¼ −

Z
Σ
RμνnμηνdV; ð16Þ

are then calculated as an integral over a spacelike
asymptotically flat hypersurface Σ bounded at spatial
infinity. Here, Rμν is the Ricci tensor, nμ is a vector normal

to Σ with nμnμ ¼ −1, and dV ¼ ffiffiffiffiffiffiffiffiffiffiffi
−g=f

p
drdθdφ denotes

the natural volume element. The metric (7) implies that
nμ ¼ ðξμ þ ω=rημÞ= ffiffiffi

f
p

. Expressing the Ricci tensor in
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terms of the energy-momentum tensor and employing the
field equations, yields

M ¼
Z

ð2Tt
t − TÞ ffiffiffiffiffiffi

−g
p

drdθdφ;

J ¼ −
Z

Tt
φ

ffiffiffiffiffiffi
−g

p
drdθdφ: ð17Þ

Local gauge symmetry gives rise to a conserved Noether
current jμ [Eq. (6)]. The associated electric chargeQ can be
obtained by integrating the projection of the current onto
the future directed hypersurface normal nμ and integrating
over the whole space,

N ¼
Z
Σ
jμnμdV; Q ¼ qN; ð18Þ

where N is considered as particle number of the star.
The integrand of the above equation is simply −jt ffiffiffiffiffiffi−gp

.
It is well known that for uncharged rotating boson stars
Tt

φ ¼ mjt and the angular momentum is quantized, assum-
ing always values that are multiples of the particle number
J ¼ mN [6]. The charged case is more involved. Here we
show that the quantization relation valid for uncharged
boson stars also holds for charged boson stars. We note that
the integrand of the angular momentum can be written as

Tt
φ ¼ mjt þ qAφjt þ FtμFφμ: ð19Þ

The third term can be rewritten as

FtμFφμ ¼ Ftμ∇φAμ −∇μðFtμAφÞ − qAφjt; ð20Þ

where the Maxwell equation (5) has been used. The first
term on the right-hand side is identically zero, the second
one is a total divergence, which does not contribute to the
integral (Aφ ¼ 0 at infinity), and the third one cancels the
second term in Eq. (19). Even though the integrands of J
and N are different, after integration the quantization
relation J ¼ mN still holds in the rotating charged case.
The global quantities M, J, Q, and furthermore the

magnetic moment μ can be extracted from the asymptotic
behavior of the metric and gauge field functions, as

M ¼ 1

2
lim
r→∞

r2∂rf; J ¼ 1

2
lim
r→∞

r2ω;

Q ¼ 1

2
lim
r→∞

r2∂rV; μ ¼ 1

2
lim
r→∞

r2∂rC: ð21Þ

III. NUMERICAL SOLUTIONS

The system comprises seven coupled nonlinear partial
differential equations to be solved for four metric functions
(f, l, g and ω) and three matter/gauge functions (ϕ; V and
C). In order to solve this system numerically, we employ a

two dimensional grid with a compactified radial coordinate
x ¼ r=ðrþ 1Þ where x ∈ ½0; 1� covers the radial direction
from zero to infinity, and θ ∈ ½0; π=2� since all of the
quantities have even parity with respect to reflections at
the equatorial plane. The equations are then solved with the
subroutines for elliptical PDEs of the FIDISOL package, with
most grids containing 125 × 50 points and precision of
10−7. For further discussion of the numerical method see
[42] and, e.g., [43,44].

A. Domain of existence

The charged rotating boson stars are determined by the
boson frequency ωs, the gauge coupling parameter q, and
the winding numberm. We keep the winding number fixed,
m ¼ 1. For q ¼ 0 the uncharged rotating boson stars are
obtained. The charged rotating boson stars emerge from the
uncharged rotating boson stars when the parameter q is
increased. In the nonrotating case the range of the para-
meter q was discussed in [25,28]. In our study of rotating
boson stars we found that solutions exist up to a maximal
value of q. However, numerics fails when the maximal
value is approached.
As for the uncharged rotating (and nonrotating) boson

stars the range of ωs is restricted to ωs;min < ωs < ωs;max,
where ωs;max ¼ mb. The minimal value ωs;min has to be
determined numerically and depends on the gauge coupling
parameter q. We observe that ωs;min increases with increas-
ing values of q, leading to a restricted range of the
frequency ωs.

