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The existence of possible massive white dwarfs more than the Chandrasekhar limit (1.45M⊙, in which
M⊙ is mass of the sun) is a challenging topic. In this regard, and motivated by the important effect of
massive graviton on the structure of white dwarfs, we study the white dwarfs in Vegh’s massive gravity
which is known as one of theories of de Rham, Gabadadze, and Tolley (dRGT) like massive gravity. First,
we consider the modified Tolman-Oppenheimer-Volkoff equation in this theory of massive gravity and
solve it numerically by using the Chandrasekhar’s equation of state. Our results show that the maximum
mass of white dwarfs in massive gravity can be more than the Chandrasekhar limit (M > 1.45M⊙), and this
result imposes some constraints on parameters of massive gravity. Then, we investigate the effects of
various parameters on other properties of the white dwarfs such as mass-radius relation, mass-central
density relation, Schwarzschild radius, average density, and Kretschmann scalar. Next, we study dynamical
stability condition for super-Chandrasekhar white dwarfs and show that these massive compact objects
enjoy dynamical stability. Finally, in order to have a better insight, we compare the super-Chandrasekhar
white dwarfs with the obtained massive neutron stars in dRGT like massive theory of gravity.
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I. INTRODUCTION

General relativity (GR) is a successful theory of gravity
that contains gravitons as massless spin-2 particles. GR
predicted some phenomena such as the gravitational
deflection of light around gravitational sources such as
the Sun, which was confirmed by Arthur Eddington.
Nowadays, its direct application in the form of gravitational
lensing is one of the indispensable tools in astrophysics and
cosmology. Another powerful prediction of GR is the
presence of gravitational waves, which was detected by
the advanced LIGO/Virgo collaboration [1]. In spite of
these successes at the large scales, GR cannot explain why
our universe is undergoing an accelerated cosmic expan-
sion. Therefore, GR without the cosmological constant
term needs to be modified. Among these modified theories
of gravity, massive gravity can explain the late-time
acceleration without considering dark energy [2–6]. In
order to build up a massive theory with a massive spin-2
particle propagation, one can add an interaction term to the
Einstein-Hilbert action. In addition, Chamseddine and
Volkov found that the effect of graviton mass is equivalent
to introducing a matter source in the Einstein equations
which can consist of several different types of matter; a

cosmological term, quintessence and also nonrelativistic
cold matter [3]. Massive gravity modifies gravitational
effects by weakening it at the large scale comparing to GR.
This allows the universe to accelerate, but its predictions at
small scales are the same as GR. On the other hand,
massive gravity will result in the graviton having a mass of
m which in the case ofm → 0, the effect of massive gravity
is vanished and this theory reduces to GR. In addition, it
was shown that the graviton mass is very small in the usual
weak gravity environments, but becomes much larger in the
strong gravity regime such as black holes and compact
objects [7]. Accordingly, there were numerous develop-
ments in the massive gravity theories in recent years [8–13].
On the other hand, recent observations by the advanced
LIGO/Virgo collaboration have put a tight bound on
the graviton mass [1,14], however cannot rule out the
possibility of nonzero mass. Also, there are other theoreti-
cal and empirical limits on the graviton’s mass (see
Refs. [15–19], for more details). Thus one may motivate
to investigate the effects of considering the massive
gravitons on various branches related to gravitation.
Fierz and Pauli in 1939 introduced a class of massive