B. Observables

For convenience we will use the quantity ϕ1 ¼ ∂rϕjr¼0

instead of ωs as parameter. ϕ1 ¼ 0 corresponds to
ωs ¼ ωs;max.
The mass, angular momentum, charge, and magnetic

moment as function of ϕ1 are presented in Fig. 1 for some
families of solutions. We observe that the mass and angular
momentum increase with increasing charge for fixed value
of ϕ1. The maximummass and angular momentum solution
occurs for smaller values of ϕ1 as the charge increases.
As in the nonrotating case, the Coulomb repulsion between
the star’s components accounts to an equilibrium state at a
higher mass value for the same value of ϕ1 when compared
to solutions with smaller gauge couplings.
In order to have some insight in the stability of these

solutions, we refer to the diagrams in Fig. 2, where we show
themass as function of the particle number for fixed values of
the gauge coupling parameter, together with the line repre-
sentingN free bosonswithmassmb. The qualitative behavior
is the same as described in [20,21]. The first branch
comprehends the solutions with nontopological stability. It
extends up to the maximal mass and maximal particle
number, where it connects to a second branch which extends
back to smaller masses and particle number. Along the
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second branch the solutions possess larger mass at given
particle number than the solutions on the first branch. Thus
the solutions on the secondbranch are quantummechanically
unstable. Once the mass on the second branch exceeds the
mass of free bosons (at given particle number) the boson stars
are also classically unstable.
The new feature we observe is that the higher the value

of the gauge coupling, the smaller is the difference between
the mass of the boson star and the mass of free bosons with
the same particle number.

The larger the gauge coupling, the larger the Coloumb
repulsion of the particles of the star and the more its mass
resembles that of a gas of separated particles.

C. Static ring

In a previous paper [24], we have shown that a class of
spacetimes contains what we called the static ring: a ring
of points in the equatorial plane, centered at the origin,
where a particle initially at rest remains at rest. This class of
spacetimes is assumed to be stationary, axisymmetric, and

FIG. 2. Mass vs particle number for m ¼ 1 and gauge coupling parameter q ¼ 0.0, q ¼ 0.4 and q ¼ 0.7.

FIG. 1. Left: Mass (solid) and angular momentum (dashed) for rotating stars with m ¼ 1, uncharged q ¼ 0 and charged with q ¼ 0.4
and q ¼ 0.7. Right: Charge (solid) and magnetic moment (dashed) for three families of solutions with m ¼ 1: q ¼ 0.05,
q ¼ 0.40, q ¼ 0.70.
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circular. A necessary and sufficient condition for the
existence of such ring is that the gtt component of the
metric possesses a local maximum at a point where it is
negative, i.e., not in an ergoregion. Boson stars and highly
compact objects surrounded by a massive bosonic cloud are
the most prominent sources of this class of spacetimes and
the rotating charged boson star is no different.
The radius of the static ring for three different families of

solutions is illustrated in Fig. 3. All of the solutions, for
every value of the gauge coupling parameter and ϕ1, the
function gtt shows qualitatively the same behavior, con-
taining a local maximum in the equatorial plane. Figure 3
shows the compactified coordinate of the static rings as
function of the parameter ϕ1 for fixed gauge coupling
parameter q. The curves terminate at a specific point where
the static ring enters the ergoregion, in which no timelike
particle could stay at rest.
As the gauge coupling increases, the radius of the static

ring decreases slightly and the curves terminate at smaller
values of ϕ1. Hence the radius of the static ring does not
depend strongly on the gauge coupling parameter.
The more distinctive change of behavior as the coupling

increases is the terminating point, which happens for
smaller values of ϕ1. Since the angular momentum J
increases due to a more prominent gauge field, Aμ,
ergoregions are prone to appear earlier in the parameter
space, even though all sets are described by the same
rotation number.

IV. COMOVING OBSERVER

In order to have a clear realization of the energy
density and pressures separately, we adopt comoving
coordinates, i.e., for which the energy momentum tensor
is diagonal. These quantities are then the eigenvalues that
satisfy

Tμ
νêνðaÞ ¼ λðaÞêμðaÞ; ð22Þ

where êμa are the energy momentum tensor’s eigenvectors.

The eigenvalues and eigenvectors found through the
equation above are rather long for the system we are
describing. Nevertheless, for any circular, stationary and
axisymmetric spacetime, we can hide the extensive expres-
sions in notation by splitting the energy momentum
tensor as

Tμν ¼ T ð1Þ
μν þ T ð2Þ

μν ; ð23Þ

with

T ð1Þ
μν ¼

0
BBB@

Ttt 0 0 Ttφ

0 0 0 0

0 0 0 0

Ttφ 0 0 Tφφ

1
CCCA; T ð2Þ

μν ¼

0
BBB@

0 0 0 0

0 Trr Trθ 0

0 Trθ Tθθ 0

0 0 0 0

1
CCCA:

Then the eigenvalues of Tμν are given by

λi� ¼ 1

2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T μνT μν − T 2

q
þ T

�
ðiÞ
; ð24Þ

where T ðiÞ ¼ gμνT ðiÞ
μν .

A. Nonrotating boson stars

In the interest of comparison, we shall consider the
spherically symmetric charged boson stars, again employ-
ing isotropic coordinates. In this case ω ¼ 0, g ¼ 1, and
C ¼ 0 and f, l, ϕ, and V are functions of r only. The energy
density and pressures then read

ρ ¼ f
l
ϕ02 þ V 02

2l
þ ϕ2

f
ðVqþ ωsÞ2 þ UðjΦjÞ;

pr ¼ ρ −
V 02

l
− 2UðjΦjÞ;

p⊥ ¼ ρ − 2
f
l
ϕ02 − 2UðjΦjÞ: ð25Þ

The uncharged case is obtained simply by setting q ¼ 0 and
V ¼ 0.

B. Rotating boson stars

The rotating case is of course more involved. Let us first
consider the uncharged rotating boson stars. The hydro-
dynamic quantities obtained via Eq. (24) are [45]

FIG. 3. Location of the static ring: the compactified coordinate
xs of the static ring is shown as function of the parameter ϕ1.
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ρ ¼ f
lgr2

½r2ð∂rϕÞ2 þ ð∂θϕÞ2�

þ jf2m2 − lsin2θðmωþ ωsrÞ2j
flr2sin2θ

ϕ2 þ UðjΦjÞ;

pr ¼
f

lgr2
½r2ð∂rϕÞ2 þ ð∂θϕÞ2�

−
f2m2 − lsin2θðmωþ ωsrÞ2

flr2sin2θ
ϕ2 −UðjΦjÞ;

pθ ¼ pr − 2
f

lgr2
½r2ð∂rϕÞ2 þ ð∂θϕÞ2�;

pφ ¼ ρ − 2
f

lgr2
½r2ð∂rϕÞ2 þ ð∂θϕÞ2� − 2UðjΦjÞ: ð26Þ

There are two new features induced by rotation worth of
notice. First, the system becomes what we decide to call
completely anisotropic, meaning pr ≠ pθ ≠ pφ. Second,
the energy density and axial pressure show a cusp due to
the absolute value term, whose argument changes sign at a
point where

−f2m2 þ lr2sin2θ

�
ωs þm

ω

r

�
2

¼ 0

⇔ m2gtt − 2mωsgtφ þ ω2
sgφφ ¼ 0: ð27Þ

It is straightforward to understand that this point must occur
for all solutions: at the origin the only surviving term is gtt
(which is negative), while at large distances the dominant
term is gφφ (which is always positive). The structure of
Eq. (27) tempts us to define the parameter vector wμ ¼
ðm; 0; 0;−ωsÞ that is timelike at the center of the star,
becomes null at the cusp and finally turns spacelike from
that point all the way to infinity. We note that the Killing
vector field K0 ¼ wμ∂μ possesses the property K0Φ ¼ 0. At
the cusp, this property translates to jμjμ ¼ 0.
The change of sign has also consequences for the

eigenvectors. In the region wherewμ is timelike, the timelike
eigenvector can be expressed as êμð1−Þ ¼ wμ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−wμwμ

p
,

whereas in the region where wμ is spacelike, êμð1−Þ ¼
vμ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−vμvμ

p
, where vμ is orthogonal to wμ, i.e., vμwμ ¼ 0.