gravity theory in flat background [8]. In other words, Fierz
and Pauli added the interaction terms at the linearized level
of GR; this theory is known as Fierz and Pauli massive (FP
massive) gravity. Then van Dam, Veltman and Zakharov
found out that FPmassive gravity suffers from discontinuity
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which is known as van Dam-Veltman-Zakharov (vDVZ)
discontinuity [9–11]. In order to remove the vDVZ dis-
continuity, Vainshtein showed that such discontinuity
appears as a consequence of working with the linearized
theory of GR, and then a mechanism for the nonlinear
massive gravity was introduced by him [12]. On the other
hand, Boulware and Deser explored that such nonlinear
generalizations usually generate an equation of motion
which has a higher derivative term yielding a ghost insta-
bility in the theory which is known as Boulware-Deser (BD)
ghost [13]. However, these problems, arising in the con-
struction of themassive gravity havebeen resolved in the last
decade by introducing Stückelberg fields [20]. This allows a
class of potential energies depending on the gravitational
metric and an internal Minkowski metric (reference metric).
In Refs. [21,22], de Rham, Gabadadze and Tolley (dRGT)
introduced a new version of massive gravity which is free of
vDVZ discontinuity and BD ghost in arbitrarily dimensions
[23]. Although the equations of motion have no higher
derivative term in the dRGT massive gravity, finding exact
solutions in this theory of gravity is difficult. However, black
hole solutions in dRGT massive gravity have been obtained
by some authors in Refs. [24–27]. In the astrophysics
context, Katsuragawa et al. evaluated the neutron stars in
this theory and showed that the massive gravity leads to
small deviation from the GR [28]. Mass-radius ratio bounds
for compact objects in this gravity have been obtained in
Ref. [29]. M. Yamazaki et al. discussed the boundary con-
ditions for the relativistic stars in this theory of gravity [30].
From a cosmological point of view, bounce and cyclic cos-
mology [31], cosmological behavior [32], and another pro-
perties have been studied by some authors in Refs. [33–35].
On the other hand, the constraints imposed by the Type Ia
Supernovae (SNe Ia), gamma ray bursts (GRBs), baryon
acoustic oscillations (BAOs), cosmic microwave back-
ground radiation (CMBR) on the massive gravity have been
investigated in Refs. [36,37]. In Ref. [38], Panpanich and
Burikham evaluated the effects of nonzero graviton mass on
the rotation curves of theMilkyWay, spiral galaxies, and low
surface brightness galaxies. Rotation curves of the most
galaxies can be fitted well by considering the graviton’s
mass in the range m ∼ 10−21–10−30 eV (see Ref. [38], for
more details). Aoki and Mukohyama studied graviton mass
as a candidate for dark matter [39]. Indeed, they showed that
if LIGOdetects gravitational waves generated by preheating
after inflation then the massive graviton with the mass of
∼0.01 GeV is a candidate of the dark matter. Cosmological
perturbations in massive gravity have been studied by some
authors in Refs. [40–44], and they obtained some constraints
on parameters of this theory by considering observational
cosmological data.
It is notable that, modification in the introduced refer-

ence metric in dRGT theory leads to the possibility of
introduction of different classes of dRGT like massive
theories [45]. One of the theories was proposed by Vegh

which has applications in gauge/gravity duality [46].
Indeed this theory is similar to dRGT massive gravity with
a difference that its reference metric is a singular one.
Graviton in this massive gravity may behave like a lattice
and exhibits a Drude peak [46]. It was shown that for
arbitrary singular metric, this theory of massive gravity is
ghost-free and stable [47]. Black hole solutions in this
gravity have been obtained in Refs. [48,49]. The existence
of van der Waals like behavior in extended phase space for
the obtained black holes has been studied in this massive
gravity by some authors in Refs. [50–53]. It was pointed
out that it is possible to have a heat engine for nonspherical
black holes in massive gravity [54]. In addition, magnetic
solutions in this dRGT like massive gravity have been
addressed in Refs. [55,56]. From the perspective of
astrophysical, the modified Tolman-Oppenheimer-Volkoff
(TOV) equation by considering this theory of massive
gravity was obtained in Ref. [57], and it was shown that the
maximum mass of neutron stars can be more than three
times the solar mass. The existence of a remnant for a black
hole in this theory of massive gravity has been evaluated by
Eslam Panah et al. in Ref. [58], where they showed that this
remnant may help to ameliorate the information paradox.
As we know, the massive graviton leads to the modifi-

cation of long-range gravitational force. Therefore, one
may expect that the graviton mass could be comparable to
the cosmological constant, which could illustrate the
accelerated expansion of the Universe without introducing
the cosmological constant (see Refs. [4,59–62], for more
details). It is very interesting to apply the dRGT like
theories of gravity (in this work we consider Vegh’s
approach of massive gravity) to astrophysical phenomena.
It is notable that, construction the general framework which
quantifies the deviations from the predictions of the GR in
strong-gravity regime is very difficult (see Ref. [63], for
more details). In addition, it is very important that if we
could conclude that cosmological and astrophysical appli-
cations are compatible with observations in a specific
theory of modified gravity. According to the above reasons,
it is necessary to study the compact objects in the massive
gravity, especially dRGT like massive gravity as astro-
physical test of this gravity in strong-gravity regime.
On the other hand, in recent years, some peculiar type

SNe Ia: e.g., SN 2006gz, SN 2007if, SN 2009dc, SN
2003fg, have been observed [64–67] with exceptionally
higher luminosities. It has been suggested that the progen-
itor mass to explain such SNe Ia stands in the range
2.1–2.8M⊙ [68,69], which exceeds significantly the
Chandrasekhar mass limit about 1.45M⊙. Some authors
explained such over luminous SNe Ia by proposing the
existence of super strong uniform magnetic fields [70],
rotation white dwarfs [71], electrical charge distribution
white dwarfs [72], and modification to GR in white dwarfs
[73], to generate some super-Chandrasekhar white dwarfs.
Briefly, for explaining these massive white dwarfs, we can
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consider two approaches. The first approach: we can
improve the equation of state by adding magnetic
field [70]. The second approach is related to modified
TOV equations [71–74]. According to the mentioned
reasons for modification of GR, in this work, we are going
to investigate the influence of Vegh’s massive gravity [46]
on the properties and stability of the white dwarfs.
The article is organized as follows: after an introduction

about Vegh’s massive gravity, we will present the modified
TOV in this theory of massive gravity. In Sec. III, we
reintroduce the Chandrasekhar’s equation of state as a
suitable equation of state. Then, by considering the
mentioned modified TOV, we will study the properties
of white dwarfs. We will evaluate another quantities such as
Schwarzschild radius, average density, the Kretschmann
scalar, and dynamical stability of these white dwarfs. Then
we compare the properties of massive neutron stars with
super-Chandrasekhar white dwarfs in this gravity. Some
closing remarks are given in the last section.