Let us consider an observer in the comoving frame and
identify her four velocity with the timelike eigenvector
Uμ ¼ ðUt; 0; 0; UφÞ ¼ êμð1−Þ. The energy E ¼ −gtμUμ and
the angular momentum L ¼ gφμUμ both will diverge, if she
approaches the cusp. Hence we conclude, that the cusp
corresponds to a pathology of the comoving frame. An
observer approaching the cusp would need an infinite
amount of energy in order to stay in the comoving frame.
Moreover, the cusp surface envelops a volume where the
four current is spacelike and jμêμð1−Þ ¼ 0, i.e., the observer
measures zero particle number density.

Let us next consider the charged rotating boson stars.
The equations describing the hydrodynamic quantities are
lengthy and cumbersome, therefore we do not show them
fully here but express them around the center and axis of
rotation. Keeping only the leading order contribution for
each field, we have that at r ≈ 0

f ≈ fc; l≈ lc; g≈ 1; ω≈ωcr;

ϕ≈ϕcmrmsinmθ; V ≈Vc; C≈Cc2r2sin2θ; ð28Þ

while at θ ≈ 0

f ≈ f0ðrÞ; l ≈ l0ðrÞ; g ≈ 1; ω ≈ ω0ðrÞ;
ϕ ≈ ϕmðrÞθm; V ≈ V0ðrÞ; C ≈ C2ðrÞθ2: ð29Þ

The energy density and pressures at the center then yield

ρ ¼ 2
ϕ2
c1fc
lc

þ 2

�
Cc2fc
lc

�
2

; pr ¼ 2

�
Cc2fc
lc

�
2

;

pθ ¼ −ρ; pφ ¼ pr; ð30Þ

and at θ ¼ 0,

ρ ¼ 2
ϕ2
1ðrÞf0ðrÞ
l0ðrÞr2

þ V 0
0
2ðrÞ

2l0ðrÞ
þ 2

�
C2ðrÞf0ðrÞ
l0ðrÞr2

�
2

;

pr ¼
V 0
0
2ðrÞ

2l0ðrÞ
þ 2

�
C2ðrÞf0ðrÞ
l0ðrÞr2

�
2

;

pθ ¼ −ρ; pφ ¼ pr: ð31Þ

The energy density of a rotating boson star withm ¼ 1 is
then nonzero at the origin, even when uncharged, although
the scalar field vanishes at that point. At higher rotation
numbers, the charged boson star maintains nonzero density
at the symmetry axis, as opposed to the uncharged rotating
star. We stress the similar behavior for the trace of the
energy momentum tensor Tμ

μ, which is always negative for
θ ¼ 0 for m ¼ 1, but zero on that axis for m > 1.
We show in Fig. 4 the energy density in the equatorial

plane for the uncharged rotating boson stars (left) and the
charged rotating boson stars with gauge coupling parameter
q ¼ 0.7 (right) for several values of ϕ1 and m ¼ 1. In the
uncharged case the energy density possesses a local
maximum at the center, a local minimum corresponding
to the cusp, and a maximum in the equatorial plane. This is
in contrast to the charged case when no cusp is present.
Thus for the charged rotating boson stars the energy density
possesses a local minimum at the center and a maximum in
the equatorial plane.
With increasing values of the parameter ϕ1 the magni-

tudes of the minima and the maxima increase and the
locations of the maxima and the cusp move closer to the
center. Note that, in both cases, the central density can be
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significantly high, despite the vanishing scalar field on the
symmetry axis.
In Fig. 5 we illustrate how the maximum of the energy

density and anisotropic pressures vary with respect to the
maximum of the scalar field for solutions with different
values of the gauge coupling parameter, as well as the
minimum of the tangential pressures and trace of the energy
momentum tensor. The energy density and radial pressure
are everywhere positive and their global minimum is
therefore zero, similarly the trace of the energy momentum
tensor has its maximum at zero for being everywhere
negative definite. The uncharged rotating solution,
although already completely anisotropic, features for every
solution the same maximum value for all three pressures.
With increasing gauge coupling the maxima and minima of
all hydrodynamic quantities become smaller, but the curves
giving the maximum value of the pressures start to separate
from each other. For q ¼ 0.4 we notice that the maximum
value of pφ is always bigger than those of pr and pθ which
lie on the same curve, and for q ¼ 0.7 we notice the pθ

curve appearing below the maximum radial pressure one.
We stress that we need to go to very large couplings,
near the limiting qcrit, to be able to observe such small
deviations.
For completeness, we show in Fig. 6 how the maximum

values of the pressures vary with the rotation number m.
The domain of existence of boson stars withm ¼ 2 is more
restricted as compared to the case with m ¼ 1. The density
grows much more rapidly with increasing ϕ2, and the
maximum of the scalar field takes smaller values when
compared with m ¼ 1. As the rotation number assumes
larger values, the dynamical properties of the boson star
tend to be more and more dominated by its kinetic terms in
the energy momentum tensor. Furthermore, increasing m
has an analogous effect on the maximum of pressures as
does an increasing charge, i.e., they decrease in value and
the curves become distinct. No difference was noted for the
energy density or minimum of such quantities.
In the three figures that follow, we present three different

rotating boson stars for comparison. The first boson star is

FIG. 4. Profile of the energy density on the equatorial plane for boson stars with rotation number m ¼ 1. Left: Uncharged rotating
boson star. Right: Charged rotating boson star.

FIG. 5. Left: Maximum value of the hydrodynamic quantities for uncharged and charged rotating boson stars as function of the
maximum value of the scalar field for each solution. The higher the coupling value, the smaller these quantities become, but the lines
tend to spread away enhancing the complete anisotropy. Right: Minimum value of the anisotropic tangential pressures and trace of the
energy momentum tensor as functions of the maximum value of the field. The minimum value of the energy density and radial pressure
is zero and therefore not depicted. Again here, by increasing the charge, the minimum value is mitigated.
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uncharged, q ¼ 0 and has rotation number m ¼ 1. The
second and third both have the same coupling charge,
q ¼ 0.7, but the latter possesses rotation number m ¼ 2.
Each of these solutions corresponds to the one with the
maximum mass for fixed m and q. In these images and
the others that will appear later, z ¼ r̄ cos θ is parallel to the
rotation axis and x ¼ r̄ sin θ to the equatorial plane, where
r̄ ¼ r=ðrþ 1Þ is the compactified radial coordinate.
The energy density and radial pressure are depicted in

Fig. 7. The comoving observer measures the energy density
to be a lot higher off center, being negligible at the core
for the m ¼ 2 star, as according to Eq. (30) only ∂2

rC
contributes at this point, and its value is fairly low. For the
uncharged case, we can entertain the kink in the energy
density discussed above, as its value drops harshly to a
local minimum and then grows back up to the global
maximumwith increasing r, and we see a thin dark line that
spans through all the polar coordinate. Furthermore, in this
same case the radial pressure is zero at the origin and
negligible outside the neighborhood of its maximum value.
The faster rotating star, as seen by the comoving observer,
has a thinner density bag which sits further away from the
origin as one would expect. The profile of the radial
pressure is quite similar, but we notice how the bag is
somewhat spread to smaller values of θ.
In Fig. 8, the two tangential pressures are illustrated, and

we are able to acknowledge how distinct they are. For
m ¼ 1, the polar pressure is highly negative near the center
while the axial one is mildly positive for the charged case
and zero for q ¼ 0. In all three stars, in the panel for pφ,
there is an empty, pressureless shell which encompasses a
region where the sign of the pressure switches. At higher
distances from the center, the axial pressure becomes once
again positive, and we notice that all pressures have their
maximum value near the point of highest energy density.
As before, we notice how these quantities distribute

themselves over a wider range in the polar coordinate
for m ¼ 2, while getting narrower in r.
The scalar field, which sources the electromagnetic field

is drawn in Fig. 9 together with the trace of the energy
momentum tensor. The ϕ2 profile has the shape of a torus,
as could be anticipated by the boundary conditions. The
trace of the energy momentum tensor, which is zero for the
electromagnetic field, takes now negative values.