II. BASIC EQUATIONS

The action of dRGT like massive gravity is given by [46]

I ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþm2

X4
i

ciU iðg; fÞ
�
þ Imatter; ð1Þ

where R and m are the Ricci scalar and the graviton
mass, respectively. κ ¼ 8πG

c4 , and also f and g are a
fixed symmetric tensor and metric tensor, respectively.
In the above relation, Imatter is related to the action of
matter. In addition, ci’s are free parameters of this theory
which are arbitrary constants. Their values can be deter-
mined according to theoretical or observational consider-
ations [4,5,75,76]. Also, U i’s are symmetric polynomials
of the eigenvalues of 4 × 4 matrix Kμ

ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμαfαν

p
(for

4-dimensional spacetime) where they can be written in the
following forms

U1 ¼ ½K�; U2 ¼ ½K�2 − ½K2�;
U3 ¼ ½K�3 − 3½K�½K2� þ 2½K3�;
U4 ¼ ½K�4 − 6½K2�½K�2 þ 8½K3�½K� þ 3½K2�2 − 6½K4�:

where the square root in K stands for matrix square root,
i.e., Kμ

ν ¼ ð ffiffiffiffi
K

p Þμλð
ffiffiffiffi
K

p Þλυ, and the rectangular bracket
denotes the trace ½K� ¼ Kμ

μ.
Considering a spherical symmetric space-time in

4-dimensional as

ds2 ¼ gμνdxμdxν ¼ HðrÞdt2 − dr2

SðrÞ − r2hijdxidxj;

i; j ¼ 1; 2: ð2Þ

where HðrÞ and SðrÞ are unknown metric functions, and
hijdxidxj ¼ ðdθ2 þ sin2 θdφ2Þ. By variation of Eq. (1)
with respect to the metric tensor gνμ, the equation of motion
for massive gravity can be written as

Gν
μ þm2χυμ ¼

8πG
c4

Tν
μ; ð3Þ

whereG is the gravitational constant, and also,Gν
μ and c are

the Einstein tensor and the speed of light in vacuum,
respectively. Tν

μ denotes the energy-momentum tensor
which comes from the variation of Imatter and χμν is the
massive term with the following explicit form

χμν ¼ −
c1
2
ðU1gμν −KμνÞ −

c2
2
ðU2gμν − 2U1Kμν þ 2K2

μνÞ

−
c3
2
ðU3gμν − 3U2Kμν þ 6U1K2

μν − 6K3
μνÞ

−
c4
2
ðU4gμν − 4U3Kμν þ 12U2K2

μν

− 24U1K3
μν þ 24K4

μνÞ: ð4Þ

Considering the white dwarf as a perfect fluid with the
following energy-momentum tensor as

Tμν ¼ ðc2ρþ PÞUμUν − Pgμν; ð5Þ

where P and ρ are the pressure and density of the fluid
which are measured by the local observer, respectively, and
Uμ is the fluid four-velocity. The nonzero components of
the energy-momentum tensor for perfect fluid are

T0
0 ¼ c2ρ; T1

1 ¼ T2
2 ¼ T3

3 ¼ −P: ð6Þ

In order to obtain exact static spherical black hole
solutions, the appropriate ansatz for the reference metric
was introduced in the form; fμν ¼ diagð0; 0; C2hijÞ, see
[48,49], for more details. In this work, we intend to obtain
static spherical solutions similar to static spherical black
hole solutions of massive gravity. So, we consider the
mentioned appropriate ansatz for the reference metric fμν in
4-dimensional spacetime, which is given as

fμν ¼ diagð0; 0; C2; C2sin2θÞ; ð7Þ

whereC is known as parameter of reference metric which is
a positive constant. In other words, fμν only depends on the
spatial components hij of the spacetime metric (2). Using
the mentioned information and ansatz, we can extract the
explicit functional forms of Ui ’s in the following forms
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U1 ¼
2C
r
; U2 ¼

2C2

r2
;

U i ¼ 0; i > 2: ð8Þ

Considering the field equation (3), the static spherical
metric (2), and the mentioned reference metric (7), we can
obtain the metric function SðrÞ, in the following form [57]