V. ELECTROMAGNETIC FIELD

The two invariants of the electromagnetic field are seen
in Fig. 10, where �Fμν ¼ 1

2
ϵμνσλFσλ is the dual of the field

and ϵμνσλ is the Levi-Civita tensor. The invariants for a Kerr-
Newman black hole which possesses the same mass, charge
and angular momentum as the analyzed boson star with
m ¼ 1, is also given at the bottom, where the black disc
represents its event horizon and we show only the con-
tracted fields in the exterior region. The general behavior is
drastically different. Both invariants extend to much larger
regions in comparison with the Kerr-Newman black hole,
since their charge concentrates off center and the main
resemblance is the orthogonality between the fields on the
equatorial plane, which could be anticipated from the
boundary conditions we established. Rotating charged
boson stars feature a region of strong magnetic dominance,
which is lacking in rotating charged black holes.
As a means to visualize the electric and magnetic field

individually, we need to adopt a reference frame since those
are not invariant quantities. Therefore, we choose the local
inertial frame of a zero angular momentum observer
(ZAMO), the only one capable of inertially reaching the
center of the star, see [22–24]. The fields are then given by

Eμ ¼ Fμνχ
ν; Bμ ¼ −

1

2
ϵμνσγFνσχγ; ð32Þ

where χμ is the four-velocity of the ZAMO, which reads in
general form (in a stationary, axisymmetric spacetime),

χμ ¼
ffiffiffiffiffiffiffiffi
−gtt

p �
1; 0; 0;

gtφ

gtt

�
; ð33Þ

and one should note that, indeed, χφ ¼ L ¼ 0.
These fields, as seen by the ZAMO, are given in Fig. 11

for the two previously illustrated charged boson stars. The
electric field is stronger in a thin shell that encompasses the
region where the scalar field is maximum, in the exterior
region. In the interior region, i.e., for smaller radii than the
position of the maximum of the scalar field, the electric
field is very weak on the equatorial plane. The magnetic
field is fairly strong and homogeneous in this region. The
qualitative behavior of the fields is very similar indeed to
that of a thick circular loop.

FIG. 6. Maximum of pressures for rotating charged boson stars
with rotation numbers m ¼ 1 and m ¼ 2 as functions of the
maximum of the scalar field. Rotation has a similar effect on these
quantities as does the charge, decreasing their maximum value
and slightly pushing these curves further apart.
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FIG. 7. Energy density and radial pressure as seen by an observer comoving with the fluid of a rotating charged boson star for different
charges and rotation numbers.
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FIG. 8. Polar and axial pressures for the same stars as in 7, as measured by the comoving observer.
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FIG. 9. The square of the scalar field (photon’s mass) and the trace of the energy momentum tensor for the same stars as in 7 and 8.
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FIG. 10. Invariants of the electromagnetic fields for the two charged boson stars shown in the previous figures and a Kerr-Newman
black hole (bottom) with the same mass, charge and spin as the star on the top panel. For the black hole, only the exterior values are
shown. The black disc covers the inner horizon region.
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VI. CONCLUSION

In the present work we revisited boson stars in their most
general form, possessing angular momentum and charge.
Treating the fields as fluids in a comoving local frame, the
hydrodynamic quantities were obtained in an unambiguous
form. The yielded relationships entertain the completely
anisotropic character of rotating boson stars, charged or
not, that contain three different kinds of pressures asso-
ciated each with a spacelike tetrad basis component. We
showed that the uncharged rotating boson star has, increas-
ingly with its central density, a point where the variation of
its energy density diverges, due to an absolute value term in
its expression, which is also present in its relation for the
axial pressure. Furthermore, these quantities are not zero at

the core, as opposed to the scalar field. As the charge
coupling increases, the curves describing the maximum and
minimum of each of the hydrodynamic variables diverge
from each other. Unlike most anisotropic stars constructed
in an ad hoc manner, the different tangential pressures of a
boson star assume at points negative values.
Measurable entities, such as mass, angular momentum,

total charge, and magnetic moment were also drawn for
different configuration sets. As one increases the charge
coupling, all of these observables take higher values for the
same value of the leading order term of the scalar field at
the origin. Thus, the onset of ergoregions occurs earlier
for stars with higher charge coupling q, terminating the
existence of a static ring for timelike particles.

FIG. 11. Electric and magnetic field as measured by the ZAMO.
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The invariants of the electromagnetic field were
shown for solutions with different rotation quantum num-
ber m, in comparison to a Kerr-Newman black hole with
same mass, angular momentum and charge as one of the
depicted solutions. Even though their order of magnitude is
the same, the distribution is entirely different thanks
to the nontrivial topology of the scalar field which carries
the charge. As seen by a ZAMO, the rotating charged
boson star produces a fairly homogeneous magnetic field
in a neighborhood of the equatorial plane in a region

between the center of the star and the densest part of
the torus.
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