SðrÞ ¼ 1 −m2C

�
c1r
2

þ c2C

�
−
2GMðrÞ

c2r
; ð9Þ

in which MðrÞ ¼ R
4πr2ρðrÞdr. After some calculations,

we can extract the modified TOV equation in Vegh’s
massive gravity as [57]

dP
dr

¼ Gðc2MðrÞþ4πr3PÞ−m2r2c1c4C
4

ðm2c1c2r2C
2

þ2GMðrÞþc2rðm2c2C2−1ÞÞc2r
ðc2ρþPÞ:

ð10Þ

Considering the obtained modified TOV equation in
Vegh’s massive gravity, we want to investigate the proper-
ties of white dwarfs in this theory of gravity in the next
sections.
Before we continue our study about white dwarfs in

Vegh’s massive gravity, we want to give a brief dimensional
analysis of the parameters of massive and reference metric.
It is notable that all terms of the metric function must be

dimensionless, i.e., m
2c1C
2

r, m2c2C2, and 2GMðrÞ
c2r are dimen-

sionless. Also, in dimensional analysis we know that
½MðrÞ� ¼ ½m� ¼ M (Mass), and ½r� ¼ L (Length). So, the
dimensional interpretation of massive terms are

½C� ¼ L; & ½ci� ¼ M−2L−2; i ¼ 1; 2:

According to this fact that the action of massive gravity
(1) is dimensionless, we find that dimensional interpreta-
tions of R and all of terms m2

P
4
i ciU iðg; fÞ are L−2.

Remembering that ½m2ci� ¼ L−2, one can conclude that
Ui’s in Eq. (1), are dimensionless. As we know, the
dimension of the cosmological constant (Λ) is L−2, so
m2ci terms may play the role of the pressure in the extended
phase space (see Ref. [77], for more details).

III. EQUATION OF STATE

We use the Chandrasekhar’s equation of state (EoS),
which are constituted from electron degenerate matter,

kF ¼ ℏð3π2ρ=ðmpμeÞÞ1=3 ð11Þ

and

P ¼ 8πc
3ð2πℏÞ3

Z
kF

0

k2

ðk2 þm2
ec2Þ1=2

k2dk; ð12Þ

where k is the momentum of electrons. mp is the mass
of proton. μe is the mean molecular weight per electron
(we choose μe ¼ 2 for our work). ℏ ¼ h=2π, where h is the
Plank’s constant. The Chandrasekhar’s EoS of the electron
degenerate matter was shown in Fig. 1.
The Chandrasekhar’s EoS is one of famous EoSs for

studying the structure of white dwarfs. In this regards, we
review some properties of this EoS such as; energy
conditions, stability, and Le Chatelier’s principle.
The Chandrasekhar’s EoS satisfies the energy conditions

such as the null energy condition (NEC), weak energy
condition (WEC), strong energy condition (SEC) and
dominant energy condition (DEC) at the center of white
dwarfs. These conditions are as

NEC → Pc þ ρc ≥ 0; ð13Þ

WEC → Pc þ ρc ≥ 0; & ρc ≥ 0; ð14Þ

SEC → Pc þ ρc ≥ 0; & 3Pc þ ρc ≥ 0; ð15Þ

DEC → ρc > jPcj; ð16Þ

where Pc and ρc are the pressure and density at the center of
white dwarfs (r ¼ 0), respectively. Using Fig. 1 and the
mentioned conditions (13)–(16), our results are presented
in Table I. According to Fig. 1 and Table I, we observe that
all energy conditions are satisfied.

A. Stability

In order to evaluate the Chandrasekhar’s EoS for a
physically acceptable model, one expects that the velocity

of sound (v ¼
ffiffiffiffiffi
dP
dρ

q
) be less than the light’s velocity (c)

FIG. 1. Chandrasekhar’s equation of state.
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[78,79]. In other words, stability condition is in the form
0 ≤ v2 ≤ c2. Therefore, by considering this stability con-
dition and Fig. 1, and comparing them with diagrams
related to speed of sound-density relationship in Fig. 2, it is
evident that this EoS satisfies the inequality 0 ≤ v2 ≤ c2.

B. Le Chatelier’s principle

There is another important principle which is related to
the matter of star and called Le Chatelier’s principle. The
matter of the star satisfies dP=dρ ≥ 0, which is a necessary
condition of a stable body both as a whole and also with
respect to the nonequilibrium elementary regions with
spontaneous contraction or expansion (Le Chatelier’s
principle), see Ref. [80], for more details. Our calculations
show that Le Chatelier’s principle is established for the
Chandrasekhar’s EoS (see Fig. 2).
Our investigations indicated that the Chandrasekhar’s

EoS satisfies both energy and stability conditions, and also
this EoS admits Le Chatelier’s principle. Therefore, this
EoS is a suitable EoS. It is notable that there are some
realistic EoSs in order to have a good view of the behavior
of white dwarfs. However, in this work we consider the
Chandrasekhar’s EoS, because we want to focus on the
effects of modified gravity on the structure of white dwarfs.

IV. PROPERTIES OF WHITE DWARFS

Using the famous Chandrasekhar limit, the mass limit of
the white dwarf is obtained in Newtonian, special relativity,
GR, and nonrelativistic Newtonian theories in the range
1.41–1.45M⊙ [81]. On the other hand, the explosion of
peculiar SN Ia provokes us to rethink the maximum mass of
white dwarfs.Hence, themaximummassof thewhite dwarf is
still an open question. Here, wewould like to see whether the
maximummass of the white dwarf in massive gravity and by
employing the Chandrasekhar’s EoS can be more than this
limit (1.45M⊙). Then we want to study the effects of
massive’s parameter on properties of the white dwarfs, such
as Schwarzschild radius, the Kretschmann scalar, and
dynamical stability. It is notable that in this paper,we consider
the graviton mass as 10−32 eV=c2 ¼ 1.78 × 10−65 g, which
was extracted by A. F. Ali and S. Das in Ref. [82]. They have
shown from theoretical considerations, that if the graviton has
mass, its valuewill be about 10−32 eV=c2, or 1.78 × 10−65 g.
This estimate is consistent with those obtained from experi-
ments, including the recent gravitationalwave detection in the
advanced LIGO/Virgo. Our results indicate that by consid-
ering the special values for the parameters of massive gravity,
the maximummass of white dwarf is an increasing (decreas-
ing) function of C (m2c2), see Tables II and III. Our
calculations show that the maximum mass of white dwarf
in massive gravity can be more than Chandrasekhar limit
(MMax > 1.45M⊙). In other words, our results predict that
the mass of white dwarfs in this gravity can be in the range
upper than 2M⊙. Also, considering the values of m2c2 ≥
−10−3 andC ≤ 10−2, themaximummass and radius of white
dwarfs reduce to the obtained results of GR. It is notable that
the variation of m2c1 has very interesting effect. In this case,
by variation m2c1, the maximum mass and radius of white
dwarfs are constant (see the Table IV).
In order to do more investigation, we plot the mass of

white dwarf vs the central mass density (M − ρc), for
different parameters of massive gravity and reference
metric in left panels of Figs. 3 and 4. These figures show
that, the maximum mass of white dwarf increases when
m2c2 decreases or C increases. In addition, the variation of
maximum mass vs radius (M − R) is also shown in right
panels of Figs. 3 and 4.
Our calculations show that by considering fixed values for

C and m2c1, in constant radius (for example R ¼
5 × 103 km), by decreasing m2c2, the mass of white dwarfs
increase (see right panel in Fig. 3). Also, there is the same
behavior for C (see right panel in Fig. 4). In other words, in
R ¼ constant, by varying the parameters of massive gravity
and the reference metric, the mass of white dwarfs change.
This result shows that the density within ofthe white dwarf
depends on the parameters of this theory of gravity, so that it
increases when the mass of the white dwarf increases.
Here we can ask this question: why does the maximum

mass of white dwarfs increase by varying the parameters of

TABLE I. Energy conditions at the center of obtained white
dwarfs of Chandrasekhar’s EoS.

ρcð1012 kg
m3Þ Pcð1012 kg

m3Þ NEC WEC SEC DEC

150.6590 4.0515 ✓ ✓ ✓ ✓

FIG. 2. Sound speed (v2=c2 × 10−18) vs density
[ρ × 1014 ðkg=m3Þ].
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this theory? The strength of gravity may change by varying
the parameters of massive gravity and the reference metric.
In other words, by increasing (C) or decreasing (m2c2)
parameters of this theory, the strength of gravity may
decrease. As we know, there is a balance between the
internal pressure (which origin it is electron degenerate)
and gravitational force. Decreasing the strength of gravity, a
star can bear more mass in order to keep this balance.
Therefore, the maximum mass of white dwarf increases by
increasing (C) or decreasing (m2c2).
For completeness, in the following, we investigate other

properties of white dwarf in massive gravity such as the
Schwarzschild radius, average density, Kretschmann scalar,
and dynamical stability.

A. Modified Schwarzschild radius

The Schwarzschild radius for this gravity is obtained
as [57]

RSch¼
cð1−m2c2C2Þ

m2cc1C
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðm2c2C2−1Þ2−4m2c1CGM

p
m2cc1C

:

ð17Þ

The Schwarzschild radius of white dwarfs are obtained
in Tables II and III. These results show that by increasing
the maximum mass and radius of white dwarfs, the
Schwarzschild radius increases and the obtained white
dwarfs in massive gravity with mass more than the
Chandrasekhar limit are out of the Schwarzschild radius
(see Tables II and III). In other words, different parameters
of massive gravity and the reference metric have different
behavior on the Schwarzschild radius. For example, by
considering the negative value of m2c2 and increasing it,
the Schwarzschild radius increases (see Table II). Also, by
increasing C, the Schwarzschild radius increases (see
Table III). On the other hand, by considering the positive
(negative) values of m2c1 and increasing (decreasing)

TABLE II. Structure properties of white dwarf in massive gravity for C ¼ 1 and m2c1 ¼ 1 × 10−11.

m2c2 MmaxðM⊙Þ RðkmÞ RSchðkmÞ ρ̄ð1012 kgm−3Þ Kðm−4Þ
−1 × 10−4 1.41 871 4.17 1.01 6.37 × 10−32

−1 × 10−3 1.41 871 4.17 1.02 6.89 × 10−30

−1 × 10−2 1.43 875 4.19 1.02 6.82 × 10−28

−1 × 10−1 1.63 913 4.37 1.02 5.76 × 10−26

−2 × 10−1 1.86 954 4.57 1.02 1.93 × 10−25

−4 × 10−1 2.34 1030 4.93 1.02 5.68 × 10−25

−6 × 10−1 2.86 1101 5.27 1.02 9.80 × 10−25

−8 × 10−1 3.41 1168 4.79 1.02 1.38 × 10−24

TABLE III. Structure properties of white dwarf in massive gravity for m2c1 ¼ 10−11 and m2c2 ¼ −2 × 10−1.

C MmaxðM⊙Þ RðkmÞ RSchðkmÞ ρ̄ð1012 kgm−3Þ Kðm−4Þ
0.01 1.41 870 4.17 1.02 2.78 × 10−33

0.1 1.42 871 4.17 1.02 2.78 × 10−29

0.5 1.52 892 4.27 1.02 1.58 × 10−26

1.0 1.86 954 4.57 1.02 1.93 × 10−25

1.5 2.46 1048 5.02 1.02 6.71 × 10−25

2.0 3.41 1168 5.59 1.02 1.38 × 10−24

TABLE IV. Structure properties of white dwarf in massive gravity for C ¼ 1 and m2c2 ¼ −2 × 10−1.

m2c1 MmaxðM⊙Þ RðkmÞ RSchðkmÞ ρ̄ð1012 kgm−3Þ Kðm−4Þ
1 × 10−13 1.86 953 4.56 1.02 1.94 × 10−25

1 × 10−12 1.86 953 4.56 1.02 1.94 × 10−25

1 × 10−11 1.86 954 4.57 1.02 1.93 × 10−25

1 × 10−10 1.86 956 4.58 1.02 1.91 × 10−25

−1 × 10−13 1.86 953 4.56 1.02 1.94 × 10−25

−1 × 10−12 1.86 953 4.56 1.02 1.94 × 10−25

−1 × 10−11 1.86 953 4.56 1.02 1.94 × 10−25

−1 × 10−10 1.85 950 4.55 1.02 1.96 × 10−25
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m2c1, the Schwarzschild radius does not change (see
Table IV).

B. Average density

We can evaluate the average density by using the
obtained maximum mass and radius of white dwarfs in
the massive gravity from the perspective of a distant
observer (or an observer outside the neutron star). So
the average density of the white dwarf is given

ρ̄ ¼ 3M
4πR3

; ð18Þ

where the results for variation of the massive parameters
and the reference metric are presented in the Tables II–IV.

There is an interesting result about the average density of
the white dwarf in massive gravity from the perspective of a
observer outside the white dwarf. By variations of the
different parameters, the average density remains fixed (see
Tables II–IV).
In order to investigate the strength of gravity, we study

the Kretschmann scalar in the presence of nonzero graviton
mass in the following subsection.

C. Kretschmann scalar

Spacetime curvature is a quantity that shows the strength
of gravity. It is worth mentioning that in the Schwarzschild
spacetime, the components of Ricci scalar (R) and the Ricci
tensor (Rμν) are zero outside the star, and these quantities do

FIG. 3. Gravitational mass vs central density(radius) for C ¼ 1 and m2c1 ¼ 1 × 10−11. Left diagrams: gravitational mass vs central
mass density for m2c2 ¼ −1.0 × 10−1 (solid line), m2c2 ¼ −2.0 × 10−1 (dotted line), m2c2 ¼ −3.0 × 10−1 (dashed line), m2c2 ¼
−5.0 × 10−1 (dashed-dotted line), and m2c2 ¼ −7.0 × 10−1 (dashed-dotted-dotted line). Right diagrams: gravitational mass vs radius
for m2c2 ¼ −1.0 × 10−1 (solid line), m2c2 ¼ −2.0 × 10−1 (dotted line), m2c2 ¼ −3.0 × 10−1 (dashed line), m2c2 ¼ −5.0 × 10−1

(dashed-dotted line), and m2c2 ¼ −7.0 × 10−1 (dashed-dotted-dotted line).

FIG. 4. Gravitational mass vs central density (radius) form2c1 ¼ 1 × 10−11 andm2c2 ¼ −1 × 10−1. Left diagrams: gravitational mass
vs central mass density for C ¼ 1.0 (solid line), C ¼ 1.5 (dotted line), C ¼ 2.0 (dashed line), C ¼ 2.3 (dashed-dotted line) and C ¼ 2.5
(dashed-dotted-dotted line). Right diagrams: gravitational mass vs radius for C ¼ 1.0 (solid line), C ¼ 1.5 (dotted line), C ¼ 2.0
(dashed line), C ¼ 2.3 (dashed-dotted line) and C ¼ 2.5 (dashed-dotted-dotted line).
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not give us any information about the spacetime curvature
(or the strength of gravity). In order to investigate the
curvature of spacetime in more details, we use another
quantity. The quantity is the Riemann tensor (Rμνγδ). It is
notable that, the Riemann tensor may have more compo-
nents, and, for simplicity, we can study the Kretschmann
scalar for measurement of the curvature in a vacuum. After
some calculations, we can obtain the curvature at the
surface of a white dwarf in massive gravity as

K ¼ RμνγδRμνγδ

¼ 2m4c21C
2

R2
þ 4m4c1c2C3

R3
þ 4m4c22C

4

R4

þ 16m2c2C2GM
c2R5

þ 48G2M2

c4R6
; ð19Þ

where in the absence of graviton mass (m ¼ 0), the above
equation reduces to the Kretschmann scalar in Einstein

gravity as K ¼ 48G2M2

c4R6 , [83–85]. Our results show that by
considering nonzero graviton mass, the strength of gravity
from the perspective of a distant observer increases when
the mass of white dwarfs increases (see Tables II and III).

D. Dynamical stability

Another important quantity is related to the dynamical
stability of white dwarfs in massive gravity. Chandrasekhar
introduced the dynamical stability of stellar model against
the infinitesimal radial adiabatic perturbation in Ref. [86].
Some authors applied it to astrophysical cases [87–90]. The
adiabatic index (γ) is defined in the following form

γ ¼ ρc2 þ P
c2P

dP
dρ

: ð20Þ

We will encounter with the dynamical stability when γ is
more than 4=3 (γ > 4=3 ≃ 1.33), everywhere within the

FIG. 5. Adiabatic index vs radius for m2c1 ¼ 1 × 10−11. Left diagrams: for C ¼ 1, m2c2 ¼ −1 × 10−2 (continuous line), m2c2 ¼
−1 × 10−1 (dotted line), m2c2 ¼ −3 × 10−1 (dashed line), m2c2 ¼ −5 × 10−1 (dashed-dotted line). Right diagrams: for
m2c2 ¼ −1 × 10−1, C ¼ 1.0 (continuous line), C ¼ 1.5 (dotted line), C ¼ 2.0 (dashed line), C ¼ 2.5 (dashed-dotted line).

FIG. 6. Density vs radius for m2c1 ¼ 1 × 10−11. Left diagrams: for C ¼ 1, m2c1 ¼ −1 × 10−1 (continuous line), m2c1 ¼ −5 × 10−1

(dotted line), m2c1 ¼ −8 × 10−1 (dashed line). Right diagrams: for m2c2 ¼ −1 × 10−1, C ¼ 1.0 (continuous line), C ¼ 2.0 (dotted
line), C ¼ 3.0 (dashed line).
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obtained white dwarfs. So, we plot two diagrams related to
γ vs the radius for different values of m2c2 and C in Fig. 5.
Our results show that, the super-Chandrasekhar white
dwarfs or massive white dwarfs are stable against the
radial adiabatic infinitesimal perturbations.
Here, we want to evaluate the behavior of density and

pressure vs distance from the center to the surface of white
dwarfs. For this goal, we plot them in Figs. 6 and 7. As one
can see, the density and the pressure are maximum at the
center and they decrease monotonically towards the boun-
dary. These figures show that, in constant radius (for
example r ¼ 4 × 103 km), by increasing C (or decreasing
m2c2), the density and the pressure increase.

V. COMPARISON BETWEEN NEUTRON STARS
AND WHITE DWARFS IN MASSIVE GRAVITY

In this section we want to compare the obtained neutron
stars in Ref. [57] with the obtained white dwarfs in this paper.
Radius: the obtained radii of massive neutron stars were

about 10 km (RNS ≃ 10 km) [57], whereas the super-
Chandrasekhar white dwarfs are about 1000 km, so the
radii of these super-Chandrasekhar white dwarfs are one
hundred times larger than radius of massive neutron
stars (RWD ≃ 100RNS).
Average density: the average density of massive neutron

stars in massive gravity is ρ̄NS ≃ 1015g cm−3 [57], while the
average density of the super-Chandrasekhar white dwarfs in
this gravity is ρ̄WD ≃ 109g cm−3. Therefore, the average
density of massive white dwarfs is less than the average
density of massive neutron stars, ρ̄WD < ρ̄NS (ρ̄NS ≃
106ρ̄WD), as we expected.
Kretschmann scalar: in order to investigate the strength

of gravity between massive neutron stars and massive white
dwarfs, we compare the values of their Kretschmann
scalars. Our calculations of the Kretschmann scalar for

massive neutron stars are KNS ≃ 5.7 × 10−16 m−4, while
for massive white dwarfs are KWD ≃ 6.7 × 10−25 m−4.
Comparing these values show that, the strength of gravity
of massive white dwarfs are less than the massive neutron
stars, KWD < KNS (KNS ≃ 109KWD).
Dynamical stability: our results show that, both of them

(the massive neutron stars and the super-Chandrasekhar
white dwarfs) satisfy this condition. In other words, both of
them are stable against the radial adiabatic infinitesimal
perturbations.

VI. CLOSING REMARKS

As we mentioned before, in order to find the massive or
super-Chandrasekhar white dwarfs, we can consider two
approaches; (i) improve the EoS, and (ii) modified gravity.
According to this fact that GR had some problems, and also
the probability of existence massive graviton based on the
recent observations by the advanced LIGO/Virgo [1,14]
collaboration, which had put a tight bound on graviton’s
mass, and another theoretical and empirical limits on the
mass of gravitons, in this work we considered the
dRGT like massive gravity which is known as Vegh’s
massive gravity with a reference metric in the form of
Eq. (7). Then we investigated the effects of this theory of
gravity on the structure of white dwarfs. We employed the
Chandrasekhar’s EoS and considered the modified TOV
equation in the presence of nonzero graviton mass. Our
results showed that the maximum mass of white dwarfs in
massive gravity can be more than Chandrasekhar limit
(MMax > 1.45M⊙), because the strength of gravity may
change by varying the parameters of this gravity. Indeed, by
increasing (C) or decreasing (m2c2) parameters of the
reference metric and massive theory of gravity, respec-
tively, the strength of gravity may decrease. As we know,
there is a balance between the internal pressure and

FIG. 7. Pressure vs radius for m2c1 ¼ 1 × 10−11. Left diagrams: for C ¼ 1, m2c1 ¼ −1 × 10−1 (continuous line), m2c1 ¼ −5 × 10−1

(dotted line), m2c1 ¼ −8 × 10−1 (dashed line). Right diagrams: for m2c2 ¼ −1 × 10−1, C ¼ 1.0 (continuous line), C ¼ 2.0 (dotted
line), C ¼ 3.0 (dashed line).
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gravitational force. Decreasing the strength of gravity, a star
can bear more mass in order to keep this balance.
Therefore, the maximum mass of the white dwarf increased
by increasing (C) or decreasing (m2c2). Then, we studied
other properties of super-Chandrasekhar white dwarfs such
as Schwarzschild radius, average density, and Kretschmann
scalar in the presence of nonzero graviton mass. Next, we
evaluated the dynamical stability in order to have physical
super-Chandrasekhar white dwarfs. For having super-
Chandrasekhar white dwarfs, we obtained some constraints
on the parameters of massive gravity. Indeed, our results
showed that the value of C has to be more than 0.1
(C > 0.1). The sign of c2 was negative with the range
m2c2 < −1 × 10−2. In addition, the sign of c1 could be
positive or negative, so that different values of this
parameter did not affect the structure of white dwarfs
(see Table IV).
Recently, in Ref. [76], was shown that there is a

correspondence between the spherical black hole solutions
in this theory of massive gravity with conformal gravity,
when m2c1C and m2c2C2 are in the ranges; (i) m2c1C > 0

and −2 < m2c2C2 < 0, (ii) m2c1C < 0 and m2c2C2 < −2,
or (iii)m2c1C < 0 andm2c2C2 > 0. The results obtained in
this paper were consistent with case (i). Also, this range
[case (i)] was valid for neutron stars in massive gravity [57].
Finally, in order to have a better view of these super-

Chandrasekhar white dwarfs in massive gravity, we com-
pared the obtained massive neutron stars in Ref. [57], with
super-Chandrasekhar white dwarfs in the last section.
Briefly, we obtained the quite interesting results from

massive gravity for the white dwarfs such as:
(I) Prediction of maximum mass for white dwarfs more

than the Chandrasekhar limit (M > 1.45M⊙), due to

the existence of nonzero graviton mass. In other
words, super-Chandrasekhar white dwarfs in mas-
sive gravity were acceptable.

(II) The super-Chandrasekhar white dwarfs in massive
gravity are dynamically stable.

(III) Considering different values of parameters of mas-
sive gravity, the strength of gravity from the per-
spective of a distant observer by increasing the mass
of white dwarf increased.

(IV) Density inside white dwarfs increased due to in-
creasing the mass of white dwarf, which was one of
the effects of massive gravity.

(V) Super-Chandrasekhar white dwarfs imposed some
constraints on parameters of massive theory.

Finally, it is notable that rotating, slowly rotating
and magnetized white dwarfs [91–99] in the context of
massive gravity are interesting topics. In addition, it will be
very interesting if we use another realistic equation of
state in order to have a good view of the behavior of
white dwarfs in massive gravity. We leave these issues for
future works.
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